ETRAX: Add a model for the axis devboard88 machine.
[qemu/qemu-JZ.git] / hw / etraxfs_dma.c
blob1bc5f4170ea9be1cb2ab6fb576010372f785dee0
1 /*
2 * QEMU ETRAX DMA Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
30 #include "etraxfs_dma.h"
32 #define D(x)
34 #define RW_DATA 0x0
35 #define RW_SAVED_DATA 0x58
36 #define RW_SAVED_DATA_BUF 0x5c
37 #define RW_GROUP 0x60
38 #define RW_GROUP_DOWN 0x7c
39 #define RW_CMD 0x80
40 #define RW_CFG 0x84
41 #define RW_STAT 0x88
42 #define RW_INTR_MASK 0x8c
43 #define RW_ACK_INTR 0x90
44 #define R_INTR 0x94
45 #define R_MASKED_INTR 0x98
46 #define RW_STREAM_CMD 0x9c
48 #define DMA_REG_MAX 0x100
50 /* descriptors */
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54 struct dma_descr_group *next;
55 unsigned eol : 1;
56 unsigned tol : 1;
57 unsigned bol : 1;
58 unsigned : 1;
59 unsigned intr : 1;
60 unsigned : 2;
61 unsigned en : 1;
62 unsigned : 7;
63 unsigned dis : 1;
64 unsigned md : 16;
65 struct dma_descr_group *up;
66 union {
67 struct dma_descr_context *context;
68 struct dma_descr_group *group;
69 } down;
70 } dma_descr_group;
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74 struct dma_descr_context *next;
75 unsigned eol : 1;
76 unsigned : 3;
77 unsigned intr : 1;
78 unsigned : 1;
79 unsigned store_mode : 1;
80 unsigned en : 1;
81 unsigned : 7;
82 unsigned dis : 1;
83 unsigned md0 : 16;
84 unsigned md1;
85 unsigned md2;
86 unsigned md3;
87 unsigned md4;
88 struct dma_descr_data *saved_data;
89 char *saved_data_buf;
90 } dma_descr_context;
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94 struct dma_descr_data *next;
95 char *buf;
96 unsigned eol : 1;
97 unsigned : 2;
98 unsigned out_eop : 1;
99 unsigned intr : 1;
100 unsigned wait : 1;
101 unsigned : 2;
102 unsigned : 3;
103 unsigned in_eop : 1;
104 unsigned : 4;
105 unsigned md : 16;
106 char *after;
107 } dma_descr_data;
109 /* Constants */
110 enum {
111 regk_dma_ack_pkt = 0x00000100,
112 regk_dma_anytime = 0x00000001,
113 regk_dma_array = 0x00000008,
114 regk_dma_burst = 0x00000020,
115 regk_dma_client = 0x00000002,
116 regk_dma_copy_next = 0x00000010,
117 regk_dma_copy_up = 0x00000020,
118 regk_dma_data_at_eol = 0x00000001,
119 regk_dma_dis_c = 0x00000010,
120 regk_dma_dis_g = 0x00000020,
121 regk_dma_idle = 0x00000001,
122 regk_dma_intern = 0x00000004,
123 regk_dma_load_c = 0x00000200,
124 regk_dma_load_c_n = 0x00000280,
125 regk_dma_load_c_next = 0x00000240,
126 regk_dma_load_d = 0x00000140,
127 regk_dma_load_g = 0x00000300,
128 regk_dma_load_g_down = 0x000003c0,
129 regk_dma_load_g_next = 0x00000340,
130 regk_dma_load_g_up = 0x00000380,
131 regk_dma_next_en = 0x00000010,
132 regk_dma_next_pkt = 0x00000010,
133 regk_dma_no = 0x00000000,
134 regk_dma_only_at_wait = 0x00000000,
135 regk_dma_restore = 0x00000020,
136 regk_dma_rst = 0x00000001,
137 regk_dma_running = 0x00000004,
138 regk_dma_rw_cfg_default = 0x00000000,
139 regk_dma_rw_cmd_default = 0x00000000,
140 regk_dma_rw_intr_mask_default = 0x00000000,
141 regk_dma_rw_stat_default = 0x00000101,
142 regk_dma_rw_stream_cmd_default = 0x00000000,
143 regk_dma_save_down = 0x00000020,
144 regk_dma_save_up = 0x00000020,
145 regk_dma_set_reg = 0x00000050,
146 regk_dma_set_w_size1 = 0x00000190,
147 regk_dma_set_w_size2 = 0x000001a0,
148 regk_dma_set_w_size4 = 0x000001c0,
149 regk_dma_stopped = 0x00000002,
150 regk_dma_store_c = 0x00000002,
151 regk_dma_store_descr = 0x00000000,
152 regk_dma_store_g = 0x00000004,
153 regk_dma_store_md = 0x00000001,
154 regk_dma_sw = 0x00000008,
155 regk_dma_update_down = 0x00000020,
156 regk_dma_yes = 0x00000001
159 enum dma_ch_state
161 RST = 1,
162 STOPPED = 2,
163 RUNNING = 4
166 struct fs_dma_channel
168 qemu_irq *irq;
169 struct etraxfs_dma_client *client;
171 /* Internal status. */
