Clear CPU_INTERRUPT_EXIT on VM load
[qemu/mini2440/sniper_sniper_test.git] / exec.c
blob01a5265df832b69d352d241e24d612f7ea661023
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #include "kvm.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #endif
47 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_FLUSH
49 //#define DEBUG_TLB
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
61 #undef DEBUG_TB_CHECK
62 #endif
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
82 #else
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
85 #endif
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
90 static int nb_tbs;
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101 #else
102 #define code_gen_section \
103 __attribute__((aligned (32)))
104 #endif
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
115 int phys_ram_fd;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
120 #endif
122 CPUState *first_cpu;
123 /* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
129 int use_icount = 0;
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132 int64_t qemu_icount;
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 ram_addr_t region_offset;
150 } PhysPageDesc;
152 #define L2_BITS 10
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159 #else
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
161 #endif
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size;
167 unsigned long qemu_host_page_bits;
168 unsigned long qemu_host_page_size;
169 unsigned long qemu_host_page_mask;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc *l1_map[L1_SIZE];
173 static PhysPageDesc **l1_phys_map;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
181 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
182 static char io_mem_used[IO_MEM_NB_ENTRIES];
183 static int io_mem_watch;
184 #endif
186 /* log support */
187 static const char *logfilename = "/tmp/qemu.log";
188 FILE *logfile;
189 int loglevel;
190 static int log_append = 0;
192 /* statistics */
193 static int tlb_flush_count;
194 static int tb_flush_count;
195 static int tb_phys_invalidate_count;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t {
199 target_phys_addr_t base;
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
204 } subpage_t;
206 #ifdef _WIN32
207 static void map_exec(void *addr, long size)
209 DWORD old_protect;
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
214 #else
215 static void map_exec(void *addr, long size)
217 unsigned long start, end, page_size;
219 page_size = getpagesize();
220 start = (unsigned long)addr;
221 start &= ~(page_size - 1);
223 end = (unsigned long)addr + size;
224 end += page_size - 1;
225 end &= ~(page_size - 1);
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
230 #endif
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
235 TARGET_PAGE_SIZE */
236 #ifdef _WIN32
238 SYSTEM_INFO system_info;
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
243 #else
244 qemu_real_host_page_size = getpagesize();
245 #endif
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr, endaddr;
260 FILE *f;
261 int n;
263 mmap_lock();
264 last_brk = (unsigned long)sbrk(0);
265 f = fopen("/proc/self/maps", "r");
266 if (f) {
267 do {
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
269 if (n == 2) {
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
274 page_set_flags(startaddr & TARGET_PAGE_MASK,
275 TARGET_PAGE_ALIGN(endaddr),
276 PAGE_RESERVED);
278 } while (!feof(f));
279 fclose(f);
281 mmap_unlock();
283 #endif
286 static inline PageDesc **page_l1_map(target_ulong index)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
292 return NULL;
293 #endif
294 return &l1_map[index >> L2_BITS];
297 static inline PageDesc *page_find_alloc(target_ulong index)
299 PageDesc **lp, *p;
300 lp = page_l1_map(index);
301 if (!lp)
302 return NULL;
304 p = *lp;
305 if (!p) {
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
312 *lp = p;
313 if (h2g_valid(p)) {
314 unsigned long addr = h2g(p);
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
317 PAGE_RESERVED);
319 #else
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
321 *lp = p;
322 #endif
324 return p + (index & (L2_SIZE - 1));
327 static inline PageDesc *page_find(target_ulong index)
329 PageDesc **lp, *p;
330 lp = page_l1_map(index);
331 if (!lp)
332 return NULL;
334 p = *lp;
335 if (!p)
336 return 0;
337 return p + (index & (L2_SIZE - 1));
340 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
342 void **lp, **p;
343 PhysPageDesc *pd;
345 p = (void **)l1_phys_map;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350 #endif
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
352 p = *lp;
353 if (!p) {
354 /* allocate if not found */
355 if (!alloc)
356 return NULL;
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
359 *lp = p;
361 #endif
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
363 pd = *lp;
364 if (!pd) {
365 int i;
366 /* allocate if not found */
367 if (!alloc)
368 return NULL;
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 *lp = pd;
371 for (i = 0; i < L2_SIZE; i++) {
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
376 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
379 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
381 return phys_page_find_alloc(index, 0);
384 #if !defined(CONFIG_USER_ONLY)
385 static void tlb_protect_code(ram_addr_t ram_addr);
386 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
387 target_ulong vaddr);
388 #define mmap_lock() do { } while(0)
389 #define mmap_unlock() do { } while(0)
390 #endif
392 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
394 #if defined(CONFIG_USER_ONLY)
395 /* Currently it is not recommanded to allocate big chunks of data in
396 user mode. It will change when a dedicated libc will be used */
397 #define USE_STATIC_CODE_GEN_BUFFER
398 #endif
400 #ifdef USE_STATIC_CODE_GEN_BUFFER
401 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
402 #endif
404 static void code_gen_alloc(unsigned long tb_size)
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 code_gen_buffer = static_code_gen_buffer;
408 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
409 map_exec(code_gen_buffer, code_gen_buffer_size);
410 #else
411 code_gen_buffer_size = tb_size;
412 if (code_gen_buffer_size == 0) {
413 #if defined(CONFIG_USER_ONLY)
414 /* in user mode, phys_ram_size is not meaningful */
415 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
416 #else
417 /* XXX: needs ajustments */
418 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
419 #endif
421 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
422 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
423 /* The code gen buffer location may have constraints depending on
424 the host cpu and OS */
425 #if defined(__linux__)
427 int flags;
428 void *start = NULL;
430 flags = MAP_PRIVATE | MAP_ANONYMOUS;
431 #if defined(__x86_64__)
432 flags |= MAP_32BIT;
433 /* Cannot map more than that */
434 if (code_gen_buffer_size > (800 * 1024 * 1024))
435 code_gen_buffer_size = (800 * 1024 * 1024);
436 #elif defined(__sparc_v9__)
437 // Map the buffer below 2G, so we can use direct calls and branches
438 flags |= MAP_FIXED;
439 start = (void *) 0x60000000UL;
440 if (code_gen_buffer_size > (512 * 1024 * 1024))
441 code_gen_buffer_size = (512 * 1024 * 1024);
442 #elif defined(__arm__)
443 /* Map the buffer below 32M, so we can use direct calls and branches */
444 flags |= MAP_FIXED;
445 start = (void *) 0x01000000UL;
446 if (code_gen_buffer_size > 16 * 1024 * 1024)
447 code_gen_buffer_size = 16 * 1024 * 1024;
448 #endif
449 code_gen_buffer = mmap(start, code_gen_buffer_size,
450 PROT_WRITE | PROT_READ | PROT_EXEC,
451 flags, -1, 0);
452 if (code_gen_buffer == MAP_FAILED) {
453 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
454 exit(1);
457 #elif defined(__FreeBSD__) || defined(__DragonFly__)
459 int flags;
460 void *addr = NULL;
461 flags = MAP_PRIVATE | MAP_ANONYMOUS;
462 #if defined(__x86_64__)
463 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
464 * 0x40000000 is free */
465 flags |= MAP_FIXED;
466 addr = (void *)0x40000000;
467 /* Cannot map more than that */
468 if (code_gen_buffer_size > (800 * 1024 * 1024))
469 code_gen_buffer_size = (800 * 1024 * 1024);
470 #endif
471 code_gen_buffer = mmap(addr, code_gen_buffer_size,
472 PROT_WRITE | PROT_READ | PROT_EXEC,
473 flags, -1, 0);
474 if (code_gen_buffer == MAP_FAILED) {
475 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
476 exit(1);
479 #else
480 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
481 map_exec(code_gen_buffer, code_gen_buffer_size);
482 #endif
483 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
484 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
485 code_gen_buffer_max_size = code_gen_buffer_size -
486 code_gen_max_block_size();
487 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
488 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
491 /* Must be called before using the QEMU cpus. 'tb_size' is the size
492 (in bytes) allocated to the translation buffer. Zero means default
493 size. */
494 void cpu_exec_init_all(unsigned long tb_size)
496 cpu_gen_init();
497 code_gen_alloc(tb_size);
498 code_gen_ptr = code_gen_buffer;
499 page_init();
500 #if !defined(CONFIG_USER_ONLY)
501 io_mem_init();
502 #endif
505 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
507 #define CPU_COMMON_SAVE_VERSION 1
509 static void cpu_common_save(QEMUFile *f, void *opaque)
511 CPUState *env = opaque;
513 qemu_put_be32s(f, &env->halted);
514 qemu_put_be32s(f, &env->interrupt_request);
517 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
519 CPUState *env = opaque;
521 if (version_id != CPU_COMMON_SAVE_VERSION)
522 return -EINVAL;
524 qemu_get_be32s(f, &env->halted);
525 qemu_get_be32s(f, &env->interrupt_request);
526 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
527 tlb_flush(env, 1);
529 return 0;
531 #endif
533 void cpu_exec_init(CPUState *env)
535 CPUState **penv;
536 int cpu_index;
538 #if defined(CONFIG_USER_ONLY)
539 cpu_list_lock();
540 #endif
541 env->next_cpu = NULL;
542 penv = &first_cpu;
543 cpu_index = 0;
544 while (*penv != NULL) {
545 penv = (CPUState **)&(*penv)->next_cpu;
546 cpu_index++;
548 env->cpu_index = cpu_index;
549 TAILQ_INIT(&env->breakpoints);
550 TAILQ_INIT(&env->watchpoints);
551 *penv = env;
552 #if defined(CONFIG_USER_ONLY)
553 cpu_list_unlock();
554 #endif
555 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
556 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
557 cpu_common_save, cpu_common_load, env);
558 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
559 cpu_save, cpu_load, env);
560 #endif
563 static inline void invalidate_page_bitmap(PageDesc *p)
565 if (p->code_bitmap) {
566 qemu_free(p->code_bitmap);
567 p->code_bitmap = NULL;
569 p->code_write_count = 0;
572 /* set to NULL all the 'first_tb' fields in all PageDescs */
573 static void page_flush_tb(void)
575 int i, j;
576 PageDesc *p;
578 for(i = 0; i < L1_SIZE; i++) {
579 p = l1_map[i];
580 if (p) {
581 for(j = 0; j < L2_SIZE; j++) {
582 p->first_tb = NULL;
583 invalidate_page_bitmap(p);
584 p++;
590 /* flush all the translation blocks */
591 /* XXX: tb_flush is currently not thread safe */
592 void tb_flush(CPUState *env1)
594 CPUState *env;
595 #if defined(DEBUG_FLUSH)
596 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
597 (unsigned long)(code_gen_ptr - code_gen_buffer),
598 nb_tbs, nb_tbs > 0 ?
