target-ppc: add vrlogefp instruction
[qemu/mini2440/sniper_sniper_test.git] / target-arm / helper.c
blob26fd6d017af49c2bc21e94eccaa338b761990daf
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name);
31 static inline void set_feature(CPUARMState *env, int feature)
33 env->features |= 1u << feature;
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM926:
41 set_feature(env, ARM_FEATURE_VFP);
42 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
43 env->cp15.c0_cachetype = 0x1dd20d2;
44 env->cp15.c1_sys = 0x00090078;
45 break;
46 case ARM_CPUID_ARM946:
47 set_feature(env, ARM_FEATURE_MPU);
48 env->cp15.c0_cachetype = 0x0f004006;
49 env->cp15.c1_sys = 0x00000078;
50 break;
51 case ARM_CPUID_ARM1026:
52 set_feature(env, ARM_FEATURE_VFP);
53 set_feature(env, ARM_FEATURE_AUXCR);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
55 env->cp15.c0_cachetype = 0x1dd20d2;
56 env->cp15.c1_sys = 0x00090078;
57 break;
58 case ARM_CPUID_ARM1136_R2:
59 case ARM_CPUID_ARM1136:
60 set_feature(env, ARM_FEATURE_V6);
61 set_feature(env, ARM_FEATURE_VFP);
62 set_feature(env, ARM_FEATURE_AUXCR);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
67 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
68 env->cp15.c0_cachetype = 0x1dd20d2;
69 break;
70 case ARM_CPUID_ARM11MPCORE:
71 set_feature(env, ARM_FEATURE_V6);
72 set_feature(env, ARM_FEATURE_V6K);
73 set_feature(env, ARM_FEATURE_VFP);
74 set_feature(env, ARM_FEATURE_AUXCR);
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
79 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
80 env->cp15.c0_cachetype = 0x1dd20d2;
81 break;
82 case ARM_CPUID_CORTEXA8:
83 set_feature(env, ARM_FEATURE_V6);
84 set_feature(env, ARM_FEATURE_V6K);
85 set_feature(env, ARM_FEATURE_V7);
86 set_feature(env, ARM_FEATURE_AUXCR);
87 set_feature(env, ARM_FEATURE_THUMB2);
88 set_feature(env, ARM_FEATURE_VFP);
89 set_feature(env, ARM_FEATURE_VFP3);
90 set_feature(env, ARM_FEATURE_NEON);
91 set_feature(env, ARM_FEATURE_THUMB2EE);
92 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
96 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
97 env->cp15.c0_cachetype = 0x82048004;
98 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
99 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
100 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
101 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
102 break;
103 case ARM_CPUID_CORTEXM3:
104 set_feature(env, ARM_FEATURE_V6);
105 set_feature(env, ARM_FEATURE_THUMB2);
106 set_feature(env, ARM_FEATURE_V7);
107 set_feature(env, ARM_FEATURE_M);
108 set_feature(env, ARM_FEATURE_DIV);
109 break;
110 case ARM_CPUID_ANY: /* For userspace emulation. */
111 set_feature(env, ARM_FEATURE_V6);
112 set_feature(env, ARM_FEATURE_V6K);
113 set_feature(env, ARM_FEATURE_V7);
114 set_feature(env, ARM_FEATURE_THUMB2);
115 set_feature(env, ARM_FEATURE_VFP);
116 set_feature(env, ARM_FEATURE_VFP3);
117 set_feature(env, ARM_FEATURE_NEON);
118 set_feature(env, ARM_FEATURE_THUMB2EE);
119 set_feature(env, ARM_FEATURE_DIV);
120 break;
121 case ARM_CPUID_TI915T:
122 case ARM_CPUID_TI925T:
123 set_feature(env, ARM_FEATURE_OMAPCP);
124 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
125 env->cp15.c0_cachetype = 0x5109149;
126 env->cp15.c1_sys = 0x00000070;
127 env->cp15.c15_i_max = 0x000;
128 env->cp15.c15_i_min = 0xff0;
129 break;
130 case ARM_CPUID_PXA250:
131 case ARM_CPUID_PXA255:
132 case ARM_CPUID_PXA260:
133 case ARM_CPUID_PXA261:
134 case ARM_CPUID_PXA262:
135 set_feature(env, ARM_FEATURE_XSCALE);
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env->cp15.c0_cachetype = 0xd172172;
138 env->cp15.c1_sys = 0x00000078;
139 break;
140 case ARM_CPUID_PXA270_A0:
141 case ARM_CPUID_PXA270_A1:
142 case ARM_CPUID_PXA270_B0:
143 case ARM_CPUID_PXA270_B1:
144 case ARM_CPUID_PXA270_C0:
145 case ARM_CPUID_PXA270_C5:
146 set_feature(env, ARM_FEATURE_XSCALE);
147 /* JTAG_ID is ((id << 28) | 0x09265013) */
148 set_feature(env, ARM_FEATURE_IWMMXT);
149 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
150 env->cp15.c0_cachetype = 0xd172172;
151 env->cp15.c1_sys = 0x00000078;
152 break;
153 default:
154 cpu_abort(env, "Bad CPU ID: %x\n", id);
155 break;
159 void cpu_reset(CPUARMState *env)
161 uint32_t id;
163 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
164 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
165 log_cpu_state(env, 0);
168 id = env->cp15.c0_cpuid;
169 memset(env, 0, offsetof(CPUARMState, breakpoints));
170 if (id)
171 cpu_reset_model_id(env, id);
172 #if defined (CONFIG_USER_ONLY)
173 env->uncached_cpsr = ARM_CPU_MODE_USR;
174 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
175 #else
176 /* SVC mode with interrupts disabled. */
177 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
178 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
179 clear at reset. */
180 if (IS_M(env))
181 env->uncached_cpsr &= ~CPSR_I;
182 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
183 env->cp15.c2_base_mask = 0xffffc000u;
184 #endif
185 env->regs[15] = 0;
186 tlb_flush(env, 1);
189 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
191 int nregs;
193 /* VFP data registers are always little-endian. */
194 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
195 if (reg < nregs) {
196 stfq_le_p(buf, env->vfp.regs[reg]);
197 return 8;
199 if (arm_feature(env, ARM_FEATURE_NEON)) {
200 /* Aliases for Q regs. */
201 nregs += 16;
202 if (reg < nregs) {
203 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
204 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
205 return 16;
208 switch (reg - nregs) {
209 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
210 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
211 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
213 return 0;
216 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
218 int nregs;
220 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
221 if (reg < nregs) {
222 env->vfp.regs[reg] = ldfq_le_p(buf);
223 return 8;
225 if (arm_feature(env, ARM_FEATURE_NEON)) {
226 nregs += 16;
227 if (reg < nregs) {
228 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
229 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
230 return 16;
233 switch (reg - nregs) {
234 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
235 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
236 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
238 return 0;
241 CPUARMState *cpu_arm_init(const char *cpu_model)
243 CPUARMState *env;
244 uint32_t id;
245 static int inited = 0;
247 id = cpu_arm_find_by_name(cpu_model);
248 if (id == 0)
249 return NULL;
250 env = qemu_mallocz(sizeof(CPUARMState));
251 if (!env)
252 return NULL;
253 cpu_exec_init(env);
254 if (!inited) {
255 inited = 1;
256 arm_translate_init();
259 env->cpu_model_str = cpu_model;
260 env->cp15.c0_cpuid = id;
261 cpu_reset(env);
262 if (arm_feature(env, ARM_FEATURE_NEON)) {
263 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
264 51, "arm-neon.xml", 0);
265 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
266 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
267 35, "arm-vfp3.xml", 0);
268 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
269 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
270 19, "arm-vfp.xml", 0);
272 return env;
275 struct arm_cpu_t {
276 uint32_t id;
277 const char *name;
