add big page nand flash emulation
[qemu/qemu-JZ.git] / hw / ppc4xx_devs.c
blob939e0669e2c774899f29fcd5578612eb74cfe93d
1 /*
2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "ppc4xx.h"
27 #include "sysemu.h"
28 #include "qemu-log.h"
30 //#define DEBUG_MMIO
31 //#define DEBUG_UNASSIGNED
32 #define DEBUG_UIC
34 /*****************************************************************************/
35 /* Generic PowerPC 4xx processor instanciation */
36 CPUState *ppc4xx_init (const char *cpu_model,
37 clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
38 uint32_t sysclk)
40 CPUState *env;
42 /* init CPUs */
43 env = cpu_init(cpu_model);
44 if (!env) {
45 fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
46 cpu_model);
47 exit(1);
49 cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
50 cpu_clk->opaque = env;
51 /* Set time-base frequency to sysclk */
52 tb_clk->cb = ppc_emb_timers_init(env, sysclk);
53 tb_clk->opaque = env;
54 ppc_dcr_init(env, NULL, NULL);
55 /* Register qemu callbacks */
56 qemu_register_reset(&cpu_ppc_reset, env);
58 return env;
61 /*****************************************************************************/
62 /* Fake device used to map multiple devices in a single memory page */
63 #define MMIO_AREA_BITS 8
64 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
65 #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
66 #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
67 struct ppc4xx_mmio_t {
68 target_phys_addr_t base;
69 CPUReadMemoryFunc **mem_read[MMIO_AREA_NB];
70 CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB];
71 void *opaque[MMIO_AREA_NB];
74 static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr)
76 #ifdef DEBUG_UNASSIGNED
77 ppc4xx_mmio_t *mmio;
79 mmio = opaque;
80 printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n",
81 addr, mmio->base);
82 #endif
84 return 0;
87 static void unassigned_mmio_writeb (void *opaque,
88 target_phys_addr_t addr, uint32_t val)
90 #ifdef DEBUG_UNASSIGNED
91 ppc4xx_mmio_t *mmio;
93 mmio = opaque;
94 printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n",
95 addr, val, mmio->base);
96 #endif
99 static CPUReadMemoryFunc *unassigned_mmio_read[3] = {
100 unassigned_mmio_readb,
101 unassigned_mmio_readb,
102 unassigned_mmio_readb,
105 static CPUWriteMemoryFunc *unassigned_mmio_write[3] = {
106 unassigned_mmio_writeb,
107 unassigned_mmio_writeb,
108 unassigned_mmio_writeb,
111 static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio,
112 target_phys_addr_t addr, int len)
114 CPUReadMemoryFunc **mem_read;
115 uint32_t ret;
116 int idx;
118 idx = MMIO_IDX(addr);
119 #if defined(DEBUG_MMIO)
120 printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__,
121 mmio, len, addr, idx);
122 #endif
123 mem_read = mmio->mem_read[idx];
124 ret = (*mem_read[len])(mmio->opaque[idx], addr);
126 return ret;
129 static void mmio_writelen (ppc4xx_mmio_t *mmio,
130 target_phys_addr_t addr, uint32_t value, int len)
132 CPUWriteMemoryFunc **mem_write;
133 int idx;
135 idx = MMIO_IDX(addr);
136 #if defined(DEBUG_MMIO)
137 printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08" PRIx32 "\n",