599 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
600 #endif
601 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
602 cpu_abort(env1, "Internal error: code buffer overflow\n");
604 nb_tbs = 0;
606 for(env = first_cpu; env != NULL; env = env->next_cpu) {
607 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
610 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
611 page_flush_tb();
613 code_gen_ptr = code_gen_buffer;
614 /* XXX: flush processor icache at this point if cache flush is
615 expensive */
616 tb_flush_count++;
619 #ifdef DEBUG_TB_CHECK
621 static void tb_invalidate_check(target_ulong address)
623 TranslationBlock *tb;
624 int i;
625 address &= TARGET_PAGE_MASK;
626 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
627 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
628 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
629 address >= tb->pc + tb->size)) {
630 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
631 address, (long)tb->pc, tb->size);
637 /* verify that all the pages have correct rights for code */
638 static void tb_page_check(void)
640 TranslationBlock *tb;
641 int i, flags1, flags2;
643 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
644 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
645 flags1 = page_get_flags(tb->pc);
646 flags2 = page_get_flags(tb->pc + tb->size - 1);
647 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
648 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
649 (long)tb->pc, tb->size, flags1, flags2);
655 static void tb_jmp_check(TranslationBlock *tb)
657 TranslationBlock *tb1;
658 unsigned int n1;
660 /* suppress any remaining jumps to this TB */
661 tb1 = tb->jmp_first;
662 for(;;) {
663 n1 = (long)tb1 & 3;
664 tb1 = (TranslationBlock *)((long)tb1 & ~3);
665 if (n1 == 2)
666 break;
667 tb1 = tb1->jmp_next[n1];
669 /* check end of list */
670 if (tb1 != tb) {
671 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
675 #endif
677 /* invalidate one TB */
678 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
679 int next_offset)
681 TranslationBlock *tb1;
682 for(;;) {
683 tb1 = *ptb;
684 if (tb1 == tb) {
685 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
686 break;
688 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
692 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
694 TranslationBlock *tb1;
695 unsigned int n1;
697 for(;;) {
698 tb1 = *ptb;
699 n1 = (long)tb1 & 3;
700 tb1 = (TranslationBlock *)((long)tb1 & ~3);
701 if (tb1 == tb) {
702 *ptb = tb1->page_next[n1];
703 break;
705 ptb = &tb1->page_next[n1];
709 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
711 TranslationBlock *tb1, **ptb;
712 unsigned int n1;
714 ptb = &tb->jmp_next[n];
715 tb1 = *ptb;
716 if (tb1) {
717 /* find tb(n) in circular list */
718 for(;;) {
719 tb1 = *ptb;
720 n1 = (long)tb1 & 3;
721 tb1 = (TranslationBlock *)((long)tb1 & ~3);
722 if (n1 == n && tb1 == tb)
723 break;
724 if (n1 == 2) {
725 ptb = &tb1->jmp_first;
726 } else {
727 ptb = &tb1->jmp_next[n1];
730 /* now we can suppress tb(n) from the list */
731 *ptb = tb->jmp_next[n];
733 tb->jmp_next[n] = NULL;
737 /* reset the jump entry 'n' of a TB so that it is not chained to
738 another TB */
739 static inline void tb_reset_jump(TranslationBlock *tb, int n)
741 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
744 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
746 CPUState *env;
747 PageDesc *p;
748 unsigned int h, n1;
749 target_phys_addr_t phys_pc;
750 TranslationBlock *tb1, *tb2;
752 /* remove the TB from the hash list */
753 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
754 h = tb_phys_hash_func(phys_pc);
755 tb_remove(&tb_phys_hash[h], tb,
756 offsetof(TranslationBlock, phys_hash_next));
758 /* remove the TB from the page list */
759 if (tb->page_addr[0] != page_addr) {
760 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
761 tb_page_remove(&p->first_tb, tb);
762 invalidate_page_bitmap(p);
764 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
765 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
766 tb_page_remove(&p->first_tb, tb);
767 invalidate_page_bitmap(p);
770 tb_invalidated_flag = 1;
772 /* remove the TB from the hash list */
773 h = tb_jmp_cache_hash_func(tb->pc);
774 for(env = first_cpu; env != NULL; env = env->next_cpu) {
775 if (env->tb_jmp_cache[h] == tb)
776 env->tb_jmp_cache[h] = NULL;
779 /* suppress this TB from the two jump lists */
780 tb_jmp_remove(tb, 0);
781 tb_jmp_remove(tb, 1);
783 /* suppress any remaining jumps to this TB */
784 tb1 = tb->jmp_first;
785 for(;;) {
786 n1 = (long)tb1 & 3;
787 if (n1 == 2)
788 break;
789 tb1 = (TranslationBlock *)((long)tb1 & ~3);
790 tb2 = tb1->jmp_next[n1];
791 tb_reset_jump(tb1, n1);
792 tb1->jmp_next[n1] = NULL;
793 tb1 = tb2;
795 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
797 tb_phys_invalidate_count++;
800 static inline void set_bits(uint8_t *tab, int start, int len)
802 int end, mask, end1;
804 end = start + len;
805 tab += start >> 3;
806 mask = 0xff << (start & 7);
807 if ((start & ~7) == (end & ~7)) {
808 if (start < end) {
809 mask &= ~(0xff << (end & 7));
810 *tab |= mask;
812 } else {
813 *tab++ |= mask;
814 start = (start + 8) & ~7;
815 end1 = end & ~7;
816 while (start < end1) {
817 *tab++ = 0xff;
818 start += 8;
820 if (start < end) {
821 mask = ~(0xff << (end & 7));
822 *tab |= mask;
827 static void build_page_bitmap(PageDesc *p)
829 int n, tb_start, tb_end;
830 TranslationBlock *tb;
832 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
834 tb = p->first_tb;
835 while (tb != NULL) {
836 n = (long)tb & 3;
837 tb = (TranslationBlock *)((long)tb & ~3);
838 /* NOTE: this is subtle as a TB may span two physical pages */
839 if (n == 0) {
840 /* NOTE: tb_end may be after the end of the page, but
841 it is not a problem */
842 tb_start = tb->pc & ~TARGET_PAGE_MASK;
843 tb_end = tb_start + tb->size;
844 if (tb_end > TARGET_PAGE_SIZE)
845 tb_end = TARGET_PAGE_SIZE;
846 } else {
847 tb_start = 0;
848 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
850 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
851 tb = tb->page_next[n];
855 TranslationBlock *tb_gen_code(CPUState *env,
856 target_ulong pc, target_ulong cs_base,
857 int flags, int cflags)
859 TranslationBlock *tb;
860 uint8_t *tc_ptr;
861 target_ulong phys_pc, phys_page2, virt_page2;
862 int code_gen_size;
864 phys_pc = get_phys_addr_code(env, pc);
865 tb = tb_alloc(pc);
866 if (!tb) {
867 /* flush must be done */
868 tb_flush(env);
869 /* cannot fail at this point */
870 tb = tb_alloc(pc);
871 /* Don't forget to invalidate previous TB info. */
872 tb_invalidated_flag = 1;
874 tc_ptr = code_gen_ptr;
875 tb->tc_ptr = tc_ptr;
876 tb->cs_base = cs_base;
877 tb->flags = flags;
878 tb->cflags = cflags;
879 cpu_gen_code(env, tb, &code_gen_size);
880 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
882 /* check next page if needed */
883 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
884 phys_page2 = -1;
885 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
886 phys_page2 = get_phys_addr_code(env, virt_page2);
888 tb_link_phys(tb, phys_pc, phys_page2);
889 return tb;
892 /* invalidate all TBs which intersect with the target physical page
893 starting in range [start;end[. NOTE: start and end must refer to
894 the same physical page. 'is_cpu_write_access' should be true if called
895 from a real cpu write access: the virtual CPU will exit the current
896 TB if code is modified inside this TB. */
897 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
898 int is_cpu_write_access)
900 TranslationBlock *tb, *tb_next, *saved_tb;
901 CPUState *env = cpu_single_env;
902 target_ulong tb_start, tb_end;
903 PageDesc *p;
904 int n;
905 #ifdef TARGET_HAS_PRECISE_SMC
906 int current_tb_not_found = is_cpu_write_access;
907 TranslationBlock *current_tb = NULL;
908 int current_tb_modified = 0;
909 target_ulong current_pc = 0;
910 target_ulong current_cs_base = 0;
911 int current_flags = 0;
912 #endif /* TARGET_HAS_PRECISE_SMC */
914 p = page_find(start >> TARGET_PAGE_BITS);
915 if (!p)
916 return;
917 if (!p->code_bitmap &&
918 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
919 is_cpu_write_access) {
920 /* build code bitmap */
921 build_page_bitmap(p);
924 /* we remove all the TBs in the range [start, end[ */
925 /* XXX: see if in some cases it could be faster to invalidate all the code */
926 tb = p->first_tb;
927 while (tb != NULL) {
928 n = (long)tb & 3;
929 tb = (TranslationBlock *)((long)tb & ~3);
930 tb_next = tb->page_next[n];
931 /* NOTE: this is subtle as a TB may span two physical pages */
932 if (n == 0) {
933 /* NOTE: tb_end may be after the end of the page, but
934 it is not a problem */
935 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
936 tb_end = tb_start + tb->size;
937 } else {
938 tb_start = tb->page_addr[1];
939 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
941 if (!(tb_end <= start || tb_start >= end)) {
942 #ifdef TARGET_HAS_PRECISE_SMC
943 if (current_tb_not_found) {
944 current_tb_not_found = 0;
945 current_tb = NULL;
946 if (env->mem_io_pc) {
947 /* now we have a real cpu fault */
948 current_tb = tb_find_pc(env->mem_io_pc);
951 if (current_tb == tb &&
952 (current_tb->cflags & CF_COUNT_MASK) != 1) {
953 /* If we are modifying the current TB, we must stop
954 its execution. We could be more precise by checking
955 that the modification is after the current PC, but it
956 would require a specialized function to partially
957 restore the CPU state */
959 current_tb_modified = 1;
960 cpu_restore_state(current_tb, env,
961 env->mem_io_pc, NULL);
962 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
963 &current_flags);
965 #endif /* TARGET_HAS_PRECISE_SMC */
966 /* we need to do that to handle the case where a signal
967 occurs while doing tb_phys_invalidate() */
968 saved_tb = NULL;
969 if (env) {
970 saved_tb = env->current_tb;
971 env->current_tb = NULL;
973 tb_phys_invalidate(tb, -1);
974 if (env) {
975 env->current_tb = saved_tb;
976 if (env->interrupt_request && env->current_tb)
977 cpu_interrupt(env, env->interrupt_request);
980 tb = tb_next;
982 #if !defined(CONFIG_USER_ONLY)
983 /* if no code remaining, no need to continue to use slow writes */
984 if (!p->first_tb) {
985 invalidate_page_bitmap(p);
986 if (is_cpu_write_access) {
987 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
990 #endif
991 #ifdef TARGET_HAS_PRECISE_SMC
992 if (current_tb_modified) {
993 /* we generate a block containing just the instruction
994 modifying the memory. It will ensure that it cannot modify
995 itself */
996 env->current_tb = NULL;
997 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
998 cpu_resume_from_signal(env, NULL);
1000 #endif
1003 /* len must be <= 8 and start must be a multiple of len */
1004 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1006 PageDesc *p;
1007 int offset, b;
1008 #if 0
1009 if (1) {
1010 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1011 cpu_single_env->mem_io_vaddr, len,
1012 cpu_single_env->eip,
1013 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1015 #endif
1016 p = page_find(start >> TARGET_PAGE_BITS);
1017 if (!p)
1018 return;
1019 if (p->code_bitmap) {
1020 offset = start & ~TARGET_PAGE_MASK;
1021 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1022 if (b & ((1 << len) - 1))
1023 goto do_invalidate;
1024 } else {
1025 do_invalidate:
1026 tb_invalidate_phys_page_range(start, start + len, 1);
1030 #if !defined(CONFIG_SOFTMMU)
1031 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1032 unsigned long pc, void *puc)
1034 TranslationBlock *tb;
1035 PageDesc *p;
1036 int n;
1037 #ifdef TARGET_HAS_PRECISE_SMC
1038 TranslationBlock *current_tb = NULL;
1039 CPUState *env = cpu_single_env;
1040 int current_tb_modified = 0;
1041 target_ulong current_pc = 0;
1042 target_ulong current_cs_base = 0;
1043 int current_flags = 0;
1044 #endif
1046 addr &= TARGET_PAGE_MASK;
1047 p = page_find(addr >> TARGET_PAGE_BITS);
1048 if (!p)
1049 return;
1050 tb = p->first_tb;
1051 #ifdef TARGET_HAS_PRECISE_SMC
1052 if (tb && pc != 0) {
1053 current_tb = tb_find_pc(pc);
