SH4: fix TMU init
[qemu/mini2440/sniper_sniper_test.git] / target-i386 / kvm.c
blob0834e6285373597e91a5994854ffa7880b6a294a
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
26 //#define DEBUG_KVM
28 #ifdef DEBUG_KVM
29 #define dprintf(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31 #else
32 #define dprintf(fmt, ...) \
33 do { } while (0)
34 #endif
36 int kvm_arch_init_vcpu(CPUState *env)
38 struct {
39 struct kvm_cpuid cpuid;
40 struct kvm_cpuid_entry entries[100];
41 } __attribute__((packed)) cpuid_data;
42 uint32_t limit, i, cpuid_i;
43 uint32_t eax, ebx, ecx, edx;
45 cpuid_i = 0;
47 cpu_x86_cpuid(env, 0, &eax, &ebx, &ecx, &edx);
48 limit = eax;
50 for (i = 0; i <= limit; i++) {
51 struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];
53 cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
54 c->function = i;
55 c->eax = eax;
56 c->ebx = ebx;
57 c->ecx = ecx;
58 c->edx = edx;
61 cpu_x86_cpuid(env, 0x80000000, &eax, &ebx, &ecx, &edx);
62 limit = eax;
64 for (i = 0x80000000; i <= limit; i++) {
65 struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];
67 cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
68 c->function = i;
69 c->eax = eax;
70 c->ebx = ebx;
71 c->ecx = ecx;
72 c->edx = edx;
75 cpuid_data.cpuid.nent = cpuid_i;
77 return kvm_vcpu_ioctl(env, KVM_SET_CPUID, &cpuid_data);
80 static int kvm_has_msr_star(CPUState *env)
82 static int has_msr_star;
83 int ret;
85 /* first time */
86 if (has_msr_star == 0) {
87 struct kvm_msr_list msr_list, *kvm_msr_list;
89 has_msr_star = -1;
91 /* Obtain MSR list from KVM. These are the MSRs that we must
92 * save/restore */
93 msr_list.nmsrs = 0;
94 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
95 if (ret < 0)
96 return 0;
98 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
99 msr_list.nmsrs * sizeof(msr_list.indices[0]));
101 kvm_msr_list->nmsrs = msr_list.nmsrs;
102 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
103 if (ret >= 0) {
104 int i;
106 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
107 if (kvm_msr_list->indices[i] == MSR_STAR) {
108 has_msr_star = 1;
109 break;
114 free(kvm_msr_list);
117 if (has_msr_star == 1)
118 return 1;
119 return 0;
122 int kvm_arch_init(KVMState *s, int smp_cpus)
124 int ret;
126 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
127 * directly. In order to use vm86 mode, a TSS is needed. Since this
128 * must be part of guest physical memory, we need to allocate it. Older
129 * versions of KVM just assumed that it would be at the end of physical
130 * memory but that doesn't work with more than 4GB of memory. We simply
131 * refuse to work with those older versions of KVM. */
132 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
133 if (ret <= 0) {
134 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
135 return ret;
138 /* this address is 3 pages before the bios, and the bios should present
139 * as unavaible memory. FIXME, need to ensure the e820 map deals with
140 * this?
