target-ppc: Add vmaddfp and vnmsubfp instructions
[qemu/mini2440/sniper_sniper_test.git] / target-ppc / op_helper.c
blobf59cd15cf6a09434eca370d6c60f2487c522b927
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include <string.h>
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "helper.h"
25 #include "helper_regs.h"
27 //#define DEBUG_OP
28 //#define DEBUG_EXCEPTIONS
29 //#define DEBUG_SOFTWARE_TLB
31 #ifdef DEBUG_SOFTWARE_TLB
32 # define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
33 #else
34 # define LOG_SWTLB(...) do { } while (0)
35 #endif
38 /*****************************************************************************/
39 /* Exceptions processing helpers */
41 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
43 #if 0
44 printf("Raise exception %3x code : %d\n", exception, error_code);
45 #endif
46 env->exception_index = exception;
47 env->error_code = error_code;
48 cpu_loop_exit();
51 void helper_raise_exception (uint32_t exception)
53 helper_raise_exception_err(exception, 0);
56 /*****************************************************************************/
57 /* Registers load and stores */
58 target_ulong helper_load_cr (void)
60 return (env->crf[0] << 28) |
61 (env->crf[1] << 24) |
62 (env->crf[2] << 20) |
63 (env->crf[3] << 16) |
64 (env->crf[4] << 12) |
65 (env->crf[5] << 8) |
66 (env->crf[6] << 4) |
67 (env->crf[7] << 0);
70 void helper_store_cr (target_ulong val, uint32_t mask)
72 int i, sh;
74 for (i = 0, sh = 7; i < 8; i++, sh--) {
75 if (mask & (1 << sh))
76 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
80 /*****************************************************************************/
81 /* SPR accesses */
82 void helper_load_dump_spr (uint32_t sprn)
84 qemu_log("Read SPR %d %03x => " ADDRX "\n",
85 sprn, sprn, env->spr[sprn]);
88 void helper_store_dump_spr (uint32_t sprn)
90 qemu_log("Write SPR %d %03x <= " ADDRX "\n",
91 sprn, sprn, env->spr[sprn]);
94 target_ulong helper_load_tbl (void)
96 return cpu_ppc_load_tbl(env);
99 target_ulong helper_load_tbu (void)
101 return cpu_ppc_load_tbu(env);
104 target_ulong helper_load_atbl (void)
106 return cpu_ppc_load_atbl(env);
109 target_ulong helper_load_atbu (void)
111 return cpu_ppc_load_atbu(env);
114 target_ulong helper_load_601_rtcl (void)
116 return cpu_ppc601_load_rtcl(env);
119 target_ulong helper_load_601_rtcu (void)
121 return cpu_ppc601_load_rtcu(env);
124 #if !defined(CONFIG_USER_ONLY)
125 #if defined (TARGET_PPC64)
126 void helper_store_asr (target_ulong val)
128 ppc_store_asr(env, val);
130 #endif
132 void helper_store_sdr1 (target_ulong val)
134 ppc_store_sdr1(env, val);
137 void helper_store_tbl (target_ulong val)
139 cpu_ppc_store_tbl(env, val);
142 void helper_store_tbu (target_ulong val)
144 cpu_ppc_store_tbu(env, val);
147 void helper_store_atbl (target_ulong val)
149 cpu_ppc_store_atbl(env, val);
152 void helper_store_atbu (target_ulong val)
154 cpu_ppc_store_atbu(env, val);
157 void helper_store_601_rtcl (target_ulong val)
159 cpu_ppc601_store_rtcl(env, val);
162 void helper_store_601_rtcu (target_ulong val)
164 cpu_ppc601_store_rtcu(env, val);
167 target_ulong helper_load_decr (void)
169 return cpu_ppc_load_decr(env);
172 void helper_store_decr (target_ulong val)
174 cpu_ppc_store_decr(env, val);
177 void helper_store_hid0_601 (target_ulong val)
179 target_ulong hid0;
181 hid0 = env->spr[SPR_HID0];
182 if ((val ^ hid0) & 0x00000008) {
183 /* Change current endianness */
184 env->hflags &= ~(1 << MSR_LE);
185 env->hflags_nmsr &= ~(1 << MSR_LE);
186 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
187 env->hflags |= env->hflags_nmsr;
188 qemu_log("%s: set endianness to %c => " ADDRX "\n",
189 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
191 env->spr[SPR_HID0] = (uint32_t)val;
194 void helper_store_403_pbr (uint32_t num, target_ulong value)
196 if (likely(env->pb[num] != value)) {
197 env->pb[num] = value;
198 /* Should be optimized */
199 tlb_flush(env, 1);
203 target_ulong helper_load_40x_pit (void)
205 return load_40x_pit(env);
208 void helper_store_40x_pit (target_ulong val)
210 store_40x_pit(env, val);
213 void helper_store_40x_dbcr0 (target_ulong val)
215 store_40x_dbcr0(env, val);
218 void helper_store_40x_sler (target_ulong val)
220 store_40x_sler(env, val);
223 void helper_store_booke_tcr (target_ulong val)
225 store_booke_tcr(env, val);
228 void helper_store_booke_tsr (target_ulong val)
230 store_booke_tsr(env, val);
233 void helper_store_ibatu (uint32_t nr, target_ulong val)
235 ppc_store_ibatu(env, nr, val);
238 void helper_store_ibatl (uint32_t nr, target_ulong val)
240 ppc_store_ibatl(env, nr, val);
243 void helper_store_dbatu (uint32_t nr, target_ulong val)
245 ppc_store_dbatu(env, nr, val);
248 void helper_store_dbatl (uint32_t nr, target_ulong val)
250 ppc_store_dbatl(env, nr, val);
253 void helper_store_601_batl (uint32_t nr, target_ulong val)
255 ppc_store_ibatl_601(env, nr, val);
258 void helper_store_601_batu (uint32_t nr, target_ulong val)
260 ppc_store_ibatu_601(env, nr, val);
262 #endif
264 /*****************************************************************************/
265 /* Memory load and stores */
267 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
269 #if defined(TARGET_PPC64)
270 if (!msr_sf)
271 return (uint32_t)(addr + arg);
272 else
273 #endif
274 return addr + arg;
277 void helper_lmw (target_ulong addr, uint32_t reg)
279 for (; reg < 32; reg++) {
280 if (msr_le)
281 env->gpr[reg] = bswap32(ldl(addr));
282 else
283 env->gpr[reg] = ldl(addr);
284 addr = addr_add(addr, 4);
288 void helper_stmw (target_ulong addr, uint32_t reg)
290 for (; reg < 32; reg++) {
291 if (msr_le)
292 stl(addr, bswap32((uint32_t)env->gpr[reg]));
293 else
294 stl(addr, (uint32_t)env->gpr[reg]);
295 addr = addr_add(addr, 4);
299 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
301 int sh;
302 for (; nb > 3; nb -= 4) {
303 env->gpr[reg] = ldl(addr);
304 reg = (reg + 1) % 32;
305 addr = addr_add(addr, 4);
307 if (unlikely(nb > 0)) {
308 env->gpr[reg] = 0;
309 for (sh = 24; nb > 0; nb--, sh -= 8) {
310 env->gpr[reg] |= ldub(addr) << sh;
311 addr = addr_add(addr, 1);
315 /* PPC32 specification says we must generate an exception if
316 * rA is in the range of registers to be loaded.
317 * In an other hand, IBM says this is valid, but rA won't be loaded.
318 * For now, I'll follow the spec...
320 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
322 if (likely(xer_bc != 0)) {
323 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
324 (reg < rb && (reg + xer_bc) > rb))) {
325 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
326 POWERPC_EXCP_INVAL |
327 POWERPC_EXCP_INVAL_LSWX);
328 } else {
329 helper_lsw(addr, xer_bc, reg);
334 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
336 int sh;
337 for (; nb > 3; nb -= 4) {
338 stl(addr, env->gpr[reg]);
339 reg = (reg + 1) % 32;
340 addr = addr_add(addr, 4);
342 if (unlikely(nb > 0)) {
343 for (sh = 24; nb > 0; nb--, sh -= 8) {
344 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
345 addr = addr_add(addr, 1);
350 static void do_dcbz(target_ulong addr, int dcache_line_size)
352 addr &= ~(dcache_line_size - 1);
353 int i;
354 for (i = 0 ; i < dcache_line_size ; i += 4) {
355 stl(addr + i , 0);
357 if (env->reserve == addr)
358 env->reserve = (target_ulong)-1ULL;
361 void helper_dcbz(target_ulong addr)
363 do_dcbz(addr, env->dcache_line_size);
366 void helper_dcbz_970(target_ulong addr)
368 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
369 do_dcbz(addr, 32);
370 else
371 do_dcbz(addr, env->dcache_line_size);
374 void helper_icbi(target_ulong addr)
376 uint32_t tmp;
378 addr &= ~(env->dcache_line_size - 1);
379 /* Invalidate one cache line :
380 * PowerPC specification says this is to be treated like a load
381 * (not a fetch) by the MMU. To be sure it will be so,
382 * do the load "by hand".
384 tmp = ldl(addr);
385 tb_invalidate_page_range(addr, addr + env->icache_line_size);
388 // XXX: to be tested
389 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
391 int i, c, d;
392 d = 24;
393 for (i = 0; i < xer_bc; i++) {
394 c = ldub(addr);
395 addr = addr_add(addr, 1);
396 /* ra (if not 0) and rb are never modified */
397 if (likely(reg != rb && (ra == 0 || reg != ra))) {
398 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
400 if (unlikely(c == xer_cmp))
401 break;
402 if (likely(d != 0)) {
403 d -= 8;
404 } else {
405 d = 24;
406 reg++;
407 reg = reg & 0x1F;
410 return i;
413 /*****************************************************************************/
414 /* Fixed point operations helpers */
415 #if defined(TARGET_PPC64)
417 /* multiply high word */
418 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
420 uint64_t tl, th;
422 muls64(&tl, &th, arg1, arg2);
423 return th;
426 /* multiply high word unsigned */
427 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
429 uint64_t tl, th;
431 mulu64(&tl, &th, arg1, arg2);
432 return th;
435 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
437 int64_t th;
438 uint64_t tl;
440 muls64(&tl, (uint64_t *)&th, arg1, arg2);
441 /* If th != 0 && th != -1, then we had an overflow */
442 if (likely((uint64_t)(th + 1) <= 1)) {
443 env->xer &= ~(1 << XER_OV);
444 } else {
445 env->xer |= (1 << XER_OV) | (1 << XER_SO);
447 return (int64_t)tl;
449 #endif
451 target_ulong helper_cntlzw (target_ulong t)
453 return clz32(t);
456 #if defined(TARGET_PPC64)
457 target_ulong helper_cntlzd (target_ulong t)
459 return clz64(t);
461 #endif
463 /* shift right arithmetic helper */
464 target_ulong helper_sraw (target_ulong value, target_ulong shift)
466 int32_t ret;
468 if (likely(!(shift & 0x20))) {
469 if (likely((uint32_t)shift != 0)) {
470 shift &= 0x1f;
471 ret = (int32_t)value >> shift;
472 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
473 env->xer &= ~(1 << XER_CA);
474 } else {
475 env->xer |= (1 << XER_CA);
477 } else {
478 ret = (int32_t)value;
479 env->xer &= ~(1 << XER_CA);
481 } else {
482 ret = (int32_t)value >> 31;
483 if (ret) {
484 env->xer |= (1 << XER_CA);
485 } else {
486 env->xer &= ~(1 << XER_CA);
489 return (target_long)ret;
492 #if defined(TARGET_PPC64)
493 target_ulong helper_srad (target_ulong value, target_ulong shift)
495 int64_t ret;
497 if (likely(!(shift & 0x40))) {
498 if (likely((uint64_t)shift != 0)) {
499 shift &= 0x3f;
500 ret = (int64_t)value >> shift;
501 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
502 env->xer &= ~(1 << XER_CA);
503 } else {
504 env->xer |= (1 << XER_CA);
506 } else {
507 ret = (int64_t)value;
508 env->xer &= ~(1 << XER_CA);
510 } else {
511 ret = (int64_t)value >> 63;
512 if (ret) {
513 env->xer |= (1 << XER_CA);
514 } else {
515 env->xer &= ~(1 << XER_CA);
518 return ret;
520 #endif
522 target_ulong helper_popcntb (target_ulong val)
524 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
525 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
526 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
527 return val;
530 #if defined(TARGET_PPC64)
531 target_ulong helper_popcntb_64 (target_ulong val)
533 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
534 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
535 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
536 return val;
538 #endif
540 /*****************************************************************************/
541 /* Floating point operations helpers */
542 uint64_t helper_float32_to_float64(uint32_t arg)
544 CPU_FloatU f;
545 CPU_DoubleU d;
546 f.l = arg;
547 d.d = float32_to_float64(f.f, &env->fp_status);
548 return d.ll;
551 uint32_t helper_float64_to_float32(uint64_t arg)
553 CPU_FloatU f;
554 CPU_DoubleU d;
555 d.ll = arg;
556 f.f = float64_to_float32(d.d, &env->fp_status);
557 return f.l;
560 static always_inline int isden (float64 d)
562 CPU_DoubleU u;
564 u.d = d;
566 return ((u.ll >> 52) & 0x7FF) == 0;
569 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
571 CPU_DoubleU farg;
572 int isneg;
573 int ret;
574 farg.ll = arg;
575 isneg = float64_is_neg(farg.d);
576 if (unlikely(float64_is_nan(farg.d))) {
577 if (float64_is_signaling_nan(farg.d)) {
578 /* Signaling NaN: flags are undefined */
579 ret = 0x00;
580 } else {
581 /* Quiet NaN */
582 ret = 0x11;
584 } else if (unlikely(float64_is_infinity(farg.d))) {
585 /* +/- infinity */
586 if (isneg)
587 ret = 0x09;
588 else
589 ret = 0x05;
590 } else {
591 if (float64_is_zero(farg.d)) {
592 /* +/- zero */
593 if (isneg)
594 ret = 0x12;
595 else
596 ret = 0x02;
597 } else {
598 if (isden(farg.d)) {
599 /* Denormalized numbers */
600 ret = 0x10;
601 } else {
602 /* Normalized numbers */
603 ret = 0x00;
605 if (isneg) {
606 ret |= 0x08;
607 } else {
608 ret |= 0x04;
612 if (set_fprf) {
613 /* We update FPSCR_FPRF */
614 env->fpscr &= ~(0x1F << FPSCR_FPRF);
