add emc emulation
[qemu/qemu-JZ.git] / fpu / softfloat-native.c
blob7273ae5b4f2270b060c26d876879942266d10c66
1 /* Native implementation of soft float functions. Only a single status
2 context is supported */
3 #include "softfloat.h"
4 #include <math.h>
6 void set_float_rounding_mode(int val STATUS_PARAM)
8 STATUS(float_rounding_mode) = val;
9 #if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
10 fpsetround(val);
11 #elif defined(__arm__)
12 /* nothing to do */
13 #else
14 fesetround(val);
15 #endif
18 #ifdef FLOATX80
19 void set_floatx80_rounding_precision(int val STATUS_PARAM)
21 STATUS(floatx80_rounding_precision) = val;
23 #endif
25 #if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26 #define lrint(d) ((int32_t)rint(d))
27 #define llrint(d) ((int64_t)rint(d))
28 #define lrintf(f) ((int32_t)rint(f))
29 #define llrintf(f) ((int64_t)rint(f))
30 #define sqrtf(f) ((float)sqrt(f))
31 #define remainderf(fa, fb) ((float)remainder(fa, fb))
32 #define rintf(f) ((float)rint(f))
33 #if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
34 extern long double rintl(long double);
35 extern long double scalbnl(long double, int);
37 long long
38 llrintl(long double x) {
39 return ((long long) rintl(x));
42 long
43 lrintl(long double x) {
44 return ((long) rintl(x));
47 long double
48 ldexpl(long double x, int n) {
49 return (scalbnl(x, n));
51 #endif
52 #endif
54 #if defined(__powerpc__)
56 /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
57 double qemu_rint(double x)
59 double y = 4503599627370496.0;
60 if (fabs(x) >= y)
61 return x;
62 if (x < 0)
63 y = -y;
64 y = (x + y) - y;
65 if (y == 0.0)
66 y = copysign(y, x);
67 return y;
70 #define rint qemu_rint
71 #endif
73 /*----------------------------------------------------------------------------
74 | Software IEC/IEEE integer-to-floating-point conversion routines.
75 *----------------------------------------------------------------------------*/
76 float32 int32_to_float32(int v STATUS_PARAM)
78 return (float32)v;
81 float32 uint32_to_float32(unsigned int v STATUS_PARAM)
83 return (float32)v;
86 float64 int32_to_float64(int v STATUS_PARAM)
88 return (float64)v;
91 float64 uint32_to_float64(unsigned int v STATUS_PARAM)
93 return (float64)v;
96 #ifdef FLOATX80
97 floatx80 int32_to_floatx80(int v STATUS_PARAM)
99 return (floatx80)v;
101 #endif
102 float32 int64_to_float32( int64_t v STATUS_PARAM)
104 return (float32)v;
106 float32 uint64_to_float32( uint64_t v STATUS_PARAM)
108 return (float32)v;
110 float64 int64_to_float64( int64_t v STATUS_PARAM)
112 return (float64)v;
114 float64 uint64_to_float64( uint64_t v STATUS_PARAM)
116 return (float64)v;
118 #ifdef FLOATX80
119 floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
121 return (floatx80)v;
123 #endif
125 /* XXX: this code implements the x86 behaviour, not the IEEE one. */
126 #if HOST_LONG_BITS == 32
127 static inline int long_to_int32(long a)
129 return a;
131 #else
132 static inline int long_to_int32(long a)
134 if (a != (int32_t)a)
135 a = 0x80000000;
136 return a;
138 #endif
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE single-precision conversion routines.
142 *----------------------------------------------------------------------------*/
143 int float32_to_int32( float32 a STATUS_PARAM)
145 return long_to_int32(lrintf(a));
147 int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
149 return (int)a;
151 int64_t float32_to_int64( float32 a STATUS_PARAM)
153 return llrintf(a);
156 int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
158 return (int64_t)a;
161 float64 float32_to_float64( float32 a STATUS_PARAM)
163 return a;
165 #ifdef FLOATX80
166 floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
168 return a;
170 #endif
172 unsigned int float32_to_uint32( float32 a STATUS_PARAM)
174 int64_t v;
175 unsigned int res;
177 v = llrintf(a);
178 if (v < 0) {
179 res = 0;
180 } else if (v > 0xffffffff) {
181 res = 0xffffffff;
182 } else {
183 res = v;
185 return res;
187 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
189 int64_t v;
190 unsigned int res;
192 v = (int64_t)a;
193 if (v < 0) {
194 res = 0;
195 } else if (v > 0xffffffff) {
196 res = 0xffffffff;
197 } else {
198 res = v;
200 return res;
203 /*----------------------------------------------------------------------------
204 | Software IEC/IEEE single-precision operations.
205 *----------------------------------------------------------------------------*/
206 float32 float32_round_to_int( float32 a STATUS_PARAM)
208 return rintf(a);
211 float32 float32_rem( float32 a, float32 b STATUS_PARAM)
213 return remainderf(a, b);
216 float32 float32_sqrt( float32 a STATUS_PARAM)
218 return sqrtf(a);
220 int float32_compare( float32 a, float32 b STATUS_PARAM )
222 if (a < b) {
223 return float_relation_less;
224 } else if (a == b) {
225 return float_relation_equal;
226 } else if (a > b) {
227 return float_relation_greater;
228 } else {
229 return float_relation_unordered;
232 int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
234 if (isless(a, b)) {
235 return float_relation_less;
236 } else if (a == b) {
237 return float_relation_equal;
238 } else if (isgreater(a, b)) {
239 return float_relation_greater;
240 } else {
241 return float_relation_unordered;
244 int float32_is_signaling_nan( float32 a1)
246 float32u u;
247 uint32_t a;
248 u.f = a1;
249 a = u.i;
250 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
253 int float32_is_nan( float32 a1 )
255 float32u u;
256 uint64_t a;
257 u.f = a1;
258 a = u.i;
259 return ( 0xFF800000 < ( a<<1 ) );
262 /*----------------------------------------------------------------------------
263 | Software IEC/IEEE double-precision conversion routines.