280 static const struct arm_cpu_t arm_cpu_names[] = {
281 { ARM_CPUID_ARM926, "arm926"},
282 { ARM_CPUID_ARM946, "arm946"},
283 { ARM_CPUID_ARM1026, "arm1026"},
284 { ARM_CPUID_ARM1136, "arm1136"},
285 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
286 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
287 { ARM_CPUID_CORTEXM3, "cortex-m3"},
288 { ARM_CPUID_CORTEXA8, "cortex-a8"},
289 { ARM_CPUID_TI925T, "ti925t" },
290 { ARM_CPUID_PXA250, "pxa250" },
291 { ARM_CPUID_PXA255, "pxa255" },
292 { ARM_CPUID_PXA260, "pxa260" },
293 { ARM_CPUID_PXA261, "pxa261" },
294 { ARM_CPUID_PXA262, "pxa262" },
295 { ARM_CPUID_PXA270, "pxa270" },
296 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
297 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
298 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
299 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
300 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
301 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
302 { ARM_CPUID_ANY, "any"},
303 { 0, NULL}
306 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
308 int i;
310 (*cpu_fprintf)(f, "Available CPUs:\n");
311 for (i = 0; arm_cpu_names[i].name; i++) {
312 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
316 /* return 0 if not found */
317 static uint32_t cpu_arm_find_by_name(const char *name)
319 int i;
320 uint32_t id;
322 id = 0;
323 for (i = 0; arm_cpu_names[i].name; i++) {
324 if (strcmp(name, arm_cpu_names[i].name) == 0) {
325 id = arm_cpu_names[i].id;
326 break;
329 return id;
332 void cpu_arm_close(CPUARMState *env)
334 free(env);
337 uint32_t cpsr_read(CPUARMState *env)
339 int ZF;
340 ZF = (env->ZF == 0);
341 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
342 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
343 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
344 | ((env->condexec_bits & 0xfc) << 8)
345 | (env->GE << 16);
348 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
350 if (mask & CPSR_NZCV) {
351 env->ZF = (~val) & CPSR_Z;
352 env->NF = val;
353 env->CF = (val >> 29) & 1;
354 env->VF = (val << 3) & 0x80000000;
356 if (mask & CPSR_Q)
357 env->QF = ((val & CPSR_Q) != 0);
358 if (mask & CPSR_T)
359 env->thumb = ((val & CPSR_T) != 0);
360 if (mask & CPSR_IT_0_1) {
361 env->condexec_bits &= ~3;
362 env->condexec_bits |= (val >> 25) & 3;
364 if (mask & CPSR_IT_2_7) {
365 env->condexec_bits &= 3;
366 env->condexec_bits |= (val >> 8) & 0xfc;
368 if (mask & CPSR_GE) {
369 env->GE = (val >> 16) & 0xf;
372 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
373 switch_mode(env, val & CPSR_M);
375 mask &= ~CACHED_CPSR_BITS;
376 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
379 /* Sign/zero extend */
380 uint32_t HELPER(sxtb16)(uint32_t x)
382 uint32_t res;
383 res = (uint16_t)(int8_t)x;
384 res |= (uint32_t)(int8_t)(x >> 16) << 16;
385 return res;
388 uint32_t HELPER(uxtb16)(uint32_t x)
390 uint32_t res;
391 res = (uint16_t)(uint8_t)x;
392 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
393 return res;
396 uint32_t HELPER(clz)(uint32_t x)
398 int count;
399 for (count = 32; x; count--)
400 x >>= 1;
401 return count;
404 int32_t HELPER(sdiv)(int32_t num, int32_t den)
406 if (den == 0)
407 return 0;
408 return num / den;
411 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
413 if (den == 0)
414 return 0;
415 return num / den;
418 uint32_t HELPER(rbit)(uint32_t x)
420 x = ((x & 0xff000000) >> 24)
421 | ((x & 0x00ff0000) >> 8)
422 | ((x & 0x0000ff00) << 8)
423 | ((x & 0x000000ff) << 24);
424 x = ((x & 0xf0f0f0f0) >> 4)
425 | ((x & 0x0f0f0f0f) << 4);
426 x = ((x & 0x88888888) >> 3)
427 | ((x & 0x44444444) >> 1)
428 | ((x & 0x22222222) << 1)
429 | ((x & 0x11111111) << 3);
430 return x;
433 uint32_t HELPER(abs)(uint32_t x)
435 return ((int32_t)x < 0) ? -x : x;
438 #if defined(CONFIG_USER_ONLY)
440 void do_interrupt (CPUState *env)
442 env->exception_index = -1;
445 /* Structure used to record exclusive memory locations. */
446 typedef struct mmon_state {
447 struct mmon_state *next;
448 CPUARMState *cpu_env;
449 uint32_t addr;
450 } mmon_state;
452 /* Chain of current locks. */
453 static mmon_state* mmon_head = NULL;
455 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
456 int mmu_idx, int is_softmmu)
458 if (rw == 2) {
459 env->exception_index = EXCP_PREFETCH_ABORT;
460 env->cp15.c6_insn = address;
461 } else {
462 env->exception_index = EXCP_DATA_ABORT;
463 env->cp15.c6_data = address;
465 return 1;
468 static void allocate_mmon_state(CPUState *env)
470 env->mmon_entry = malloc(sizeof (mmon_state));
471 if (!env->mmon_entry)
472 abort();
473 memset (env->mmon_entry, 0, sizeof (mmon_state));
474 env->mmon_entry->cpu_env = env;
475 mmon_head = env->mmon_entry;
478 /* Flush any monitor locks for the specified address. */
479 static void flush_mmon(uint32_t addr)
481 mmon_state *mon;
483 for (mon = mmon_head; mon; mon = mon->next)
485 if (mon->addr != addr)
486 continue;
488 mon->addr = 0;
489 break;
493 /* Mark an address for exclusive access. */
494 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
496 if (!env->mmon_entry)
497 allocate_mmon_state(env);
498 /* Clear any previous locks. */
499 flush_mmon(addr);
500 env->mmon_entry->addr = addr;
503 /* Test if an exclusive address is still exclusive. Returns zero
504 if the address is still exclusive. */
505 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
507 int res;
509 if (!env->mmon_entry)
510 return 1;
511 if (env->mmon_entry->addr == addr)
512 res = 0;
513 else
514 res = 1;
515 flush_mmon(addr);
516 return res;
519 void HELPER(clrex)(CPUState *env)
521 if (!(env->mmon_entry && env->mmon_entry->addr))
522 return;
523 flush_mmon(env->mmon_entry->addr);
526 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
528 return addr;
531 /* These should probably raise undefined insn exceptions. */
532 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
534 int op1 = (insn >> 8) & 0xf;
535 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
536 return;
539 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
541 int op1 = (insn >> 8) & 0xf;
542 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
543 return 0;
546 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
548 cpu_abort(env, "cp15 insn %08x\n", insn);
551 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
553 cpu_abort(env, "cp15 insn %08x\n", insn);
554 return 0;
557 /* These should probably raise undefined insn exceptions. */
558 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
560 cpu_abort(env, "v7m_mrs %d\n", reg);
563 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
565 cpu_abort(env, "v7m_mrs %d\n", reg);
566 return 0;
569 void switch_mode(CPUState *env, int mode)
571 if (mode != ARM_CPU_MODE_USR)
572 cpu_abort(env, "Tried to switch out of user mode\n");
575 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
577 cpu_abort(env, "banked r13 write\n");
580 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
582 cpu_abort(env, "banked r13 read\n");
583 return 0;
586 #else
588 extern int semihosting_enabled;
590 /* Map CPU modes onto saved register banks. */
591 static inline int bank_number (int mode)
593 switch (mode) {
594 case ARM_CPU_MODE_USR:
595 case ARM_CPU_MODE_SYS:
596 return 0;
597 case ARM_CPU_MODE_SVC:
598 return 1;
599 case ARM_CPU_MODE_ABT:
600 return 2;
601 case ARM_CPU_MODE_UND:
602 return 3;
603 case ARM_CPU_MODE_IRQ:
604 return 4;
605 case ARM_CPU_MODE_FIQ:
606 return 5;
608 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
609 return -1;
612 void switch_mode(CPUState *env, int mode)
614 int old_mode;
615 int i;
617 old_mode = env->uncached_cpsr & CPSR_M;
618 if (mode == old_mode)
619 return;
621 if (old_mode == ARM_CPU_MODE_FIQ) {
622 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
623 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
624 } else if (mode == ARM_CPU_MODE_FIQ) {
625 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
626 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
629 i = bank_number(old_mode);
630 env->banked_r13[i] = env->regs[13];
631 env->banked_r14[i] = env->regs[14];
632 env->banked_spsr[i] = env->spsr;
634 i = bank_number(mode);
635 env->regs[13] = env->banked_r13[i];
636 env->regs[14] = env->banked_r14[i];
637 env->spsr = env->banked_spsr[i];
640 static void v7m_push(CPUARMState *env, uint32_t val)
642 env->regs[13] -= 4;
643 stl_phys(env->regs[13], val);
646 static uint32_t v7m_pop(CPUARMState *env)
648 uint32_t val;
649 val = ldl_phys(env->regs[13]);
650 env->regs[13] += 4;
651 return val;
654 /* Switch to V7M main or process stack pointer. */
655 static void switch_v7m_sp(CPUARMState *env, int process)
657 uint32_t tmp;
658 if (env->v7m.current_sp != process) {
659 tmp = env->v7m.other_sp;
660 env->v7m.other_sp = env->regs[13];
661 env->regs[13] = tmp;
662 env->v7m.current_sp = process;
666 static void do_v7m_exception_exit(CPUARMState *env)
668 uint32_t type;
669 uint32_t xpsr;
671 type = env->regs[15];
672 if (env->v7m.exception != 0)
673 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
675 /* Switch to the target stack. */
676 switch_v7m_sp(env, (type & 4) != 0);
677 /* Pop registers. */
678 env->regs[0] = v7m_pop(env);
679 env->regs[1] = v7m_pop(env);
680 env->regs[2] = v7m_pop(env);
681 env->regs[3] = v7m_pop(env);
682 env->regs[12] = v7m_pop(env);
683 env->regs[14] = v7m_pop(env);
684 env->regs[15] = v7m_pop(env);
685 xpsr = v7m_pop(env);
686 xpsr_write(env, xpsr, 0xfffffdff);
687 /* Undo stack alignment. */
688 if (xpsr & 0x200)
689 env->regs[13] |= 4;
690 /* ??? The exception return type specifies Thread/Handler mode. However
691 this is also implied by the xPSR value. Not sure what to do
692 if there is a mismatch. */
693 /* ??? Likewise for mismatches between the CONTROL register and the stack
694 pointer. */
697 void do_interrupt_v7m(CPUARMState *env)
699 uint32_t xpsr = xpsr_read(env);
700 uint32_t lr;
701 uint32_t addr;
703 lr = 0xfffffff1;
704 if (env->v7m.current_sp)
705 lr |= 4;
706 if (env->v7m.exception == 0)
707 lr |= 8;
709 /* For exceptions we just mark as pending on the NVIC, and let that
710 handle it. */
711 /* TODO: Need to escalate if the current priority is higher than the
712 one we're raising. */
713 switch (env->exception_index) {
714 case EXCP_UDEF:
715 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
716 return;
717 case EXCP_SWI:
718 env->regs[15] += 2;
719 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
720 return;
721 case EXCP_PREFETCH_ABORT:
722 case EXCP_DATA_ABORT:
723 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
724 return;
725 case EXCP_BKPT:
726 if (semihosting_enabled) {
727 int nr;
728 nr = lduw_code(env->regs[15]) & 0xff;
729 if (nr == 0xab) {
730 env->regs[15] += 2;
731 env->regs[0] = do_arm_semihosting(env);
732 return;
735 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
736 return;
737 case EXCP_IRQ:
738 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
739 break;
740 case EXCP_EXCEPTION_EXIT:
741 do_v7m_exception_exit(env);
742 return;
743 default:
744 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
745 return; /* Never happens. Keep compiler happy. */
748 /* Align stack pointer. */
749 /* ??? Should only do this if Configuration Control Register
750 STACKALIGN bit is set. */
751 if (env->regs[13] & 4) {
752 env->regs[13] -= 4;
753 xpsr |= 0x200;
755 /* Switch to the handler mode. */
756 v7m_push(env, xpsr);
757 v7m_push(env, env->regs[15]);
758 v7m_push(env, env->regs[14]);
759 v7m_push(env, env->regs[12]);
760 v7m_push(env, env->regs[3]);
761 v7m_push(env, env->regs[2]);
762 v7m_push(env, env->regs[1]);
763 v7m_push(env, env->regs[0]);
764 switch_v7m_sp(env, 0);
765 env->uncached_cpsr &= ~CPSR_IT;
766 env->regs[14] = lr;
767 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
768 env->regs[15] = addr & 0xfffffffe;
769 env->thumb = addr & 1;
772 /* Handle a CPU exception. */
773 void do_interrupt(CPUARMState *env)
775 uint32_t addr;
776 uint32_t mask;
777 int new_mode;
778 uint32_t offset;
780 if (IS_M(env)) {
781 do_interrupt_v7m(env);
782 return;
784 /* TODO: Vectored interrupt controller. */
785 switch (env->exception_index) {
786 case EXCP_UDEF:
787 new_mode = ARM_CPU_MODE_UND;
788 addr = 0x04;
789 mask = CPSR_I;
790 if (env->thumb)
791 offset = 2;
792 else
793 offset = 4;
794 break;
795 case EXCP_SWI:
796 if (semihosting_enabled) {
797 /* Check for semihosting interrupt. */
798 if (env->thumb) {
799 mask = lduw_code(env->regs[15] - 2) & 0xff;
800 } else {
801 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
803 /* Only intercept calls from privileged modes, to provide some
804 semblance of security. */
805 if (((mask == 0x123456 && !env->thumb)
806 || (mask == 0xab && env->thumb))
807 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
808 env->regs[0] = do_arm_semihosting(env);
809 return;
812 new_mode = ARM_CPU_MODE_SVC;
813 addr = 0x08;
814 mask = CPSR_I;
815 /* The PC already points to the next instruction. */
816 offset = 0;
817 break;
818 case EXCP_BKPT:
819 /* See if this is a semihosting syscall. */
820 if (env->thumb && semihosting_enabled) {
821 mask = lduw_code(env->regs[15]) & 0xff;
822 if (mask == 0xab
823 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
824 env->regs[15] += 2;
825 env->regs[0] = do_arm_semihosting(env);
826 return;
829 /* Fall through to prefetch abort. */
830 case EXCP_PREFETCH_ABORT:
831 new_mode = ARM_CPU_MODE_ABT;
832 addr = 0x0c;
833 mask = CPSR_A | CPSR_I;
834 offset = 4;
835 break;
836 case EXCP_DATA_ABORT:
837 new_mode = ARM_CPU_MODE_ABT;
838 addr = 0x10;
839 mask = CPSR_A | CPSR_I;
840 offset = 8;
841 break;
842 case EXCP_IRQ:
843 new_mode = ARM_CPU_MODE_IRQ;
844 addr = 0x18;
845 /* Disable IRQ and imprecise data aborts. */
846 mask = CPSR_A | CPSR_I;
847 offset = 4;
848 break;
849 case EXCP_FIQ:
850 new_mode = ARM_CPU_MODE_FIQ;
851 addr = 0x1c;
852 /* Disable FIQ, IRQ and imprecise data aborts. */
853 mask = CPSR_A | CPSR_I | CPSR_F;
854 offset = 4;
855 break;
856 default:
857 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
858 return; /* Never happens. Keep compiler happy. */
860 /* High vectors. */
861 if (env->cp15.c1_sys & (1 << 13)) {
862 addr += 0xffff0000;
864 switch_mode (env, new_mode);
865 env->spsr = cpsr_read(env);
866 /* Clear IT bits. */
867 env->condexec_bits = 0;
868 /* Switch to the new mode, and switch to Arm mode. */
869 /* ??? Thumb interrupt handlers not implemented. */
870 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
871 env->uncached_cpsr |= mask;
872 env->thumb = 0;
873 env->regs[14] = env->regs[15] + offset;
874 env->regs[15] = addr;
875 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
878 /* Check section/page access permissions.