615 env->fpscr |= ret << FPSCR_FPRF;
617 /* We just need fpcc to update Rc1 */
618 return ret & 0xF;
621 /* Floating-point invalid operations exception */
622 static always_inline uint64_t fload_invalid_op_excp (int op)
624 uint64_t ret = 0;
625 int ve;
627 ve = fpscr_ve;
628 switch (op) {
629 case POWERPC_EXCP_FP_VXSNAN:
630 env->fpscr |= 1 << FPSCR_VXSNAN;
631 break;
632 case POWERPC_EXCP_FP_VXSOFT:
633 env->fpscr |= 1 << FPSCR_VXSOFT;
634 break;
635 case POWERPC_EXCP_FP_VXISI:
636 /* Magnitude subtraction of infinities */
637 env->fpscr |= 1 << FPSCR_VXISI;
638 goto update_arith;
639 case POWERPC_EXCP_FP_VXIDI:
640 /* Division of infinity by infinity */
641 env->fpscr |= 1 << FPSCR_VXIDI;
642 goto update_arith;
643 case POWERPC_EXCP_FP_VXZDZ:
644 /* Division of zero by zero */
645 env->fpscr |= 1 << FPSCR_VXZDZ;
646 goto update_arith;
647 case POWERPC_EXCP_FP_VXIMZ:
648 /* Multiplication of zero by infinity */
649 env->fpscr |= 1 << FPSCR_VXIMZ;
650 goto update_arith;
651 case POWERPC_EXCP_FP_VXVC:
652 /* Ordered comparison of NaN */
653 env->fpscr |= 1 << FPSCR_VXVC;
654 env->fpscr &= ~(0xF << FPSCR_FPCC);
655 env->fpscr |= 0x11 << FPSCR_FPCC;
656 /* We must update the target FPR before raising the exception */
657 if (ve != 0) {
658 env->exception_index = POWERPC_EXCP_PROGRAM;
659 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
660 /* Update the floating-point enabled exception summary */
661 env->fpscr |= 1 << FPSCR_FEX;
662 /* Exception is differed */
663 ve = 0;
665 break;
666 case POWERPC_EXCP_FP_VXSQRT:
667 /* Square root of a negative number */
668 env->fpscr |= 1 << FPSCR_VXSQRT;
669 update_arith:
670 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
671 if (ve == 0) {
672 /* Set the result to quiet NaN */
673 ret = 0xFFF8000000000000ULL;
674 env->fpscr &= ~(0xF << FPSCR_FPCC);
675 env->fpscr |= 0x11 << FPSCR_FPCC;
677 break;
678 case POWERPC_EXCP_FP_VXCVI:
679 /* Invalid conversion */
680 env->fpscr |= 1 << FPSCR_VXCVI;
681 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
682 if (ve == 0) {
683 /* Set the result to quiet NaN */
684 ret = 0xFFF8000000000000ULL;
685 env->fpscr &= ~(0xF << FPSCR_FPCC);
686 env->fpscr |= 0x11 << FPSCR_FPCC;
688 break;
690 /* Update the floating-point invalid operation summary */
691 env->fpscr |= 1 << FPSCR_VX;
692 /* Update the floating-point exception summary */
693 env->fpscr |= 1 << FPSCR_FX;
694 if (ve != 0) {
695 /* Update the floating-point enabled exception summary */
696 env->fpscr |= 1 << FPSCR_FEX;
697 if (msr_fe0 != 0 || msr_fe1 != 0)
698 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
700 return ret;
703 static always_inline void float_zero_divide_excp (void)
705 env->fpscr |= 1 << FPSCR_ZX;
706 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
707 /* Update the floating-point exception summary */
708 env->fpscr |= 1 << FPSCR_FX;
709 if (fpscr_ze != 0) {
710 /* Update the floating-point enabled exception summary */
711 env->fpscr |= 1 << FPSCR_FEX;
712 if (msr_fe0 != 0 || msr_fe1 != 0) {
713 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
714 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
719 static always_inline void float_overflow_excp (void)
721 env->fpscr |= 1 << FPSCR_OX;
722 /* Update the floating-point exception summary */
723 env->fpscr |= 1 << FPSCR_FX;
724 if (fpscr_oe != 0) {
725 /* XXX: should adjust the result */
726 /* Update the floating-point enabled exception summary */
727 env->fpscr |= 1 << FPSCR_FEX;
728 /* We must update the target FPR before raising the exception */
729 env->exception_index = POWERPC_EXCP_PROGRAM;
730 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
731 } else {
732 env->fpscr |= 1 << FPSCR_XX;
733 env->fpscr |= 1 << FPSCR_FI;
737 static always_inline void float_underflow_excp (void)
739 env->fpscr |= 1 << FPSCR_UX;
740 /* Update the floating-point exception summary */
741 env->fpscr |= 1 << FPSCR_FX;
742 if (fpscr_ue != 0) {
743 /* XXX: should adjust the result */
744 /* Update the floating-point enabled exception summary */
745 env->fpscr |= 1 << FPSCR_FEX;
746 /* We must update the target FPR before raising the exception */
747 env->exception_index = POWERPC_EXCP_PROGRAM;
748 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
752 static always_inline void float_inexact_excp (void)
754 env->fpscr |= 1 << FPSCR_XX;
755 /* Update the floating-point exception summary */
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_xe != 0) {
758 /* Update the floating-point enabled exception summary */
759 env->fpscr |= 1 << FPSCR_FEX;
760 /* We must update the target FPR before raising the exception */
761 env->exception_index = POWERPC_EXCP_PROGRAM;
762 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
766 static always_inline void fpscr_set_rounding_mode (void)
768 int rnd_type;
770 /* Set rounding mode */
771 switch (fpscr_rn) {
772 case 0:
773 /* Best approximation (round to nearest) */
774 rnd_type = float_round_nearest_even;
775 break;
776 case 1:
777 /* Smaller magnitude (round toward zero) */
778 rnd_type = float_round_to_zero;
779 break;
780 case 2:
781 /* Round toward +infinite */
782 rnd_type = float_round_up;
783 break;
784 default:
785 case 3:
786 /* Round toward -infinite */
787 rnd_type = float_round_down;
788 break;
790 set_float_rounding_mode(rnd_type, &env->fp_status);
793 void helper_fpscr_clrbit (uint32_t bit)
795 int prev;
797 prev = (env->fpscr >> bit) & 1;
798 env->fpscr &= ~(1 << bit);
799 if (prev == 1) {
800 switch (bit) {
801 case FPSCR_RN1:
802 case FPSCR_RN:
803 fpscr_set_rounding_mode();
804 break;
805 default:
806 break;
811 void helper_fpscr_setbit (uint32_t bit)
813 int prev;
815 prev = (env->fpscr >> bit) & 1;
816 env->fpscr |= 1 << bit;
817 if (prev == 0) {
818 switch (bit) {
819 case FPSCR_VX:
820 env->fpscr |= 1 << FPSCR_FX;
821 if (fpscr_ve)
822 goto raise_ve;
823 case FPSCR_OX:
824 env->fpscr |= 1 << FPSCR_FX;
825 if (fpscr_oe)
826 goto raise_oe;
827 break;
828 case FPSCR_UX:
829 env->fpscr |= 1 << FPSCR_FX;
830 if (fpscr_ue)
831 goto raise_ue;
832 break;
833 case FPSCR_ZX:
834 env->fpscr |= 1 << FPSCR_FX;
835 if (fpscr_ze)
836 goto raise_ze;
837 break;
838 case FPSCR_XX:
839 env->fpscr |= 1 << FPSCR_FX;
840 if (fpscr_xe)
841 goto raise_xe;
842 break;
843 case FPSCR_VXSNAN:
844 case FPSCR_VXISI:
845 case FPSCR_VXIDI:
846 case FPSCR_VXZDZ:
847 case FPSCR_VXIMZ:
848 case FPSCR_VXVC:
849 case FPSCR_VXSOFT:
850 case FPSCR_VXSQRT:
851 case FPSCR_VXCVI:
852 env->fpscr |= 1 << FPSCR_VX;
853 env->fpscr |= 1 << FPSCR_FX;
854 if (fpscr_ve != 0)
855 goto raise_ve;
856 break;
857 case FPSCR_VE:
858 if (fpscr_vx != 0) {
859 raise_ve:
860 env->error_code = POWERPC_EXCP_FP;
861 if (fpscr_vxsnan)
862 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
863 if (fpscr_vxisi)
864 env->error_code |= POWERPC_EXCP_FP_VXISI;
865 if (fpscr_vxidi)
866 env->error_code |= POWERPC_EXCP_FP_VXIDI;
867 if (fpscr_vxzdz)
868 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
869 if (fpscr_vximz)
870 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
871 if (fpscr_vxvc)
872 env->error_code |= POWERPC_EXCP_FP_VXVC;
873 if (fpscr_vxsoft)
874 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
875 if (fpscr_vxsqrt)
876 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
877 if (fpscr_vxcvi)
878 env->error_code |= POWERPC_EXCP_FP_VXCVI;
879 goto raise_excp;
881 break;
882 case FPSCR_OE:
883 if (fpscr_ox != 0) {
884 raise_oe:
885 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
886 goto raise_excp;
888 break;
889 case FPSCR_UE:
890 if (fpscr_ux != 0) {
891 raise_ue:
892 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
893 goto raise_excp;
895 break;
896 case FPSCR_ZE:
897 if (fpscr_zx != 0) {
898 raise_ze:
899 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
900 goto raise_excp;
902 break;
903 case FPSCR_XE:
904 if (fpscr_xx != 0) {
905 raise_xe:
906 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
907 goto raise_excp;
909 break;
910 case FPSCR_RN1:
911 case FPSCR_RN:
912 fpscr_set_rounding_mode();
913 break;
914 default:
915 break;
916 raise_excp:
917 /* Update the floating-point enabled exception summary */
918 env->fpscr |= 1 << FPSCR_FEX;
919 /* We have to update Rc1 before raising the exception */
920 env->exception_index = POWERPC_EXCP_PROGRAM;
921 break;
926 void helper_store_fpscr (uint64_t arg, uint32_t mask)
929 * We use only the 32 LSB of the incoming fpr
931 uint32_t prev, new;
932 int i;
934 prev = env->fpscr;
935 new = (uint32_t)arg;
936 new &= ~0x60000000;
937 new |= prev & 0x60000000;
938 for (i = 0; i < 8; i++) {
939 if (mask & (1 << i)) {
940 env->fpscr &= ~(0xF << (4 * i));
941 env->fpscr |= new & (0xF << (4 * i));
944 /* Update VX and FEX */
945 if (fpscr_ix != 0)
946 env->fpscr |= 1 << FPSCR_VX;
947 else
948 env->fpscr &= ~(1 << FPSCR_VX);
949 if ((fpscr_ex & fpscr_eex) != 0) {
950 env->fpscr |= 1 << FPSCR_FEX;
951 env->exception_index = POWERPC_EXCP_PROGRAM;
952 /* XXX: we should compute it properly */
953 env->error_code = POWERPC_EXCP_FP;
955 else
956 env->fpscr &= ~(1 << FPSCR_FEX);
957 fpscr_set_rounding_mode();
960 void helper_float_check_status (void)
962 #ifdef CONFIG_SOFTFLOAT
963 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
964 (env->error_code & POWERPC_EXCP_FP)) {
965 /* Differred floating-point exception after target FPR update */
966 if (msr_fe0 != 0 || msr_fe1 != 0)
967 helper_raise_exception_err(env->exception_index, env->error_code);
968 } else {
969 int status = get_float_exception_flags(&env->fp_status);
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp();
972 } else if (status & float_flag_overflow) {
973 float_overflow_excp();
974 } else if (status & float_flag_underflow) {
975 float_underflow_excp();
976 } else if (status & float_flag_inexact) {
977 float_inexact_excp();
980 #else
981 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
982 (env->error_code & POWERPC_EXCP_FP)) {
983 /* Differred floating-point exception after target FPR update */
984 if (msr_fe0 != 0 || msr_fe1 != 0)
985 helper_raise_exception_err(env->exception_index, env->error_code);
987 #endif
990 #ifdef CONFIG_SOFTFLOAT
991 void helper_reset_fpstatus (void)
993 set_float_exception_flags(0, &env->fp_status);
995 #endif
997 /* fadd - fadd. */
998 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
1000 CPU_DoubleU farg1, farg2;
1002 farg1.ll = arg1;
1003 farg2.ll = arg2;
1004 #if USE_PRECISE_EMULATION
1005 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1006 float64_is_signaling_nan(farg2.d))) {
1007 /* sNaN addition */
1008 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1009 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1010 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1011 /* Magnitude subtraction of infinities */
1012 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1013 } else {
1014 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1016 #else
1017 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1018 #endif
1019 return farg1.ll;
1022 /* fsub - fsub. */
1023 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1025 CPU_DoubleU farg1, farg2;
1027 farg1.ll = arg1;
1028 farg2.ll = arg2;
1029 #if USE_PRECISE_EMULATION
1031 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1032 float64_is_signaling_nan(farg2.d))) {
1033 /* sNaN subtraction */
1034 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1035 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1036 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1037 /* Magnitude subtraction of infinities */
1038 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1039 } else {
1040 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1043 #else
1044 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1045 #endif
1046 return farg1.ll;
1049 /* fmul - fmul. */
1050 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1052 CPU_DoubleU farg1, farg2;
1054 farg1.ll = arg1;
1055 farg2.ll = arg2;
1056 #if USE_PRECISE_EMULATION
1057 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1058 float64_is_signaling_nan(farg2.d))) {
1059 /* sNaN multiplication */
1060 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1061 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1062 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1063 /* Multiplication of zero by infinity */
1064 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1065 } else {
1066 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1068 #else
1069 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1070 #endif
1071 return farg1.ll;
1074 /* fdiv - fdiv. */
1075 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1077 CPU_DoubleU farg1, farg2;
1079 farg1.ll = arg1;
1080 farg2.ll = arg2;
1081 #if USE_PRECISE_EMULATION
1082 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1083 float64_is_signaling_nan(farg2.d))) {