138 __func__, mmio, len, addr, idx, value);
139 #endif
140 mem_write = mmio->mem_write[idx];
141 (*mem_write[len])(mmio->opaque[idx], addr, value);
144 static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr)
146 #if defined(DEBUG_MMIO)
147 printf("%s: addr " PADDRX "\n", __func__, addr);
148 #endif
150 return mmio_readlen(opaque, addr, 0);
153 static void mmio_writeb (void *opaque,
154 target_phys_addr_t addr, uint32_t value)
156 #if defined(DEBUG_MMIO)
157 printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
158 #endif
159 mmio_writelen(opaque, addr, value, 0);
162 static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr)
164 #if defined(DEBUG_MMIO)
165 printf("%s: addr " PADDRX "\n", __func__, addr);
166 #endif
168 return mmio_readlen(opaque, addr, 1);
171 static void mmio_writew (void *opaque,
172 target_phys_addr_t addr, uint32_t value)
174 #if defined(DEBUG_MMIO)
175 printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
176 #endif
177 mmio_writelen(opaque, addr, value, 1);
180 static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr)
182 #if defined(DEBUG_MMIO)
183 printf("%s: addr " PADDRX "\n", __func__, addr);
184 #endif
186 return mmio_readlen(opaque, addr, 2);
189 static void mmio_writel (void *opaque,
190 target_phys_addr_t addr, uint32_t value)
192 #if defined(DEBUG_MMIO)
193 printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
194 #endif
195 mmio_writelen(opaque, addr, value, 2);
198 static CPUReadMemoryFunc *mmio_read[] = {
199 &mmio_readb,
200 &mmio_readw,
201 &mmio_readl,
204 static CPUWriteMemoryFunc *mmio_write[] = {
205 &mmio_writeb,
206 &mmio_writew,
207 &mmio_writel,
210 int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio,
211 target_phys_addr_t offset, uint32_t len,
212 CPUReadMemoryFunc **mem_read,
213 CPUWriteMemoryFunc **mem_write, void *opaque)
215 target_phys_addr_t end;
216 int idx, eidx;
218 if ((offset + len) > TARGET_PAGE_SIZE)
219 return -1;
220 idx = MMIO_IDX(offset);
221 end = offset + len - 1;
222 eidx = MMIO_IDX(end);
223 #if defined(DEBUG_MMIO)
224 printf("%s: offset " PADDRX " len %08" PRIx32 " " PADDRX " %d %d\n",
225 __func__, offset, len, end, idx, eidx);
226 #endif
227 for (; idx <= eidx; idx++) {
228 mmio->mem_read[idx] = mem_read;
229 mmio->mem_write[idx] = mem_write;
230 mmio->opaque[idx] = opaque;
233 return 0;
236 ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base)
238 ppc4xx_mmio_t *mmio;
239 int mmio_memory;
241 mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t));
242 if (mmio != NULL) {
243 mmio->base = base;
244 mmio_memory = cpu_register_io_memory(0, mmio_read, mmio_write, mmio);
245 #if defined(DEBUG_MMIO)
246 printf("%s: base " PADDRX " len %08x %d\n", __func__,
247 base, TARGET_PAGE_SIZE, mmio_memory);
248 #endif
249 cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory);
250 ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE,
251 unassigned_mmio_read, unassigned_mmio_write,
252 mmio);
255 return mmio;
258 /*****************************************************************************/
259 /* "Universal" Interrupt controller */
260 enum {
261 DCR_UICSR = 0x000,
