add emc emulation
[qemu/qemu-JZ.git] / hw / etraxfs_eth.c
blob239e0d872c40e937fe9151d2ce1793f58e24433d
1 /*
2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
29 #include "etraxfs_dma.h"
31 #define D(x)
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
35 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
36 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
39 /*
40 * The MDIO extensions in the TDK PHY model were reversed engineered from the
41 * linux driver (PHYID and Diagnostics reg).
42 * TODO: Add friendly names for the register nums.
44 struct qemu_phy
46 uint32_t regs[32];
48 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
49 void (*write)(struct qemu_phy *phy, unsigned int req,
50 unsigned int data);
53 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55 int regnum;
56 unsigned r = 0;
58 regnum = req & 0x1f;
60 switch (regnum) {
61 case 1:
62 /* MR1. */
63 /* Speeds and modes. */
64 r |= (1 << 13) | (1 << 14);
65 r |= (1 << 11) | (1 << 12);
66 r |= (1 << 5); /* Autoneg complete. */
67 r |= (1 << 3); /* Autoneg able. */
68 r |= (1 << 2); /* Link. */
69 break;
70 case 5:
71 /* Link partner ability.
72 We are kind; always agree with whatever best mode
73 the guest advertises. */
74 r = 1 << 14; /* Success. */
75 /* Copy advertised modes. */
76 r |= phy->regs[4] & (15 << 5);
77 /* Autoneg support. */
78 r |= 1;
79 break;
80 case 18:
82 /* Diagnostics reg. */
83 int duplex = 0;
84 int speed_100 = 0;
86 /* Are we advertising 100 half or 100 duplex ? */
87 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
88 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
90 /* Are we advertising 10 duplex or 100 duplex ? */
91 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
92 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
93 r = (speed_100 << 10) | (duplex << 11);
95 break;
97 default:
98 r = phy->regs[regnum];
99 break;
101 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
102 return r;
105 static void
106 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
108 int regnum;
110 regnum = req & 0x1f;
111 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
112 switch (regnum) {
113 default:
114 phy->regs[regnum] = data;
115 break;
119 static void
120 tdk_init(struct qemu_phy *phy)
122 phy->regs[0] = 0x3100;
123 /* PHY Id. */
124 phy->regs[2] = 0x0300;
125 phy->regs[3] = 0xe400;
126 /* Autonegotiation advertisement reg. */
127 phy->regs[4] = 0x01E1;
129 phy->read = tdk_read;
130 phy->write = tdk_write;
133 struct qemu_mdio
135 /* bus. */
136 int mdc;
137 int mdio;
139 /* decoder. */
140 enum {
141 PREAMBLE,
142 SOF,
143 OPC,
144 ADDR,
145 REQ,
146 TURNAROUND,
147 DATA
148 } state;
149 unsigned int drive;
151 unsigned int cnt;
152 unsigned int addr;
153 unsigned int opc;
154 unsigned int req;
155 unsigned int data;
157 struct qemu_phy *devs[32];
160 static void
161 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
163 bus->devs[addr & 0x1f] = phy;
166 #ifdef USE_THIS_DEAD_CODE
167 static void
168 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
170 bus->devs[addr & 0x1f] = NULL;
172 #endif
174 static void mdio_read_req(struct qemu_mdio *bus)
176 struct qemu_phy *phy;
178 phy = bus->devs[bus->addr];
179 if (phy && phy->read)
180 bus->data = phy->read(phy, bus->req);
181 else
182 bus->data = 0xffff;
185 static void mdio_write_req(struct qemu_mdio *bus)
187 struct qemu_phy *phy;
189 phy = bus->devs[bus->addr];
190 if (phy && phy->write)
191 phy->write(phy, bus->req, bus->data);
194 static void mdio_cycle(struct qemu_mdio *bus)
196 bus->cnt++;
198 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
199 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
200 #if 0
201 if (bus->mdc)
202 printf("%d", bus->mdio);
203 #endif
204 switch (bus->state)
206 case PREAMBLE:
207 if (bus->mdc) {
208 if (bus->cnt >= (32 * 2) && !bus->mdio) {
209 bus->cnt = 0;
210 bus->state = SOF;
211 bus->data = 0;
214 break;
215 case SOF:
216 if (bus->mdc) {
217 if (bus->mdio != 1)
218 printf("WARNING: no SOF\n");
219 if (bus->cnt == 1*2) {