1084 /* sNaN division */
1085 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1086 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1087 /* Division of infinity by infinity */
1088 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1089 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1090 /* Division of zero by zero */
1091 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1092 } else {
1093 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1095 #else
1096 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1097 #endif
1098 return farg1.ll;
1101 /* fabs */
1102 uint64_t helper_fabs (uint64_t arg)
1104 CPU_DoubleU farg;
1106 farg.ll = arg;
1107 farg.d = float64_abs(farg.d);
1108 return farg.ll;
1111 /* fnabs */
1112 uint64_t helper_fnabs (uint64_t arg)
1114 CPU_DoubleU farg;
1116 farg.ll = arg;
1117 farg.d = float64_abs(farg.d);
1118 farg.d = float64_chs(farg.d);
1119 return farg.ll;
1122 /* fneg */
1123 uint64_t helper_fneg (uint64_t arg)
1125 CPU_DoubleU farg;
1127 farg.ll = arg;
1128 farg.d = float64_chs(farg.d);
1129 return farg.ll;
1132 /* fctiw - fctiw. */
1133 uint64_t helper_fctiw (uint64_t arg)
1135 CPU_DoubleU farg;
1136 farg.ll = arg;
1138 if (unlikely(float64_is_signaling_nan(farg.d))) {
1139 /* sNaN conversion */
1140 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1141 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1142 /* qNan / infinity conversion */
1143 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1144 } else {
1145 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1146 #if USE_PRECISE_EMULATION
1147 /* XXX: higher bits are not supposed to be significant.
1148 * to make tests easier, return the same as a real PowerPC 750
1150 farg.ll |= 0xFFF80000ULL << 32;
1151 #endif
1153 return farg.ll;
1156 /* fctiwz - fctiwz. */
1157 uint64_t helper_fctiwz (uint64_t arg)
1159 CPU_DoubleU farg;
1160 farg.ll = arg;
1162 if (unlikely(float64_is_signaling_nan(farg.d))) {
1163 /* sNaN conversion */
1164 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1165 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1166 /* qNan / infinity conversion */
1167 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1168 } else {
1169 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1170 #if USE_PRECISE_EMULATION
1171 /* XXX: higher bits are not supposed to be significant.
1172 * to make tests easier, return the same as a real PowerPC 750
1174 farg.ll |= 0xFFF80000ULL << 32;
1175 #endif
1177 return farg.ll;
1180 #if defined(TARGET_PPC64)
1181 /* fcfid - fcfid. */
1182 uint64_t helper_fcfid (uint64_t arg)
1184 CPU_DoubleU farg;
1185 farg.d = int64_to_float64(arg, &env->fp_status);
1186 return farg.ll;
1189 /* fctid - fctid. */
1190 uint64_t helper_fctid (uint64_t arg)
1192 CPU_DoubleU farg;
1193 farg.ll = arg;
1195 if (unlikely(float64_is_signaling_nan(farg.d))) {
1196 /* sNaN conversion */
1197 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1198 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1199 /* qNan / infinity conversion */
1200 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1201 } else {
1202 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1204 return farg.ll;
1207 /* fctidz - fctidz. */
1208 uint64_t helper_fctidz (uint64_t arg)
1210 CPU_DoubleU farg;
1211 farg.ll = arg;
1213 if (unlikely(float64_is_signaling_nan(farg.d))) {
1214 /* sNaN conversion */
1215 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1216 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1217 /* qNan / infinity conversion */
1218 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1219 } else {
1220 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1222 return farg.ll;
1225 #endif
1227 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1229 CPU_DoubleU farg;
1230 farg.ll = arg;
1232 if (unlikely(float64_is_signaling_nan(farg.d))) {
1233 /* sNaN round */
1234 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1235 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1236 /* qNan / infinity round */
1237 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1238 } else {
1239 set_float_rounding_mode(rounding_mode, &env->fp_status);
1240 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1241 /* Restore rounding mode from FPSCR */
1242 fpscr_set_rounding_mode();
1244 return farg.ll;
1247 uint64_t helper_frin (uint64_t arg)
1249 return do_fri(arg, float_round_nearest_even);
1252 uint64_t helper_friz (uint64_t arg)
1254 return do_fri(arg, float_round_to_zero);
1257 uint64_t helper_frip (uint64_t arg)
1259 return do_fri(arg, float_round_up);
1262 uint64_t helper_frim (uint64_t arg)
1264 return do_fri(arg, float_round_down);
1267 /* fmadd - fmadd. */
1268 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1270 CPU_DoubleU farg1, farg2, farg3;
1272 farg1.ll = arg1;
1273 farg2.ll = arg2;
1274 farg3.ll = arg3;
1275 #if USE_PRECISE_EMULATION
1276 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1277 float64_is_signaling_nan(farg2.d) ||
1278 float64_is_signaling_nan(farg3.d))) {
1279 /* sNaN operation */
1280 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1281 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1282 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1283 /* Multiplication of zero by infinity */
1284 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1285 } else {
1286 #ifdef FLOAT128
1287 /* This is the way the PowerPC specification defines it */
1288 float128 ft0_128, ft1_128;
1290 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1291 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1292 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1293 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1294 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1295 /* Magnitude subtraction of infinities */
1296 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1297 } else {
1298 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1299 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1300 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1302 #else
1303 /* This is OK on x86 hosts */
1304 farg1.d = (farg1.d * farg2.d) + farg3.d;
1305 #endif
1307 #else
1308 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1309 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1310 #endif
1311 return farg1.ll;
1314 /* fmsub - fmsub. */
1315 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1317 CPU_DoubleU farg1, farg2, farg3;
1319 farg1.ll = arg1;
1320 farg2.ll = arg2;
1321 farg3.ll = arg3;
1322 #if USE_PRECISE_EMULATION
1323 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1324 float64_is_signaling_nan(farg2.d) ||
1325 float64_is_signaling_nan(farg3.d))) {
1326 /* sNaN operation */
1327 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1328 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1329 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1330 /* Multiplication of zero by infinity */
1331 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1332 } else {
1333 #ifdef FLOAT128
1334 /* This is the way the PowerPC specification defines it */
1335 float128 ft0_128, ft1_128;
1337 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1338 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1339 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1340 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1341 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1342 /* Magnitude subtraction of infinities */
1343 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1344 } else {
1345 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1346 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1347 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1349 #else
1350 /* This is OK on x86 hosts */
1351 farg1.d = (farg1.d * farg2.d) - farg3.d;
1352 #endif
1354 #else
1355 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1356 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1357 #endif
1358 return farg1.ll;
1361 /* fnmadd - fnmadd. */
1362 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1364 CPU_DoubleU farg1, farg2, farg3;
1366 farg1.ll = arg1;
1367 farg2.ll = arg2;
1368 farg3.ll = arg3;
1370 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1371 float64_is_signaling_nan(farg2.d) ||
1372 float64_is_signaling_nan(farg3.d))) {
1373 /* sNaN operation */
1374 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1375 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1376 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1377 /* Multiplication of zero by infinity */
1378 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1379 } else {
1380 #if USE_PRECISE_EMULATION
1381 #ifdef FLOAT128
1382 /* This is the way the PowerPC specification defines it */
1383 float128 ft0_128, ft1_128;
1385 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1386 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1387 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1388 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1389 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1390 /* Magnitude subtraction of infinities */
1391 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1392 } else {
1393 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1394 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1395 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1397 #else
1398 /* This is OK on x86 hosts */
1399 farg1.d = (farg1.d * farg2.d) + farg3.d;
1400 #endif
1401 #else
1402 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1403 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1404 #endif
1405 if (likely(!float64_is_nan(farg1.d)))
1406 farg1.d = float64_chs(farg1.d);
1408 return farg1.ll;
1411 /* fnmsub - fnmsub. */
1412 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1414 CPU_DoubleU farg1, farg2, farg3;
1416 farg1.ll = arg1;
1417 farg2.ll = arg2;
1418 farg3.ll = arg3;
1420 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1421 float64_is_signaling_nan(farg2.d) ||
1422 float64_is_signaling_nan(farg3.d))) {
1423 /* sNaN operation */
1424 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1425 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1426 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1427 /* Multiplication of zero by infinity */
1428 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1429 } else {
1430 #if USE_PRECISE_EMULATION
1431 #ifdef FLOAT128
1432 /* This is the way the PowerPC specification defines it */
1433 float128 ft0_128, ft1_128;
1435 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1436 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1437 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1438 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1439 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1440 /* Magnitude subtraction of infinities */
1441 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1442 } else {
1443 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1444 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1445 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1447 #else
1448 /* This is OK on x86 hosts */
1449 farg1.d = (farg1.d * farg2.d) - farg3.d;
1450 #endif
1451 #else
1452 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1453 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1454 #endif
1455 if (likely(!float64_is_nan(farg1.d)))
1456 farg1.d = float64_chs(farg1.d);
1458 return farg1.ll;
1461 /* frsp - frsp. */
1462 uint64_t helper_frsp (uint64_t arg)
1464 CPU_DoubleU farg;
1465 float32 f32;
1466 farg.ll = arg;
1468 #if USE_PRECISE_EMULATION
1469 if (unlikely(float64_is_signaling_nan(farg.d))) {
1470 /* sNaN square root */
1471 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1472 } else {
1473 f32 = float64_to_float32(farg.d, &env->fp_status);
1474 farg.d = float32_to_float64(f32, &env->fp_status);
1476 #else
1477 f32 = float64_to_float32(farg.d, &env->fp_status);
1478 farg.d = float32_to_float64(f32, &env->fp_status);
1479 #endif
1480 return farg.ll;
1483 /* fsqrt - fsqrt. */
1484 uint64_t helper_fsqrt (uint64_t arg)
1486 CPU_DoubleU farg;
1487 farg.ll = arg;
1489 if (unlikely(float64_is_signaling_nan(farg.d))) {
1490 /* sNaN square root */
1491 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1492 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1493 /* Square root of a negative nonzero number */
1494 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1495 } else {
1496 farg.d = float64_sqrt(farg.d, &env->fp_status);
1498 return farg.ll;
1501 /* fre - fre. */
1502 uint64_t helper_fre (uint64_t arg)
1504 CPU_DoubleU farg;
1505 farg.ll = arg;
1507 if (unlikely(float64_is_signaling_nan(farg.d))) {
1508 /* sNaN reciprocal */
1509 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1510 } else {