142 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
145 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
147 lhs->selector = rhs->selector;
148 lhs->base = rhs->base;
149 lhs->limit = rhs->limit;
150 lhs->type = 3;
151 lhs->present = 1;
152 lhs->dpl = 3;
153 lhs->db = 0;
154 lhs->s = 1;
155 lhs->l = 0;
156 lhs->g = 0;
157 lhs->avl = 0;
158 lhs->unusable = 0;
161 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
163 unsigned flags = rhs->flags;
164 lhs->selector = rhs->selector;
165 lhs->base = rhs->base;
166 lhs->limit = rhs->limit;
167 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
168 lhs->present = (flags & DESC_P_MASK) != 0;
169 lhs->dpl = rhs->selector & 3;
170 lhs->db = (flags >> DESC_B_SHIFT) & 1;
171 lhs->s = (flags & DESC_S_MASK) != 0;
172 lhs->l = (flags >> DESC_L_SHIFT) & 1;
173 lhs->g = (flags & DESC_G_MASK) != 0;
174 lhs->avl = (flags & DESC_AVL_MASK) != 0;
175 lhs->unusable = 0;
178 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
180 lhs->selector = rhs->selector;
181 lhs->base = rhs->base;
182 lhs->limit = rhs->limit;
183 lhs->flags =
184 (rhs->type << DESC_TYPE_SHIFT)
185 | (rhs->present * DESC_P_MASK)
186 | (rhs->dpl << DESC_DPL_SHIFT)
187 | (rhs->db << DESC_B_SHIFT)
188 | (rhs->s * DESC_S_MASK)
189 | (rhs->l << DESC_L_SHIFT)
190 | (rhs->g * DESC_G_MASK)
191 | (rhs->avl * DESC_AVL_MASK);
194 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
196 if (set)
197 *kvm_reg = *qemu_reg;
198 else
199 *qemu_reg = *kvm_reg;
202 static int kvm_getput_regs(CPUState *env, int set)
204 struct kvm_regs regs;
205 int ret = 0;
207 if (!set) {
208 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
209 if (ret < 0)
210 return ret;
213 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
214 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
215 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
216 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
217 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
218 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
219 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
220 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
221 #ifdef TARGET_X86_64
222 kvm_getput_reg(&regs.r8, &env->regs[8], set);
223 kvm_getput_reg(&regs.r9, &env->regs[9], set);
224 kvm_getput_reg(&regs.r10, &env->regs[10], set);
225 kvm_getput_reg(&regs.r11, &env->regs[11], set);
226 kvm_getput_reg(&regs.r12, &env->regs[12], set);
227 kvm_getput_reg(&regs.r13, &env->regs[13], set);
228 kvm_getput_reg(&regs.r14, &env->regs[14], set);
229 kvm_getput_reg(&regs.r15, &env->regs[15], set);
230 #endif
232 kvm_getput_reg(&regs.rflags, &env->eflags, set);
233 kvm_getput_reg(&regs.rip, &env->eip, set);
235 if (set)
236 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
238 return ret;
241 static int kvm_put_fpu(CPUState *env)
243 struct kvm_fpu fpu;
244 int i;
246 memset(&fpu, 0, sizeof fpu);
247 fpu.fsw = env->fpus & ~(7 << 11);
248 fpu.fsw |= (env->fpstt & 7) << 11;
249 fpu.fcw = env->fpuc;
250 for (i = 0; i < 8; ++i)
251 fpu.ftwx |= (!env->fptags[i]) << i;
252 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
253 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
254 fpu.mxcsr = env->mxcsr;
256 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
259 static int kvm_put_sregs(CPUState *env)
261 struct kvm_sregs sregs;
263 memcpy(sregs.interrupt_bitmap,
264 env->interrupt_bitmap,
265 sizeof(sregs.interrupt_bitmap));
267 if ((env->eflags & VM_MASK)) {
268 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
269 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
270 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
271 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
272 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
273 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
274 } else {
275 set_seg(&sregs.cs, &env->segs[R_CS]);
276 set_seg(&sregs.ds, &env->segs[R_DS]);
277 set_seg(&sregs.es, &env->segs[R_ES]);
278 set_seg(&sregs.fs, &env->segs[R_FS]);
279 set_seg(&sregs.gs, &env->segs[R_GS]);
280 set_seg(&sregs.ss, &env->segs[R_SS]);
282 if (env->cr[0] & CR0_PE_MASK) {
283 /* force ss cpl to cs cpl */
284 sregs.ss.selector = (sregs.ss.selector & ~3) |