220 bus->cnt = 0;
221 bus->opc = 0;
222 bus->state = OPC;
225 break;
226 case OPC:
227 if (bus->mdc) {
228 bus->opc <<= 1;
229 bus->opc |= bus->mdio & 1;
230 if (bus->cnt == 2*2) {
231 bus->cnt = 0;
232 bus->addr = 0;
233 bus->state = ADDR;
236 break;
237 case ADDR:
238 if (bus->mdc) {
239 bus->addr <<= 1;
240 bus->addr |= bus->mdio & 1;
242 if (bus->cnt == 5*2) {
243 bus->cnt = 0;
244 bus->req = 0;
245 bus->state = REQ;
248 break;
249 case REQ:
250 if (bus->mdc) {
251 bus->req <<= 1;
252 bus->req |= bus->mdio & 1;
253 if (bus->cnt == 5*2) {
254 bus->cnt = 0;
255 bus->state = TURNAROUND;
258 break;
259 case TURNAROUND:
260 if (bus->mdc && bus->cnt == 2*2) {
261 bus->mdio = 0;
262 bus->cnt = 0;
264 if (bus->opc == 2) {
265 bus->drive = 1;
266 mdio_read_req(bus);
267 bus->mdio = bus->data & 1;
269 bus->state = DATA;
271 break;
272 case DATA:
273 if (!bus->mdc) {
274 if (bus->drive) {
275 bus->mdio = !!(bus->data & (1 << 15));
276 bus->data <<= 1;
278 } else {
279 if (!bus->drive) {
280 bus->data <<= 1;
281 bus->data |= bus->mdio;
283 if (bus->cnt == 16 * 2) {
284 bus->cnt = 0;
285 bus->state = PREAMBLE;
286 if (!bus->drive)
287 mdio_write_req(bus);
288 bus->drive = 0;
291 break;
292 default:
293 break;
297 /* ETRAX-FS Ethernet MAC block starts here. */
299 #define RW_MA0_LO 0x00
300 #define RW_MA0_HI 0x01
301 #define RW_MA1_LO 0x02
302 #define RW_MA1_HI 0x03
303 #define RW_GA_LO 0x04
304 #define RW_GA_HI 0x05
305 #define RW_GEN_CTRL 0x06
306 #define RW_REC_CTRL 0x07
307 #define RW_TR_CTRL 0x08
308 #define RW_CLR_ERR 0x09
309 #define RW_MGM_CTRL 0x0a
310 #define R_STAT 0x0b
311 #define FS_ETH_MAX_REGS 0x17
313 struct fs_eth
315 CPUState *env;
316 qemu_irq *irq;
317 VLANClientState *vc;
318 int ethregs;
320 /* Two addrs in the filter. */
321 uint8_t macaddr[2][6];
322 uint32_t regs[FS_ETH_MAX_REGS];
324 struct etraxfs_dma_client *dma_out;
325 struct etraxfs_dma_client *dma_in;
327 /* MDIO bus. */
328 struct qemu_mdio mdio_bus;
329 unsigned int phyaddr;
330 int duplex_mismatch;
332 /* PHY. */
333 struct qemu_phy phy;
336 static void eth_validate_duplex(struct fs_eth *eth)
338 struct qemu_phy *phy;
339 unsigned int phy_duplex;
340 unsigned int mac_duplex;
341 int new_mm = 0;
343 phy = eth->mdio_bus.devs[eth->phyaddr];
344 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
345 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
347 if (mac_duplex != phy_duplex)
348 new_mm = 1;
350 if (eth->regs[RW_GEN_CTRL] & 1) {
351 if (new_mm != eth->duplex_mismatch) {
352 if (new_mm)
353 printf("HW: WARNING "
354 "ETH duplex mismatch MAC=%d PHY=%d\n",
355 mac_duplex, phy_duplex);
356 else
357 printf("HW: ETH duplex ok.\n");
359 eth->duplex_mismatch = new_mm;
363 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
365 struct fs_eth *eth = opaque;
366 uint32_t r = 0;
368 addr >>= 2;
370 switch (addr) {
371 case R_STAT:
372 r = eth->mdio_bus.mdio & 1;
373 break;
374 default:
375 r = eth->regs[addr];
376 D(printf ("%s %x\n", __func__, addr * 4));
377 break;
379 return r;
382 static void eth_update_ma(struct fs_eth *eth, int ma)
384 int reg;
385 int i = 0;
387 ma &= 1;
389 reg = RW_MA0_LO;
390 if (ma)
391 reg = RW_MA1_LO;
393 eth->macaddr[ma][i++] = eth->regs[reg];
394 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
395 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
396 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
397 eth->macaddr[ma][i++] = eth->regs[reg + 4];
398 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
400 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
401 eth->macaddr[ma][0], eth->macaddr[ma][1],
402 eth->macaddr[ma][2], eth->macaddr[ma][3],
403 eth->macaddr[ma][4], eth->macaddr[ma][5]));
406 static void
407 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
409 struct fs_eth *eth = opaque;
411 addr >>= 2;
412 switch (addr)
414 case RW_MA0_LO:
415 case RW_MA0_HI:
416 eth->regs[addr] = value;
417 eth_update_ma(eth, 0);
418 break;
419 case RW_MA1_LO:
420 case RW_MA1_HI:
421 eth->regs[addr] = value;
422 eth_update_ma(eth, 1);
423 break;