879 Returns the page protection flags, or zero if the access is not
880 permitted. */
881 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
882 int is_user)
884 int prot_ro;
886 if (domain == 3)
887 return PAGE_READ | PAGE_WRITE;
889 if (access_type == 1)
890 prot_ro = 0;
891 else
892 prot_ro = PAGE_READ;
894 switch (ap) {
895 case 0:
896 if (access_type == 1)
897 return 0;
898 switch ((env->cp15.c1_sys >> 8) & 3) {
899 case 1:
900 return is_user ? 0 : PAGE_READ;
901 case 2:
902 return PAGE_READ;
903 default:
904 return 0;
906 case 1:
907 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
908 case 2:
909 if (is_user)
910 return prot_ro;
911 else
912 return PAGE_READ | PAGE_WRITE;
913 case 3:
914 return PAGE_READ | PAGE_WRITE;
915 case 4: /* Reserved. */
916 return 0;
917 case 5:
918 return is_user ? 0 : prot_ro;
919 case 6:
920 return prot_ro;
921 case 7:
922 if (!arm_feature (env, ARM_FEATURE_V7))
923 return 0;
924 return prot_ro;
925 default:
926 abort();
930 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
932 uint32_t table;
934 if (address & env->cp15.c2_mask)
935 table = env->cp15.c2_base1 & 0xffffc000;
936 else
937 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
939 table |= (address >> 18) & 0x3ffc;
940 return table;
943 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
944 int is_user, uint32_t *phys_ptr, int *prot)
946 int code;
947 uint32_t table;
948 uint32_t desc;
949 int type;
950 int ap;
951 int domain;
952 uint32_t phys_addr;
954 /* Pagetable walk. */
955 /* Lookup l1 descriptor. */
956 table = get_level1_table_address(env, address);
957 desc = ldl_phys(table);
958 type = (desc & 3);
959 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
960 if (type == 0) {
961 /* Section translation fault. */
962 code = 5;
963 goto do_fault;
965 if (domain == 0 || domain == 2) {
966 if (type == 2)
967 code = 9; /* Section domain fault. */
968 else
969 code = 11; /* Page domain fault. */
970 goto do_fault;
972 if (type == 2) {
973 /* 1Mb section. */
974 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
975 ap = (desc >> 10) & 3;
976 code = 13;
977 } else {
978 /* Lookup l2 entry. */
979 if (type == 1) {
980 /* Coarse pagetable. */
981 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
982 } else {
983 /* Fine pagetable. */
984 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
986 desc = ldl_phys(table);
987 switch (desc & 3) {
988 case 0: /* Page translation fault. */
989 code = 7;
990 goto do_fault;
991 case 1: /* 64k page. */
992 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
993 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
994 break;
995 case 2: /* 4k page. */
996 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
997 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
998 break;
999 case 3: /* 1k page. */
1000 if (type == 1) {
1001 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1002 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1003 } else {
1004 /* Page translation fault. */
1005 code = 7;
1006 goto do_fault;
1008 } else {
1009 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1011 ap = (desc >> 4) & 3;
1012 break;
1013 default:
1014 /* Never happens, but compiler isn't smart enough to tell. */
1015 abort();
1017 code = 15;
1019 *prot = check_ap(env, ap, domain, access_type, is_user);
1020 if (!*prot) {
1021 /* Access permission fault. */
1022 goto do_fault;
1024 *phys_ptr = phys_addr;
1025 return 0;
1026 do_fault:
1027 return code | (domain << 4);
1030 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1031 int is_user, uint32_t *phys_ptr, int *prot)
1033 int code;
1034 uint32_t table;
1035 uint32_t desc;
1036 uint32_t xn;
1037 int type;
1038 int ap;
1039 int domain;
1040 uint32_t phys_addr;
1042 /* Pagetable walk. */
1043 /* Lookup l1 descriptor. */
1044 table = get_level1_table_address(env, address);
1045 desc = ldl_phys(table);
1046 type = (desc & 3);
1047 if (type == 0) {
1048 /* Section translation fault. */
1049 code = 5;
1050 domain = 0;
1051 goto do_fault;
1052 } else if (type == 2 && (desc & (1 << 18))) {
1053 /* Supersection. */
1054 domain = 0;
1055 } else {
1056 /* Section or page. */
1057 domain = (desc >> 4) & 0x1e;
1059 domain = (env->cp15.c3 >> domain) & 3;
1060 if (domain == 0 || domain == 2) {
1061 if (type == 2)
1062 code = 9; /* Section domain fault. */
1063 else
1064 code = 11; /* Page domain fault. */
1065 goto do_fault;
1067 if (type == 2) {
1068 if (desc & (1 << 18)) {
1069 /* Supersection. */
1070 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1071 } else {
1072 /* Section. */
1073 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1075 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1076 xn = desc & (1 << 4);
1077 code = 13;
1078 } else {
1079 /* Lookup l2 entry. */
1080 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1081 desc = ldl_phys(table);
1082 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1083 switch (desc & 3) {
1084 case 0: /* Page translation fault. */
1085 code = 7;
1086 goto do_fault;
1087 case 1: /* 64k page. */
1088 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1089 xn = desc & (1 << 15);
1090 break;
1091 case 2: case 3: /* 4k page. */
1092 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1093 xn = desc & 1;
1094 break;
1095 default:
1096 /* Never happens, but compiler isn't smart enough to tell. */
1097 abort();
1099 code = 15;
1101 if (xn && access_type == 2)
1102 goto do_fault;
1104 /* The simplified model uses AP[0] as an access control bit. */
1105 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1106 /* Access flag fault. */
1107 code = (code == 15) ? 6 : 3;
1108 goto do_fault;
1110 *prot = check_ap(env, ap, domain, access_type, is_user);
1111 if (!*prot) {
1112 /* Access permission fault. */
1113 goto do_fault;
1115 *phys_ptr = phys_addr;
1116 return 0;
1117 do_fault:
1118 return code | (domain << 4);
1121 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1122 int is_user, uint32_t *phys_ptr, int *prot)
1124 int n;
1125 uint32_t mask;
1126 uint32_t base;
1128 *phys_ptr = address;
1129 for (n = 7; n >= 0; n--) {
1130 base = env->cp15.c6_region[n];
1131 if ((base & 1) == 0)
1132 continue;
1133 mask = 1 << ((base >> 1) & 0x1f);
1134 /* Keep this shift separate from the above to avoid an
1135 (undefined) << 32. */
1136 mask = (mask << 1) - 1;
1137 if (((base ^ address) & ~mask) == 0)
1138 break;
1140 if (n < 0)
1141 return 2;
1143 if (access_type == 2) {
1144 mask = env->cp15.c5_insn;
1145 } else {
1146 mask = env->cp15.c5_data;
1148 mask = (mask >> (n * 4)) & 0xf;
1149 switch (mask) {
1150 case 0:
1151 return 1;
1152 case 1:
1153 if (is_user)
1154 return 1;
1155 *prot = PAGE_READ | PAGE_WRITE;
1156 break;
1157 case 2:
1158 *prot = PAGE_READ;
1159 if (!is_user)
1160 *prot |= PAGE_WRITE;
1161 break;
1162 case 3:
1163 *prot = PAGE_READ | PAGE_WRITE;
1164 break;
1165 case 5:
1166 if (is_user)
1167 return 1;
1168 *prot = PAGE_READ;
1169 break;
1170 case 6:
1171 *prot = PAGE_READ;
1172 break;
1173 default:
1174 /* Bad permission. */
1175 return 1;
1177 return 0;
1180 static inline int get_phys_addr(CPUState *env, uint32_t address,
1181 int access_type, int is_user,
1182 uint32_t *phys_ptr, int *prot)
1184 /* Fast Context Switch Extension. */
1185 if (address < 0x02000000)
1186 address += env->cp15.c13_fcse;
1188 if ((env->cp15.c1_sys & 1) == 0) {
1189 /* MMU/MPU disabled. */
1190 *phys_ptr = address;
1191 *prot = PAGE_READ | PAGE_WRITE;
1192 return 0;
1193 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1194 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1195 prot);
1196 } else if (env->cp15.c1_sys & (1 << 23)) {
1197 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1198 prot);
1199 } else {
1200 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1201 prot);
1205 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1206 int access_type, int mmu_idx, int is_softmmu)
1208 uint32_t phys_addr;
1209 int prot;
1210 int ret, is_user;
1212 is_user = mmu_idx == MMU_USER_IDX;
1213 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1214 if (ret == 0) {
1215 /* Map a single [sub]page. */
1216 phys_addr &= ~(uint32_t)0x3ff;
1217 address &= ~(uint32_t)0x3ff;
1218 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1219 is_softmmu);
1222 if (access_type == 2) {
1223 env->cp15.c5_insn = ret;
1224 env->cp15.c6_insn = address;
1225 env->exception_index = EXCP_PREFETCH_ABORT;
1226 } else {
1227 env->cp15.c5_data = ret;
1228 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1229 env->cp15.c5_data |= (1 << 11);
1230 env->cp15.c6_data = address;
1231 env->exception_index = EXCP_DATA_ABORT;
1233 return 1;
1236 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1238 uint32_t phys_addr;
1239 int prot;
1240 int ret;
1242 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1244 if (ret != 0)
1245 return -1;
1247 return phys_addr;
1250 /* Not really implemented. Need to figure out a sane way of doing this.