1511 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1513 return farg.d;
1516 /* fres - fres. */
1517 uint64_t helper_fres (uint64_t arg)
1519 CPU_DoubleU farg;
1520 float32 f32;
1521 farg.ll = arg;
1523 if (unlikely(float64_is_signaling_nan(farg.d))) {
1524 /* sNaN reciprocal */
1525 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1526 } else {
1527 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1528 f32 = float64_to_float32(farg.d, &env->fp_status);
1529 farg.d = float32_to_float64(f32, &env->fp_status);
1531 return farg.ll;
1534 /* frsqrte - frsqrte. */
1535 uint64_t helper_frsqrte (uint64_t arg)
1537 CPU_DoubleU farg;
1538 float32 f32;
1539 farg.ll = arg;
1541 if (unlikely(float64_is_signaling_nan(farg.d))) {
1542 /* sNaN reciprocal square root */
1543 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1544 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1545 /* Reciprocal square root of a negative nonzero number */
1546 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1547 } else {
1548 farg.d = float64_sqrt(farg.d, &env->fp_status);
1549 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1550 f32 = float64_to_float32(farg.d, &env->fp_status);
1551 farg.d = float32_to_float64(f32, &env->fp_status);
1553 return farg.ll;
1556 /* fsel - fsel. */
1557 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1559 CPU_DoubleU farg1;
1561 farg1.ll = arg1;
1563 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1564 return arg2;
1565 else
1566 return arg3;
1569 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1571 CPU_DoubleU farg1, farg2;
1572 uint32_t ret = 0;
1573 farg1.ll = arg1;
1574 farg2.ll = arg2;
1576 if (unlikely(float64_is_nan(farg1.d) ||
1577 float64_is_nan(farg2.d))) {
1578 ret = 0x01UL;
1579 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1580 ret = 0x08UL;
1581 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1582 ret = 0x04UL;
1583 } else {
1584 ret = 0x02UL;
1587 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1588 env->fpscr |= ret << FPSCR_FPRF;
1589 env->crf[crfD] = ret;
1590 if (unlikely(ret == 0x01UL
1591 && (float64_is_signaling_nan(farg1.d) ||
1592 float64_is_signaling_nan(farg2.d)))) {
1593 /* sNaN comparison */
1594 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1598 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1600 CPU_DoubleU farg1, farg2;
1601 uint32_t ret = 0;
1602 farg1.ll = arg1;
1603 farg2.ll = arg2;
1605 if (unlikely(float64_is_nan(farg1.d) ||
1606 float64_is_nan(farg2.d))) {
1607 ret = 0x01UL;
1608 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1609 ret = 0x08UL;
1610 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1611 ret = 0x04UL;
1612 } else {
1613 ret = 0x02UL;
1616 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1617 env->fpscr |= ret << FPSCR_FPRF;
1618 env->crf[crfD] = ret;
1619 if (unlikely (ret == 0x01UL)) {
1620 if (float64_is_signaling_nan(farg1.d) ||
1621 float64_is_signaling_nan(farg2.d)) {
1622 /* sNaN comparison */
1623 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1624 POWERPC_EXCP_FP_VXVC);
1625 } else {
1626 /* qNaN comparison */
1627 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1632 #if !defined (CONFIG_USER_ONLY)
1633 void helper_store_msr (target_ulong val)
1635 val = hreg_store_msr(env, val, 0);
1636 if (val != 0) {
1637 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1638 helper_raise_exception(val);
1642 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1643 target_ulong msrm, int keep_msrh)
1645 #if defined(TARGET_PPC64)
1646 if (msr & (1ULL << MSR_SF)) {
1647 nip = (uint64_t)nip;
1648 msr &= (uint64_t)msrm;
1649 } else {
1650 nip = (uint32_t)nip;
1651 msr = (uint32_t)(msr & msrm);
1652 if (keep_msrh)
1653 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1655 #else
1656 nip = (uint32_t)nip;
1657 msr &= (uint32_t)msrm;
1658 #endif
1659 /* XXX: beware: this is false if VLE is supported */
1660 env->nip = nip & ~((target_ulong)0x00000003);
1661 hreg_store_msr(env, msr, 1);
1662 #if defined (DEBUG_OP)
1663 cpu_dump_rfi(env->nip, env->msr);
1664 #endif
1665 /* No need to raise an exception here,
1666 * as rfi is always the last insn of a TB
1668 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1671 void helper_rfi (void)
1673 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1674 ~((target_ulong)0xFFFF0000), 1);
1677 #if defined(TARGET_PPC64)
1678 void helper_rfid (void)
1680 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1681 ~((target_ulong)0xFFFF0000), 0);
1684 void helper_hrfid (void)
1686 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1687 ~((target_ulong)0xFFFF0000), 0);
1689 #endif
1690 #endif
1692 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1694 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1695 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1696 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1697 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1698 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1699 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1703 #if defined(TARGET_PPC64)
1704 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1706 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1707 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1708 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1709 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1710 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1711 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1713 #endif
1715 /*****************************************************************************/
1716 /* PowerPC 601 specific instructions (POWER bridge) */
1718 target_ulong helper_clcs (uint32_t arg)
1720 switch (arg) {
1721 case 0x0CUL:
1722 /* Instruction cache line size */
1723 return env->icache_line_size;
1724 break;
1725 case 0x0DUL:
1726 /* Data cache line size */
1727 return env->dcache_line_size;
1728 break;
1729 case 0x0EUL:
1730 /* Minimum cache line size */
1731 return (env->icache_line_size < env->dcache_line_size) ?
1732 env->icache_line_size : env->dcache_line_size;
1733 break;
1734 case 0x0FUL:
1735 /* Maximum cache line size */
1736 return (env->icache_line_size > env->dcache_line_size) ?
1737 env->icache_line_size : env->dcache_line_size;
1738 break;
1739 default:
1740 /* Undefined */
1741 return 0;
1742 break;
1746 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1748 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1750 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1751 (int32_t)arg2 == 0) {
1752 env->spr[SPR_MQ] = 0;
1753 return INT32_MIN;
1754 } else {
1755 env->spr[SPR_MQ] = tmp % arg2;
1756 return tmp / (int32_t)arg2;
1760 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1762 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1764 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1765 (int32_t)arg2 == 0) {
1766 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1767 env->spr[SPR_MQ] = 0;
1768 return INT32_MIN;
1769 } else {
1770 env->spr[SPR_MQ] = tmp % arg2;
1771 tmp /= (int32_t)arg2;
1772 if ((int32_t)tmp != tmp) {
1773 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1774 } else {
1775 env->xer &= ~(1 << XER_OV);
1777 return tmp;
1781 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1783 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1784 (int32_t)arg2 == 0) {
1785 env->spr[SPR_MQ] = 0;
1786 return INT32_MIN;
1787 } else {
1788 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1789 return (int32_t)arg1 / (int32_t)arg2;
1793 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1795 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1796 (int32_t)arg2 == 0) {
1797 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1798 env->spr[SPR_MQ] = 0;
1799 return INT32_MIN;
1800 } else {
1801 env->xer &= ~(1 << XER_OV);
1802 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1803 return (int32_t)arg1 / (int32_t)arg2;
1807 #if !defined (CONFIG_USER_ONLY)
1808 target_ulong helper_rac (target_ulong addr)
1810 mmu_ctx_t ctx;
1811 int nb_BATs;
1812 target_ulong ret = 0;
1814 /* We don't have to generate many instances of this instruction,
1815 * as rac is supervisor only.
1817 /* XXX: FIX THIS: Pretend we have no BAT */
1818 nb_BATs = env->nb_BATs;
1819 env->nb_BATs = 0;
1820 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1821 ret = ctx.raddr;
1822 env->nb_BATs = nb_BATs;
1823 return ret;
1826 void helper_rfsvc (void)
1828 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1830 #endif
1832 /*****************************************************************************/
1833 /* 602 specific instructions */
1834 /* mfrom is the most crazy instruction ever seen, imho ! */
1835 /* Real implementation uses a ROM table. Do the same */
1836 /* Extremly decomposed:
1837 * -arg / 256
1838 * return 256 * log10(10 + 1.0) + 0.5
1840 #if !defined (CONFIG_USER_ONLY)
1841 target_ulong helper_602_mfrom (target_ulong arg)
1843 if (likely(arg < 602)) {
1844 #include "mfrom_table.c"
1845 return mfrom_ROM_table[arg];
1846 } else {
1847 return 0;
1850 #endif
1852 /*****************************************************************************/
1853 /* Embedded PowerPC specific helpers */
1855 /* XXX: to be improved to check access rights when in user-mode */
1856 target_ulong helper_load_dcr (target_ulong dcrn)
1858 target_ulong val = 0;
1860 if (unlikely(env->dcr_env == NULL)) {
1861 qemu_log("No DCR environment\n");
1862 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1863 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1864 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1865 qemu_log("DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1866 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1867 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1869 return val;
1872 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1874 if (unlikely(env->dcr_env == NULL)) {
1875 qemu_log("No DCR environment\n");
1876 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1877 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1878 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1879 qemu_log("DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1880 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1881 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1885 #if !defined(CONFIG_USER_ONLY)
1886 void helper_40x_rfci (void)
1888 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1889 ~((target_ulong)0xFFFF0000), 0);
1892 void helper_rfci (void)
1894 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1895 ~((target_ulong)0x3FFF0000), 0);
1898 void helper_rfdi (void)
1900 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1901 ~((target_ulong)0x3FFF0000), 0);
1904 void helper_rfmci (void)
1906 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1907 ~((target_ulong)0x3FFF0000), 0);
1909 #endif
1911 /* 440 specific */
1912 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1914 target_ulong mask;
1915 int i;
1917 i = 1;
1918 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1919 if ((high & mask) == 0) {
1920 if (update_Rc) {
1921 env->crf[0] = 0x4;
1923 goto done;
1925 i++;
1927 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1928 if ((low & mask) == 0) {
1929 if (update_Rc) {
1930 env->crf[0] = 0x8;
1932 goto done;
1934 i++;
1936 if (update_Rc) {
1937 env->crf[0] = 0x2;
1939 done:
1940 env->xer = (env->xer & ~0x7F) | i;
1941 if (update_Rc) {
1942 env->crf[0] |= xer_so;
1944 return i;
1947 /*****************************************************************************/
1948 /* Altivec extension helpers */
1949 #if defined(WORDS_BIGENDIAN)
1950 #define HI_IDX 0
1951 #define LO_IDX 1
1952 #else
1953 #define HI_IDX 1
1954 #define LO_IDX 0
1955 #endif
1957 #if defined(WORDS_BIGENDIAN)
1958 #define VECTOR_FOR_INORDER_I(index, element) \
1959 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1960 #else
1961 #define VECTOR_FOR_INORDER_I(index, element) \
1962 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1963 #endif
1965 /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
1966 * execute the following block. */
1967 #define DO_HANDLE_NAN(result, x) \
1968 if (float32_is_nan(x) || float32_is_signaling_nan(x)) { \
1969 CPU_FloatU __f; \
1970 __f.f = x; \
1971 __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
1972 result = __f.f; \
1973 } else
1975 #define HANDLE_NAN1(result, x) \
1976 DO_HANDLE_NAN(result, x)
1977 #define HANDLE_NAN2(result, x, y) \
1978 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
1979 #define HANDLE_NAN3(result, x, y, z) \
1980 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
1982 /* Saturating arithmetic helpers. */
1983 #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1984 static always_inline to_type cvt##from##to (from_type x, int *sat) \