1055 #endif
1056 while (tb != NULL) {
1057 n = (long)tb & 3;
1058 tb = (TranslationBlock *)((long)tb & ~3);
1059 #ifdef TARGET_HAS_PRECISE_SMC
1060 if (current_tb == tb &&
1061 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
1068 current_tb_modified = 1;
1069 cpu_restore_state(current_tb, env, pc, puc);
1070 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1071 &current_flags);
1073 #endif /* TARGET_HAS_PRECISE_SMC */
1074 tb_phys_invalidate(tb, addr);
1075 tb = tb->page_next[n];
1077 p->first_tb = NULL;
1078 #ifdef TARGET_HAS_PRECISE_SMC
1079 if (current_tb_modified) {
1080 /* we generate a block containing just the instruction
1081 modifying the memory. It will ensure that it cannot modify
1082 itself */
1083 env->current_tb = NULL;
1084 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1085 cpu_resume_from_signal(env, puc);
1087 #endif
1089 #endif
1091 /* add the tb in the target page and protect it if necessary */
1092 static inline void tb_alloc_page(TranslationBlock *tb,
1093 unsigned int n, target_ulong page_addr)
1095 PageDesc *p;
1096 TranslationBlock *last_first_tb;
1098 tb->page_addr[n] = page_addr;
1099 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1100 tb->page_next[n] = p->first_tb;
1101 last_first_tb = p->first_tb;
1102 p->first_tb = (TranslationBlock *)((long)tb | n);
1103 invalidate_page_bitmap(p);
1105 #if defined(TARGET_HAS_SMC) || 1
1107 #if defined(CONFIG_USER_ONLY)
1108 if (p->flags & PAGE_WRITE) {
1109 target_ulong addr;
1110 PageDesc *p2;
1111 int prot;
1113 /* force the host page as non writable (writes will have a
1114 page fault + mprotect overhead) */
1115 page_addr &= qemu_host_page_mask;
1116 prot = 0;
1117 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1118 addr += TARGET_PAGE_SIZE) {
1120 p2 = page_find (addr >> TARGET_PAGE_BITS);
1121 if (!p2)
1122 continue;
1123 prot |= p2->flags;
1124 p2->flags &= ~PAGE_WRITE;
1125 page_get_flags(addr);
1127 mprotect(g2h(page_addr), qemu_host_page_size,
1128 (prot & PAGE_BITS) & ~PAGE_WRITE);
1129 #ifdef DEBUG_TB_INVALIDATE
1130 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1131 page_addr);
1132 #endif
1134 #else
1135 /* if some code is already present, then the pages are already
1136 protected. So we handle the case where only the first TB is
1137 allocated in a physical page */
1138 if (!last_first_tb) {
1139 tlb_protect_code(page_addr);
1141 #endif
1143 #endif /* TARGET_HAS_SMC */
1146 /* Allocate a new translation block. Flush the translation buffer if
1147 too many translation blocks or too much generated code. */
1148 TranslationBlock *tb_alloc(target_ulong pc)
1150 TranslationBlock *tb;
1152 if (nb_tbs >= code_gen_max_blocks ||
1153 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1154 return NULL;
1155 tb = &tbs[nb_tbs++];
1156 tb->pc = pc;
1157 tb->cflags = 0;
1158 return tb;
1161 void tb_free(TranslationBlock *tb)
1163 /* In practice this is mostly used for single use temporary TB
1164 Ignore the hard cases and just back up if this TB happens to
1165 be the last one generated. */
1166 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1167 code_gen_ptr = tb->tc_ptr;
1168 nb_tbs--;
1172 /* add a new TB and link it to the physical page tables. phys_page2 is
1173 (-1) to indicate that only one page contains the TB. */
1174 void tb_link_phys(TranslationBlock *tb,
1175 target_ulong phys_pc, target_ulong phys_page2)
1177 unsigned int h;
1178 TranslationBlock **ptb;
1180 /* Grab the mmap lock to stop another thread invalidating this TB
1181 before we are done. */
1182 mmap_lock();
1183 /* add in the physical hash table */
1184 h = tb_phys_hash_func(phys_pc);
1185 ptb = &tb_phys_hash[h];
1186 tb->phys_hash_next = *ptb;
1187 *ptb = tb;
1189 /* add in the page list */
1190 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1191 if (phys_page2 != -1)
1192 tb_alloc_page(tb, 1, phys_page2);
1193 else
1194 tb->page_addr[1] = -1;
1196 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1197 tb->jmp_next[0] = NULL;
1198 tb->jmp_next[1] = NULL;
1200 /* init original jump addresses */
1201 if (tb->tb_next_offset[0] != 0xffff)
1202 tb_reset_jump(tb, 0);
1203 if (tb->tb_next_offset[1] != 0xffff)
1204 tb_reset_jump(tb, 1);
1206 #ifdef DEBUG_TB_CHECK
1207 tb_page_check();
1208 #endif
1209 mmap_unlock();
1212 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1213 tb[1].tc_ptr. Return NULL if not found */
1214 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1216 int m_min, m_max, m;
1217 unsigned long v;
1218 TranslationBlock *tb;
1220 if (nb_tbs <= 0)
1221 return NULL;
1222 if (tc_ptr < (unsigned long)code_gen_buffer ||
1223 tc_ptr >= (unsigned long)code_gen_ptr)
1224 return NULL;
1225 /* binary search (cf Knuth) */
1226 m_min = 0;
1227 m_max = nb_tbs - 1;
1228 while (m_min <= m_max) {
1229 m = (m_min + m_max) >> 1;
1230 tb = &tbs[m];
1231 v = (unsigned long)tb->tc_ptr;
1232 if (v == tc_ptr)
1233 return tb;
1234 else if (tc_ptr < v) {
1235 m_max = m - 1;
1236 } else {
1237 m_min = m + 1;
1240 return &tbs[m_max];
1243 static void tb_reset_jump_recursive(TranslationBlock *tb);
1245 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1247 TranslationBlock *tb1, *tb_next, **ptb;
1248 unsigned int n1;
1250 tb1 = tb->jmp_next[n];
1251 if (tb1 != NULL) {
1252 /* find head of list */
1253 for(;;) {
1254 n1 = (long)tb1 & 3;
1255 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1256 if (n1 == 2)
1257 break;
1258 tb1 = tb1->jmp_next[n1];
1260 /* we are now sure now that tb jumps to tb1 */
1261 tb_next = tb1;
1263 /* remove tb from the jmp_first list */
1264 ptb = &tb_next->jmp_first;
1265 for(;;) {
1266 tb1 = *ptb;
1267 n1 = (long)tb1 & 3;
1268 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1269 if (n1 == n && tb1 == tb)
1270 break;
1271 ptb = &tb1->jmp_next[n1];
1273 *ptb = tb->jmp_next[n];
1274 tb->jmp_next[n] = NULL;
1276 /* suppress the jump to next tb in generated code */
1277 tb_reset_jump(tb, n);
1279 /* suppress jumps in the tb on which we could have jumped */
1280 tb_reset_jump_recursive(tb_next);
1284 static void tb_reset_jump_recursive(TranslationBlock *tb)
1286 tb_reset_jump_recursive2(tb, 0);
1287 tb_reset_jump_recursive2(tb, 1);
1290 #if defined(TARGET_HAS_ICE)
1291 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1293 target_phys_addr_t addr;
1294 target_ulong pd;
1295 ram_addr_t ram_addr;
1296 PhysPageDesc *p;
1298 addr = cpu_get_phys_page_debug(env, pc);
1299 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1300 if (!p) {
1301 pd = IO_MEM_UNASSIGNED;
1302 } else {
1303 pd = p->phys_offset;
1305 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1306 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1308 #endif
1310 /* Add a watchpoint. */
1311 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1312 int flags, CPUWatchpoint **watchpoint)
1314 target_ulong len_mask = ~(len - 1);
1315 CPUWatchpoint *wp;
1317 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1318 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1319 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1320 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1321 return -EINVAL;
1323 wp = qemu_malloc(sizeof(*wp));
1325 wp->vaddr = addr;
1326 wp->len_mask = len_mask;
1327 wp->flags = flags;
1329 /* keep all GDB-injected watchpoints in front */
1330 if (flags & BP_GDB)
1331 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1332 else
1333 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1335 tlb_flush_page(env, addr);
1337 if (watchpoint)
1338 *watchpoint = wp;
1339 return 0;
1342 /* Remove a specific watchpoint. */
1343 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1344 int flags)
1346 target_ulong len_mask = ~(len - 1);
1347 CPUWatchpoint *wp;
1349 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1350 if (addr == wp->vaddr && len_mask == wp->len_mask
1351 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1352 cpu_watchpoint_remove_by_ref(env, wp);
1353 return 0;
1356 return -ENOENT;
1359 /* Remove a specific watchpoint by reference. */
1360 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1362 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1364 tlb_flush_page(env, watchpoint->vaddr);
1366 qemu_free(watchpoint);
1369 /* Remove all matching watchpoints. */
1370 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1372 CPUWatchpoint *wp, *next;
1374 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1375 if (wp->flags & mask)
1376 cpu_watchpoint_remove_by_ref(env, wp);
1380 /* Add a breakpoint. */
1381 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1382 CPUBreakpoint **breakpoint)
1384 #if defined(TARGET_HAS_ICE)
1385 CPUBreakpoint *bp;
1387 bp = qemu_malloc(sizeof(*bp));
1389 bp->pc = pc;
1390 bp->flags = flags;
1392 /* keep all GDB-injected breakpoints in front */
1393 if (flags & BP_GDB)
1394 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1395 else
1396 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1398 breakpoint_invalidate(env, pc);
1400 if (breakpoint)
1401 *breakpoint = bp;
1402 return 0;
1403 #else
1404 return -ENOSYS;
1405 #endif
1408 /* Remove a specific breakpoint. */
1409 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1411 #if defined(TARGET_HAS_ICE)
1412 CPUBreakpoint *bp;
1414 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1415 if (bp->pc == pc && bp->flags == flags) {
1416 cpu_breakpoint_remove_by_ref(env, bp);
1417 return 0;
1420 return -ENOENT;
1421 #else
1422 return -ENOSYS;
1423 #endif
1426 /* Remove a specific breakpoint by reference. */
1427 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1429 #if defined(TARGET_HAS_ICE)
1430 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1432 breakpoint_invalidate(env, breakpoint->pc);
1434 qemu_free(breakpoint);
1435 #endif
1438 /* Remove all matching breakpoints. */
1439 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1441 #if defined(TARGET_HAS_ICE)
1442 CPUBreakpoint *bp, *next;
1444 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1445 if (bp->flags & mask)
1446 cpu_breakpoint_remove_by_ref(env, bp);
1448 #endif
1451 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1452 CPU loop after each instruction */
1453 void cpu_single_step(CPUState *env, int enabled)
1455 #if defined(TARGET_HAS_ICE)
1456 if (env->singlestep_enabled != enabled) {
1457 env->singlestep_enabled = enabled;
1458 /* must flush all the translated code to avoid inconsistancies */
1459 /* XXX: only flush what is necessary */
1460 tb_flush(env);
1462 #endif
1465 /* enable or disable low levels log */
1466 void cpu_set_log(int log_flags)
1468 loglevel = log_flags;
1469 if (loglevel && !logfile) {
1470 logfile = fopen(logfilename, log_append ? "a" : "w");
1471 if (!logfile) {
1472 perror(logfilename);
1473 _exit(1);
1475 #if !defined(CONFIG_SOFTMMU)
1476 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1478 static char logfile_buf[4096];
1479 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1481 #else
1482 setvbuf(logfile, NULL, _IOLBF, 0);
1483 #endif
1484 log_append = 1;
1486 if (!loglevel && logfile) {
1487 fclose(logfile);
1488 logfile = NULL;
1492 void cpu_set_log_filename(const char *filename)
1494 logfilename = strdup(filename);
1495 if (logfile) {
1496 fclose(logfile);
1497 logfile = NULL;
1499 cpu_set_log(loglevel);
1502 /* mask must never be zero, except for A20 change call */
1503 void cpu_interrupt(CPUState *env, int mask)
1505 #if !defined(USE_NPTL)
1506 TranslationBlock *tb;
1507 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1508 #endif
1509 int old_mask;
1511 if (mask & CPU_INTERRUPT_EXIT) {
1512 env->exit_request = 1;
1513 mask &= ~CPU_INTERRUPT_EXIT;
1516 old_mask = env->interrupt_request;
1517 env->interrupt_request |= mask;
1518 #if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523 #else
1524 if (use_icount) {
1525 env->icount_decr.u16.high = 0xffff;
1526 #ifndef CONFIG_USER_ONLY
1527 if (!can_do_io(env)
1528 && (mask & ~old_mask) != 0) {
1529 cpu_abort(env, "Raised interrupt while not in I/O function");
1531 #endif
1532 } else {
1533 tb = env->current_tb;
1534 /* if the cpu is currently executing code, we must unlink it and