1251 Maybe add generic watchpoint support and use that. */
1253 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1255 env->mmon_addr = addr;
1258 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1260 return (env->mmon_addr != addr);
1263 void HELPER(clrex)(CPUState *env)
1265 env->mmon_addr = -1;
1268 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1270 int cp_num = (insn >> 8) & 0xf;
1271 int cp_info = (insn >> 5) & 7;
1272 int src = (insn >> 16) & 0xf;
1273 int operand = insn & 0xf;
1275 if (env->cp[cp_num].cp_write)
1276 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1277 cp_info, src, operand, val);
1280 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1282 int cp_num = (insn >> 8) & 0xf;
1283 int cp_info = (insn >> 5) & 7;
1284 int dest = (insn >> 16) & 0xf;
1285 int operand = insn & 0xf;
1287 if (env->cp[cp_num].cp_read)
1288 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1289 cp_info, dest, operand);
1290 return 0;
1293 /* Return basic MPU access permission bits. */
1294 static uint32_t simple_mpu_ap_bits(uint32_t val)
1296 uint32_t ret;
1297 uint32_t mask;
1298 int i;
1299 ret = 0;
1300 mask = 3;
1301 for (i = 0; i < 16; i += 2) {
1302 ret |= (val >> i) & mask;
1303 mask <<= 2;
1305 return ret;
1308 /* Pad basic MPU access permission bits to extended format. */
1309 static uint32_t extended_mpu_ap_bits(uint32_t val)
1311 uint32_t ret;
1312 uint32_t mask;
1313 int i;
1314 ret = 0;
1315 mask = 3;
1316 for (i = 0; i < 16; i += 2) {
1317 ret |= (val & mask) << i;
1318 mask <<= 2;
1320 return ret;
1323 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1325 int op1;
1326 int op2;
1327 int crm;
1329 op1 = (insn >> 21) & 7;
1330 op2 = (insn >> 5) & 7;
1331 crm = insn & 0xf;
1332 switch ((insn >> 16) & 0xf) {
1333 case 0:
1334 /* ID codes. */
1335 if (arm_feature(env, ARM_FEATURE_XSCALE))
1336 break;
1337 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1338 break;
1339 if (arm_feature(env, ARM_FEATURE_V7)
1340 && op1 == 2 && crm == 0 && op2 == 0) {
1341 env->cp15.c0_cssel = val & 0xf;
1342 break;
1344 goto bad_reg;
1345 case 1: /* System configuration. */
1346 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1347 op2 = 0;
1348 switch (op2) {
1349 case 0:
1350 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1351 env->cp15.c1_sys = val;
1352 /* ??? Lots of these bits are not implemented. */
1353 /* This may enable/disable the MMU, so do a TLB flush. */
1354 tlb_flush(env, 1);
1355 break;
1356 case 1: /* Auxiliary cotrol register. */
1357 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1358 env->cp15.c1_xscaleauxcr = val;
1359 break;
1361 /* Not implemented. */
1362 break;
1363 case 2:
1364 if (arm_feature(env, ARM_FEATURE_XSCALE))
1365 goto bad_reg;
1366 if (env->cp15.c1_coproc != val) {
1367 env->cp15.c1_coproc = val;
1368 /* ??? Is this safe when called from within a TB? */
1369 tb_flush(env);
1371 break;
1372 default:
1373 goto bad_reg;
1375 break;
1376 case 2: /* MMU Page table control / MPU cache control. */
1377 if (arm_feature(env, ARM_FEATURE_MPU)) {
1378 switch (op2) {
1379 case 0:
1380 env->cp15.c2_data = val;
1381 break;
1382 case 1:
1383 env->cp15.c2_insn = val;
1384 break;
1385 default:
1386 goto bad_reg;
1388 } else {
1389 switch (op2) {
1390 case 0:
1391 env->cp15.c2_base0 = val;
1392 break;
1393 case 1:
1394 env->cp15.c2_base1 = val;
1395 break;
1396 case 2:
1397 val &= 7;
1398 env->cp15.c2_control = val;
1399 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1400 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1401 break;
1402 default:
1403 goto bad_reg;
1406 break;
1407 case 3: /* MMU Domain access control / MPU write buffer control. */
1408 env->cp15.c3 = val;
1409 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1410 break;
1411 case 4: /* Reserved. */
1412 goto bad_reg;
1413 case 5: /* MMU Fault status / MPU access permission. */
1414 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1415 op2 = 0;
1416 switch (op2) {
1417 case 0:
1418 if (arm_feature(env, ARM_FEATURE_MPU))
1419 val = extended_mpu_ap_bits(val);
1420 env->cp15.c5_data = val;
1421 break;
1422 case 1:
1423 if (arm_feature(env, ARM_FEATURE_MPU))
1424 val = extended_mpu_ap_bits(val);
1425 env->cp15.c5_insn = val;
1426 break;
1427 case 2:
1428 if (!arm_feature(env, ARM_FEATURE_MPU))
1429 goto bad_reg;
1430 env->cp15.c5_data = val;
1431 break;
1432 case 3:
1433 if (!arm_feature(env, ARM_FEATURE_MPU))
1434 goto bad_reg;
1435 env->cp15.c5_insn = val;
1436 break;
1437 default:
1438 goto bad_reg;
1440 break;
1441 case 6: /* MMU Fault address / MPU base/size. */
1442 if (arm_feature(env, ARM_FEATURE_MPU)) {
1443 if (crm >= 8)
1444 goto bad_reg;
1445 env->cp15.c6_region[crm] = val;
1446 } else {
1447 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1448 op2 = 0;
1449 switch (op2) {
1450 case 0:
1451 env->cp15.c6_data = val;
1452 break;
1453 case 1: /* ??? This is WFAR on armv6 */
1454 case 2:
1455 env->cp15.c6_insn = val;
1456 break;
1457 default:
1458 goto bad_reg;
1461 break;
1462 case 7: /* Cache control. */
1463 env->cp15.c15_i_max = 0x000;
1464 env->cp15.c15_i_min = 0xff0;
1465 /* No cache, so nothing to do. */
1466 /* ??? MPCore has VA to PA translation functions. */
1467 break;
1468 case 8: /* MMU TLB control. */
1469 switch (op2) {
1470 case 0: /* Invalidate all. */
1471 tlb_flush(env, 0);
1472 break;
1473 case 1: /* Invalidate single TLB entry. */
1474 #if 0
1475 /* ??? This is wrong for large pages and sections. */
1476 /* As an ugly hack to make linux work we always flush a 4K
1477 pages. */
1478 val &= 0xfffff000;
1479 tlb_flush_page(env, val);
1480 tlb_flush_page(env, val + 0x400);
1481 tlb_flush_page(env, val + 0x800);
1482 tlb_flush_page(env, val + 0xc00);
1483 #else
1484 tlb_flush(env, 1);
1485 #endif
1486 break;
1487 case 2: /* Invalidate on ASID. */
1488 tlb_flush(env, val == 0);
1489 break;
1490 case 3: /* Invalidate single entry on MVA. */
1491 /* ??? This is like case 1, but ignores ASID. */
1492 tlb_flush(env, 1);
1493 break;
1494 default:
1495 goto bad_reg;
1497 break;
1498 case 9:
1499 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1500 break;
1501 switch (crm) {
1502 case 0: /* Cache lockdown. */
1503 switch (op1) {
1504 case 0: /* L1 cache. */
1505 switch (op2) {
1506 case 0:
1507 env->cp15.c9_data = val;
1508 break;
1509 case 1:
1510 env->cp15.c9_insn = val;
1511 break;
1512 default:
1513 goto bad_reg;
1515 break;
1516 case 1: /* L2 cache. */
1517 /* Ignore writes to L2 lockdown/auxiliary registers. */
1518 break;
1519 default:
1520 goto bad_reg;
1522 break;
1523 case 1: /* TCM memory region registers. */
1524 /* Not implemented. */
1525 goto bad_reg;
1526 default:
1527 goto bad_reg;
1529 break;
1530 case 10: /* MMU TLB lockdown. */
1531 /* ??? TLB lockdown not implemented. */
1532 break;
1533 case 12: /* Reserved. */
1534 goto bad_reg;
1535 case 13: /* Process ID. */
1536 switch (op2) {
1537 case 0:
1538 /* Unlike real hardware the qemu TLB uses virtual addresses,
1539 not modified virtual addresses, so this causes a TLB flush.