172 int stream_cmd_src;
173 enum dma_ch_state state;
175 unsigned int input : 1;
176 unsigned int eol : 1;
178 struct dma_descr_group current_g;
179 struct dma_descr_context current_c;
180 struct dma_descr_data current_d;
182 /* Controll registers. */
183 uint32_t regs[DMA_REG_MAX];
186 struct fs_dma_ctrl
188 int map;
189 CPUState *env;
191 int nr_channels;
192 struct fs_dma_channel *channels;
194 QEMUBH *bh;
197 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
199 return ctrl->channels[c].regs[reg];
202 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
204 return channel_reg(ctrl, c, RW_CFG) & 2;
207 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
209 return (channel_reg(ctrl, c, RW_CFG) & 1)
210 && ctrl->channels[c].client;
213 static inline int fs_channel(target_phys_addr_t addr)
215 /* Every channel has a 0x2000 ctrl register map. */
216 return addr >> 13;
219 #ifdef USE_THIS_DEAD_CODE
220 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
222 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
224 /* Load and decode. FIXME: handle endianness. */
225 cpu_physical_memory_read (addr,
226 (void *) &ctrl->channels[c].current_g,
227 sizeof ctrl->channels[c].current_g);
230 static void dump_c(int ch, struct dma_descr_context *c)
232 printf("%s ch=%d\n", __func__, ch);
233 printf("next=%p\n", c->next);
234 printf("saved_data=%p\n", c->saved_data);
235 printf("saved_data_buf=%p\n", c->saved_data_buf);
236 printf("eol=%x\n", (uint32_t) c->eol);
239 static void dump_d(int ch, struct dma_descr_data *d)
241 printf("%s ch=%d\n", __func__, ch);
242 printf("next=%p\n", d->next);
243 printf("buf=%p\n", d->buf);
244 printf("after=%p\n", d->after);
245 printf("intr=%x\n", (uint32_t) d->intr);
246 printf("out_eop=%x\n", (uint32_t) d->out_eop);
247 printf("in_eop=%x\n", (uint32_t) d->in_eop);
248 printf("eol=%x\n", (uint32_t) d->eol);
250 #endif
252 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
254 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
256 /* Load and decode. FIXME: handle endianness. */
257 cpu_physical_memory_read (addr,
258 (void *) &ctrl->channels[c].current_c,
259 sizeof ctrl->channels[c].current_c);
261 D(dump_c(c, &ctrl->channels[c].current_c));
262 /* I guess this should update the current pos. */
263 ctrl->channels[c].regs[RW_SAVED_DATA] =
264 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
265 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
266 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
269 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
271 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
273 /* Load and decode. FIXME: handle endianness. */
274 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
275 cpu_physical_memory_read (addr,
276 (void *) &ctrl->channels[c].current_d,
277 sizeof ctrl->channels[c].current_d);
279 D(dump_d(c, &ctrl->channels[c].current_d));
280 ctrl->channels[c].regs[RW_DATA] = addr;
283 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
285 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
287 /* Encode and store. FIXME: handle endianness. */
288 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
289 D(dump_d(c, &ctrl->channels[c].current_d));
290 cpu_physical_memory_write (addr,
291 (void *) &ctrl->channels[c].current_c,
292 sizeof ctrl->channels[c].current_c);
295 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
297 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
299 /* Encode and store. FIXME: handle endianness. */
300 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
301 cpu_physical_memory_write (addr,
302 (void *) &ctrl->channels[c].current_d,
303 sizeof ctrl->channels[c].current_d);
306 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
308 /* FIXME: */