1535 all the potentially executing TB */
1536 if (tb && !testandset(&interrupt_lock)) {
1537 env->current_tb = NULL;
1538 tb_reset_jump_recursive(tb);
1539 resetlock(&interrupt_lock);
1542 #endif
1545 void cpu_reset_interrupt(CPUState *env, int mask)
1547 env->interrupt_request &= ~mask;
1550 const CPULogItem cpu_log_items[] = {
1551 { CPU_LOG_TB_OUT_ASM, "out_asm",
1552 "show generated host assembly code for each compiled TB" },
1553 { CPU_LOG_TB_IN_ASM, "in_asm",
1554 "show target assembly code for each compiled TB" },
1555 { CPU_LOG_TB_OP, "op",
1556 "show micro ops for each compiled TB" },
1557 { CPU_LOG_TB_OP_OPT, "op_opt",
1558 "show micro ops "
1559 #ifdef TARGET_I386
1560 "before eflags optimization and "
1561 #endif
1562 "after liveness analysis" },
1563 { CPU_LOG_INT, "int",
1564 "show interrupts/exceptions in short format" },
1565 { CPU_LOG_EXEC, "exec",
1566 "show trace before each executed TB (lots of logs)" },
1567 { CPU_LOG_TB_CPU, "cpu",
1568 "show CPU state before block translation" },
1569 #ifdef TARGET_I386
1570 { CPU_LOG_PCALL, "pcall",
1571 "show protected mode far calls/returns/exceptions" },
1572 { CPU_LOG_RESET, "cpu_reset",
1573 "show CPU state before CPU resets" },
1574 #endif
1575 #ifdef DEBUG_IOPORT
1576 { CPU_LOG_IOPORT, "ioport",
1577 "show all i/o ports accesses" },
1578 #endif
1579 { 0, NULL, NULL },
1582 static int cmp1(const char *s1, int n, const char *s2)
1584 if (strlen(s2) != n)
1585 return 0;
1586 return memcmp(s1, s2, n) == 0;
1589 /* takes a comma separated list of log masks. Return 0 if error. */
1590 int cpu_str_to_log_mask(const char *str)
1592 const CPULogItem *item;
1593 int mask;
1594 const char *p, *p1;
1596 p = str;
1597 mask = 0;
1598 for(;;) {
1599 p1 = strchr(p, ',');
1600 if (!p1)
1601 p1 = p + strlen(p);
1602 if(cmp1(p,p1-p,"all")) {
1603 for(item = cpu_log_items; item->mask != 0; item++) {
1604 mask |= item->mask;
1606 } else {
1607 for(item = cpu_log_items; item->mask != 0; item++) {
1608 if (cmp1(p, p1 - p, item->name))
1609 goto found;
1611 return 0;
1613 found:
1614 mask |= item->mask;
1615 if (*p1 != ',')
1616 break;
1617 p = p1 + 1;
1619 return mask;
1622 void cpu_abort(CPUState *env, const char *fmt, ...)
1624 va_list ap;
1625 va_list ap2;
1627 va_start(ap, fmt);
1628 va_copy(ap2, ap);
1629 fprintf(stderr, "qemu: fatal: ");
1630 vfprintf(stderr, fmt, ap);
1631 fprintf(stderr, "\n");
1632 #ifdef TARGET_I386
1633 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1634 #else
1635 cpu_dump_state(env, stderr, fprintf, 0);
1636 #endif
1637 if (qemu_log_enabled()) {
1638 qemu_log("qemu: fatal: ");
1639 qemu_log_vprintf(fmt, ap2);
1640 qemu_log("\n");
1641 #ifdef TARGET_I386
1642 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1643 #else
1644 log_cpu_state(env, 0);
1645 #endif
1646 qemu_log_flush();
1647 qemu_log_close();
1649 va_end(ap2);
1650 va_end(ap);
1651 abort();
1654 CPUState *cpu_copy(CPUState *env)
1656 CPUState *new_env = cpu_init(env->cpu_model_str);
1657 CPUState *next_cpu = new_env->next_cpu;
1658 int cpu_index = new_env->cpu_index;
1659 #if defined(TARGET_HAS_ICE)
1660 CPUBreakpoint *bp;
1661 CPUWatchpoint *wp;
1662 #endif
1664 memcpy(new_env, env, sizeof(CPUState));
1666 /* Preserve chaining and index. */
1667 new_env->next_cpu = next_cpu;
1668 new_env->cpu_index = cpu_index;
1670 /* Clone all break/watchpoints.
1671 Note: Once we support ptrace with hw-debug register access, make sure
1672 BP_CPU break/watchpoints are handled correctly on clone. */
1673 TAILQ_INIT(&env->breakpoints);
1674 TAILQ_INIT(&env->watchpoints);
1675 #if defined(TARGET_HAS_ICE)
1676 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1677 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1679 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1680 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1681 wp->flags, NULL);
1683 #endif
1685 return new_env;
1688 #if !defined(CONFIG_USER_ONLY)
1690 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1692 unsigned int i;
1694 /* Discard jump cache entries for any tb which might potentially
1695 overlap the flushed page. */
1696 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1697 memset (&env->tb_jmp_cache[i], 0,
1698 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1700 i = tb_jmp_cache_hash_page(addr);
1701 memset (&env->tb_jmp_cache[i], 0,
1702 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1705 /* NOTE: if flush_global is true, also flush global entries (not
1706 implemented yet) */
1707 void tlb_flush(CPUState *env, int flush_global)
1709 int i;
1711 #if defined(DEBUG_TLB)
1712 printf("tlb_flush:\n");
1713 #endif
1714 /* must reset current TB so that interrupts cannot modify the
1715 links while we are modifying them */
1716 env->current_tb = NULL;
1718 for(i = 0; i < CPU_TLB_SIZE; i++) {
1719 env->tlb_table[0][i].addr_read = -1;
1720 env->tlb_table[0][i].addr_write = -1;
1721 env->tlb_table[0][i].addr_code = -1;
1722 env->tlb_table[1][i].addr_read = -1;
1723 env->tlb_table[1][i].addr_write = -1;
1724 env->tlb_table[1][i].addr_code = -1;
1725 #if (NB_MMU_MODES >= 3)
1726 env->tlb_table[2][i].addr_read = -1;
1727 env->tlb_table[2][i].addr_write = -1;
1728 env->tlb_table[2][i].addr_code = -1;
1729 #if (NB_MMU_MODES == 4)
1730 env->tlb_table[3][i].addr_read = -1;
1731 env->tlb_table[3][i].addr_write = -1;
1732 env->tlb_table[3][i].addr_code = -1;
1733 #endif
1734 #endif
1737 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1739 #ifdef USE_KQEMU
1740 if (env->kqemu_enabled) {
1741 kqemu_flush(env, flush_global);
1743 #endif
1744 tlb_flush_count++;
1747 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1749 if (addr == (tlb_entry->addr_read &
1750 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1751 addr == (tlb_entry->addr_write &
1752 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1753 addr == (tlb_entry->addr_code &
1754 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1755 tlb_entry->addr_read = -1;
1756 tlb_entry->addr_write = -1;
1757 tlb_entry->addr_code = -1;
1761 void tlb_flush_page(CPUState *env, target_ulong addr)
1763 int i;
1765 #if defined(DEBUG_TLB)
1766 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1767 #endif
1768 /* must reset current TB so that interrupts cannot modify the
1769 links while we are modifying them */
1770 env->current_tb = NULL;
1772 addr &= TARGET_PAGE_MASK;
1773 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1774 tlb_flush_entry(&env->tlb_table[0][i], addr);
1775 tlb_flush_entry(&env->tlb_table[1][i], addr);
1776 #if (NB_MMU_MODES >= 3)
1777 tlb_flush_entry(&env->tlb_table[2][i], addr);
1778 #if (NB_MMU_MODES == 4)
1779 tlb_flush_entry(&env->tlb_table[3][i], addr);
1780 #endif
1781 #endif
1783 tlb_flush_jmp_cache(env, addr);
1785 #ifdef USE_KQEMU
1786 if (env->kqemu_enabled) {
1787 kqemu_flush_page(env, addr);
1789 #endif
1792 /* update the TLBs so that writes to code in the virtual page 'addr'
1793 can be detected */
1794 static void tlb_protect_code(ram_addr_t ram_addr)
1796 cpu_physical_memory_reset_dirty(ram_addr,
1797 ram_addr + TARGET_PAGE_SIZE,
1798 CODE_DIRTY_FLAG);
1801 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1802 tested for self modifying code */
1803 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1804 target_ulong vaddr)
1806 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1809 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1810 unsigned long start, unsigned long length)
1812 unsigned long addr;
1813 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1814 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1815 if ((addr - start) < length) {
1816 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1821 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1822 int dirty_flags)
1824 CPUState *env;
1825 unsigned long length, start1;
1826 int i, mask, len;
1827 uint8_t *p;
1829 start &= TARGET_PAGE_MASK;
1830 end = TARGET_PAGE_ALIGN(end);
1832 length = end - start;
1833 if (length == 0)
1834 return;
1835 len = length >> TARGET_PAGE_BITS;
1836 #ifdef USE_KQEMU
1837 /* XXX: should not depend on cpu context */
1838 env = first_cpu;
1839 if (env->kqemu_enabled) {
1840 ram_addr_t addr;
1841 addr = start;
1842 for(i = 0; i < len; i++) {
1843 kqemu_set_notdirty(env, addr);
1844 addr += TARGET_PAGE_SIZE;
1847 #endif
1848 mask = ~dirty_flags;
1849 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1850 for(i = 0; i < len; i++)
1851 p[i] &= mask;
1853 /* we modify the TLB cache so that the dirty bit will be set again
1854 when accessing the range */
1855 start1 = start + (unsigned long)phys_ram_base;
1856 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1857 for(i = 0; i < CPU_TLB_SIZE; i++)
1858 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1859 for(i = 0; i < CPU_TLB_SIZE; i++)
1860 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1861 #if (NB_MMU_MODES >= 3)
1862 for(i = 0; i < CPU_TLB_SIZE; i++)
1863 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1864 #if (NB_MMU_MODES == 4)
1865 for(i = 0; i < CPU_TLB_SIZE; i++)
1866 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1867 #endif
1868 #endif
1872 int cpu_physical_memory_set_dirty_tracking(int enable)
1874 in_migration = enable;
1875 return 0;
1878 int cpu_physical_memory_get_dirty_tracking(void)
1880 return in_migration;
1883 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1885 if (kvm_enabled())
1886 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1889 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1891 ram_addr_t ram_addr;
1893 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1894 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1895 tlb_entry->addend - (unsigned long)phys_ram_base;
1896 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1897 tlb_entry->addr_write |= TLB_NOTDIRTY;
1902 /* update the TLB according to the current state of the dirty bits */
1903 void cpu_tlb_update_dirty(CPUState *env)
1905 int i;
1906 for(i = 0; i < CPU_TLB_SIZE; i++)
1907 tlb_update_dirty(&env->tlb_table[0][i]);
1908 for(i = 0; i < CPU_TLB_SIZE; i++)
1909 tlb_update_dirty(&env->tlb_table[1][i]);
1910 #if (NB_MMU_MODES >= 3)
1911 for(i = 0; i < CPU_TLB_SIZE; i++)
1912 tlb_update_dirty(&env->tlb_table[2][i]);
1913 #if (NB_MMU_MODES == 4)
1914 for(i = 0; i < CPU_TLB_SIZE; i++)
1915 tlb_update_dirty(&env->tlb_table[3][i]);
1916 #endif
1917 #endif
1920 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1922 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1923 tlb_entry->addr_write = vaddr;
1926 /* update the TLB corresponding to virtual page vaddr
1927 so that it is no longer dirty */
1928 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1930 int i;
1932 vaddr &= TARGET_PAGE_MASK;
1933 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1934 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1935 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1936 #if (NB_MMU_MODES >= 3)
1937 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1938 #if (NB_MMU_MODES == 4)
1939 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1940 #endif
1941 #endif
1944 /* add a new TLB entry. At most one entry for a given virtual address
1945 is permitted. Return 0 if OK or 2 if the page could not be mapped
1946 (can only happen in non SOFTMMU mode for I/O pages or pages
1947 conflicting with the host address space). */
1948 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1949 target_phys_addr_t paddr, int prot,
1950 int mmu_idx, int is_softmmu)
1952 PhysPageDesc *p;
1953 unsigned long pd;
1954 unsigned int index;
1955 target_ulong address;
1956 target_ulong code_address;
1957 target_phys_addr_t addend;
1958 int ret;
1959 CPUTLBEntry *te;
1960 CPUWatchpoint *wp;
1961 target_phys_addr_t iotlb;
1963 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1964 if (!p) {
1965 pd = IO_MEM_UNASSIGNED;
1966 } else {
1967 pd = p->phys_offset;
1969 #if defined(DEBUG_TLB)
1970 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1971 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1972 #endif
1974 ret = 0;
1975 address = vaddr;
1976 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1977 /* IO memory case (romd handled later) */