1986 to_type r; \
1987 if (use_min && x < min) { \
1988 r = min; \
1989 *sat = 1; \
1990 } else if (use_max && x > max) { \
1991 r = max; \
1992 *sat = 1; \
1993 } else { \
1994 r = x; \
1996 return r; \
1998 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
1999 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
2000 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
2001 SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
2002 SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
2003 SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
2004 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
2005 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
2006 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
2007 #undef SATCVT
2009 #define LVE(name, access, swap, element) \
2010 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2012 size_t n_elems = ARRAY_SIZE(r->element); \
2013 int adjust = HI_IDX*(n_elems-1); \
2014 int sh = sizeof(r->element[0]) >> 1; \
2015 int index = (addr & 0xf) >> sh; \
2016 if(msr_le) { \
2017 r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2018 } else { \
2019 r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2022 #define I(x) (x)
2023 LVE(lvebx, ldub, I, u8)
2024 LVE(lvehx, lduw, bswap16, u16)
2025 LVE(lvewx, ldl, bswap32, u32)
2026 #undef I
2027 #undef LVE
2029 void helper_lvsl (ppc_avr_t *r, target_ulong sh)
2031 int i, j = (sh & 0xf);
2033 VECTOR_FOR_INORDER_I (i, u8) {
2034 r->u8[i] = j++;
2038 void helper_lvsr (ppc_avr_t *r, target_ulong sh)
2040 int i, j = 0x10 - (sh & 0xf);
2042 VECTOR_FOR_INORDER_I (i, u8) {
2043 r->u8[i] = j++;
2047 #define STVE(name, access, swap, element) \
2048 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2050 size_t n_elems = ARRAY_SIZE(r->element); \
2051 int adjust = HI_IDX*(n_elems-1); \
2052 int sh = sizeof(r->element[0]) >> 1; \
2053 int index = (addr & 0xf) >> sh; \
2054 if(msr_le) { \
2055 access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2056 } else { \
2057 access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2060 #define I(x) (x)
2061 STVE(stvebx, stb, I, u8)
2062 STVE(stvehx, stw, bswap16, u16)
2063 STVE(stvewx, stl, bswap32, u32)
2064 #undef I
2065 #undef LVE
2067 void helper_mtvscr (ppc_avr_t *r)
2069 #if defined(WORDS_BIGENDIAN)
2070 env->vscr = r->u32[3];
2071 #else
2072 env->vscr = r->u32[0];
2073 #endif
2074 set_flush_to_zero(vscr_nj, &env->vec_status);
2077 void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2079 int i;
2080 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2081 r->u32[i] = ~a->u32[i] < b->u32[i];
2085 #define VARITH_DO(name, op, element) \
2086 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2088 int i; \
2089 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2090 r->element[i] = a->element[i] op b->element[i]; \
2093 #define VARITH(suffix, element) \
2094 VARITH_DO(add##suffix, +, element) \
2095 VARITH_DO(sub##suffix, -, element)
2096 VARITH(ubm, u8)
2097 VARITH(uhm, u16)
2098 VARITH(uwm, u32)
2099 #undef VARITH_DO
2100 #undef VARITH
2102 #define VARITHFP(suffix, func) \
2103 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2105 int i; \
2106 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2107 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2108 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
2112 VARITHFP(addfp, float32_add)
2113 VARITHFP(subfp, float32_sub)
2114 #undef VARITHFP
2116 #define VARITHSAT_CASE(type, op, cvt, element) \
2118 type result = (type)a->element[i] op (type)b->element[i]; \
2119 r->element[i] = cvt(result, &sat); \
2122 #define VARITHSAT_DO(name, op, optype, cvt, element) \
2123 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2125 int sat = 0; \
2126 int i; \
2127 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2128 switch (sizeof(r->element[0])) { \
2129 case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
2130 case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
2131 case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
2134 if (sat) { \
2135 env->vscr |= (1 << VSCR_SAT); \
2138 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
2139 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
2140 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
2141 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
2142 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
2143 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
2144 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
2145 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
2146 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
2147 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
2148 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
2149 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
2150 #undef VARITHSAT_CASE
2151 #undef VARITHSAT_DO
2152 #undef VARITHSAT_SIGNED
2153 #undef VARITHSAT_UNSIGNED
2155 #define VAVG_DO(name, element, etype) \
2156 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2158 int i; \
2159 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2160 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2161 r->element[i] = x >> 1; \
2165 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2166 VAVG_DO(avgs##type, signed_element, signed_type) \
2167 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2168 VAVG(b, s8, int16_t, u8, uint16_t)
2169 VAVG(h, s16, int32_t, u16, uint32_t)
2170 VAVG(w, s32, int64_t, u32, uint64_t)
2171 #undef VAVG_DO
2172 #undef VAVG
2174 #define VCF(suffix, cvt, element) \
2175 void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2177 int i; \
2178 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2179 float32 t = cvt(b->element[i], &env->vec_status); \
2180 r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \
2183 VCF(ux, uint32_to_float32, u32)
2184 VCF(sx, int32_to_float32, s32)
2185 #undef VCF
2187 #define VCMP_DO(suffix, compare, element, record) \
2188 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2190 uint32_t ones = (uint32_t)-1; \
2191 uint32_t all = ones; \
2192 uint32_t none = 0; \
2193 int i; \
2194 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2195 uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2196 switch (sizeof (a->element[0])) { \
2197 case 4: r->u32[i] = result; break; \
2198 case 2: r->u16[i] = result; break; \
2199 case 1: r->u8[i] = result; break; \
2201 all &= result; \
2202 none |= result; \
2204 if (record) { \
2205 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2208 #define VCMP(suffix, compare, element) \
2209 VCMP_DO(suffix, compare, element, 0) \
2210 VCMP_DO(suffix##_dot, compare, element, 1)
2211 VCMP(equb, ==, u8)
2212 VCMP(equh, ==, u16)
2213 VCMP(equw, ==, u32)
2214 VCMP(gtub, >, u8)
2215 VCMP(gtuh, >, u16)
2216 VCMP(gtuw, >, u32)
2217 VCMP(gtsb, >, s8)
2218 VCMP(gtsh, >, s16)
2219 VCMP(gtsw, >, s32)
2220 #undef VCMP_DO
2221 #undef VCMP
2223 void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2225 int i;
2226 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2227 HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
2228 /* Need to do the computation in higher precision and round
2229 * once at the end. */
2230 float64 af, bf, cf, t;
2231 af = float32_to_float64(a->f[i], &env->vec_status);
2232 bf = float32_to_float64(b->f[i], &env->vec_status);
2233 cf = float32_to_float64(c->f[i], &env->vec_status);
2234 t = float64_mul(af, cf, &env->vec_status);
2235 t = float64_add(t, bf, &env->vec_status);
2236 r->f[i] = float64_to_float32(t, &env->vec_status);
2241 void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2243 int sat = 0;
2244 int i;
2246 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2247 int32_t prod = a->s16[i] * b->s16[i];
2248 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2249 r->s16[i] = cvtswsh (t, &sat);
2252 if (sat) {
2253 env->vscr |= (1 << VSCR_SAT);
2257 void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2259 int sat = 0;
2260 int i;
2262 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2263 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
2264 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2265 r->s16[i] = cvtswsh (t, &sat);
2268 if (sat) {
2269 env->vscr |= (1 << VSCR_SAT);
2273 #define VMINMAX_DO(name, compare, element) \
2274 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2276 int i; \
2277 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2278 if (a->element[i] compare b->element[i]) { \
2279 r->element[i] = b->element[i]; \
2280 } else { \
2281 r->element[i] = a->element[i]; \
2285 #define VMINMAX(suffix, element) \
2286 VMINMAX_DO(min##suffix, >, element) \
2287 VMINMAX_DO(max##suffix, <, element)
2288 VMINMAX(sb, s8)
2289 VMINMAX(sh, s16)
2290 VMINMAX(sw, s32)
2291 VMINMAX(ub, u8)
2292 VMINMAX(uh, u16)
2293 VMINMAX(uw, u32)
2294 #undef VMINMAX_DO
2295 #undef VMINMAX
2297 #define VMINMAXFP(suffix, rT, rF) \
2298 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2300 int i; \
2301 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2302 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2303 if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
2304 r->f[i] = rT->f[i]; \
2305 } else { \
2306 r->f[i] = rF->f[i]; \
2311 VMINMAXFP(minfp, a, b)
2312 VMINMAXFP(maxfp, b, a)
2313 #undef VMINMAXFP
2315 void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2317 int i;
2318 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2319 int32_t prod = a->s16[i] * b->s16[i];
2320 r->s16[i] = (int16_t) (prod + c->s16[i]);
2324 #define VMRG_DO(name, element, highp) \
2325 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2327 ppc_avr_t result; \
2328 int i; \
2329 size_t n_elems = ARRAY_SIZE(r->element); \
2330 for (i = 0; i < n_elems/2; i++) { \
2331 if (highp) { \
2332 result.element[i*2+HI_IDX] = a->element[i]; \
2333 result.element[i*2+LO_IDX] = b->element[i]; \
2334 } else { \
2335 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2336 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2339 *r = result; \
2341 #if defined(WORDS_BIGENDIAN)
2342 #define MRGHI 0
2343 #define MRGLO 1
2344 #else
2345 #define MRGHI 1
2346 #define MRGLO 0
2347 #endif
2348 #define VMRG(suffix, element) \
2349 VMRG_DO(mrgl##suffix, element, MRGHI) \
2350 VMRG_DO(mrgh##suffix, element, MRGLO)
2351 VMRG(b, u8)
2352 VMRG(h, u16)
2353 VMRG(w, u32)
2354 #undef VMRG_DO
2355 #undef VMRG
2356 #undef MRGHI
2357 #undef MRGLO
2359 void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2361 int32_t prod[16];
2362 int i;
2364 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
2365 prod[i] = (int32_t)a->s8[i] * b->u8[i];
2368 VECTOR_FOR_INORDER_I(i, s32) {
2369 r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2373 void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2375 int32_t prod[8];
2376 int i;
2378 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2379 prod[i] = a->s16[i] * b->s16[i];
2382 VECTOR_FOR_INORDER_I(i, s32) {
2383 r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
2387 void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2389 int32_t prod[8];
2390 int i;
2391 int sat = 0;
2393 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2394 prod[i] = (int32_t)a->s16[i] * b->s16[i];
2397 VECTOR_FOR_INORDER_I (i, s32) {
2398 int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
2399 r->u32[i] = cvtsdsw(t, &sat);
2402 if (sat) {
2403 env->vscr |= (1 << VSCR_SAT);
2407 void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2409 uint16_t prod[16];
2410 int i;
2412 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2413 prod[i] = a->u8[i] * b->u8[i];
2416 VECTOR_FOR_INORDER_I(i, u32) {
2417 r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2421 void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2423 uint32_t prod[8];
2424 int i;
2426 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2427 prod[i] = a->u16[i] * b->u16[i];
2430 VECTOR_FOR_INORDER_I(i, u32) {
2431 r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
2435 void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2437 uint32_t prod[8];
2438 int i;
2439 int sat = 0;
2441 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2442 prod[i] = a->u16[i] * b->u16[i];
2445 VECTOR_FOR_INORDER_I (i, s32) {
2446 uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
2447 r->u32[i] = cvtuduw(t, &sat);
2450 if (sat) {
2451 env->vscr |= (1 << VSCR_SAT);
2455 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2456 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2458 int i; \
2459 VECTOR_FOR_INORDER_I(i, prod_element) { \
2460 if (evenp) { \
2461 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2462 } else { \
2463 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2467 #define VMUL(suffix, mul_element, prod_element) \