285 (sregs.cs.selector & 3);
286 sregs.ss.dpl = sregs.ss.selector & 3;
290 set_seg(&sregs.tr, &env->tr);
291 set_seg(&sregs.ldt, &env->ldt);
293 sregs.idt.limit = env->idt.limit;
294 sregs.idt.base = env->idt.base;
295 sregs.gdt.limit = env->gdt.limit;
296 sregs.gdt.base = env->gdt.base;
298 sregs.cr0 = env->cr[0];
299 sregs.cr2 = env->cr[2];
300 sregs.cr3 = env->cr[3];
301 sregs.cr4 = env->cr[4];
303 sregs.cr8 = cpu_get_apic_tpr(env);
304 sregs.apic_base = cpu_get_apic_base(env);
306 sregs.efer = env->efer;
308 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
311 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
312 uint32_t index, uint64_t value)
314 entry->index = index;
315 entry->data = value;
318 static int kvm_put_msrs(CPUState *env)
320 struct {
321 struct kvm_msrs info;
322 struct kvm_msr_entry entries[100];
323 } msr_data;
324 struct kvm_msr_entry *msrs = msr_data.entries;
325 int n = 0;
327 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
328 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
329 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
330 if (kvm_has_msr_star(env))
331 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
332 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
333 #ifdef TARGET_X86_64
334 /* FIXME if lm capable */
335 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
336 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
337 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
338 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
339 #endif
340 msr_data.info.nmsrs = n;
342 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
347 static int kvm_get_fpu(CPUState *env)
349 struct kvm_fpu fpu;
350 int i, ret;
352 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
353 if (ret < 0)
354 return ret;
356 env->fpstt = (fpu.fsw >> 11) & 7;
357 env->fpus = fpu.fsw;
358 env->fpuc = fpu.fcw;
359 for (i = 0; i < 8; ++i)
360 env->fptags[i] = !((fpu.ftwx >> i) & 1);
361 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
362 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
363 env->mxcsr = fpu.mxcsr;
365 return 0;
368 static int kvm_get_sregs(CPUState *env)
370 struct kvm_sregs sregs;
371 uint32_t hflags;
372 int ret;
374 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
375 if (ret < 0)
376 return ret;
378 memcpy(env->interrupt_bitmap,
379 sregs.interrupt_bitmap,
380 sizeof(sregs.interrupt_bitmap));
382 get_seg(&env->segs[R_CS], &sregs.cs);
383 get_seg(&env->segs[R_DS], &sregs.ds);
384 get_seg(&env->segs[R_ES], &sregs.es);
385 get_seg(&env->segs[R_FS], &sregs.fs);
386 get_seg(&env->segs[R_GS], &sregs.gs);
387 get_seg(&env->segs[R_SS], &sregs.ss);
389 get_seg(&env->tr, &sregs.tr);
390 get_seg(&env->ldt, &sregs.ldt);
392 env->idt.limit = sregs.idt.limit;
393 env->idt.base = sregs.idt.base;
394 env->gdt.limit = sregs.gdt.limit;
395 env->gdt.base = sregs.gdt.base;
397 env->cr[0] = sregs.cr0;
398 env->cr[2] = sregs.cr2;
399 env->cr[3] = sregs.cr3;
400 env->cr[4] = sregs.cr4;
402 cpu_set_apic_base(env, sregs.apic_base);
404 env->efer = sregs.efer;
405 //cpu_set_apic_tpr(env, sregs.cr8);
407 #define HFLAG_COPY_MASK ~( \
408 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
409 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
410 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
411 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
415 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
416 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
417 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
418 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
419 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
420 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
421 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
423 if (env->efer & MSR_EFER_LMA) {
424 hflags |= HF_LMA_MASK;
427 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
428 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
429 } else {
430 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
431 (DESC_B_SHIFT - HF_CS32_SHIFT);
432 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
433 (DESC_B_SHIFT - HF_SS32_SHIFT);
434 if (!(env->cr[0] & CR0_PE_MASK) ||
435 (env->eflags & VM_MASK) ||