1978 address |= TLB_MMIO;
1980 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1981 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1982 /* Normal RAM. */
1983 iotlb = pd & TARGET_PAGE_MASK;
1984 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1985 iotlb |= IO_MEM_NOTDIRTY;
1986 else
1987 iotlb |= IO_MEM_ROM;
1988 } else {
1989 /* IO handlers are currently passed a phsical address.
1990 It would be nice to pass an offset from the base address
1991 of that region. This would avoid having to special case RAM,
1992 and avoid full address decoding in every device.
1993 We can't use the high bits of pd for this because
1994 IO_MEM_ROMD uses these as a ram address. */
1995 iotlb = (pd & ~TARGET_PAGE_MASK);
1996 if (p) {
1997 iotlb += p->region_offset;
1998 } else {
1999 iotlb += paddr;
2003 code_address = address;
2004 /* Make accesses to pages with watchpoints go via the
2005 watchpoint trap routines. */
2006 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2007 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2008 iotlb = io_mem_watch + paddr;
2009 /* TODO: The memory case can be optimized by not trapping
2010 reads of pages with a write breakpoint. */
2011 address |= TLB_MMIO;
2015 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2016 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2017 te = &env->tlb_table[mmu_idx][index];
2018 te->addend = addend - vaddr;
2019 if (prot & PAGE_READ) {
2020 te->addr_read = address;
2021 } else {
2022 te->addr_read = -1;
2025 if (prot & PAGE_EXEC) {
2026 te->addr_code = code_address;
2027 } else {
2028 te->addr_code = -1;
2030 if (prot & PAGE_WRITE) {
2031 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2032 (pd & IO_MEM_ROMD)) {
2033 /* Write access calls the I/O callback. */
2034 te->addr_write = address | TLB_MMIO;
2035 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2036 !cpu_physical_memory_is_dirty(pd)) {
2037 te->addr_write = address | TLB_NOTDIRTY;
2038 } else {
2039 te->addr_write = address;
2041 } else {
2042 te->addr_write = -1;
2044 return ret;
2047 #else
2049 void tlb_flush(CPUState *env, int flush_global)
2053 void tlb_flush_page(CPUState *env, target_ulong addr)
2057 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2058 target_phys_addr_t paddr, int prot,
2059 int mmu_idx, int is_softmmu)
2061 return 0;
2064 /* dump memory mappings */
2065 void page_dump(FILE *f)
2067 unsigned long start, end;
2068 int i, j, prot, prot1;
2069 PageDesc *p;
2071 fprintf(f, "%-8s %-8s %-8s %s\n",
2072 "start", "end", "size", "prot");
2073 start = -1;
2074 end = -1;
2075 prot = 0;
2076 for(i = 0; i <= L1_SIZE; i++) {
2077 if (i < L1_SIZE)
2078 p = l1_map[i];
2079 else
2080 p = NULL;
2081 for(j = 0;j < L2_SIZE; j++) {
2082 if (!p)
2083 prot1 = 0;
2084 else
2085 prot1 = p[j].flags;
2086 if (prot1 != prot) {
2087 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2088 if (start != -1) {
2089 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2090 start, end, end - start,
2091 prot & PAGE_READ ? 'r' : '-',
2092 prot & PAGE_WRITE ? 'w' : '-',
2093 prot & PAGE_EXEC ? 'x' : '-');
2095 if (prot1 != 0)
2096 start = end;
2097 else
2098 start = -1;
2099 prot = prot1;
2101 if (!p)
2102 break;
2107 int page_get_flags(target_ulong address)
2109 PageDesc *p;
2111 p = page_find(address >> TARGET_PAGE_BITS);
2112 if (!p)
2113 return 0;
2114 return p->flags;
2117 /* modify the flags of a page and invalidate the code if
2118 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2119 depending on PAGE_WRITE */
2120 void page_set_flags(target_ulong start, target_ulong end, int flags)
2122 PageDesc *p;
2123 target_ulong addr;
2125 /* mmap_lock should already be held. */
2126 start = start & TARGET_PAGE_MASK;
2127 end = TARGET_PAGE_ALIGN(end);
2128 if (flags & PAGE_WRITE)
2129 flags |= PAGE_WRITE_ORG;
2130 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2131 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2132 /* We may be called for host regions that are outside guest
2133 address space. */
2134 if (!p)
2135 return;
2136 /* if the write protection is set, then we invalidate the code
2137 inside */
2138 if (!(p->flags & PAGE_WRITE) &&
2139 (flags & PAGE_WRITE) &&
2140 p->first_tb) {
2141 tb_invalidate_phys_page(addr, 0, NULL);
2143 p->flags = flags;
2147 int page_check_range(target_ulong start, target_ulong len, int flags)
2149 PageDesc *p;
2150 target_ulong end;
2151 target_ulong addr;
2153 if (start + len < start)
2154 /* we've wrapped around */
2155 return -1;
2157 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2158 start = start & TARGET_PAGE_MASK;
2160 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2161 p = page_find(addr >> TARGET_PAGE_BITS);
2162 if( !p )
2163 return -1;
2164 if( !(p->flags & PAGE_VALID) )
2165 return -1;
2167 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2168 return -1;
2169 if (flags & PAGE_WRITE) {
2170 if (!(p->flags & PAGE_WRITE_ORG))
2171 return -1;
2172 /* unprotect the page if it was put read-only because it
2173 contains translated code */
2174 if (!(p->flags & PAGE_WRITE)) {
2175 if (!page_unprotect(addr, 0, NULL))
2176 return -1;
2178 return 0;
2181 return 0;
2184 /* called from signal handler: invalidate the code and unprotect the
2185 page. Return TRUE if the fault was succesfully handled. */
2186 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2188 unsigned int page_index, prot, pindex;
2189 PageDesc *p, *p1;
2190 target_ulong host_start, host_end, addr;
2192 /* Technically this isn't safe inside a signal handler. However we
2193 know this only ever happens in a synchronous SEGV handler, so in
2194 practice it seems to be ok. */
2195 mmap_lock();
2197 host_start = address & qemu_host_page_mask;
2198 page_index = host_start >> TARGET_PAGE_BITS;
2199 p1 = page_find(page_index);
2200 if (!p1) {
2201 mmap_unlock();
2202 return 0;
2204 host_end = host_start + qemu_host_page_size;
2205 p = p1;
2206 prot = 0;
2207 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2208 prot |= p->flags;
2209 p++;
2211 /* if the page was really writable, then we change its
2212 protection back to writable */
2213 if (prot & PAGE_WRITE_ORG) {
2214 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2215 if (!(p1[pindex].flags & PAGE_WRITE)) {
2216 mprotect((void *)g2h(host_start), qemu_host_page_size,
2217 (prot & PAGE_BITS) | PAGE_WRITE);
2218 p1[pindex].flags |= PAGE_WRITE;
2219 /* and since the content will be modified, we must invalidate
2220 the corresponding translated code. */
2221 tb_invalidate_phys_page(address, pc, puc);
2222 #ifdef DEBUG_TB_CHECK
2223 tb_invalidate_check(address);
2224 #endif
2225 mmap_unlock();
2226 return 1;
2229 mmap_unlock();
2230 return 0;
2233 static inline void tlb_set_dirty(CPUState *env,
2234 unsigned long addr, target_ulong vaddr)
2237 #endif /* defined(CONFIG_USER_ONLY) */
2239 #if !defined(CONFIG_USER_ONLY)
2241 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2242 ram_addr_t memory, ram_addr_t region_offset);
2243 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2244 ram_addr_t orig_memory, ram_addr_t region_offset);
2245 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2246 need_subpage) \
2247 do { \
2248 if (addr > start_addr) \
2249 start_addr2 = 0; \
2250 else { \
2251 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2252 if (start_addr2 > 0) \
2253 need_subpage = 1; \
2256 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2257 end_addr2 = TARGET_PAGE_SIZE - 1; \
2258 else { \
2259 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2260 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2261 need_subpage = 1; \
2263 } while (0)
2265 /* register physical memory. 'size' must be a multiple of the target
2266 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2267 io memory page. The address used when calling the IO function is
2268 the offset from the start of the region, plus region_offset. Both
2269 start_region and regon_offset are rounded down to a page boundary
2270 before calculating this offset. This should not be a problem unless
2271 the low bits of start_addr and region_offset differ. */
2272 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2273 ram_addr_t size,
2274 ram_addr_t phys_offset,
2275 ram_addr_t region_offset)
2277 target_phys_addr_t addr, end_addr;
2278 PhysPageDesc *p;
2279 CPUState *env;
2280 ram_addr_t orig_size = size;
2281 void *subpage;
2283 #ifdef USE_KQEMU
2284 /* XXX: should not depend on cpu context */
2285 env = first_cpu;
2286 if (env->kqemu_enabled) {
2287 kqemu_set_phys_mem(start_addr, size, phys_offset);
2289 #endif
2290 if (kvm_enabled())
2291 kvm_set_phys_mem(start_addr, size, phys_offset);
2293 if (phys_offset == IO_MEM_UNASSIGNED) {
2294 region_offset = start_addr;
2296 region_offset &= TARGET_PAGE_MASK;
2297 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2298 end_addr = start_addr + (target_phys_addr_t)size;
2299 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2300 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2301 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2302 ram_addr_t orig_memory = p->phys_offset;
2303 target_phys_addr_t start_addr2, end_addr2;
2304 int need_subpage = 0;
2306 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2307 need_subpage);
2308 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2309 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2310 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2311 &p->phys_offset, orig_memory,
2312 p->region_offset);
2313 } else {
2314 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2315 >> IO_MEM_SHIFT];
2317 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2318 region_offset);
2319 p->region_offset = 0;
2320 } else {
2321 p->phys_offset = phys_offset;
2322 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2323 (phys_offset & IO_MEM_ROMD))
2324 phys_offset += TARGET_PAGE_SIZE;
2326 } else {
2327 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2328 p->phys_offset = phys_offset;
2329 p->region_offset = region_offset;
2330 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2331 (phys_offset & IO_MEM_ROMD)) {
2332 phys_offset += TARGET_PAGE_SIZE;
2333 } else {
2334 target_phys_addr_t start_addr2, end_addr2;
2335 int need_subpage = 0;
2337 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2338 end_addr2, need_subpage);
2340 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2341 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2342 &p->phys_offset, IO_MEM_UNASSIGNED,
2343 addr & TARGET_PAGE_MASK);
2344 subpage_register(subpage, start_addr2, end_addr2,
2345 phys_offset, region_offset);
2346 p->region_offset = 0;
2350 region_offset += TARGET_PAGE_SIZE;
2353 /* since each CPU stores ram addresses in its TLB cache, we must
2354 reset the modified entries */
2355 /* XXX: slow ! */
2356 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2357 tlb_flush(env, 1);
2361 /* XXX: temporary until new memory mapping API */
2362 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2364 PhysPageDesc *p;
2366 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2367 if (!p)
2368 return IO_MEM_UNASSIGNED;
2369 return p->phys_offset;
2372 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2374 if (kvm_enabled())
2375 kvm_coalesce_mmio_region(addr, size);
2378 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2380 if (kvm_enabled())
2381 kvm_uncoalesce_mmio_region(addr, size);
2384 /* XXX: better than nothing */
2385 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2387 ram_addr_t addr;
2388 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2389 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2390 (uint64_t)size, (uint64_t)phys_ram_size);
2391 abort();
2393 addr = phys_ram_alloc_offset;
2394 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2395 return addr;
2398 void qemu_ram_free(ram_addr_t addr)
2402 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2404 #ifdef DEBUG_UNASSIGNED
2405 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2406 #endif
2407 #if defined(TARGET_SPARC)
2408 do_unassigned_access(addr, 0, 0, 0, 1);