311 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
313 if (ctrl->channels[c].client)
315 ctrl->channels[c].eol = 0;
316 ctrl->channels[c].state = RUNNING;
317 } else
318 printf("WARNING: starting DMA ch %d with no client\n", c);
320 qemu_bh_schedule_idle(ctrl->bh);
323 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
325 if (!channel_en(ctrl, c)
326 || channel_stopped(ctrl, c)
327 || ctrl->channels[c].state != RUNNING
328 /* Only reload the current data descriptor if it has eol set. */
329 || !ctrl->channels[c].current_d.eol) {
330 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
331 c, ctrl->channels[c].state,
332 channel_stopped(ctrl, c),
333 channel_en(ctrl,c),
334 ctrl->channels[c].eol));
335 D(dump_d(c, &ctrl->channels[c].current_d));
336 return;
339 /* Reload the current descriptor. */
340 channel_load_d(ctrl, c);
342 /* If the current descriptor cleared the eol flag and we had already
343 reached eol state, do the continue. */
344 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
345 D(printf("continue %d ok %p\n", c,
346 ctrl->channels[c].current_d.next));
347 ctrl->channels[c].regs[RW_SAVED_DATA] =
348 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
349 channel_load_d(ctrl, c);
350 channel_start(ctrl, c);
352 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
353 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
356 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
358 unsigned int cmd = v & ((1 << 10) - 1);
360 D(printf("%s ch=%d cmd=%x\n",
361 __func__, c, cmd));
362 if (cmd & regk_dma_load_d) {
363 channel_load_d(ctrl, c);
364 if (cmd & regk_dma_burst)
365 channel_start(ctrl, c);
368 if (cmd & regk_dma_load_c) {
369 channel_load_c(ctrl, c);
370 channel_start(ctrl, c);
374 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
376 D(printf("%s %d\n", __func__, c));
377 ctrl->channels[c].regs[R_INTR] &=
378 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
380 ctrl->channels[c].regs[R_MASKED_INTR] =
381 ctrl->channels[c].regs[R_INTR]
382 & ctrl->channels[c].regs[RW_INTR_MASK];
384 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
386 ctrl->channels[c].regs[R_MASKED_INTR]));
388 if (ctrl->channels[c].regs[R_MASKED_INTR])
389 qemu_irq_raise(ctrl->channels[c].irq[0]);
390 else
391 qemu_irq_lower(ctrl->channels[c].irq[0]);
394 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
396 uint32_t len;
397 uint32_t saved_data_buf;
398 unsigned char buf[2 * 1024];
400 if (ctrl->channels[c].eol)
401 return 0;
403 do {
404 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
406 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
408 (uint32_t)ctrl->channels[c].current_d.buf,
409 (uint32_t)ctrl->channels[c].current_d.after,
410 saved_data_buf));
412 len = (uint32_t)(unsigned long)
413 ctrl->channels[c].current_d.after;
414 len -= saved_data_buf;
416 if (len > sizeof buf)
417 len = sizeof buf;
418 cpu_physical_memory_read (saved_data_buf, buf, len);
420 D(printf("channel %d pushes %x %u bytes\n", c,
421 saved_data_buf, len));
423 if (ctrl->channels[c].client->client.push)
424 ctrl->channels[c].client->client.push(
425 ctrl->channels[c].client->client.opaque,
426 buf, len);
427 else
428 printf("WARNING: DMA ch%d dataloss,"
429 " no attached client.\n", c);
431 saved_data_buf += len;
433 if (saved_data_buf == (uint32_t)(unsigned long)
434 ctrl->channels[c].current_d.after) {
435 /* Done. Step to next. */
436 if (ctrl->channels[c].current_d.out_eop) {
437 /* TODO: signal eop to the client. */
438 D(printf("signal eop\n"));
440 if (ctrl->channels[c].current_d.intr) {
441 /* TODO: signal eop to the client. */
442 /* data intr. */
443 D(printf("signal intr\n"));
444 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
445 channel_update_irq(ctrl, c);