262 DCR_UICSRS = 0x001,
263 DCR_UICER = 0x002,
264 DCR_UICCR = 0x003,
265 DCR_UICPR = 0x004,
266 DCR_UICTR = 0x005,
267 DCR_UICMSR = 0x006,
268 DCR_UICVR = 0x007,
269 DCR_UICVCR = 0x008,
270 DCR_UICMAX = 0x009,
273 #define UIC_MAX_IRQ 32
274 typedef struct ppcuic_t ppcuic_t;
275 struct ppcuic_t {
276 uint32_t dcr_base;
277 int use_vectors;
278 uint32_t level; /* Remembers the state of level-triggered interrupts. */
279 uint32_t uicsr; /* Status register */
280 uint32_t uicer; /* Enable register */
281 uint32_t uiccr; /* Critical register */
282 uint32_t uicpr; /* Polarity register */
283 uint32_t uictr; /* Triggering register */
284 uint32_t uicvcr; /* Vector configuration register */
285 uint32_t uicvr;
286 qemu_irq *irqs;
289 static void ppcuic_trigger_irq (ppcuic_t *uic)
291 uint32_t ir, cr;
292 int start, end, inc, i;
294 /* Trigger interrupt if any is pending */
295 ir = uic->uicsr & uic->uicer & (~uic->uiccr);
296 cr = uic->uicsr & uic->uicer & uic->uiccr;
297 #ifdef DEBUG_UIC
298 if (loglevel & CPU_LOG_INT) {
299 fprintf(logfile, "%s: uicsr %08" PRIx32 " uicer %08" PRIx32
300 " uiccr %08" PRIx32 "\n"
301 " %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
302 __func__, uic->uicsr, uic->uicer, uic->uiccr,
303 uic->uicsr & uic->uicer, ir, cr);
305 #endif
306 if (ir != 0x0000000) {
307 #ifdef DEBUG_UIC
308 if (loglevel & CPU_LOG_INT) {
309 fprintf(logfile, "Raise UIC interrupt\n");
311 #endif
312 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
313 } else {
314 #ifdef DEBUG_UIC
315 if (loglevel & CPU_LOG_INT) {
316 fprintf(logfile, "Lower UIC interrupt\n");
318 #endif
319 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
321 /* Trigger critical interrupt if any is pending and update vector */
322 if (cr != 0x0000000) {
323 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
324 if (uic->use_vectors) {
325 /* Compute critical IRQ vector */
326 if (uic->uicvcr & 1) {
327 start = 31;
328 end = 0;
329 inc = -1;
330 } else {
331 start = 0;
332 end = 31;
333 inc = 1;
335 uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
336 for (i = start; i <= end; i += inc) {
337 if (cr & (1 << i)) {
338 uic->uicvr += (i - start) * 512 * inc;
339 break;
343 #ifdef DEBUG_UIC
344 if (loglevel & CPU_LOG_INT) {
345 fprintf(logfile, "Raise UIC critical interrupt - "
346 "vector %08" PRIx32 "\n", uic->uicvr);
348 #endif
349 } else {
350 #ifdef DEBUG_UIC
351 if (loglevel & CPU_LOG_INT) {
352 fprintf(logfile, "Lower UIC critical interrupt\n");
354 #endif
355 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
356 uic->uicvr = 0x00000000;
360 static void ppcuic_set_irq (void *opaque, int irq_num, int level)
362 ppcuic_t *uic;
363 uint32_t mask, sr;
365 uic = opaque;
366 mask = 1 << (31-irq_num);
367 #ifdef DEBUG_UIC
368 if (loglevel & CPU_LOG_INT) {
369 fprintf(logfile, "%s: irq %d level %d uicsr %08" PRIx32
370 " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
371 __func__, irq_num, level,
372 uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
374 #endif
375 if (irq_num < 0 || irq_num > 31)
376 return;
377 sr = uic->uicsr;
379 /* Update status register */