2409 #endif
2410 return 0;
2413 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2415 #ifdef DEBUG_UNASSIGNED
2416 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2417 #endif
2418 #if defined(TARGET_SPARC)
2419 do_unassigned_access(addr, 0, 0, 0, 2);
2420 #endif
2421 return 0;
2424 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2426 #ifdef DEBUG_UNASSIGNED
2427 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2428 #endif
2429 #if defined(TARGET_SPARC)
2430 do_unassigned_access(addr, 0, 0, 0, 4);
2431 #endif
2432 return 0;
2435 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2437 #ifdef DEBUG_UNASSIGNED
2438 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2439 #endif
2440 #if defined(TARGET_SPARC)
2441 do_unassigned_access(addr, 1, 0, 0, 1);
2442 #endif
2445 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2447 #ifdef DEBUG_UNASSIGNED
2448 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2449 #endif
2450 #if defined(TARGET_SPARC)
2451 do_unassigned_access(addr, 1, 0, 0, 2);
2452 #endif
2455 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2457 #ifdef DEBUG_UNASSIGNED
2458 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2459 #endif
2460 #if defined(TARGET_SPARC)
2461 do_unassigned_access(addr, 1, 0, 0, 4);
2462 #endif
2465 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2466 unassigned_mem_readb,
2467 unassigned_mem_readw,
2468 unassigned_mem_readl,
2471 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2472 unassigned_mem_writeb,
2473 unassigned_mem_writew,
2474 unassigned_mem_writel,
2477 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2478 uint32_t val)
2480 int dirty_flags;
2481 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2482 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2483 #if !defined(CONFIG_USER_ONLY)
2484 tb_invalidate_phys_page_fast(ram_addr, 1);
2485 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2486 #endif
2488 stb_p(phys_ram_base + ram_addr, val);
2489 #ifdef USE_KQEMU
2490 if (cpu_single_env->kqemu_enabled &&
2491 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2492 kqemu_modify_page(cpu_single_env, ram_addr);
2493 #endif
2494 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2495 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2496 /* we remove the notdirty callback only if the code has been
2497 flushed */
2498 if (dirty_flags == 0xff)
2499 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2502 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2503 uint32_t val)
2505 int dirty_flags;
2506 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2507 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2508 #if !defined(CONFIG_USER_ONLY)
2509 tb_invalidate_phys_page_fast(ram_addr, 2);
2510 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2511 #endif
2513 stw_p(phys_ram_base + ram_addr, val);
2514 #ifdef USE_KQEMU
2515 if (cpu_single_env->kqemu_enabled &&
2516 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2517 kqemu_modify_page(cpu_single_env, ram_addr);
2518 #endif
2519 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2520 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2521 /* we remove the notdirty callback only if the code has been
2522 flushed */
2523 if (dirty_flags == 0xff)
2524 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2527 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2528 uint32_t val)
2530 int dirty_flags;
2531 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2532 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2533 #if !defined(CONFIG_USER_ONLY)
2534 tb_invalidate_phys_page_fast(ram_addr, 4);
2535 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2536 #endif
2538 stl_p(phys_ram_base + ram_addr, val);
2539 #ifdef USE_KQEMU
2540 if (cpu_single_env->kqemu_enabled &&
2541 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2542 kqemu_modify_page(cpu_single_env, ram_addr);
2543 #endif
2544 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2545 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2546 /* we remove the notdirty callback only if the code has been
2547 flushed */
2548 if (dirty_flags == 0xff)
2549 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2552 static CPUReadMemoryFunc *error_mem_read[3] = {
2553 NULL, /* never used */
2554 NULL, /* never used */
2555 NULL, /* never used */
2558 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2559 notdirty_mem_writeb,
2560 notdirty_mem_writew,
2561 notdirty_mem_writel,
2564 /* Generate a debug exception if a watchpoint has been hit. */
2565 static void check_watchpoint(int offset, int len_mask, int flags)
2567 CPUState *env = cpu_single_env;
2568 target_ulong pc, cs_base;
2569 TranslationBlock *tb;
2570 target_ulong vaddr;
2571 CPUWatchpoint *wp;
2572 int cpu_flags;
2574 if (env->watchpoint_hit) {
2575 /* We re-entered the check after replacing the TB. Now raise
2576 * the debug interrupt so that is will trigger after the
2577 * current instruction. */
2578 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2579 return;
2581 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2582 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2583 if ((vaddr == (wp->vaddr & len_mask) ||
2584 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2585 wp->flags |= BP_WATCHPOINT_HIT;
2586 if (!env->watchpoint_hit) {
2587 env->watchpoint_hit = wp;
2588 tb = tb_find_pc(env->mem_io_pc);
2589 if (!tb) {
2590 cpu_abort(env, "check_watchpoint: could not find TB for "
2591 "pc=%p", (void *)env->mem_io_pc);
2593 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2594 tb_phys_invalidate(tb, -1);
2595 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2596 env->exception_index = EXCP_DEBUG;
2597 } else {
2598 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2599 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2601 cpu_resume_from_signal(env, NULL);
2603 } else {
2604 wp->flags &= ~BP_WATCHPOINT_HIT;
2609 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2610 so these check for a hit then pass through to the normal out-of-line
2611 phys routines. */
2612 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2614 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2615 return ldub_phys(addr);
2618 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2620 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2621 return lduw_phys(addr);
2624 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2626 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2627 return ldl_phys(addr);
2630 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2631 uint32_t val)
2633 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2634 stb_phys(addr, val);
2637 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2638 uint32_t val)
2640 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2641 stw_phys(addr, val);
2644 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2645 uint32_t val)
2647 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2648 stl_phys(addr, val);
2651 static CPUReadMemoryFunc *watch_mem_read[3] = {
2652 watch_mem_readb,
2653 watch_mem_readw,
2654 watch_mem_readl,
2657 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2658 watch_mem_writeb,
2659 watch_mem_writew,
2660 watch_mem_writel,
2663 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2664 unsigned int len)
2666 uint32_t ret;
2667 unsigned int idx;
2669 idx = SUBPAGE_IDX(addr);
2670 #if defined(DEBUG_SUBPAGE)
2671 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2672 mmio, len, addr, idx);
2673 #endif
2674 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2675 addr + mmio->region_offset[idx][0][len]);
2677 return ret;
2680 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2681 uint32_t value, unsigned int len)
2683 unsigned int idx;
2685 idx = SUBPAGE_IDX(addr);
2686 #if defined(DEBUG_SUBPAGE)
2687 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2688 mmio, len, addr, idx, value);
2689 #endif
2690 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2691 addr + mmio->region_offset[idx][1][len],
2692 value);
2695 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2697 #if defined(DEBUG_SUBPAGE)
2698 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2699 #endif
2701 return subpage_readlen(opaque, addr, 0);
2704 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2705 uint32_t value)
2707 #if defined(DEBUG_SUBPAGE)
2708 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2709 #endif
2710 subpage_writelen(opaque, addr, value, 0);
2713 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2715 #if defined(DEBUG_SUBPAGE)
2716 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2717 #endif
2719 return subpage_readlen(opaque, addr, 1);
2722 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2723 uint32_t value)
2725 #if defined(DEBUG_SUBPAGE)
2726 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2727 #endif
2728 subpage_writelen(opaque, addr, value, 1);
2731 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2733 #if defined(DEBUG_SUBPAGE)
2734 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2735 #endif
2737 return subpage_readlen(opaque, addr, 2);
2740 static void subpage_writel (void *opaque,
2741 target_phys_addr_t addr, uint32_t value)
2743 #if defined(DEBUG_SUBPAGE)
2744 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2745 #endif
2746 subpage_writelen(opaque, addr, value, 2);
2749 static CPUReadMemoryFunc *subpage_read[] = {
2750 &subpage_readb,
2751 &subpage_readw,
2752 &subpage_readl,
2755 static CPUWriteMemoryFunc *subpage_write[] = {
2756 &subpage_writeb,
2757 &subpage_writew,
2758 &subpage_writel,
2761 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2762 ram_addr_t memory, ram_addr_t region_offset)
2764 int idx, eidx;
2765 unsigned int i;
2767 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2768 return -1;
2769 idx = SUBPAGE_IDX(start);
2770 eidx = SUBPAGE_IDX(end);
2771 #if defined(DEBUG_SUBPAGE)
2772 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2773 mmio, start, end, idx, eidx, memory);
2774 #endif
2775 memory >>= IO_MEM_SHIFT;
2776 for (; idx <= eidx; idx++) {
2777 for (i = 0; i < 4; i++) {
2778 if (io_mem_read[memory][i]) {
2779 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2780 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2781 mmio->region_offset[idx][0][i] = region_offset;
2783 if (io_mem_write[memory][i]) {
2784 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2785 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2786 mmio->region_offset[idx][1][i] = region_offset;
2791 return 0;
2794 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2795 ram_addr_t orig_memory, ram_addr_t region_offset)
2797 subpage_t *mmio;
2798 int subpage_memory;
2800 mmio = qemu_mallocz(sizeof(subpage_t));
2802 mmio->base = base;
2803 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2804 #if defined(DEBUG_SUBPAGE)
2805 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2806 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2807 #endif
2808 *phys = subpage_memory | IO_MEM_SUBPAGE;
2809 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2810 region_offset);
2812 return mmio;
2815 static int get_free_io_mem_idx(void)
2817 int i;
2819 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2820 if (!io_mem_used[i]) {
2821 io_mem_used[i] = 1;
2822 return i;
2825 return -1;
2828 static void io_mem_init(void)
2830 int i;
2832 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2833 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2834 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2835 for (i=0; i<5; i++)
2836 io_mem_used[i] = 1;
2838 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2839 watch_mem_write, NULL);
2840 /* alloc dirty bits array */
2841 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2842 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2845 /* mem_read and mem_write are arrays of functions containing the
2846 function to access byte (index 0), word (index 1) and dword (index
2847 2). Functions can be omitted with a NULL function pointer. The
2848 registered functions may be modified dynamically later.