2468 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2469 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2470 VMUL(sb, s8, s16)
2471 VMUL(sh, s16, s32)
2472 VMUL(ub, u8, u16)
2473 VMUL(uh, u16, u32)
2474 #undef VMUL_DO
2475 #undef VMUL
2477 void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2479 int i;
2480 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2481 HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
2482 /* Need to do the computation is higher precision and round
2483 * once at the end. */
2484 float64 af, bf, cf, t;
2485 af = float32_to_float64(a->f[i], &env->vec_status);
2486 bf = float32_to_float64(b->f[i], &env->vec_status);
2487 cf = float32_to_float64(c->f[i], &env->vec_status);
2488 t = float64_mul(af, cf, &env->vec_status);
2489 t = float64_sub(t, bf, &env->vec_status);
2490 t = float64_chs(t);
2491 r->f[i] = float64_to_float32(t, &env->vec_status);
2496 void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2498 ppc_avr_t result;
2499 int i;
2500 VECTOR_FOR_INORDER_I (i, u8) {
2501 int s = c->u8[i] & 0x1f;
2502 #if defined(WORDS_BIGENDIAN)
2503 int index = s & 0xf;
2504 #else
2505 int index = 15 - (s & 0xf);
2506 #endif
2507 if (s & 0x10) {
2508 result.u8[i] = b->u8[index];
2509 } else {
2510 result.u8[i] = a->u8[index];
2513 *r = result;
2516 #if defined(WORDS_BIGENDIAN)
2517 #define PKBIG 1
2518 #else
2519 #define PKBIG 0
2520 #endif
2521 void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2523 int i, j;
2524 ppc_avr_t result;
2525 #if defined(WORDS_BIGENDIAN)
2526 const ppc_avr_t *x[2] = { a, b };
2527 #else
2528 const ppc_avr_t *x[2] = { b, a };
2529 #endif
2531 VECTOR_FOR_INORDER_I (i, u64) {
2532 VECTOR_FOR_INORDER_I (j, u32){
2533 uint32_t e = x[i]->u32[j];
2534 result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
2535 ((e >> 6) & 0x3e0) |
2536 ((e >> 3) & 0x1f));
2539 *r = result;
2542 #define VPK(suffix, from, to, cvt, dosat) \
2543 void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2545 int i; \
2546 int sat = 0; \
2547 ppc_avr_t result; \
2548 ppc_avr_t *a0 = PKBIG ? a : b; \
2549 ppc_avr_t *a1 = PKBIG ? b : a; \
2550 VECTOR_FOR_INORDER_I (i, from) { \
2551 result.to[i] = cvt(a0->from[i], &sat); \
2552 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
2554 *r = result; \
2555 if (dosat && sat) { \
2556 env->vscr |= (1 << VSCR_SAT); \
2559 #define I(x, y) (x)
2560 VPK(shss, s16, s8, cvtshsb, 1)
2561 VPK(shus, s16, u8, cvtshub, 1)
2562 VPK(swss, s32, s16, cvtswsh, 1)
2563 VPK(swus, s32, u16, cvtswuh, 1)
2564 VPK(uhus, u16, u8, cvtuhub, 1)
2565 VPK(uwus, u32, u16, cvtuwuh, 1)
2566 VPK(uhum, u16, u8, I, 0)
2567 VPK(uwum, u32, u16, I, 0)
2568 #undef I
2569 #undef VPK
2570 #undef PKBIG
2572 #define VRFI(suffix, rounding) \
2573 void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2575 int i; \
2576 float_status s = env->vec_status; \
2577 set_float_rounding_mode(rounding, &s); \
2578 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2579 HANDLE_NAN1(r->f[i], b->f[i]) { \
2580 r->f[i] = float32_round_to_int (b->f[i], &s); \
2584 VRFI(n, float_round_nearest_even)
2585 VRFI(m, float_round_down)
2586 VRFI(p, float_round_up)
2587 VRFI(z, float_round_to_zero)
2588 #undef VRFI
2590 #define VROTATE(suffix, element) \
2591 void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2593 int i; \
2594 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2595 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2596 unsigned int shift = b->element[i] & mask; \
2597 r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2600 VROTATE(b, u8)
2601 VROTATE(h, u16)
2602 VROTATE(w, u32)
2603 #undef VROTATE
2605 void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2607 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
2608 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
2611 void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b)
2613 int i;
2614 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2615 HANDLE_NAN1(r->f[i], b->f[i]) {
2616 r->f[i] = float32_log2(b->f[i], &env->vec_status);
2621 #if defined(WORDS_BIGENDIAN)
2622 #define LEFT 0
2623 #define RIGHT 1
2624 #else
2625 #define LEFT 1
2626 #define RIGHT 0
2627 #endif
2628 /* The specification says that the results are undefined if all of the
2629 * shift counts are not identical. We check to make sure that they are
2630 * to conform to what real hardware appears to do. */
2631 #define VSHIFT(suffix, leftp) \
2632 void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2634 int shift = b->u8[LO_IDX*0x15] & 0x7; \
2635 int doit = 1; \
2636 int i; \
2637 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
2638 doit = doit && ((b->u8[i] & 0x7) == shift); \
2640 if (doit) { \
2641 if (shift == 0) { \
2642 *r = *a; \
2643 } else if (leftp) { \
2644 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
2645 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
2646 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
2647 } else { \
2648 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
2649 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
2650 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
2654 VSHIFT(l, LEFT)
2655 VSHIFT(r, RIGHT)
2656 #undef VSHIFT
2657 #undef LEFT
2658 #undef RIGHT
2660 #define VSL(suffix, element) \
2661 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2663 int i; \
2664 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2665 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2666 unsigned int shift = b->element[i] & mask; \
2667 r->element[i] = a->element[i] << shift; \
2670 VSL(b, u8)
2671 VSL(h, u16)
2672 VSL(w, u32)
2673 #undef VSL
2675 void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
2677 int sh = shift & 0xf;
2678 int i;
2679 ppc_avr_t result;
2681 #if defined(WORDS_BIGENDIAN)
2682 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2683 int index = sh + i;
2684 if (index > 0xf) {
2685 result.u8[i] = b->u8[index-0x10];
2686 } else {
2687 result.u8[i] = a->u8[index];
2690 #else
2691 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2692 int index = (16 - sh) + i;
2693 if (index > 0xf) {
2694 result.u8[i] = a->u8[index-0x10];
2695 } else {
2696 result.u8[i] = b->u8[index];
2699 #endif
2700 *r = result;
2703 void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2705 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2707 #if defined (WORDS_BIGENDIAN)
2708 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2709 memset (&r->u8[16-sh], 0, sh);
2710 #else
2711 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2712 memset (&r->u8[0], 0, sh);
2713 #endif
2716 /* Experimental testing shows that hardware masks the immediate. */
2717 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2718 #if defined(WORDS_BIGENDIAN)
2719 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2720 #else
2721 #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2722 #endif
2723 #define VSPLT(suffix, element) \
2724 void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2726 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
2727 int i; \
2728 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2729 r->element[i] = s; \
2732 VSPLT(b, u8)
2733 VSPLT(h, u16)
2734 VSPLT(w, u32)
2735 #undef VSPLT
2736 #undef SPLAT_ELEMENT
2737 #undef _SPLAT_MASKED
2739 #define VSPLTI(suffix, element, splat_type) \
2740 void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
2742 splat_type x = (int8_t)(splat << 3) >> 3; \
2743 int i; \
2744 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2745 r->element[i] = x; \
2748 VSPLTI(b, s8, int8_t)
2749 VSPLTI(h, s16, int16_t)
2750 VSPLTI(w, s32, int32_t)
2751 #undef VSPLTI
2753 #define VSR(suffix, element) \
2754 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2756 int i; \
2757 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2758 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2759 unsigned int shift = b->element[i] & mask; \
2760 r->element[i] = a->element[i] >> shift; \
2763 VSR(ab, s8)
2764 VSR(ah, s16)
2765 VSR(aw, s32)
2766 VSR(b, u8)
2767 VSR(h, u16)
2768 VSR(w, u32)
2769 #undef VSR
2771 void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2773 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2775 #if defined (WORDS_BIGENDIAN)
2776 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2777 memset (&r->u8[0], 0, sh);
2778 #else
2779 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2780 memset (&r->u8[16-sh], 0, sh);
2781 #endif
2784 void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2786 int i;
2787 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2788 r->u32[i] = a->u32[i] >= b->u32[i];
2792 void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2794 int64_t t;
2795 int i, upper;
2796 ppc_avr_t result;
2797 int sat = 0;
2799 #if defined(WORDS_BIGENDIAN)
2800 upper = ARRAY_SIZE(r->s32)-1;
2801 #else
2802 upper = 0;
2803 #endif
2804 t = (int64_t)b->s32[upper];
2805 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2806 t += a->s32[i];
2807 result.s32[i] = 0;
2809 result.s32[upper] = cvtsdsw(t, &sat);
2810 *r = result;
2812 if (sat) {
2813 env->vscr |= (1 << VSCR_SAT);
2817 void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2819 int i, j, upper;
2820 ppc_avr_t result;
2821 int sat = 0;
2823 #if defined(WORDS_BIGENDIAN)
2824 upper = 1;
2825 #else
2826 upper = 0;
2827 #endif
2828 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2829 int64_t t = (int64_t)b->s32[upper+i*2];
2830 result.u64[i] = 0;
2831 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2832 t += a->s32[2*i+j];
2834 result.s32[upper+i*2] = cvtsdsw(t, &sat);
2837 *r = result;
2838 if (sat) {
2839 env->vscr |= (1 << VSCR_SAT);
2843 void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2845 int i, j;
2846 int sat = 0;
2848 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2849 int64_t t = (int64_t)b->s32[i];
2850 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2851 t += a->s8[4*i+j];
2853 r->s32[i] = cvtsdsw(t, &sat);
2856 if (sat) {
2857 env->vscr |= (1 << VSCR_SAT);
2861 void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2863 int sat = 0;
2864 int i;
2866 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2867 int64_t t = (int64_t)b->s32[i];
2868 t += a->s16[2*i] + a->s16[2*i+1];
2869 r->s32[i] = cvtsdsw(t, &sat);
2872 if (sat) {
2873 env->vscr |= (1 << VSCR_SAT);
2877 void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2879 int i, j;
2880 int sat = 0;
2882 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2883 uint64_t t = (uint64_t)b->u32[i];
2884 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2885 t += a->u8[4*i+j];
2887 r->u32[i] = cvtuduw(t, &sat);
2890 if (sat) {
2891 env->vscr |= (1 << VSCR_SAT);
2895 #if defined(WORDS_BIGENDIAN)
2896 #define UPKHI 1
2897 #define UPKLO 0
2898 #else
2899 #define UPKHI 0
2900 #define UPKLO 1
2901 #endif
2902 #define VUPKPX(suffix, hi) \
2903 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2905 int i; \
2906 ppc_avr_t result; \
2907 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2908 uint16_t e = b->u16[hi ? i : i+4]; \
2909 uint8_t a = (e >> 15) ? 0xff : 0; \
2910 uint8_t r = (e >> 10) & 0x1f; \
2911 uint8_t g = (e >> 5) & 0x1f; \
2912 uint8_t b = e & 0x1f; \
2913 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2915 *r = result; \
2917 VUPKPX(lpx, UPKLO)
2918 VUPKPX(hpx, UPKHI)
2919 #undef VUPKPX
2921 #define VUPK(suffix, unpacked, packee, hi) \
2922 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2924 int i; \
2925 ppc_avr_t result; \
2926 if (hi) { \
2927 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2928 result.unpacked[i] = b->packee[i]; \
2930 } else { \
2931 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
2932 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2935 *r = result; \
2937 VUPK(hsb, s16, s8, UPKHI)
2938 VUPK(hsh, s32, s16, UPKHI)
2939 VUPK(lsb, s16, s8, UPKLO)
2940 VUPK(lsh, s32, s16, UPKLO)
2941 #undef VUPK
2942 #undef UPKHI
2943 #undef UPKLO
2945 #undef DO_HANDLE_NAN
2946 #undef HANDLE_NAN1
2947 #undef HANDLE_NAN2
2948 #undef HANDLE_NAN3
2949 #undef VECTOR_FOR_INORDER_I
2950 #undef HI_IDX
2951 #undef LO_IDX
2953 /*****************************************************************************/
2954 /* SPE extension helpers */
2955 /* Use a table to make this quicker */
2956 static uint8_t hbrev[16] = {
2957 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2958 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2961 static always_inline uint8_t byte_reverse (uint8_t val)
2963 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2966 static always_inline uint32_t word_reverse (uint32_t val)