380 if (uic->uictr & mask) {
381 /* Edge sensitive interrupt */
382 if (level == 1)
383 uic->uicsr |= mask;
384 } else {
385 /* Level sensitive interrupt */
386 if (level == 1) {
387 uic->uicsr |= mask;
388 uic->level |= mask;
389 } else {
390 uic->uicsr &= ~mask;
391 uic->level &= ~mask;
394 #ifdef DEBUG_UIC
395 if (loglevel & CPU_LOG_INT) {
396 fprintf(logfile, "%s: irq %d level %d sr %" PRIx32 " => "
397 "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
399 #endif
400 if (sr != uic->uicsr)
401 ppcuic_trigger_irq(uic);
404 static target_ulong dcr_read_uic (void *opaque, int dcrn)
406 ppcuic_t *uic;
407 target_ulong ret;
409 uic = opaque;
410 dcrn -= uic->dcr_base;
411 switch (dcrn) {
412 case DCR_UICSR:
413 case DCR_UICSRS:
414 ret = uic->uicsr;
415 break;
416 case DCR_UICER:
417 ret = uic->uicer;
418 break;
419 case DCR_UICCR:
420 ret = uic->uiccr;
421 break;
422 case DCR_UICPR:
423 ret = uic->uicpr;
424 break;
425 case DCR_UICTR:
426 ret = uic->uictr;
427 break;
428 case DCR_UICMSR:
429 ret = uic->uicsr & uic->uicer;
430 break;
431 case DCR_UICVR:
432 if (!uic->use_vectors)
433 goto no_read;
434 ret = uic->uicvr;
435 break;
436 case DCR_UICVCR:
437 if (!uic->use_vectors)
438 goto no_read;
439 ret = uic->uicvcr;
440 break;
441 default:
442 no_read:
443 ret = 0x00000000;
444 break;
447 return ret;
450 static void dcr_write_uic (void *opaque, int dcrn, target_ulong val)
452 ppcuic_t *uic;
454 uic = opaque;
455 dcrn -= uic->dcr_base;
456 #ifdef DEBUG_UIC
457 if (loglevel & CPU_LOG_INT) {
458 fprintf(logfile, "%s: dcr %d val " ADDRX "\n", __func__, dcrn, val);
460 #endif
461 switch (dcrn) {
462 case DCR_UICSR:
463 uic->uicsr &= ~val;
464 uic->uicsr |= uic->level;
465 ppcuic_trigger_irq(uic);
466 break;
467 case DCR_UICSRS:
468 uic->uicsr |= val;
469 ppcuic_trigger_irq(uic);
470 break;
471 case DCR_UICER:
472 uic->uicer = val;
473 ppcuic_trigger_irq(uic);
474 break;
475 case DCR_UICCR:
476 uic->uiccr = val;
477 ppcuic_trigger_irq(uic);
478 break;
479 case DCR_UICPR:
480 uic->uicpr = val;
481 break;
482 case DCR_UICTR:
483 uic->uictr = val;
484 ppcuic_trigger_irq(uic);
485 break;
486 case DCR_UICMSR:
487 break;
488 case DCR_UICVR:
489 break;
490 case DCR_UICVCR:
491 uic->uicvcr = val & 0xFFFFFFFD;
492 ppcuic_trigger_irq(uic);
493 break;
497 static void ppcuic_reset (void *opaque)
499 ppcuic_t *uic;
501 uic = opaque;
502 uic->uiccr = 0x00000000;
503 uic->uicer = 0x00000000;
504 uic->uicpr = 0x00000000;
505 uic->uicsr = 0x00000000;
506 uic->uictr = 0x00000000;
507 if (uic->use_vectors) {
508 uic->uicvcr = 0x00000000;
509 uic->uicvr = 0x0000000;
513 qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs,
514 uint32_t dcr_base, int has_ssr, int has_vr)
516 ppcuic_t *uic;
517 int i;
519 uic = qemu_mallocz(sizeof(ppcuic_t));
520 if (uic != NULL) {
521 uic->dcr_base = dcr_base;
522 uic->irqs = irqs;
523 if (has_vr)
524 uic->use_vectors = 1;
525 for (i = 0; i < DCR_UICMAX; i++) {
526 ppc_dcr_register(env, dcr_base + i, uic,
527 &dcr_read_uic, &dcr_write_uic);
529 qemu_register_reset(ppcuic_reset, uic);
530 ppcuic_reset(uic);
533 return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