2849 If io_index is non zero, the corresponding io zone is
2850 modified. If it is zero, a new io zone is allocated. The return
2851 value can be used with cpu_register_physical_memory(). (-1) is
2852 returned if error. */
2853 int cpu_register_io_memory(int io_index,
2854 CPUReadMemoryFunc **mem_read,
2855 CPUWriteMemoryFunc **mem_write,
2856 void *opaque)
2858 int i, subwidth = 0;
2860 if (io_index <= 0) {
2861 io_index = get_free_io_mem_idx();
2862 if (io_index == -1)
2863 return io_index;
2864 } else {
2865 if (io_index >= IO_MEM_NB_ENTRIES)
2866 return -1;
2869 for(i = 0;i < 3; i++) {
2870 if (!mem_read[i] || !mem_write[i])
2871 subwidth = IO_MEM_SUBWIDTH;
2872 io_mem_read[io_index][i] = mem_read[i];
2873 io_mem_write[io_index][i] = mem_write[i];
2875 io_mem_opaque[io_index] = opaque;
2876 return (io_index << IO_MEM_SHIFT) | subwidth;
2879 void cpu_unregister_io_memory(int io_table_address)
2881 int i;
2882 int io_index = io_table_address >> IO_MEM_SHIFT;
2884 for (i=0;i < 3; i++) {
2885 io_mem_read[io_index][i] = unassigned_mem_read[i];
2886 io_mem_write[io_index][i] = unassigned_mem_write[i];
2888 io_mem_opaque[io_index] = NULL;
2889 io_mem_used[io_index] = 0;
2892 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2894 return io_mem_write[io_index >> IO_MEM_SHIFT];
2897 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2899 return io_mem_read[io_index >> IO_MEM_SHIFT];
2902 #endif /* !defined(CONFIG_USER_ONLY) */
2904 /* physical memory access (slow version, mainly for debug) */
2905 #if defined(CONFIG_USER_ONLY)
2906 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2907 int len, int is_write)
2909 int l, flags;
2910 target_ulong page;
2911 void * p;
2913 while (len > 0) {
2914 page = addr & TARGET_PAGE_MASK;
2915 l = (page + TARGET_PAGE_SIZE) - addr;
2916 if (l > len)
2917 l = len;
2918 flags = page_get_flags(page);
2919 if (!(flags & PAGE_VALID))
2920 return;
2921 if (is_write) {
2922 if (!(flags & PAGE_WRITE))
2923 return;
2924 /* XXX: this code should not depend on lock_user */
2925 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2926 /* FIXME - should this return an error rather than just fail? */
2927 return;
2928 memcpy(p, buf, l);
2929 unlock_user(p, addr, l);
2930 } else {
2931 if (!(flags & PAGE_READ))
2932 return;
2933 /* XXX: this code should not depend on lock_user */
2934 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2935 /* FIXME - should this return an error rather than just fail? */
2936 return;
2937 memcpy(buf, p, l);
2938 unlock_user(p, addr, 0);
2940 len -= l;
2941 buf += l;
2942 addr += l;
2946 #else
2947 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2948 int len, int is_write)
2950 int l, io_index;
2951 uint8_t *ptr;
2952 uint32_t val;
2953 target_phys_addr_t page;
2954 unsigned long pd;
2955 PhysPageDesc *p;
2957 while (len > 0) {
2958 page = addr & TARGET_PAGE_MASK;
2959 l = (page + TARGET_PAGE_SIZE) - addr;
2960 if (l > len)
2961 l = len;
2962 p = phys_page_find(page >> TARGET_PAGE_BITS);
2963 if (!p) {
2964 pd = IO_MEM_UNASSIGNED;
2965 } else {
2966 pd = p->phys_offset;
2969 if (is_write) {
2970 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2971 target_phys_addr_t addr1 = addr;
2972 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2973 if (p)
2974 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2975 /* XXX: could force cpu_single_env to NULL to avoid
2976 potential bugs */
2977 if (l >= 4 && ((addr1 & 3) == 0)) {
2978 /* 32 bit write access */
2979 val = ldl_p(buf);
2980 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
2981 l = 4;
2982 } else if (l >= 2 && ((addr1 & 1) == 0)) {
2983 /* 16 bit write access */
2984 val = lduw_p(buf);
2985 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
2986 l = 2;
2987 } else {
2988 /* 8 bit write access */
2989 val = ldub_p(buf);
2990 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
2991 l = 1;
2993 } else {
2994 unsigned long addr1;
2995 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2996 /* RAM case */
2997 ptr = phys_ram_base + addr1;
2998 memcpy(ptr, buf, l);
2999 if (!cpu_physical_memory_is_dirty(addr1)) {
3000 /* invalidate code */
3001 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3002 /* set dirty bit */
3003 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3004 (0xff & ~CODE_DIRTY_FLAG);
3007 } else {
3008 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3009 !(pd & IO_MEM_ROMD)) {
3010 target_phys_addr_t addr1 = addr;
3011 /* I/O case */
3012 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3013 if (p)
3014 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3015 if (l >= 4 && ((addr1 & 3) == 0)) {
3016 /* 32 bit read access */
3017 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3018 stl_p(buf, val);
3019 l = 4;
3020 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3021 /* 16 bit read access */
3022 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3023 stw_p(buf, val);
3024 l = 2;
3025 } else {
3026 /* 8 bit read access */
3027 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3028 stb_p(buf, val);
3029 l = 1;
3031 } else {
3032 /* RAM case */
3033 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3034 (addr & ~TARGET_PAGE_MASK);
3035 memcpy(buf, ptr, l);
3038 len -= l;
3039 buf += l;
3040 addr += l;
3044 /* used for ROM loading : can write in RAM and ROM */
3045 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3046 const uint8_t *buf, int len)
3048 int l;
3049 uint8_t *ptr;
3050 target_phys_addr_t page;
3051 unsigned long pd;
3052 PhysPageDesc *p;
3054 while (len > 0) {
3055 page = addr & TARGET_PAGE_MASK;
3056 l = (page + TARGET_PAGE_SIZE) - addr;
3057 if (l > len)
3058 l = len;
3059 p = phys_page_find(page >> TARGET_PAGE_BITS);
3060 if (!p) {
3061 pd = IO_MEM_UNASSIGNED;
3062 } else {
3063 pd = p->phys_offset;
3066 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3067 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3068 !(pd & IO_MEM_ROMD)) {
3069 /* do nothing */
3070 } else {
3071 unsigned long addr1;
3072 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3073 /* ROM/RAM case */
3074 ptr = phys_ram_base + addr1;
3075 memcpy(ptr, buf, l);
3077 len -= l;
3078 buf += l;
3079 addr += l;
3083 typedef struct {
3084 void *buffer;
3085 target_phys_addr_t addr;
3086 target_phys_addr_t len;
3087 } BounceBuffer;
3089 static BounceBuffer bounce;
3091 typedef struct MapClient {
3092 void *opaque;
3093 void (*callback)(void *opaque);
3094 LIST_ENTRY(MapClient) link;
3095 } MapClient;
3097 static LIST_HEAD(map_client_list, MapClient) map_client_list
3098 = LIST_HEAD_INITIALIZER(map_client_list);
3100 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3102 MapClient *client = qemu_malloc(sizeof(*client));
3104 client->opaque = opaque;
3105 client->callback = callback;
3106 LIST_INSERT_HEAD(&map_client_list, client, link);
3107 return client;
3110 void cpu_unregister_map_client(void *_client)
3112 MapClient *client = (MapClient *)_client;
3114 LIST_REMOVE(client, link);
3117 static void cpu_notify_map_clients(void)
3119 MapClient *client;
3121 while (!LIST_EMPTY(&map_client_list)) {
3122 client = LIST_FIRST(&map_client_list);
3123 client->callback(client->opaque);
3124 LIST_REMOVE(client, link);
3128 /* Map a physical memory region into a host virtual address.
3129 * May map a subset of the requested range, given by and returned in *plen.
3130 * May return NULL if resources needed to perform the mapping are exhausted.
3131 * Use only for reads OR writes - not for read-modify-write operations.
3132 * Use cpu_register_map_client() to know when retrying the map operation is
3133 * likely to succeed.