447 if (ctrl->channels[c].current_d.eol) {
448 D(printf("channel %d EOL\n", c));
449 ctrl->channels[c].eol = 1;
451 /* Mark the context as disabled. */
452 ctrl->channels[c].current_c.dis = 1;
453 channel_store_c(ctrl, c);
455 channel_stop(ctrl, c);
456 } else {
457 ctrl->channels[c].regs[RW_SAVED_DATA] =
458 (uint32_t)(unsigned long)ctrl->
459 channels[c].current_d.next;
460 /* Load new descriptor. */
461 channel_load_d(ctrl, c);
462 saved_data_buf = (uint32_t)(unsigned long)
463 ctrl->channels[c].current_d.buf;
466 channel_store_d(ctrl, c);
467 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
468 saved_data_buf;
469 D(dump_d(c, &ctrl->channels[c].current_d));
471 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
472 } while (!ctrl->channels[c].eol);
473 return 1;
476 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
477 unsigned char *buf, int buflen, int eop)
479 uint32_t len;
480 uint32_t saved_data_buf;
482 if (ctrl->channels[c].eol == 1)
483 return 0;
485 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
486 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
487 len -= saved_data_buf;
489 if (len > buflen)
490 len = buflen;
492 cpu_physical_memory_write (saved_data_buf, buf, len);
493 saved_data_buf += len;
495 if (saved_data_buf ==
496 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
497 || eop) {
498 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
500 D(printf("in dscr end len=%d\n",
501 ctrl->channels[c].current_d.after
502 - ctrl->channels[c].current_d.buf));
503 ctrl->channels[c].current_d.after =
504 (void *)(unsigned long) saved_data_buf;
506 /* Done. Step to next. */
507 if (ctrl->channels[c].current_d.intr) {
508 /* TODO: signal eop to the client. */
509 /* data intr. */
510 ctrl->channels[c].regs[R_INTR] |= 3;
512 if (eop) {
513 ctrl->channels[c].current_d.in_eop = 1;
514 ctrl->channels[c].regs[R_INTR] |= 8;
516 if (r_intr != ctrl->channels[c].regs[R_INTR])
517 channel_update_irq(ctrl, c);
519 channel_store_d(ctrl, c);
520 D(dump_d(c, &ctrl->channels[c].current_d));
522 if (ctrl->channels[c].current_d.eol) {
523 D(printf("channel %d EOL\n", c));
524 ctrl->channels[c].eol = 1;
526 /* Mark the context as disabled. */
527 ctrl->channels[c].current_c.dis = 1;
528 channel_store_c(ctrl, c);
530 channel_stop(ctrl, c);
531 } else {
532 ctrl->channels[c].regs[RW_SAVED_DATA] =
533 (uint32_t)(unsigned long)ctrl->
534 channels[c].current_d.next;
535 /* Load new descriptor. */
536 channel_load_d(ctrl, c);
537 saved_data_buf = (uint32_t)(unsigned long)
538 ctrl->channels[c].current_d.buf;
542 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
543 return len;
546 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
548 if (ctrl->channels[c].client->client.pull) {
549 ctrl->channels[c].client->client.pull(
550 ctrl->channels[c].client->client.opaque);
551 return 1;
552 } else
553 return 0;
556 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
558 struct fs_dma_ctrl *ctrl = opaque;
559 CPUState *env = ctrl->env;
560 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
561 addr);
562 return 0;
565 static uint32_t
566 dma_readl (void *opaque, target_phys_addr_t addr)
568 struct fs_dma_ctrl *ctrl = opaque;
569 int c;
570 uint32_t r = 0;
572 /* Make addr relative to this channel and bounded to nr regs. */
573 c = fs_channel(addr);
574 addr &= 0xff;
575 switch (addr)
577 case RW_STAT:
578 r = ctrl->channels[c].state & 7;
579 r |= ctrl->channels[c].eol << 5;
580 r |= ctrl->channels[c].stream_cmd_src << 8;
581 break;
583 default:
584 r = ctrl->channels[c].regs[addr];
585 D(printf ("%s c=%d addr=%x\n",
586 __func__, c, addr));
587 break;
589 return r;
592 static void
593 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