536 /*****************************************************************************/
537 /* SDRAM controller */
538 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
539 struct ppc4xx_sdram_t {
540 uint32_t addr;
541 int nbanks;
542 target_phys_addr_t ram_bases[4];
543 target_phys_addr_t ram_sizes[4];
544 uint32_t besr0;
545 uint32_t besr1;
546 uint32_t bear;
547 uint32_t cfg;
548 uint32_t status;
549 uint32_t rtr;
550 uint32_t pmit;
551 uint32_t bcr[4];
552 uint32_t tr;
553 uint32_t ecccfg;
554 uint32_t eccesr;
555 qemu_irq irq;
558 enum {
559 SDRAM0_CFGADDR = 0x010,
560 SDRAM0_CFGDATA = 0x011,
563 /* XXX: TOFIX: some patches have made this code become inconsistent:
564 * there are type inconsistencies, mixing target_phys_addr_t, target_ulong
565 * and uint32_t
567 static uint32_t sdram_bcr (target_phys_addr_t ram_base,
568 target_phys_addr_t ram_size)
570 uint32_t bcr;
572 switch (ram_size) {
573 case (4 * 1024 * 1024):
574 bcr = 0x00000000;
575 break;
576 case (8 * 1024 * 1024):
577 bcr = 0x00020000;
578 break;
579 case (16 * 1024 * 1024):
580 bcr = 0x00040000;
581 break;
582 case (32 * 1024 * 1024):
583 bcr = 0x00060000;
584 break;
585 case (64 * 1024 * 1024):
586 bcr = 0x00080000;
587 break;
588 case (128 * 1024 * 1024):
589 bcr = 0x000A0000;
590 break;
591 case (256 * 1024 * 1024):
592 bcr = 0x000C0000;
593 break;
594 default:
595 printf("%s: invalid RAM size " PADDRX "\n", __func__, ram_size);
596 return 0x00000000;
598 bcr |= ram_base & 0xFF800000;
599 bcr |= 1;
601 return bcr;
604 static always_inline target_phys_addr_t sdram_base (uint32_t bcr)
606 return bcr & 0xFF800000;
609 static target_ulong sdram_size (uint32_t bcr)
611 target_ulong size;
612 int sh;
614 sh = (bcr >> 17) & 0x7;
615 if (sh == 7)
616 size = -1;
617 else
618 size = (4 * 1024 * 1024) << sh;
620 return size;
623 static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled)
625 if (*bcrp & 0x00000001) {
626 /* Unmap RAM */
627 #ifdef DEBUG_SDRAM
628 printf("%s: unmap RAM area " PADDRX " " ADDRX "\n",
629 __func__, sdram_base(*bcrp), sdram_size(*bcrp));
630 #endif
631 cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp),
632 IO_MEM_UNASSIGNED);
634 *bcrp = bcr & 0xFFDEE001;
635 if (enabled && (bcr & 0x00000001)) {
636 #ifdef DEBUG_SDRAM
637 printf("%s: Map RAM area " PADDRX " " ADDRX "\n",
638 __func__, sdram_base(bcr), sdram_size(bcr));
639 #endif
640 cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr),
641 sdram_base(bcr) | IO_MEM_RAM);
645 static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
647 int i;
649 for (i = 0; i < sdram->nbanks; i++) {
650 if (sdram->ram_sizes[i] != 0) {
651 sdram_set_bcr(&sdram->bcr[i],
652 sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]),
654 } else {
655 sdram_set_bcr(&sdram->bcr[i], 0x00000000, 0);
660 static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
662 int i;
664 for (i = 0; i < sdram->nbanks; i++) {
665 #ifdef DEBUG_SDRAM
666 printf("%s: Unmap RAM area " PADDRX " " ADDRX "\n",
667 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
668 #endif
669 cpu_register_physical_memory(sdram_base(sdram->bcr[i]),