1541 if (env->cp15.c13_fcse != val)
1542 tlb_flush(env, 1);
1543 env->cp15.c13_fcse = val;
1544 break;
1545 case 1:
1546 /* This changes the ASID, so do a TLB flush. */
1547 if (env->cp15.c13_context != val
1548 && !arm_feature(env, ARM_FEATURE_MPU))
1549 tlb_flush(env, 0);
1550 env->cp15.c13_context = val;
1551 break;
1552 case 2:
1553 env->cp15.c13_tls1 = val;
1554 break;
1555 case 3:
1556 env->cp15.c13_tls2 = val;
1557 break;
1558 case 4:
1559 env->cp15.c13_tls3 = val;
1560 break;
1561 default:
1562 goto bad_reg;
1564 break;
1565 case 14: /* Reserved. */
1566 goto bad_reg;
1567 case 15: /* Implementation specific. */
1568 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1569 if (op2 == 0 && crm == 1) {
1570 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1571 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1572 tb_flush(env);
1573 env->cp15.c15_cpar = val & 0x3fff;
1575 break;
1577 goto bad_reg;
1579 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1580 switch (crm) {
1581 case 0:
1582 break;
1583 case 1: /* Set TI925T configuration. */
1584 env->cp15.c15_ticonfig = val & 0xe7;
1585 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1586 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1587 break;
1588 case 2: /* Set I_max. */
1589 env->cp15.c15_i_max = val;
1590 break;
1591 case 3: /* Set I_min. */
1592 env->cp15.c15_i_min = val;
1593 break;
1594 case 4: /* Set thread-ID. */
1595 env->cp15.c15_threadid = val & 0xffff;
1596 break;
1597 case 8: /* Wait-for-interrupt (deprecated). */
1598 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1599 break;
1600 default:
1601 goto bad_reg;
1604 break;
1606 return;
1607 bad_reg:
1608 /* ??? For debugging only. Should raise illegal instruction exception. */
1609 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1610 (insn >> 16) & 0xf, crm, op1, op2);
1613 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1615 int op1;
1616 int op2;
1617 int crm;
1619 op1 = (insn >> 21) & 7;
1620 op2 = (insn >> 5) & 7;
1621 crm = insn & 0xf;
1622 switch ((insn >> 16) & 0xf) {
1623 case 0: /* ID codes. */
1624 switch (op1) {
1625 case 0:
1626 switch (crm) {
1627 case 0:
1628 switch (op2) {
1629 case 0: /* Device ID. */
1630 return env->cp15.c0_cpuid;
1631 case 1: /* Cache Type. */
1632 return env->cp15.c0_cachetype;
1633 case 2: /* TCM status. */
1634 return 0;
1635 case 3: /* TLB type register. */
1636 return 0; /* No lockable TLB entries. */
1637 case 5: /* CPU ID */
1638 return env->cpu_index;
1639 default:
1640 goto bad_reg;
1642 case 1:
1643 if (!arm_feature(env, ARM_FEATURE_V6))
1644 goto bad_reg;
1645 return env->cp15.c0_c1[op2];
1646 case 2:
1647 if (!arm_feature(env, ARM_FEATURE_V6))
1648 goto bad_reg;
1649 return env->cp15.c0_c2[op2];
1650 case 3: case 4: case 5: case 6: case 7:
1651 return 0;
1652 default:
1653 goto bad_reg;
1655 case 1:
1656 /* These registers aren't documented on arm11 cores. However
1657 Linux looks at them anyway. */
1658 if (!arm_feature(env, ARM_FEATURE_V6))
1659 goto bad_reg;
1660 if (crm != 0)
1661 goto bad_reg;
1662 if (!arm_feature(env, ARM_FEATURE_V7))
1663 return 0;
1665 switch (op2) {
1666 case 0:
1667 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1668 case 1:
1669 return env->cp15.c0_clid;
1670 case 7:
1671 return 0;
1673 goto bad_reg;
1674 case 2:
1675 if (op2 != 0 || crm != 0)
1676 goto bad_reg;
1677 return env->cp15.c0_cssel;
1678 default:
1679 goto bad_reg;
1681 case 1: /* System configuration. */
1682 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1683 op2 = 0;
1684 switch (op2) {
1685 case 0: /* Control register. */
1686 return env->cp15.c1_sys;
1687 case 1: /* Auxiliary control register. */
1688 if (arm_feature(env, ARM_FEATURE_XSCALE))
1689 return env->cp15.c1_xscaleauxcr;
1690 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1691 goto bad_reg;
1692 switch (ARM_CPUID(env)) {
1693 case ARM_CPUID_ARM1026:
1694 return 1;
1695 case ARM_CPUID_ARM1136:
1696 case ARM_CPUID_ARM1136_R2:
1697 return 7;
1698 case ARM_CPUID_ARM11MPCORE:
1699 return 1;
1700 case ARM_CPUID_CORTEXA8:
1701 return 0;
1702 default:
1703 goto bad_reg;
1705 case 2: /* Coprocessor access register. */
1706 if (arm_feature(env, ARM_FEATURE_XSCALE))
1707 goto bad_reg;
1708 return env->cp15.c1_coproc;
1709 default:
1710 goto bad_reg;
1712 case 2: /* MMU Page table control / MPU cache control. */
1713 if (arm_feature(env, ARM_FEATURE_MPU)) {
1714 switch (op2) {
1715 case 0:
1716 return env->cp15.c2_data;
1717 break;
1718 case 1:
1719 return env->cp15.c2_insn;
1720 break;
1721 default:
1722 goto bad_reg;
1724 } else {
1725 switch (op2) {
1726 case 0:
1727 return env->cp15.c2_base0;
1728 case 1:
1729 return env->cp15.c2_base1;
1730 case 2:
1731 return env->cp15.c2_control;
1732 default:
1733 goto bad_reg;
1736 case 3: /* MMU Domain access control / MPU write buffer control. */
1737 return env->cp15.c3;
1738 case 4: /* Reserved. */
1739 goto bad_reg;
1740 case 5: /* MMU Fault status / MPU access permission. */
1741 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1742 op2 = 0;
1743 switch (op2) {
1744 case 0:
1745 if (arm_feature(env, ARM_FEATURE_MPU))
1746 return simple_mpu_ap_bits(env->cp15.c5_data);
1747 return env->cp15.c5_data;
1748 case 1:
1749 if (arm_feature(env, ARM_FEATURE_MPU))
1750 return simple_mpu_ap_bits(env->cp15.c5_data);
1751 return env->cp15.c5_insn;
1752 case 2:
1753 if (!arm_feature(env, ARM_FEATURE_MPU))
1754 goto bad_reg;
1755 return env->cp15.c5_data;
1756 case 3:
1757 if (!arm_feature(env, ARM_FEATURE_MPU))
1758 goto bad_reg;
1759 return env->cp15.c5_insn;
1760 default:
1761 goto bad_reg;
1763 case 6: /* MMU Fault address. */
1764 if (arm_feature(env, ARM_FEATURE_MPU)) {
1765 if (crm >= 8)
1766 goto bad_reg;
1767 return env->cp15.c6_region[crm];
1768 } else {
1769 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1770 op2 = 0;
1771 switch (op2) {
1772 case 0:
1773 return env->cp15.c6_data;
1774 case 1:
1775 if (arm_feature(env, ARM_FEATURE_V6)) {
1776 /* Watchpoint Fault Adrress. */
1777 return 0; /* Not implemented. */
1778 } else {
1779 /* Instruction Fault Adrress. */
1780 /* Arm9 doesn't have an IFAR, but implementing it anyway
1781 shouldn't do any harm. */
1782 return env->cp15.c6_insn;
1784 case 2:
1785 if (arm_feature(env, ARM_FEATURE_V6)) {
1786 /* Instruction Fault Adrress. */
1787 return env->cp15.c6_insn;
1788 } else {
1789 goto bad_reg;
1791 default:
1792 goto bad_reg;
1795 case 7: /* Cache control. */
1796 /* FIXME: Should only clear Z flag if destination is r15. */
1797 env->ZF = 0;
1798 return 0;
1799 case 8: /* MMU TLB control. */
1800 goto bad_reg;
1801 case 9: /* Cache lockdown. */
1802 switch (op1) {
1803 case 0: /* L1 cache. */
1804 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1805 return 0;
1806 switch (op2) {
1807 case 0:
1808 return env->cp15.c9_data;
1809 case 1:
1810 return env->cp15.c9_insn;
1811 default:
1812 goto bad_reg;
1814 case 1: /* L2 cache */
1815 if (crm != 0)
1816 goto bad_reg;
1817 /* L2 Lockdown and Auxiliary control. */
1818 return 0;
1819 default:
1820 goto bad_reg;
1822 case 10: /* MMU TLB lockdown. */
1823 /* ??? TLB lockdown not implemented. */
1824 return 0;
1825 case 11: /* TCM DMA control. */
1826 case 12: /* Reserved. */
1827 goto bad_reg;
1828 case 13: /* Process ID. */
1829 switch (op2) {
1830 case 0:
1831 return env->cp15.c13_fcse;
1832 case 1:
1833 return env->cp15.c13_context;
1834 case 2:
1835 return env->cp15.c13_tls1;
1836 case 3:
1837 return env->cp15.c13_tls2;
1838 case 4:
1839 return env->cp15.c13_tls3;
1840 default:
1841 goto bad_reg;
1843 case 14: /* Reserved. */
1844 goto bad_reg;
1845 case 15: /* Implementation specific. */
1846 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1847 if (op2 == 0 && crm == 1)
1848 return env->cp15.c15_cpar;
1850 goto bad_reg;
1852 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1853 switch (crm) {
1854 case 0:
1855 return 0;
1856 case 1: /* Read TI925T configuration. */
1857 return env->cp15.c15_ticonfig;
1858 case 2: /* Read I_max. */
1859 return env->cp15.c15_i_max;
1860 case 3: /* Read I_min. */
1861 return env->cp15.c15_i_min;
1862 case 4: /* Read thread-ID. */
1863 return env->cp15.c15_threadid;
1864 case 8: /* TI925T_status */
1865 return 0;
1867 /* TODO: Peripheral port remap register:
1868 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1869 * controller base address at $rn & ~0xfff and map size of
1870 * 0x200 << ($rn & 0xfff), when MMU is off. */
1871 goto bad_reg;
1873 return 0;
1875 bad_reg:
1876 /* ??? For debugging only. Should raise illegal instruction exception. */
1877 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1878 (insn >> 16) & 0xf, crm, op1, op2);
1879 return 0;
1882 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1884 env->banked_r13[bank_number(mode)] = val;
1887 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1889 return env->banked_r13[bank_number(mode)];
1892 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1894 switch (reg) {
1895 case 0: /* APSR */
1896 return xpsr_read(env) & 0xf8000000;
1897 case 1: /* IAPSR */
1898 return xpsr_read(env) & 0xf80001ff;