595 struct fs_dma_ctrl *ctrl = opaque;
596 CPUState *env = ctrl->env;
597 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
598 addr);
601 static void
602 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
604 if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
605 if (ctrl->channels[c].regs[RW_CFG] & 2)
606 ctrl->channels[c].state = STOPPED;
607 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
608 ctrl->channels[c].state = RST;
612 static void
613 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
615 struct fs_dma_ctrl *ctrl = opaque;
616 int c;
618 /* Make addr relative to this channel and bounded to nr regs. */
619 c = fs_channel(addr);
620 addr &= 0xff;
621 switch (addr)
623 case RW_DATA:
624 ctrl->channels[c].regs[addr] = value;
625 break;
627 case RW_CFG:
628 ctrl->channels[c].regs[addr] = value;
629 dma_update_state(ctrl, c);
630 break;
631 case RW_CMD:
632 /* continue. */
633 if (value & ~1)
634 printf("Invalid store to ch=%d RW_CMD %x\n",
635 c, value);
636 ctrl->channels[c].regs[addr] = value;
637 channel_continue(ctrl, c);
638 break;
640 case RW_SAVED_DATA:
641 case RW_SAVED_DATA_BUF:
642 case RW_GROUP:
643 case RW_GROUP_DOWN:
644 ctrl->channels[c].regs[addr] = value;
645 break;
647 case RW_ACK_INTR:
648 case RW_INTR_MASK:
649 ctrl->channels[c].regs[addr] = value;
650 channel_update_irq(ctrl, c);
651 if (addr == RW_ACK_INTR)
652 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
653 break;
655 case RW_STREAM_CMD:
656 if (value & ~1023)
657 printf("Invalid store to ch=%d "
658 "RW_STREAMCMD %x\n",
659 c, value);
660 ctrl->channels[c].regs[addr] = value;
661 D(printf("stream_cmd ch=%d\n", c));
662 channel_stream_cmd(ctrl, c, value);
663 break;
665 default:
666 D(printf ("%s c=%d %x %x\n", __func__, c, addr));
667 break;
671 static CPUReadMemoryFunc *dma_read[] = {
672 &dma_rinvalid,
673 &dma_rinvalid,
674 &dma_readl,
677 static CPUWriteMemoryFunc *dma_write[] = {
678 &dma_winvalid,
679 &dma_winvalid,
680 &dma_writel,
683 static int etraxfs_dmac_run(void *opaque)
685 struct fs_dma_ctrl *ctrl = opaque;
686 int i;
687 int p = 0;
689 for (i = 0;
690 i < ctrl->nr_channels;
691 i++)
693 if (ctrl->channels[i].state == RUNNING)
695 if (ctrl->channels[i].input) {
696 p += channel_in_run(ctrl, i);
697 } else {
698 p += channel_out_run(ctrl, i);
702 return p;
705 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
706 void *buf, int len, int eop)
708 return channel_in_process(client->ctrl, client->channel,
709 buf, len, eop);
712 /* Connect an IRQ line with a channel. */
713 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
715 struct fs_dma_ctrl *ctrl = opaque;
716 ctrl->channels[c].irq = line;
717 ctrl->channels[c].input = input;
720 void etraxfs_dmac_connect_client(void *opaque, int c,
721 struct etraxfs_dma_client *cl)
723 struct fs_dma_ctrl *ctrl = opaque;
724 cl->ctrl = ctrl;
725 cl->channel = c;
726 ctrl->channels[c].client = cl;
730 static void DMA_run(void *opaque)
732 struct fs_dma_ctrl *etraxfs_dmac = opaque;
733 int p = 1;
735 if (vm_running)
736 p = etraxfs_dmac_run(etraxfs_dmac);
738 if (p)
739 qemu_bh_schedule_idle(etraxfs_dmac->bh);
742 void *etraxfs_dmac_init(CPUState *env,
743 target_phys_addr_t base, int nr_channels)
745 struct fs_dma_ctrl *ctrl = NULL;
747 ctrl = qemu_mallocz(sizeof *ctrl);
748 if (!ctrl)
749 return NULL;
751 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
753 ctrl->env = env;
754 ctrl->nr_channels = nr_channels;
755 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
756 if (!ctrl->channels)
757 goto err;
759 ctrl->map = cpu_register_io_memory(0, dma_read, dma_write, ctrl);
760 cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
761 return ctrl;
762 err:
763 qemu_free(ctrl->channels);
764 qemu_free(ctrl);
765 return NULL;