436 !(hflags & HF_CS32_MASK)) {
437 hflags |= HF_ADDSEG_MASK;
438 } else {
439 hflags |= ((env->segs[R_DS].base |
440 env->segs[R_ES].base |
441 env->segs[R_SS].base) != 0) <<
442 HF_ADDSEG_SHIFT;
445 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
447 return 0;
450 static int kvm_get_msrs(CPUState *env)
452 struct {
453 struct kvm_msrs info;
454 struct kvm_msr_entry entries[100];
455 } msr_data;
456 struct kvm_msr_entry *msrs = msr_data.entries;
457 int ret, i, n;
459 n = 0;
460 msrs[n++].index = MSR_IA32_SYSENTER_CS;
461 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
462 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
463 if (kvm_has_msr_star(env))
464 msrs[n++].index = MSR_STAR;
465 msrs[n++].index = MSR_IA32_TSC;
466 #ifdef TARGET_X86_64
467 /* FIXME lm_capable_kernel */
468 msrs[n++].index = MSR_CSTAR;
469 msrs[n++].index = MSR_KERNELGSBASE;
470 msrs[n++].index = MSR_FMASK;
471 msrs[n++].index = MSR_LSTAR;
472 #endif
473 msr_data.info.nmsrs = n;
474 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
475 if (ret < 0)
476 return ret;
478 for (i = 0; i < ret; i++) {
479 switch (msrs[i].index) {
480 case MSR_IA32_SYSENTER_CS:
481 env->sysenter_cs = msrs[i].data;
482 break;
483 case MSR_IA32_SYSENTER_ESP:
484 env->sysenter_esp = msrs[i].data;
485 break;
486 case MSR_IA32_SYSENTER_EIP:
487 env->sysenter_eip = msrs[i].data;
488 break;
489 case MSR_STAR:
490 env->star = msrs[i].data;
491 break;
492 #ifdef TARGET_X86_64
493 case MSR_CSTAR:
494 env->cstar = msrs[i].data;
495 break;
496 case MSR_KERNELGSBASE:
497 env->kernelgsbase = msrs[i].data;
498 break;
499 case MSR_FMASK:
500 env->fmask = msrs[i].data;
501 break;
502 case MSR_LSTAR:
503 env->lstar = msrs[i].data;
504 break;
505 #endif
506 case MSR_IA32_TSC:
507 env->tsc = msrs[i].data;
508 break;
512 return 0;
515 int kvm_arch_put_registers(CPUState *env)
517 int ret;
519 ret = kvm_getput_regs(env, 1);
520 if (ret < 0)
521 return ret;
523 ret = kvm_put_fpu(env);
524 if (ret < 0)
525 return ret;
527 ret = kvm_put_sregs(env);
528 if (ret < 0)
529 return ret;
531 ret = kvm_put_msrs(env);
532 if (ret < 0)
533 return ret;
535 return 0;
538 int kvm_arch_get_registers(CPUState *env)
540 int ret;
542 ret = kvm_getput_regs(env, 0);
543 if (ret < 0)
544 return ret;
546 ret = kvm_get_fpu(env);
547 if (ret < 0)
548 return ret;
550 ret = kvm_get_sregs(env);
551 if (ret < 0)
552 return ret;
554 ret = kvm_get_msrs(env);
555 if (ret < 0)
556 return ret;
558 return 0;
561 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
563 /* Try to inject an interrupt if the guest can accept it */
564 if (run->ready_for_interrupt_injection &&
565 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
566 (env->eflags & IF_MASK)) {
567 int irq;
569 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
570 irq = cpu_get_pic_interrupt(env);
571 if (irq >= 0) {
572 struct kvm_interrupt intr;
573 intr.irq = irq;
574 /* FIXME: errors */
575 dprintf("injected interrupt %d\n", irq);
576 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
580 /* If we have an interrupt but the guest is not ready to receive an
581 * interrupt, request an interrupt window exit. This will
582 * cause a return to userspace as soon as the guest is ready to
583 * receive interrupts. */
584 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
585 run->request_interrupt_window = 1;
586 else
587 run->request_interrupt_window = 0;
589 dprintf("setting tpr\n");
590 run->cr8 = cpu_get_apic_tpr(env);
592 return 0;
595 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
597 if (run->if_flag)
598 env->eflags |= IF_MASK;
599 else
600 env->eflags &= ~IF_MASK;
602 cpu_set_apic_tpr(env, run->cr8);
603 cpu_set_apic_base(env, run->apic_base);
605 return 0;
608 static int kvm_handle_halt(CPUState *env)
610 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
611 (env->eflags & IF_MASK)) &&
612 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
613 env->halted = 1;
614 env->exception_index = EXCP_HLT;
615 return 0;
618 return 1;
621 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
623 int ret = 0;
625 switch (run->exit_reason) {
626 case KVM_EXIT_HLT:
627 dprintf("handle_hlt\n");
628 ret = kvm_handle_halt(env);
629 break;
632 return ret;