1899 case 2: /* EAPSR */
1900 return xpsr_read(env) & 0xff00fc00;
1901 case 3: /* xPSR */
1902 return xpsr_read(env) & 0xff00fdff;
1903 case 5: /* IPSR */
1904 return xpsr_read(env) & 0x000001ff;
1905 case 6: /* EPSR */
1906 return xpsr_read(env) & 0x0700fc00;
1907 case 7: /* IEPSR */
1908 return xpsr_read(env) & 0x0700edff;
1909 case 8: /* MSP */
1910 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1911 case 9: /* PSP */
1912 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1913 case 16: /* PRIMASK */
1914 return (env->uncached_cpsr & CPSR_I) != 0;
1915 case 17: /* FAULTMASK */
1916 return (env->uncached_cpsr & CPSR_F) != 0;
1917 case 18: /* BASEPRI */
1918 case 19: /* BASEPRI_MAX */
1919 return env->v7m.basepri;
1920 case 20: /* CONTROL */
1921 return env->v7m.control;
1922 default:
1923 /* ??? For debugging only. */
1924 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1925 return 0;
1929 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1931 switch (reg) {
1932 case 0: /* APSR */
1933 xpsr_write(env, val, 0xf8000000);
1934 break;
1935 case 1: /* IAPSR */
1936 xpsr_write(env, val, 0xf8000000);
1937 break;
1938 case 2: /* EAPSR */
1939 xpsr_write(env, val, 0xfe00fc00);
1940 break;
1941 case 3: /* xPSR */
1942 xpsr_write(env, val, 0xfe00fc00);
1943 break;
1944 case 5: /* IPSR */
1945 /* IPSR bits are readonly. */
1946 break;
1947 case 6: /* EPSR */
1948 xpsr_write(env, val, 0x0600fc00);
1949 break;
1950 case 7: /* IEPSR */
1951 xpsr_write(env, val, 0x0600fc00);
1952 break;
1953 case 8: /* MSP */
1954 if (env->v7m.current_sp)
1955 env->v7m.other_sp = val;
1956 else
1957 env->regs[13] = val;
1958 break;
1959 case 9: /* PSP */
1960 if (env->v7m.current_sp)
1961 env->regs[13] = val;
1962 else
1963 env->v7m.other_sp = val;
1964 break;
1965 case 16: /* PRIMASK */
1966 if (val & 1)
1967 env->uncached_cpsr |= CPSR_I;
1968 else
1969 env->uncached_cpsr &= ~CPSR_I;
1970 break;
1971 case 17: /* FAULTMASK */
1972 if (val & 1)
1973 env->uncached_cpsr |= CPSR_F;
1974 else
1975 env->uncached_cpsr &= ~CPSR_F;
1976 break;
1977 case 18: /* BASEPRI */
1978 env->v7m.basepri = val & 0xff;
1979 break;
1980 case 19: /* BASEPRI_MAX */
1981 val &= 0xff;
1982 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1983 env->v7m.basepri = val;
1984 break;
1985 case 20: /* CONTROL */
1986 env->v7m.control = val & 3;
1987 switch_v7m_sp(env, (val & 2) != 0);
1988 break;
1989 default:
1990 /* ??? For debugging only. */
1991 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1992 return;
1996 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1997 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1998 void *opaque)
2000 if (cpnum < 0 || cpnum > 14) {
2001 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2002 return;
2005 env->cp[cpnum].cp_read = cp_read;
2006 env->cp[cpnum].cp_write = cp_write;
2007 env->cp[cpnum].opaque = opaque;
2010 #endif
2012 /* Note that signed overflow is undefined in C. The following routines are
2013 careful to use unsigned types where modulo arithmetic is required.
2014 Failure to do so _will_ break on newer gcc. */
2016 /* Signed saturating arithmetic. */
2018 /* Perform 16-bit signed saturating addition. */
2019 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2021 uint16_t res;
2023 res = a + b;
2024 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2025 if (a & 0x8000)
2026 res = 0x8000;
2027 else
2028 res = 0x7fff;
2030 return res;
2033 /* Perform 8-bit signed saturating addition. */
2034 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2036 uint8_t res;
2038 res = a + b;
2039 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2040 if (a & 0x80)
2041 res = 0x80;
2042 else
2043 res = 0x7f;
2045 return res;
2048 /* Perform 16-bit signed saturating subtraction. */
2049 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2051 uint16_t res;
2053 res = a - b;
2054 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2055 if (a & 0x8000)
2056 res = 0x8000;
2057 else
2058 res = 0x7fff;
2060 return res;
2063 /* Perform 8-bit signed saturating subtraction. */
2064 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2066 uint8_t res;
2068 res = a - b;
2069 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2070 if (a & 0x80)
2071 res = 0x80;
2072 else
2073 res = 0x7f;
2075 return res;
2078 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2079 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2080 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2081 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2082 #define PFX q
2084 #include "op_addsub.h"
2086 /* Unsigned saturating arithmetic. */
2087 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2089 uint16_t res;
2090 res = a + b;
2091 if (res < a)
2092 res = 0xffff;
2093 return res;
2096 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2098 if (a < b)
2099 return a - b;
2100 else
2101 return 0;
2104 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2106 uint8_t res;
2107 res = a + b;
2108 if (res < a)
2109 res = 0xff;
2110 return res;
2113 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2115 if (a < b)
2116 return a - b;
2117 else
2118 return 0;
2121 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2122 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2123 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2124 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2125 #define PFX uq
2127 #include "op_addsub.h"
2129 /* Signed modulo arithmetic. */
2130 #define SARITH16(a, b, n, op) do { \
2131 int32_t sum; \
2132 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2133 RESULT(sum, n, 16); \
2134 if (sum >= 0) \
2135 ge |= 3 << (n * 2); \
2136 } while(0)
2138 #define SARITH8(a, b, n, op) do { \
2139 int32_t sum; \
2140 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2141 RESULT(sum, n, 8); \
2142 if (sum >= 0) \
2143 ge |= 1 << n; \
2144 } while(0)
2147 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2148 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2149 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2150 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2151 #define PFX s
2152 #define ARITH_GE
2154 #include "op_addsub.h"
2156 /* Unsigned modulo arithmetic. */
2157 #define ADD16(a, b, n) do { \
2158 uint32_t sum; \
2159 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2160 RESULT(sum, n, 16); \
2161 if ((sum >> 16) == 1) \
2162 ge |= 3 << (n * 2); \
2163 } while(0)
2165 #define ADD8(a, b, n) do { \
2166 uint32_t sum; \
2167 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2168 RESULT(sum, n, 8); \
2169 if ((sum >> 8) == 1) \
2170 ge |= 1 << n; \
2171 } while(0)
2173 #define SUB16(a, b, n) do { \
2174 uint32_t sum; \
2175 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2176 RESULT(sum, n, 16); \
2177 if ((sum >> 16) == 0) \
2178 ge |= 3 << (n * 2); \
2179 } while(0)
2181 #define SUB8(a, b, n) do { \
2182 uint32_t sum; \
2183 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2184 RESULT(sum, n, 8); \
2185 if ((sum >> 8) == 0) \
2186 ge |= 1 << n; \
2187 } while(0)
2189 #define PFX u
2190 #define ARITH_GE
2192 #include "op_addsub.h"
2194 /* Halved signed arithmetic. */
2195 #define ADD16(a, b, n) \
2196 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2197 #define SUB16(a, b, n) \
2198 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2199 #define ADD8(a, b, n) \
2200 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2201 #define SUB8(a, b, n) \
2202 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2203 #define PFX sh
2205 #include "op_addsub.h"
2207 /* Halved unsigned arithmetic. */
2208 #define ADD16(a, b, n) \
2209 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2210 #define SUB16(a, b, n) \
2211 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2212 #define ADD8(a, b, n) \
2213 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2214 #define SUB8(a, b, n) \
2215 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2216 #define PFX uh
2218 #include "op_addsub.h"
2220 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2222 if (a > b)
2223 return a - b;
2224 else
2225 return b - a;
2228 /* Unsigned sum of absolute byte differences. */
2229 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2231 uint32_t sum;
2232 sum = do_usad(a, b);
2233 sum += do_usad(a >> 8, b >> 8);
2234 sum += do_usad(a >> 16, b >>16);
2235 sum += do_usad(a >> 24, b >> 24);
2236 return sum;
2239 /* For ARMv6 SEL instruction. */
2240 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2242 uint32_t mask;
2244 mask = 0;
2245 if (flags & 1)
2246 mask |= 0xff;
2247 if (flags & 2)
2248 mask |= 0xff00;
2249 if (flags & 4)
2250 mask |= 0xff0000;
2251 if (flags & 8)
2252 mask |= 0xff000000;
2253 return (a & mask) | (b & ~mask);
2256 uint32_t HELPER(logicq_cc)(uint64_t val)
2258 return (val >> 32) | (val != 0);
2261 /* VFP support. We follow the convention used for VFP instrunctions:
2262 Single precition routines have a "s" suffix, double precision a
2263 "d" suffix. */
2265 /* Convert host exception flags to vfp form. */