3135 void *cpu_physical_memory_map(target_phys_addr_t addr,
3136 target_phys_addr_t *plen,
3137 int is_write)
3139 target_phys_addr_t len = *plen;
3140 target_phys_addr_t done = 0;
3141 int l;
3142 uint8_t *ret = NULL;
3143 uint8_t *ptr;
3144 target_phys_addr_t page;
3145 unsigned long pd;
3146 PhysPageDesc *p;
3147 unsigned long addr1;
3149 while (len > 0) {
3150 page = addr & TARGET_PAGE_MASK;
3151 l = (page + TARGET_PAGE_SIZE) - addr;
3152 if (l > len)
3153 l = len;
3154 p = phys_page_find(page >> TARGET_PAGE_BITS);
3155 if (!p) {
3156 pd = IO_MEM_UNASSIGNED;
3157 } else {
3158 pd = p->phys_offset;
3161 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3162 if (done || bounce.buffer) {
3163 break;
3165 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3166 bounce.addr = addr;
3167 bounce.len = l;
3168 if (!is_write) {
3169 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3171 ptr = bounce.buffer;
3172 } else {
3173 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3174 ptr = phys_ram_base + addr1;
3176 if (!done) {
3177 ret = ptr;
3178 } else if (ret + done != ptr) {
3179 break;
3182 len -= l;
3183 addr += l;
3184 done += l;
3186 *plen = done;
3187 return ret;
3190 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3191 * Will also mark the memory as dirty if is_write == 1. access_len gives
3192 * the amount of memory that was actually read or written by the caller.
3194 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3195 int is_write, target_phys_addr_t access_len)
3197 if (buffer != bounce.buffer) {
3198 if (is_write) {
3199 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3200 while (access_len) {
3201 unsigned l;
3202 l = TARGET_PAGE_SIZE;
3203 if (l > access_len)
3204 l = access_len;
3205 if (!cpu_physical_memory_is_dirty(addr1)) {
3206 /* invalidate code */
3207 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3208 /* set dirty bit */
3209 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3210 (0xff & ~CODE_DIRTY_FLAG);
3212 addr1 += l;
3213 access_len -= l;
3216 return;
3218 if (is_write) {
3219 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3221 qemu_free(bounce.buffer);
3222 bounce.buffer = NULL;
3223 cpu_notify_map_clients();
3226 /* warning: addr must be aligned */
3227 uint32_t ldl_phys(target_phys_addr_t addr)
3229 int io_index;
3230 uint8_t *ptr;
3231 uint32_t val;
3232 unsigned long pd;
3233 PhysPageDesc *p;
3235 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3236 if (!p) {
3237 pd = IO_MEM_UNASSIGNED;
3238 } else {
3239 pd = p->phys_offset;
3242 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3243 !(pd & IO_MEM_ROMD)) {
3244 /* I/O case */
3245 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3246 if (p)
3247 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3248 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3249 } else {
3250 /* RAM case */
3251 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3252 (addr & ~TARGET_PAGE_MASK);
3253 val = ldl_p(ptr);
3255 return val;
3258 /* warning: addr must be aligned */
3259 uint64_t ldq_phys(target_phys_addr_t addr)
3261 int io_index;
3262 uint8_t *ptr;
3263 uint64_t val;
3264 unsigned long pd;
3265 PhysPageDesc *p;
3267 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3268 if (!p) {
3269 pd = IO_MEM_UNASSIGNED;
3270 } else {
3271 pd = p->phys_offset;
3274 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3275 !(pd & IO_MEM_ROMD)) {
3276 /* I/O case */
3277 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3278 if (p)
3279 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3280 #ifdef TARGET_WORDS_BIGENDIAN
3281 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3282 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3283 #else
3284 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3285 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3286 #endif
3287 } else {
3288 /* RAM case */
3289 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3290 (addr & ~TARGET_PAGE_MASK);
3291 val = ldq_p(ptr);
3293 return val;
3296 /* XXX: optimize */
3297 uint32_t ldub_phys(target_phys_addr_t addr)
3299 uint8_t val;
3300 cpu_physical_memory_read(addr, &val, 1);
3301 return val;
3304 /* XXX: optimize */
3305 uint32_t lduw_phys(target_phys_addr_t addr)
3307 uint16_t val;
3308 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3309 return tswap16(val);
3312 /* warning: addr must be aligned. The ram page is not masked as dirty
3313 and the code inside is not invalidated. It is useful if the dirty
3314 bits are used to track modified PTEs */
3315 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3317 int io_index;
3318 uint8_t *ptr;
3319 unsigned long pd;
3320 PhysPageDesc *p;
3322 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3323 if (!p) {
3324 pd = IO_MEM_UNASSIGNED;
3325 } else {
3326 pd = p->phys_offset;
3329 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3330 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3331 if (p)
3332 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3333 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3334 } else {
3335 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3336 ptr = phys_ram_base + addr1;
3337 stl_p(ptr, val);
3339 if (unlikely(in_migration)) {
3340 if (!cpu_physical_memory_is_dirty(addr1)) {
3341 /* invalidate code */
3342 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3343 /* set dirty bit */
3344 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3345 (0xff & ~CODE_DIRTY_FLAG);
3351 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3353 int io_index;
3354 uint8_t *ptr;
3355 unsigned long pd;
3356 PhysPageDesc *p;
3358 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3359 if (!p) {
3360 pd = IO_MEM_UNASSIGNED;
3361 } else {
3362 pd = p->phys_offset;
3365 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3366 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3367 if (p)
3368 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3369 #ifdef TARGET_WORDS_BIGENDIAN
3370 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3371 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3372 #else
3373 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3374 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3375 #endif
3376 } else {
3377 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3378 (addr & ~TARGET_PAGE_MASK);
3379 stq_p(ptr, val);
3383 /* warning: addr must be aligned */
3384 void stl_phys(target_phys_addr_t addr, uint32_t val)
3386 int io_index;
3387 uint8_t *ptr;
3388 unsigned long pd;
3389 PhysPageDesc *p;
3391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3392 if (!p) {
3393 pd = IO_MEM_UNASSIGNED;
3394 } else {
3395 pd = p->phys_offset;
3398 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3399 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3400 if (p)
3401 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3402 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3403 } else {
3404 unsigned long addr1;
3405 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3406 /* RAM case */
3407 ptr = phys_ram_base + addr1;
3408 stl_p(ptr, val);
3409 if (!cpu_physical_memory_is_dirty(addr1)) {
3410 /* invalidate code */
3411 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3412 /* set dirty bit */
3413 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3414 (0xff & ~CODE_DIRTY_FLAG);
3419 /* XXX: optimize */
3420 void stb_phys(target_phys_addr_t addr, uint32_t val)
3422 uint8_t v = val;
3423 cpu_physical_memory_write(addr, &v, 1);
3426 /* XXX: optimize */
3427 void stw_phys(target_phys_addr_t addr, uint32_t val)
3429 uint16_t v = tswap16(val);
3430 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3433 /* XXX: optimize */
3434 void stq_phys(target_phys_addr_t addr, uint64_t val)
3436 val = tswap64(val);
3437 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3440 #endif
3442 /* virtual memory access for debug */
3443 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3444 uint8_t *buf, int len, int is_write)
3446 int l;
3447 target_phys_addr_t phys_addr;
3448 target_ulong page;
3450 while (len > 0) {
3451 page = addr & TARGET_PAGE_MASK;
3452 phys_addr = cpu_get_phys_page_debug(env, page);
3453 /* if no physical page mapped, return an error */
3454 if (phys_addr == -1)
3455 return -1;
3456 l = (page + TARGET_PAGE_SIZE) - addr;
3457 if (l > len)
3458 l = len;
3459 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3460 buf, l, is_write);
3461 len -= l;
3462 buf += l;
3463 addr += l;
3465 return 0;
3468 /* in deterministic execution mode, instructions doing device I/Os
3469 must be at the end of the TB */
3470 void cpu_io_recompile(CPUState *env, void *retaddr)
3472 TranslationBlock *tb;
3473 uint32_t n, cflags;
3474 target_ulong pc, cs_base;
3475 uint64_t flags;
3477 tb = tb_find_pc((unsigned long)retaddr);
3478 if (!tb) {
3479 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3480 retaddr);
3482 n = env->icount_decr.u16.low + tb->icount;
3483 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3484 /* Calculate how many instructions had been executed before the fault
3485 occurred. */
3486 n = n - env->icount_decr.u16.low;
3487 /* Generate a new TB ending on the I/O insn. */
3488 n++;
3489 /* On MIPS and SH, delay slot instructions can only be restarted if
3490 they were already the first instruction in the TB. If this is not
3491 the first instruction in a TB then re-execute the preceding
3492 branch. */
3493 #if defined(TARGET_MIPS)
3494 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3495 env->active_tc.PC -= 4;
3496 env->icount_decr.u16.low++;
3497 env->hflags &= ~MIPS_HFLAG_BMASK;
3499 #elif defined(TARGET_SH4)
3500 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3501 && n > 1) {
3502 env->pc -= 2;
3503 env->icount_decr.u16.low++;
3504 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3506 #endif
3507 /* This should never happen. */
3508 if (n > CF_COUNT_MASK)
3509 cpu_abort(env, "TB too big during recompile");
3511 cflags = n | CF_LAST_IO;
3512 pc = tb->pc;
3513 cs_base = tb->cs_base;
3514 flags = tb->flags;
3515 tb_phys_invalidate(tb, -1);
3516 /* FIXME: In theory this could raise an exception. In practice
3517 we have already translated the block once so it's probably ok. */
3518 tb_gen_code(env, pc, cs_base, flags, cflags);
3519 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3520 the first in the TB) then we end up generating a whole new TB and
3521 repeating the fault, which is horribly inefficient.
3522 Better would be to execute just this insn uncached, or generate a
3523 second new TB. */
3524 cpu_resume_from_signal(env, NULL);
3527 void dump_exec_info(FILE *f,
3528 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3530 int i, target_code_size, max_target_code_size;
3531 int direct_jmp_count, direct_jmp2_count, cross_page;
3532 TranslationBlock *tb;
3534 target_code_size = 0;
3535 max_target_code_size = 0;
3536 cross_page = 0;
3537 direct_jmp_count = 0;
3538 direct_jmp2_count = 0;
3539 for(i = 0; i < nb_tbs; i++) {
3540 tb = &tbs[i];
3541 target_code_size += tb->size;
3542 if (tb->size > max_target_code_size)
3543 max_target_code_size = tb->size;
3544 if (tb->page_addr[1] != -1)
3545 cross_page++;
3546 if (tb->tb_next_offset[0] != 0xffff) {
3547 direct_jmp_count++;
3548 if (tb->tb_next_offset[1] != 0xffff) {
3549 direct_jmp2_count++;
3553 /* XXX: avoid using doubles ? */
3554 cpu_fprintf(f, "Translation buffer state:\n");
3555 cpu_fprintf(f, "gen code size %ld/%ld\n",
3556 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3557 cpu_fprintf(f, "TB count %d/%d\n",
3558 nb_tbs, code_gen_max_blocks);
3559 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3560 nb_tbs ? target_code_size / nb_tbs : 0,
3561 max_target_code_size);
3562 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3563 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3564 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3565 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3566 cross_page,
3567 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3568 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3569 direct_jmp_count,
3570 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3571 direct_jmp2_count,
3572 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3573 cpu_fprintf(f, "\nStatistics:\n");
3574 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3575 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3576 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3577 tcg_dump_info(f, cpu_fprintf);
3580 #if !defined(CONFIG_USER_ONLY)
3582 #define MMUSUFFIX _cmmu
3583 #define GETPC() NULL
3584 #define env cpu_single_env
3585 #define SOFTMMU_CODE_ACCESS
3587 #define SHIFT 0
3588 #include "softmmu_template.h"
3590 #define SHIFT 1
3591 #include "softmmu_template.h"
3593 #define SHIFT 2
3594 #include "softmmu_template.h"
3596 #define SHIFT 3
3597 #include "softmmu_template.h"
3599 #undef env
3601 #endif