2968 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2969 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2972 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2973 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2975 uint32_t a, b, d, mask;
2977 mask = UINT32_MAX >> (32 - MASKBITS);
2978 a = arg1 & mask;
2979 b = arg2 & mask;
2980 d = word_reverse(1 + word_reverse(a | ~b));
2981 return (arg1 & ~mask) | (d & b);
2984 uint32_t helper_cntlsw32 (uint32_t val)
2986 if (val & 0x80000000)
2987 return clz32(~val);
2988 else
2989 return clz32(val);
2992 uint32_t helper_cntlzw32 (uint32_t val)
2994 return clz32(val);
2997 /* Single-precision floating-point conversions */
2998 static always_inline uint32_t efscfsi (uint32_t val)
3000 CPU_FloatU u;
3002 u.f = int32_to_float32(val, &env->vec_status);
3004 return u.l;
3007 static always_inline uint32_t efscfui (uint32_t val)
3009 CPU_FloatU u;
3011 u.f = uint32_to_float32(val, &env->vec_status);
3013 return u.l;
3016 static always_inline int32_t efsctsi (uint32_t val)
3018 CPU_FloatU u;
3020 u.l = val;
3021 /* NaN are not treated the same way IEEE 754 does */
3022 if (unlikely(float32_is_nan(u.f)))
3023 return 0;
3025 return float32_to_int32(u.f, &env->vec_status);
3028 static always_inline uint32_t efsctui (uint32_t val)
3030 CPU_FloatU u;
3032 u.l = val;
3033 /* NaN are not treated the same way IEEE 754 does */
3034 if (unlikely(float32_is_nan(u.f)))
3035 return 0;
3037 return float32_to_uint32(u.f, &env->vec_status);
3040 static always_inline uint32_t efsctsiz (uint32_t val)
3042 CPU_FloatU u;
3044 u.l = val;
3045 /* NaN are not treated the same way IEEE 754 does */
3046 if (unlikely(float32_is_nan(u.f)))
3047 return 0;
3049 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
3052 static always_inline uint32_t efsctuiz (uint32_t val)
3054 CPU_FloatU u;
3056 u.l = val;
3057 /* NaN are not treated the same way IEEE 754 does */
3058 if (unlikely(float32_is_nan(u.f)))
3059 return 0;
3061 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
3064 static always_inline uint32_t efscfsf (uint32_t val)
3066 CPU_FloatU u;
3067 float32 tmp;
3069 u.f = int32_to_float32(val, &env->vec_status);
3070 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
3071 u.f = float32_div(u.f, tmp, &env->vec_status);
3073 return u.l;
3076 static always_inline uint32_t efscfuf (uint32_t val)
3078 CPU_FloatU u;
3079 float32 tmp;
3081 u.f = uint32_to_float32(val, &env->vec_status);
3082 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3083 u.f = float32_div(u.f, tmp, &env->vec_status);
3085 return u.l;
3088 static always_inline uint32_t efsctsf (uint32_t val)
3090 CPU_FloatU u;
3091 float32 tmp;
3093 u.l = val;
3094 /* NaN are not treated the same way IEEE 754 does */
3095 if (unlikely(float32_is_nan(u.f)))
3096 return 0;
3097 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3098 u.f = float32_mul(u.f, tmp, &env->vec_status);
3100 return float32_to_int32(u.f, &env->vec_status);
3103 static always_inline uint32_t efsctuf (uint32_t val)
3105 CPU_FloatU u;
3106 float32 tmp;
3108 u.l = val;
3109 /* NaN are not treated the same way IEEE 754 does */
3110 if (unlikely(float32_is_nan(u.f)))
3111 return 0;
3112 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3113 u.f = float32_mul(u.f, tmp, &env->vec_status);
3115 return float32_to_uint32(u.f, &env->vec_status);
3118 #define HELPER_SPE_SINGLE_CONV(name) \
3119 uint32_t helper_e##name (uint32_t val) \
3121 return e##name(val); \
3123 /* efscfsi */
3124 HELPER_SPE_SINGLE_CONV(fscfsi);
3125 /* efscfui */
3126 HELPER_SPE_SINGLE_CONV(fscfui);
3127 /* efscfuf */
3128 HELPER_SPE_SINGLE_CONV(fscfuf);
3129 /* efscfsf */
3130 HELPER_SPE_SINGLE_CONV(fscfsf);
3131 /* efsctsi */
3132 HELPER_SPE_SINGLE_CONV(fsctsi);
3133 /* efsctui */
3134 HELPER_SPE_SINGLE_CONV(fsctui);
3135 /* efsctsiz */
3136 HELPER_SPE_SINGLE_CONV(fsctsiz);
3137 /* efsctuiz */
3138 HELPER_SPE_SINGLE_CONV(fsctuiz);
3139 /* efsctsf */
3140 HELPER_SPE_SINGLE_CONV(fsctsf);
3141 /* efsctuf */
3142 HELPER_SPE_SINGLE_CONV(fsctuf);
3144 #define HELPER_SPE_VECTOR_CONV(name) \
3145 uint64_t helper_ev##name (uint64_t val) \
3147 return ((uint64_t)e##name(val >> 32) << 32) | \
3148 (uint64_t)e##name(val); \
3150 /* evfscfsi */
3151 HELPER_SPE_VECTOR_CONV(fscfsi);
3152 /* evfscfui */
3153 HELPER_SPE_VECTOR_CONV(fscfui);
3154 /* evfscfuf */
3155 HELPER_SPE_VECTOR_CONV(fscfuf);
3156 /* evfscfsf */
3157 HELPER_SPE_VECTOR_CONV(fscfsf);
3158 /* evfsctsi */
3159 HELPER_SPE_VECTOR_CONV(fsctsi);
3160 /* evfsctui */
3161 HELPER_SPE_VECTOR_CONV(fsctui);
3162 /* evfsctsiz */
3163 HELPER_SPE_VECTOR_CONV(fsctsiz);
3164 /* evfsctuiz */
3165 HELPER_SPE_VECTOR_CONV(fsctuiz);
3166 /* evfsctsf */
3167 HELPER_SPE_VECTOR_CONV(fsctsf);
3168 /* evfsctuf */
3169 HELPER_SPE_VECTOR_CONV(fsctuf);
3171 /* Single-precision floating-point arithmetic */
3172 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
3174 CPU_FloatU u1, u2;
3175 u1.l = op1;
3176 u2.l = op2;
3177 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
3178 return u1.l;
3181 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
3183 CPU_FloatU u1, u2;
3184 u1.l = op1;
3185 u2.l = op2;
3186 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
3187 return u1.l;
3190 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
3192 CPU_FloatU u1, u2;
3193 u1.l = op1;
3194 u2.l = op2;
3195 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
3196 return u1.l;
3199 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
3201 CPU_FloatU u1, u2;
3202 u1.l = op1;
3203 u2.l = op2;
3204 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
3205 return u1.l;
3208 #define HELPER_SPE_SINGLE_ARITH(name) \
3209 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3211 return e##name(op1, op2); \
3213 /* efsadd */
3214 HELPER_SPE_SINGLE_ARITH(fsadd);
3215 /* efssub */
3216 HELPER_SPE_SINGLE_ARITH(fssub);
3217 /* efsmul */
3218 HELPER_SPE_SINGLE_ARITH(fsmul);
3219 /* efsdiv */
3220 HELPER_SPE_SINGLE_ARITH(fsdiv);
3222 #define HELPER_SPE_VECTOR_ARITH(name) \
3223 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
3225 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
3226 (uint64_t)e##name(op1, op2); \
3228 /* evfsadd */
3229 HELPER_SPE_VECTOR_ARITH(fsadd);
3230 /* evfssub */
3231 HELPER_SPE_VECTOR_ARITH(fssub);
3232 /* evfsmul */
3233 HELPER_SPE_VECTOR_ARITH(fsmul);
3234 /* evfsdiv */
3235 HELPER_SPE_VECTOR_ARITH(fsdiv);
3237 /* Single-precision floating-point comparisons */
3238 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
3240 CPU_FloatU u1, u2;
3241 u1.l = op1;
3242 u2.l = op2;
3243 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
3246 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
3248 CPU_FloatU u1, u2;
3249 u1.l = op1;
3250 u2.l = op2;
3251 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
3254 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
3256 CPU_FloatU u1, u2;
3257 u1.l = op1;
3258 u2.l = op2;
3259 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
3262 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
3264 /* XXX: TODO: test special values (NaN, infinites, ...) */
3265 return efststlt(op1, op2);
3268 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
3270 /* XXX: TODO: test special values (NaN, infinites, ...) */
3271 return efststgt(op1, op2);
3274 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
3276 /* XXX: TODO: test special values (NaN, infinites, ...) */
3277 return efststeq(op1, op2);
3280 #define HELPER_SINGLE_SPE_CMP(name) \
3281 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3283 return e##name(op1, op2) << 2; \
3285 /* efststlt */
3286 HELPER_SINGLE_SPE_CMP(fststlt);
3287 /* efststgt */
3288 HELPER_SINGLE_SPE_CMP(fststgt);
3289 /* efststeq */
3290 HELPER_SINGLE_SPE_CMP(fststeq);
3291 /* efscmplt */
3292 HELPER_SINGLE_SPE_CMP(fscmplt);
3293 /* efscmpgt */
3294 HELPER_SINGLE_SPE_CMP(fscmpgt);
3295 /* efscmpeq */
3296 HELPER_SINGLE_SPE_CMP(fscmpeq);
3298 static always_inline uint32_t evcmp_merge (int t0, int t1)
3300 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
3303 #define HELPER_VECTOR_SPE_CMP(name) \
3304 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
3306 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
3308 /* evfststlt */
3309 HELPER_VECTOR_SPE_CMP(fststlt);
3310 /* evfststgt */
3311 HELPER_VECTOR_SPE_CMP(fststgt);
3312 /* evfststeq */
3313 HELPER_VECTOR_SPE_CMP(fststeq);
3314 /* evfscmplt */
3315 HELPER_VECTOR_SPE_CMP(fscmplt);
3316 /* evfscmpgt */
3317 HELPER_VECTOR_SPE_CMP(fscmpgt);
3318 /* evfscmpeq */
3319 HELPER_VECTOR_SPE_CMP(fscmpeq);
3321 /* Double-precision floating-point conversion */
3322 uint64_t helper_efdcfsi (uint32_t val)
3324 CPU_DoubleU u;
3326 u.d = int32_to_float64(val, &env->vec_status);
3328 return u.ll;
3331 uint64_t helper_efdcfsid (uint64_t val)
3333 CPU_DoubleU u;
3335 u.d = int64_to_float64(val, &env->vec_status);
3337 return u.ll;
3340 uint64_t helper_efdcfui (uint32_t val)
3342 CPU_DoubleU u;
3344 u.d = uint32_to_float64(val, &env->vec_status);
3346 return u.ll;
3349 uint64_t helper_efdcfuid (uint64_t val)
3351 CPU_DoubleU u;
3353 u.d = uint64_to_float64(val, &env->vec_status);
3355 return u.ll;
3358 uint32_t helper_efdctsi (uint64_t val)
3360 CPU_DoubleU u;
3362 u.ll = val;
3363 /* NaN are not treated the same way IEEE 754 does */
3364 if (unlikely(float64_is_nan(u.d)))
3365 return 0;
3367 return float64_to_int32(u.d, &env->vec_status);
3370 uint32_t helper_efdctui (uint64_t val)
3372 CPU_DoubleU u;
3374 u.ll = val;
3375 /* NaN are not treated the same way IEEE 754 does */
3376 if (unlikely(float64_is_nan(u.d)))
3377 return 0;
3379 return float64_to_uint32(u.d, &env->vec_status);
3382 uint32_t helper_efdctsiz (uint64_t val)
3384 CPU_DoubleU u;
3386 u.ll = val;
3387 /* NaN are not treated the same way IEEE 754 does */
3388 if (unlikely(float64_is_nan(u.d)))
3389 return 0;
3391 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
3394 uint64_t helper_efdctsidz (uint64_t val)
3396 CPU_DoubleU u;
3398 u.ll = val;
3399 /* NaN are not treated the same way IEEE 754 does */
3400 if (unlikely(float64_is_nan(u.d)))
3401 return 0;
3403 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
3406 uint32_t helper_efdctuiz (uint64_t val)
3408 CPU_DoubleU u;
3410 u.ll = val;
3411 /* NaN are not treated the same way IEEE 754 does */
3412 if (unlikely(float64_is_nan(u.d)))
3413 return 0;
3415 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
3418 uint64_t helper_efdctuidz (uint64_t val)
3420 CPU_DoubleU u;
3422 u.ll = val;
3423 /* NaN are not treated the same way IEEE 754 does */
3424 if (unlikely(float64_is_nan(u.d)))
3425 return 0;
3427 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
3430 uint64_t helper_efdcfsf (uint32_t val)
3432 CPU_DoubleU u;
3433 float64 tmp;
3435 u.d = int32_to_float64(val, &env->vec_status);
3436 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
3437 u.d = float64_div(u.d, tmp, &env->vec_status);
3439 return u.ll;
3442 uint64_t helper_efdcfuf (uint32_t val)
3444 CPU_DoubleU u;
3445 float64 tmp;
3447 u.d = uint32_to_float64(val, &env->vec_status);
3448 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
3449 u.d = float64_div(u.d, tmp, &env->vec_status);
3451 return u.ll;
3454 uint32_t helper_efdctsf (uint64_t val)
3456 CPU_DoubleU u;
3457 float64 tmp;
3459 u.ll = val;
3460 /* NaN are not treated the same way IEEE 754 does */
3461 if (unlikely(float64_is_nan(u.d)))
3462 return 0;
3463 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
3464 u.d = float64_mul(u.d, tmp, &env->vec_status);
3466 return float64_to_int32(u.d, &env->vec_status);
3469 uint32_t helper_efdctuf (uint64_t val)
3471 CPU_DoubleU u;
3472 float64 tmp;
3474 u.ll = val;
3475 /* NaN are not treated the same way IEEE 754 does */
3476 if (unlikely(float64_is_nan(u.d)))
3477 return 0;
3478 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
3479 u.d = float64_mul(u.d, tmp, &env->vec_status);
3481 return float64_to_uint32(u.d, &env->vec_status);
3484 uint32_t helper_efscfd (uint64_t val)
3486 CPU_DoubleU u1;
3487 CPU_FloatU u2;
3489 u1.ll = val;
3490 u2.f = float64_to_float32(u1.d, &env->vec_status);
3492 return u2.l;
3495 uint64_t helper_efdcfs (uint32_t val)
3497 CPU_DoubleU u2;
3498 CPU_FloatU u1;
3500 u1.l = val;
3501 u2.d = float32_to_float64(u1.f, &env->vec_status);
3503 return u2.ll;
3506 /* Double precision fixed-point arithmetic */
3507 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
3509 CPU_DoubleU u1, u2;
3510 u1.ll = op1;
3511 u2.ll = op2;
3512 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
3513 return u1.ll;
3516 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
3518 CPU_DoubleU u1, u2;
3519 u1.ll = op1;
3520 u2.ll = op2;
3521 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
3522 return u1.ll;
3525 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
3527 CPU_DoubleU u1, u2;
3528 u1.ll = op1;
3529 u2.ll = op2;