264 *----------------------------------------------------------------------------*/
265 int float64_to_int32( float64 a STATUS_PARAM)
267 return long_to_int32(lrint(a));
269 int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
271 return (int)a;
273 int64_t float64_to_int64( float64 a STATUS_PARAM)
275 return llrint(a);
277 int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
279 return (int64_t)a;
281 float32 float64_to_float32( float64 a STATUS_PARAM)
283 return a;
285 #ifdef FLOATX80
286 floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
288 return a;
290 #endif
291 #ifdef FLOAT128
292 float128 float64_to_float128( float64 a STATUS_PARAM)
294 return a;
296 #endif
298 unsigned int float64_to_uint32( float64 a STATUS_PARAM)
300 int64_t v;
301 unsigned int res;
303 v = llrint(a);
304 if (v < 0) {
305 res = 0;
306 } else if (v > 0xffffffff) {
307 res = 0xffffffff;
308 } else {
309 res = v;
311 return res;
313 unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
315 int64_t v;
316 unsigned int res;
318 v = (int64_t)a;
319 if (v < 0) {
320 res = 0;
321 } else if (v > 0xffffffff) {
322 res = 0xffffffff;
323 } else {
324 res = v;
326 return res;
328 uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
330 int64_t v;
332 v = llrint(a + (float64)INT64_MIN);
334 return v - INT64_MIN;
336 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
338 int64_t v;
340 v = (int64_t)(a + (float64)INT64_MIN);
342 return v - INT64_MIN;
345 /*----------------------------------------------------------------------------
346 | Software IEC/IEEE double-precision operations.
347 *----------------------------------------------------------------------------*/
348 #if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
349 static inline float64 trunc(float64 x)
351 return x < 0 ? -floor(-x) : floor(x);
353 #endif
354 float64 float64_trunc_to_int( float64 a STATUS_PARAM )
356 return trunc(a);
359 float64 float64_round_to_int( float64 a STATUS_PARAM )
361 #if defined(__arm__)
362 switch(STATUS(float_rounding_mode)) {
363 default:
364 case float_round_nearest_even:
365 asm("rndd %0, %1" : "=f" (a) : "f"(a));
366 break;
367 case float_round_down:
368 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
369 break;
370 case float_round_up:
371 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
372 break;
373 case float_round_to_zero:
374 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
375 break;
377 #else
378 return rint(a);
379 #endif
382 float64 float64_rem( float64 a, float64 b STATUS_PARAM)
384 return remainder(a, b);
387 float64 float64_sqrt( float64 a STATUS_PARAM)
389 return sqrt(a);
391 int float64_compare( float64 a, float64 b STATUS_PARAM )
393 if (a < b) {
394 return float_relation_less;
395 } else if (a == b) {
396 return float_relation_equal;
397 } else if (a > b) {
398 return float_relation_greater;
399 } else {
400 return float_relation_unordered;
403 int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
405 if (isless(a, b)) {
406 return float_relation_less;
407 } else if (a == b) {
408 return float_relation_equal;
409 } else if (isgreater(a, b)) {
410 return float_relation_greater;
411 } else {
412 return float_relation_unordered;
415 int float64_is_signaling_nan( float64 a1)
417 float64u u;
418 uint64_t a;
419 u.f = a1;
420 a = u.i;
421 return
422 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
423 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
427 int float64_is_nan( float64 a1 )
429 float64u u;
430 uint64_t a;
431 u.f = a1;
432 a = u.i;
434 return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
438 #ifdef FLOATX80
440 /*----------------------------------------------------------------------------
441 | Software IEC/IEEE extended double-precision conversion routines.
442 *----------------------------------------------------------------------------*/
443 int floatx80_to_int32( floatx80 a STATUS_PARAM)
445 return long_to_int32(lrintl(a));
447 int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
449 return (int)a;
451 int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
453 return llrintl(a);
455 int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
457 return (int64_t)a;
459 float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
461 return a;
463 float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
465 return a;
468 /*----------------------------------------------------------------------------
469 | Software IEC/IEEE extended double-precision operations.
470 *----------------------------------------------------------------------------*/
471 floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
473 return rintl(a);
475 floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
477 return remainderl(a, b);
479 floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
481 return sqrtl(a);
483 int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
485 if (a < b) {
486 return float_relation_less;
487 } else if (a == b) {
488 return float_relation_equal;
489 } else if (a > b) {
490 return float_relation_greater;
491 } else {
492 return float_relation_unordered;
495 int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
497 if (isless(a, b)) {
498 return float_relation_less;
499 } else if (a == b) {
500 return float_relation_equal;
501 } else if (isgreater(a, b)) {
502 return float_relation_greater;
503 } else {
504 return float_relation_unordered;
507 int floatx80_is_signaling_nan( floatx80 a1)
509 floatx80u u;
510 uint64_t aLow;
511 u.f = a1;
513 aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
514 return
515 ( ( u.i.high & 0x7FFF ) == 0x7FFF )
516 && (bits64) ( aLow<<1 )
517 && ( u.i.low == aLow );
520 int floatx80_is_nan( floatx80 a1 )
522 floatx80u u;
523 u.f = a1;
524 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
527 #endif