425 case RW_MGM_CTRL:
426 /* Attach an MDIO/PHY abstraction. */
427 if (value & 2)
428 eth->mdio_bus.mdio = value & 1;
429 if (eth->mdio_bus.mdc != (value & 4)) {
430 mdio_cycle(&eth->mdio_bus);
431 eth_validate_duplex(eth);
433 eth->mdio_bus.mdc = !!(value & 4);
434 break;
436 case RW_REC_CTRL:
437 eth->regs[addr] = value;
438 eth_validate_duplex(eth);
439 break;
441 default:
442 eth->regs[addr] = value;
443 D(printf ("%s %x %x\n",
444 __func__, addr, value));
445 break;
449 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
450 filter dropping group addresses we have not joined. The filter has 64
451 bits (m). The has function is a simple nible xor of the group addr. */
452 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
454 unsigned int hsh;
455 int m_individual = eth->regs[RW_REC_CTRL] & 4;
456 int match;
458 /* First bit on the wire of a MAC address signals multicast or
459 physical address. */
460 if (!m_individual && !sa[0] & 1)
461 return 0;
463 /* Calculate the hash index for the GA registers. */
464 hsh = 0;
465 hsh ^= (*sa) & 0x3f;
466 hsh ^= ((*sa) >> 6) & 0x03;
467 ++sa;
468 hsh ^= ((*sa) << 2) & 0x03c;
469 hsh ^= ((*sa) >> 4) & 0xf;
470 ++sa;
471 hsh ^= ((*sa) << 4) & 0x30;
472 hsh ^= ((*sa) >> 2) & 0x3f;
473 ++sa;
474 hsh ^= (*sa) & 0x3f;
475 hsh ^= ((*sa) >> 6) & 0x03;
476 ++sa;
477 hsh ^= ((*sa) << 2) & 0x03c;
478 hsh ^= ((*sa) >> 4) & 0xf;
479 ++sa;
480 hsh ^= ((*sa) << 4) & 0x30;
481 hsh ^= ((*sa) >> 2) & 0x3f;
483 hsh &= 63;
484 if (hsh > 31)
485 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
486 else
487 match = eth->regs[RW_GA_LO] & (1 << hsh);
488 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
489 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
490 return match;
493 static int eth_can_receive(void *opaque)
495 return 1;
498 static void eth_receive(void *opaque, const uint8_t *buf, int size)
500 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
501 struct fs_eth *eth = opaque;
502 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
503 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
504 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
506 if (size < 12)
507 return;
509 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
510 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
511 use_ma0, use_ma1, r_bcast));
513 /* Does the frame get through the address filters? */
514 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
515 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
516 && (!r_bcast || memcmp(buf, sa_bcast, 6))
517 && !eth_match_groupaddr(eth, buf))
518 return;
520 /* FIXME: Find another way to pass on the fake csum. */
521 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
524 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
526 struct fs_eth *eth = opaque;
528 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
529 qemu_send_packet(eth->vc, buf, len);
530 return len;
533 static CPUReadMemoryFunc *eth_read[] = {
534 NULL, NULL,
535 &eth_readl,
538 static CPUWriteMemoryFunc *eth_write[] = {
539 NULL, NULL,
540 &eth_writel,
543 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
544 qemu_irq *irq, target_phys_addr_t base)
546 struct etraxfs_dma_client *dma = NULL;
547 struct fs_eth *eth = NULL;
549 dma = qemu_mallocz(sizeof *dma * 2);
550 if (!dma)
551 return NULL;
553 eth = qemu_mallocz(sizeof *eth);
554 if (!eth)
555 goto err;
557 dma[0].client.push = eth_tx_push;
558 dma[0].client.opaque = eth;
559 dma[1].client.opaque = eth;
560 dma[1].client.pull = NULL;
562 eth->env = env;
563 eth->irq = irq;
564 eth->dma_out = dma;
565 eth->dma_in = dma + 1;
567 /* Connect the phy. */
568 eth->phyaddr = 1;
569 tdk_init(&eth->phy);
570 mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
572 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
573 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
575 eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
576 eth_receive, eth_can_receive, eth);
578 return dma;
579 err:
580 qemu_free(eth);
581 qemu_free(dma);
582 return NULL;