3530 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
3531 return u1.ll;
3534 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
3536 CPU_DoubleU u1, u2;
3537 u1.ll = op1;
3538 u2.ll = op2;
3539 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
3540 return u1.ll;
3543 /* Double precision floating point helpers */
3544 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
3546 CPU_DoubleU u1, u2;
3547 u1.ll = op1;
3548 u2.ll = op2;
3549 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
3552 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
3554 CPU_DoubleU u1, u2;
3555 u1.ll = op1;
3556 u2.ll = op2;
3557 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
3560 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
3562 CPU_DoubleU u1, u2;
3563 u1.ll = op1;
3564 u2.ll = op2;
3565 return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0;
3568 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
3570 /* XXX: TODO: test special values (NaN, infinites, ...) */
3571 return helper_efdtstlt(op1, op2);
3574 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
3576 /* XXX: TODO: test special values (NaN, infinites, ...) */
3577 return helper_efdtstgt(op1, op2);
3580 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
3582 /* XXX: TODO: test special values (NaN, infinites, ...) */
3583 return helper_efdtsteq(op1, op2);
3586 /*****************************************************************************/
3587 /* Softmmu support */
3588 #if !defined (CONFIG_USER_ONLY)
3590 #define MMUSUFFIX _mmu
3592 #define SHIFT 0
3593 #include "softmmu_template.h"
3595 #define SHIFT 1
3596 #include "softmmu_template.h"
3598 #define SHIFT 2
3599 #include "softmmu_template.h"
3601 #define SHIFT 3
3602 #include "softmmu_template.h"
3604 /* try to fill the TLB and return an exception if error. If retaddr is
3605 NULL, it means that the function was called in C code (i.e. not
3606 from generated code or from helper.c) */
3607 /* XXX: fix it to restore all registers */
3608 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3610 TranslationBlock *tb;
3611 CPUState *saved_env;
3612 unsigned long pc;
3613 int ret;
3615 /* XXX: hack to restore env in all cases, even if not called from
3616 generated code */
3617 saved_env = env;
3618 env = cpu_single_env;
3619 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3620 if (unlikely(ret != 0)) {
3621 if (likely(retaddr)) {
3622 /* now we have a real cpu fault */
3623 pc = (unsigned long)retaddr;
3624 tb = tb_find_pc(pc);
3625 if (likely(tb)) {
3626 /* the PC is inside the translated code. It means that we have
3627 a virtual CPU fault */
3628 cpu_restore_state(tb, env, pc, NULL);
3631 helper_raise_exception_err(env->exception_index, env->error_code);
3633 env = saved_env;
3636 /* Segment registers load and store */
3637 target_ulong helper_load_sr (target_ulong sr_num)
3639 return env->sr[sr_num];
3642 void helper_store_sr (target_ulong sr_num, target_ulong val)
3644 ppc_store_sr(env, sr_num, val);
3647 /* SLB management */
3648 #if defined(TARGET_PPC64)
3649 target_ulong helper_load_slb (target_ulong slb_nr)
3651 return ppc_load_slb(env, slb_nr);
3654 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
3656 ppc_store_slb(env, slb_nr, rs);
3659 void helper_slbia (void)
3661 ppc_slb_invalidate_all(env);
3664 void helper_slbie (target_ulong addr)
3666 ppc_slb_invalidate_one(env, addr);
3669 #endif /* defined(TARGET_PPC64) */
3671 /* TLB management */
3672 void helper_tlbia (void)
3674 ppc_tlb_invalidate_all(env);
3677 void helper_tlbie (target_ulong addr)
3679 ppc_tlb_invalidate_one(env, addr);
3682 /* Software driven TLBs management */
3683 /* PowerPC 602/603 software TLB load instructions helpers */
3684 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
3686 target_ulong RPN, CMP, EPN;
3687 int way;
3689 RPN = env->spr[SPR_RPA];
3690 if (is_code) {
3691 CMP = env->spr[SPR_ICMP];
3692 EPN = env->spr[SPR_IMISS];
3693 } else {
3694 CMP = env->spr[SPR_DCMP];
3695 EPN = env->spr[SPR_DMISS];
3697 way = (env->spr[SPR_SRR1] >> 17) & 1;
3698 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3699 " PTE1 " ADDRX " way %d\n",
3700 __func__, new_EPN, EPN, CMP, RPN, way);
3701 /* Store this TLB */
3702 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3703 way, is_code, CMP, RPN);
3706 void helper_6xx_tlbd (target_ulong EPN)
3708 do_6xx_tlb(EPN, 0);
3711 void helper_6xx_tlbi (target_ulong EPN)
3713 do_6xx_tlb(EPN, 1);
3716 /* PowerPC 74xx software TLB load instructions helpers */
3717 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
3719 target_ulong RPN, CMP, EPN;
3720 int way;
3722 RPN = env->spr[SPR_PTELO];
3723 CMP = env->spr[SPR_PTEHI];
3724 EPN = env->spr[SPR_TLBMISS] & ~0x3;
3725 way = env->spr[SPR_TLBMISS] & 0x3;
3726 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3727 " PTE1 " ADDRX " way %d\n",
3728 __func__, new_EPN, EPN, CMP, RPN, way);
3729 /* Store this TLB */
3730 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3731 way, is_code, CMP, RPN);
3734 void helper_74xx_tlbd (target_ulong EPN)
3736 do_74xx_tlb(EPN, 0);
3739 void helper_74xx_tlbi (target_ulong EPN)
3741 do_74xx_tlb(EPN, 1);
3744 static always_inline target_ulong booke_tlb_to_page_size (int size)
3746 return 1024 << (2 * size);
3749 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
3751 int size;
3753 switch (page_size) {
3754 case 0x00000400UL:
3755 size = 0x0;
3756 break;
3757 case 0x00001000UL:
3758 size = 0x1;
3759 break;
3760 case 0x00004000UL:
3761 size = 0x2;
3762 break;
3763 case 0x00010000UL:
3764 size = 0x3;
3765 break;
3766 case 0x00040000UL:
3767 size = 0x4;
3768 break;
3769 case 0x00100000UL:
3770 size = 0x5;
3771 break;
3772 case 0x00400000UL:
3773 size = 0x6;
3774 break;
3775 case 0x01000000UL:
3776 size = 0x7;
3777 break;
3778 case 0x04000000UL:
3779 size = 0x8;
3780 break;
3781 case 0x10000000UL:
3782 size = 0x9;
3783 break;
3784 case 0x40000000UL:
3785 size = 0xA;
3786 break;
3787 #if defined (TARGET_PPC64)
3788 case 0x000100000000ULL:
3789 size = 0xB;
3790 break;
3791 case 0x000400000000ULL:
3792 size = 0xC;
3793 break;
3794 case 0x001000000000ULL:
3795 size = 0xD;
3796 break;
3797 case 0x004000000000ULL:
3798 size = 0xE;
3799 break;
3800 case 0x010000000000ULL:
3801 size = 0xF;
3802 break;
3803 #endif
3804 default:
3805 size = -1;
3806 break;
3809 return size;
3812 /* Helpers for 4xx TLB management */
3813 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3815 ppcemb_tlb_t *tlb;
3816 target_ulong ret;
3817 int size;
3819 entry &= 0x3F;
3820 tlb = &env->tlb[entry].tlbe;
3821 ret = tlb->EPN;
3822 if (tlb->prot & PAGE_VALID)
3823 ret |= 0x400;
3824 size = booke_page_size_to_tlb(tlb->size);
3825 if (size < 0 || size > 0x7)
3826 size = 1;
3827 ret |= size << 7;
3828 env->spr[SPR_40x_PID] = tlb->PID;
3829 return ret;
3832 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3834 ppcemb_tlb_t *tlb;
3835 target_ulong ret;
3837 entry &= 0x3F;
3838 tlb = &env->tlb[entry].tlbe;
3839 ret = tlb->RPN;
3840 if (tlb->prot & PAGE_EXEC)
3841 ret |= 0x200;
3842 if (tlb->prot & PAGE_WRITE)
3843 ret |= 0x100;
3844 return ret;
3847 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3849 ppcemb_tlb_t *tlb;
3850 target_ulong page, end;
3852 LOG_SWTLB("%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3853 entry &= 0x3F;
3854 tlb = &env->tlb[entry].tlbe;
3855 /* Invalidate previous TLB (if it's valid) */
3856 if (tlb->prot & PAGE_VALID) {
3857 end = tlb->EPN + tlb->size;
3858 LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX
3859 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3860 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3861 tlb_flush_page(env, page);
3863 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3864 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3865 * If this ever occurs, one should use the ppcemb target instead
3866 * of the ppc or ppc64 one
3868 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3869 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3870 "are not supported (%d)\n",
3871 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3873 tlb->EPN = val & ~(tlb->size - 1);
3874 if (val & 0x40)
3875 tlb->prot |= PAGE_VALID;
3876 else
3877 tlb->prot &= ~PAGE_VALID;
3878 if (val & 0x20) {
3879 /* XXX: TO BE FIXED */
3880 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3882 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3883 tlb->attr = val & 0xFF;
3884 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3885 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3886 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3887 tlb->prot & PAGE_READ ? 'r' : '-',
3888 tlb->prot & PAGE_WRITE ? 'w' : '-',
3889 tlb->prot & PAGE_EXEC ? 'x' : '-',
3890 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3891 /* Invalidate new TLB (if valid) */
3892 if (tlb->prot & PAGE_VALID) {
3893 end = tlb->EPN + tlb->size;
3894 LOG_SWTLB("%s: invalidate TLB %d start " ADDRX
3895 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3896 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3897 tlb_flush_page(env, page);
3901 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3903 ppcemb_tlb_t *tlb;
3905 LOG_SWTLB("%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3906 entry &= 0x3F;
3907 tlb = &env->tlb[entry].tlbe;
3908 tlb->RPN = val & 0xFFFFFC00;
3909 tlb->prot = PAGE_READ;
3910 if (val & 0x200)
3911 tlb->prot |= PAGE_EXEC;
3912 if (val & 0x100)
3913 tlb->prot |= PAGE_WRITE;
3914 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3915 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3916 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3917 tlb->prot & PAGE_READ ? 'r' : '-',
3918 tlb->prot & PAGE_WRITE ? 'w' : '-',
3919 tlb->prot & PAGE_EXEC ? 'x' : '-',
3920 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3923 target_ulong helper_4xx_tlbsx (target_ulong address)
3925 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3928 /* PowerPC 440 TLB management */
3929 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3931 ppcemb_tlb_t *tlb;
3932 target_ulong EPN, RPN, size;
3933 int do_flush_tlbs;
3935 LOG_SWTLB("%s word %d entry %d value " ADDRX "\n",
3936 __func__, word, (int)entry, value);
3937 do_flush_tlbs = 0;
3938 entry &= 0x3F;
3939 tlb = &env->tlb[entry].tlbe;
3940 switch (word) {
3941 default:
3942 /* Just here to please gcc */
3943 case 0:
3944 EPN = value & 0xFFFFFC00;
3945 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3946 do_flush_tlbs = 1;
3947 tlb->EPN = EPN;
3948 size = booke_tlb_to_page_size((value >> 4) & 0xF);
3949 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3950 do_flush_tlbs = 1;
3951 tlb->size = size;
3952 tlb->attr &= ~0x1;
3953 tlb->attr |= (value >> 8) & 1;
3954 if (value & 0x200) {
3955 tlb->prot |= PAGE_VALID;
3956 } else {
3957 if (tlb->prot & PAGE_VALID) {
3958 tlb->prot &= ~PAGE_VALID;
3959 do_flush_tlbs = 1;
3962 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3963 if (do_flush_tlbs)
3964 tlb_flush(env, 1);
3965 break;
3966 case 1:
3967 RPN = value & 0xFFFFFC0F;
3968 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3969 tlb_flush(env, 1);
3970 tlb->RPN = RPN;
3971 break;
3972 case 2:
3973 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3974 tlb->prot = tlb->prot & PAGE_VALID;
3975 if (value & 0x1)
3976 tlb->prot |= PAGE_READ << 4;
3977 if (value & 0x2)
3978 tlb->prot |= PAGE_WRITE << 4;
3979 if (value & 0x4)
3980 tlb->prot |= PAGE_EXEC << 4;
3981 if (value & 0x8)
3982 tlb->prot |= PAGE_READ;
3983 if (value & 0x10)
3984 tlb->prot |= PAGE_WRITE;
3985 if (value & 0x20)
3986 tlb->prot |= PAGE_EXEC;
3987 break;
3991 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3993 ppcemb_tlb_t *tlb;
3994 target_ulong ret;
3995 int size;
3997 entry &= 0x3F;
3998 tlb = &env->tlb[entry].tlbe;
3999 switch (word) {
4000 default:
4001 /* Just here to please gcc */
4002 case 0:
4003 ret = tlb->EPN;
4004 size = booke_page_size_to_tlb(tlb->size);
4005 if (size < 0 || size > 0xF)
4006 size = 1;
4007 ret |= size << 4;
4008 if (tlb->attr & 0x1)
4009 ret |= 0x100;
4010 if (tlb->prot & PAGE_VALID)
4011 ret |= 0x200;
4012 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
4013 env->spr[SPR_440_MMUCR] |= tlb->PID;
4014 break;
4015 case 1:
4016 ret = tlb->RPN;
4017 break;
4018 case 2:
4019 ret = tlb->attr & ~0x1;
4020 if (tlb->prot & (PAGE_READ << 4))
4021 ret |= 0x1;
4022 if (tlb->prot & (PAGE_WRITE << 4))
4023 ret |= 0x2;
4024 if (tlb->prot & (PAGE_EXEC << 4))
4025 ret |= 0x4;
4026 if (tlb->prot & PAGE_READ)
4027 ret |= 0x8;
4028 if (tlb->prot & PAGE_WRITE)
4029 ret |= 0x10;
4030 if (tlb->prot & PAGE_EXEC)
4031 ret |= 0x20;
4032 break;
4034 return ret;
4037 target_ulong helper_440_tlbsx (target_ulong address)
4039 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
4042 #endif /* !CONFIG_USER_ONLY */