670 sdram_size(sdram->bcr[i]),
671 IO_MEM_UNASSIGNED);
675 static target_ulong dcr_read_sdram (void *opaque, int dcrn)
677 ppc4xx_sdram_t *sdram;
678 target_ulong ret;
680 sdram = opaque;
681 switch (dcrn) {
682 case SDRAM0_CFGADDR:
683 ret = sdram->addr;
684 break;
685 case SDRAM0_CFGDATA:
686 switch (sdram->addr) {
687 case 0x00: /* SDRAM_BESR0 */
688 ret = sdram->besr0;
689 break;
690 case 0x08: /* SDRAM_BESR1 */
691 ret = sdram->besr1;
692 break;
693 case 0x10: /* SDRAM_BEAR */
694 ret = sdram->bear;
695 break;
696 case 0x20: /* SDRAM_CFG */
697 ret = sdram->cfg;
698 break;
699 case 0x24: /* SDRAM_STATUS */
700 ret = sdram->status;
701 break;
702 case 0x30: /* SDRAM_RTR */
703 ret = sdram->rtr;
704 break;
705 case 0x34: /* SDRAM_PMIT */
706 ret = sdram->pmit;
707 break;
708 case 0x40: /* SDRAM_B0CR */
709 ret = sdram->bcr[0];
710 break;
711 case 0x44: /* SDRAM_B1CR */
712 ret = sdram->bcr[1];
713 break;
714 case 0x48: /* SDRAM_B2CR */
715 ret = sdram->bcr[2];
716 break;
717 case 0x4C: /* SDRAM_B3CR */
718 ret = sdram->bcr[3];
719 break;
720 case 0x80: /* SDRAM_TR */
721 ret = -1; /* ? */
722 break;
723 case 0x94: /* SDRAM_ECCCFG */
724 ret = sdram->ecccfg;
725 break;
726 case 0x98: /* SDRAM_ECCESR */
727 ret = sdram->eccesr;
728 break;
729 default: /* Error */
730 ret = -1;
731 break;
733 break;
734 default:
735 /* Avoid gcc warning */
736 ret = 0x00000000;
737 break;
740 return ret;
743 static void dcr_write_sdram (void *opaque, int dcrn, target_ulong val)
745 ppc4xx_sdram_t *sdram;
747 sdram = opaque;
748 switch (dcrn) {
749 case SDRAM0_CFGADDR:
750 sdram->addr = val;
751 break;
752 case SDRAM0_CFGDATA:
753 switch (sdram->addr) {
754 case 0x00: /* SDRAM_BESR0 */
755 sdram->besr0 &= ~val;
756 break;
757 case 0x08: /* SDRAM_BESR1 */
758 sdram->besr1 &= ~val;
759 break;
760 case 0x10: /* SDRAM_BEAR */
761 sdram->bear = val;
762 break;
763 case 0x20: /* SDRAM_CFG */
764 val &= 0xFFE00000;
765 if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
766 #ifdef DEBUG_SDRAM
767 printf("%s: enable SDRAM controller\n", __func__);
768 #endif
769 /* validate all RAM mappings */
770 sdram_map_bcr(sdram);
771 sdram->status &= ~0x80000000;
772 } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
773 #ifdef DEBUG_SDRAM
774 printf("%s: disable SDRAM controller\n", __func__);
775 #endif
776 /* invalidate all RAM mappings */
777 sdram_unmap_bcr(sdram);
778 sdram->status |= 0x80000000;
780 if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
781 sdram->status |= 0x40000000;
782 else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
783 sdram->status &= ~0x40000000;
784 sdram->cfg = val;
785 break;
786 case 0x24: /* SDRAM_STATUS */
787 /* Read-only register */
788 break;
789 case 0x30: /* SDRAM_RTR */
790 sdram->rtr = val & 0x3FF80000;
791 break;
792 case 0x34: /* SDRAM_PMIT */
793 sdram->pmit = (val & 0xF8000000) | 0x07C00000;
794 break;
795 case 0x40: /* SDRAM_B0CR */
796 sdram_set_bcr(&sdram->bcr[0], val, sdram->cfg & 0x80000000);
797 break;
798 case 0x44: /* SDRAM_B1CR */
799 sdram_set_bcr(&sdram->bcr[1], val, sdram->cfg & 0x80000000);
800 break;
801 case 0x48: /* SDRAM_B2CR */