2266 static inline int vfp_exceptbits_from_host(int host_bits)
2268 int target_bits = 0;
2270 if (host_bits & float_flag_invalid)
2271 target_bits |= 1;
2272 if (host_bits & float_flag_divbyzero)
2273 target_bits |= 2;
2274 if (host_bits & float_flag_overflow)
2275 target_bits |= 4;
2276 if (host_bits & float_flag_underflow)
2277 target_bits |= 8;
2278 if (host_bits & float_flag_inexact)
2279 target_bits |= 0x10;
2280 return target_bits;
2283 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2285 int i;
2286 uint32_t fpscr;
2288 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2289 | (env->vfp.vec_len << 16)
2290 | (env->vfp.vec_stride << 20);
2291 i = get_float_exception_flags(&env->vfp.fp_status);
2292 fpscr |= vfp_exceptbits_from_host(i);
2293 return fpscr;
2296 /* Convert vfp exception flags to target form. */
2297 static inline int vfp_exceptbits_to_host(int target_bits)
2299 int host_bits = 0;
2301 if (target_bits & 1)
2302 host_bits |= float_flag_invalid;
2303 if (target_bits & 2)
2304 host_bits |= float_flag_divbyzero;
2305 if (target_bits & 4)
2306 host_bits |= float_flag_overflow;
2307 if (target_bits & 8)
2308 host_bits |= float_flag_underflow;
2309 if (target_bits & 0x10)
2310 host_bits |= float_flag_inexact;
2311 return host_bits;
2314 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2316 int i;
2317 uint32_t changed;
2319 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2320 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2321 env->vfp.vec_len = (val >> 16) & 7;
2322 env->vfp.vec_stride = (val >> 20) & 3;
2324 changed ^= val;
2325 if (changed & (3 << 22)) {
2326 i = (val >> 22) & 3;
2327 switch (i) {
2328 case 0:
2329 i = float_round_nearest_even;
2330 break;
2331 case 1:
2332 i = float_round_up;
2333 break;
2334 case 2:
2335 i = float_round_down;
2336 break;
2337 case 3:
2338 i = float_round_to_zero;
2339 break;
2341 set_float_rounding_mode(i, &env->vfp.fp_status);
2343 if (changed & (1 << 24))
2344 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2345 if (changed & (1 << 25))
2346 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2348 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2349 set_float_exception_flags(i, &env->vfp.fp_status);
2352 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2354 #define VFP_BINOP(name) \
2355 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2357 return float32_ ## name (a, b, &env->vfp.fp_status); \
2359 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2361 return float64_ ## name (a, b, &env->vfp.fp_status); \
2363 VFP_BINOP(add)
2364 VFP_BINOP(sub)
2365 VFP_BINOP(mul)
2366 VFP_BINOP(div)
2367 #undef VFP_BINOP
2369 float32 VFP_HELPER(neg, s)(float32 a)
2371 return float32_chs(a);
2374 float64 VFP_HELPER(neg, d)(float64 a)
2376 return float64_chs(a);
2379 float32 VFP_HELPER(abs, s)(float32 a)
2381 return float32_abs(a);
2384 float64 VFP_HELPER(abs, d)(float64 a)
2386 return float64_abs(a);
2389 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2391 return float32_sqrt(a, &env->vfp.fp_status);
2394 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2396 return float64_sqrt(a, &env->vfp.fp_status);
2399 /* XXX: check quiet/signaling case */
2400 #define DO_VFP_cmp(p, type) \
2401 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2403 uint32_t flags; \
2404 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2405 case 0: flags = 0x6; break; \
2406 case -1: flags = 0x8; break; \
2407 case 1: flags = 0x2; break; \
2408 default: case 2: flags = 0x3; break; \
2410 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2411 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2413 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2415 uint32_t flags; \
2416 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2417 case 0: flags = 0x6; break; \
2418 case -1: flags = 0x8; break; \
2419 case 1: flags = 0x2; break; \
2420 default: case 2: flags = 0x3; break; \
2422 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2423 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2425 DO_VFP_cmp(s, float32)
2426 DO_VFP_cmp(d, float64)
2427 #undef DO_VFP_cmp
2429 /* Helper routines to perform bitwise copies between float and int. */
2430 static inline float32 vfp_itos(uint32_t i)
2432 union {
2433 uint32_t i;
2434 float32 s;
2435 } v;
2437 v.i = i;
2438 return v.s;
2441 static inline uint32_t vfp_stoi(float32 s)
2443 union {
2444 uint32_t i;
2445 float32 s;
2446 } v;
2448 v.s = s;
2449 return v.i;
2452 static inline float64 vfp_itod(uint64_t i)
2454 union {
2455 uint64_t i;
2456 float64 d;
2457 } v;
2459 v.i = i;
2460 return v.d;
2463 static inline uint64_t vfp_dtoi(float64 d)
2465 union {
2466 uint64_t i;
2467 float64 d;
2468 } v;
2470 v.d = d;
2471 return v.i;
2474 /* Integer to float conversion. */
2475 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2477 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2480 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2482 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2485 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2487 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2490 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2492 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2495 /* Float to integer conversion. */
2496 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2498 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2501 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2503 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2506 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2508 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2511 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2513 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2516 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2518 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2521 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2523 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2526 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2528 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2531 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2533 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2536 /* floating point conversion */
2537 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2539 return float32_to_float64(x, &env->vfp.fp_status);
2542 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2544 return float64_to_float32(x, &env->vfp.fp_status);
2547 /* VFP3 fixed point conversion. */
2548 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2549 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2551 ftype tmp; \
2552 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2553 &env->vfp.fp_status); \
2554 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2556 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2558 ftype tmp; \
2559 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2560 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2561 &env->vfp.fp_status)); \
2564 VFP_CONV_FIX(sh, d, float64, int16, )
2565 VFP_CONV_FIX(sl, d, float64, int32, )
2566 VFP_CONV_FIX(uh, d, float64, uint16, u)
2567 VFP_CONV_FIX(ul, d, float64, uint32, u)
2568 VFP_CONV_FIX(sh, s, float32, int16, )
2569 VFP_CONV_FIX(sl, s, float32, int32, )
2570 VFP_CONV_FIX(uh, s, float32, uint16, u)
2571 VFP_CONV_FIX(ul, s, float32, uint32, u)
2572 #undef VFP_CONV_FIX
2574 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2576 float_status *s = &env->vfp.fp_status;
2577 float32 two = int32_to_float32(2, s);
2578 return float32_sub(two, float32_mul(a, b, s), s);
2581 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2583 float_status *s = &env->vfp.fp_status;
2584 float32 three = int32_to_float32(3, s);
2585 return float32_sub(three, float32_mul(a, b, s), s);
2588 /* NEON helpers. */
2590 /* TODO: The architecture specifies the value that the estimate functions
2591 should return. We return the exact reciprocal/root instead. */
2592 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2594 float_status *s = &env->vfp.fp_status;
2595 float32 one = int32_to_float32(1, s);
2596 return float32_div(one, a, s);
2599 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2601 float_status *s = &env->vfp.fp_status;
2602 float32 one = int32_to_float32(1, s);
2603 return float32_div(one, float32_sqrt(a, s), s);
2606 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2608 float_status *s = &env->vfp.fp_status;
2609 float32 tmp;
2610 tmp = int32_to_float32(a, s);
2611 tmp = float32_scalbn(tmp, -32, s);
2612 tmp = helper_recpe_f32(tmp, env);
2613 tmp = float32_scalbn(tmp, 31, s);
2614 return float32_to_int32(tmp, s);
2617 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2619 float_status *s = &env->vfp.fp_status;
2620 float32 tmp;
2621 tmp = int32_to_float32(a, s);
2622 tmp = float32_scalbn(tmp, -32, s);
2623 tmp = helper_rsqrte_f32(tmp, env);
2624 tmp = float32_scalbn(tmp, 31, s);
2625 return float32_to_int32(tmp, s);
2628 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2630 val &= 1;
2631 if (env->teecr != val) {
2632 env->teecr = val;
2633 tb_flush(env);