802 sdram_set_bcr(&sdram->bcr[2], val, sdram->cfg & 0x80000000);
803 break;
804 case 0x4C: /* SDRAM_B3CR */
805 sdram_set_bcr(&sdram->bcr[3], val, sdram->cfg & 0x80000000);
806 break;
807 case 0x80: /* SDRAM_TR */
808 sdram->tr = val & 0x018FC01F;
809 break;
810 case 0x94: /* SDRAM_ECCCFG */
811 sdram->ecccfg = val & 0x00F00000;
812 break;
813 case 0x98: /* SDRAM_ECCESR */
814 val &= 0xFFF0F000;
815 if (sdram->eccesr == 0 && val != 0)
816 qemu_irq_raise(sdram->irq);
817 else if (sdram->eccesr != 0 && val == 0)
818 qemu_irq_lower(sdram->irq);
819 sdram->eccesr = val;
820 break;
821 default: /* Error */
822 break;
824 break;
828 static void sdram_reset (void *opaque)
830 ppc4xx_sdram_t *sdram;
832 sdram = opaque;
833 sdram->addr = 0x00000000;
834 sdram->bear = 0x00000000;
835 sdram->besr0 = 0x00000000; /* No error */
836 sdram->besr1 = 0x00000000; /* No error */
837 sdram->cfg = 0x00000000;
838 sdram->ecccfg = 0x00000000; /* No ECC */
839 sdram->eccesr = 0x00000000; /* No error */
840 sdram->pmit = 0x07C00000;
841 sdram->rtr = 0x05F00000;
842 sdram->tr = 0x00854009;
843 /* We pre-initialize RAM banks */
844 sdram->status = 0x00000000;
845 sdram->cfg = 0x00800000;
846 sdram_unmap_bcr(sdram);
849 void ppc4xx_sdram_init (CPUState *env, qemu_irq irq, int nbanks,
850 target_phys_addr_t *ram_bases,
851 target_phys_addr_t *ram_sizes,
852 int do_init)
854 ppc4xx_sdram_t *sdram;
856 sdram = qemu_mallocz(sizeof(ppc4xx_sdram_t));
857 if (sdram != NULL) {
858 sdram->irq = irq;
859 sdram->nbanks = nbanks;
860 memset(sdram->ram_bases, 0, 4 * sizeof(target_phys_addr_t));
861 memcpy(sdram->ram_bases, ram_bases,
862 nbanks * sizeof(target_phys_addr_t));
863 memset(sdram->ram_sizes, 0, 4 * sizeof(target_phys_addr_t));
864 memcpy(sdram->ram_sizes, ram_sizes,
865 nbanks * sizeof(target_phys_addr_t));
866 sdram_reset(sdram);
867 qemu_register_reset(&sdram_reset, sdram);
868 ppc_dcr_register(env, SDRAM0_CFGADDR,
869 sdram, &dcr_read_sdram, &dcr_write_sdram);
870 ppc_dcr_register(env, SDRAM0_CFGDATA,
871 sdram, &dcr_read_sdram, &dcr_write_sdram);
872 if (do_init)
873 sdram_map_bcr(sdram);
877 /* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
879 * sdram_bank_sizes[] must be 0-terminated.
881 * The 4xx SDRAM controller supports a small number of banks, and each bank
882 * must be one of a small set of sizes. The number of banks and the supported
883 * sizes varies by SoC. */
884 ram_addr_t ppc4xx_sdram_adjust(ram_addr_t ram_size, int nr_banks,
885 target_phys_addr_t ram_bases[],
886 target_phys_addr_t ram_sizes[],
887 const unsigned int sdram_bank_sizes[])
889 ram_addr_t ram_end = 0;
890 int i;
891 int j;
893 for (i = 0; i < nr_banks; i++) {
894 for (j = 0; sdram_bank_sizes[j] != 0; j++) {
895 unsigned int bank_size = sdram_bank_sizes[j];
897 if (bank_size <= ram_size) {
898 ram_bases[i] = ram_end;
899 ram_sizes[i] = bank_size;
900 ram_end += bank_size;
901 ram_size -= bank_size;
902 break;
906 if (!ram_size) {
907 /* No need to use the remaining banks. */
908 break;
912 if (ram_size)
913 printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
914 (int)(ram_end >> 20));
916 return ram_end;