target-ppc: Add v{max,min}fp instructions
[qemu/mini2440/sniper_sniper_test.git] / target-ppc / op_helper.c
blob674a21dfbb4453a900795a619464f44bef33f9f1
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include <string.h>
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "helper.h"
25 #include "helper_regs.h"
27 //#define DEBUG_OP
28 //#define DEBUG_EXCEPTIONS
29 //#define DEBUG_SOFTWARE_TLB
31 #ifdef DEBUG_SOFTWARE_TLB
32 # define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
33 #else
34 # define LOG_SWTLB(...) do { } while (0)
35 #endif
38 /*****************************************************************************/
39 /* Exceptions processing helpers */
41 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
43 #if 0
44 printf("Raise exception %3x code : %d\n", exception, error_code);
45 #endif
46 env->exception_index = exception;
47 env->error_code = error_code;
48 cpu_loop_exit();
51 void helper_raise_exception (uint32_t exception)
53 helper_raise_exception_err(exception, 0);
56 /*****************************************************************************/
57 /* Registers load and stores */
58 target_ulong helper_load_cr (void)
60 return (env->crf[0] << 28) |
61 (env->crf[1] << 24) |
62 (env->crf[2] << 20) |
63 (env->crf[3] << 16) |
64 (env->crf[4] << 12) |
65 (env->crf[5] << 8) |
66 (env->crf[6] << 4) |
67 (env->crf[7] << 0);
70 void helper_store_cr (target_ulong val, uint32_t mask)
72 int i, sh;
74 for (i = 0, sh = 7; i < 8; i++, sh--) {
75 if (mask & (1 << sh))
76 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
80 /*****************************************************************************/
81 /* SPR accesses */
82 void helper_load_dump_spr (uint32_t sprn)
84 qemu_log("Read SPR %d %03x => " ADDRX "\n",
85 sprn, sprn, env->spr[sprn]);
88 void helper_store_dump_spr (uint32_t sprn)
90 qemu_log("Write SPR %d %03x <= " ADDRX "\n",
91 sprn, sprn, env->spr[sprn]);
94 target_ulong helper_load_tbl (void)
96 return cpu_ppc_load_tbl(env);
99 target_ulong helper_load_tbu (void)
101 return cpu_ppc_load_tbu(env);
104 target_ulong helper_load_atbl (void)
106 return cpu_ppc_load_atbl(env);
109 target_ulong helper_load_atbu (void)
111 return cpu_ppc_load_atbu(env);
114 target_ulong helper_load_601_rtcl (void)
116 return cpu_ppc601_load_rtcl(env);
119 target_ulong helper_load_601_rtcu (void)
121 return cpu_ppc601_load_rtcu(env);
124 #if !defined(CONFIG_USER_ONLY)
125 #if defined (TARGET_PPC64)
126 void helper_store_asr (target_ulong val)
128 ppc_store_asr(env, val);
130 #endif
132 void helper_store_sdr1 (target_ulong val)
134 ppc_store_sdr1(env, val);
137 void helper_store_tbl (target_ulong val)
139 cpu_ppc_store_tbl(env, val);
142 void helper_store_tbu (target_ulong val)
144 cpu_ppc_store_tbu(env, val);
147 void helper_store_atbl (target_ulong val)
149 cpu_ppc_store_atbl(env, val);
152 void helper_store_atbu (target_ulong val)
154 cpu_ppc_store_atbu(env, val);
157 void helper_store_601_rtcl (target_ulong val)
159 cpu_ppc601_store_rtcl(env, val);
162 void helper_store_601_rtcu (target_ulong val)
164 cpu_ppc601_store_rtcu(env, val);
167 target_ulong helper_load_decr (void)
169 return cpu_ppc_load_decr(env);
172 void helper_store_decr (target_ulong val)
174 cpu_ppc_store_decr(env, val);
177 void helper_store_hid0_601 (target_ulong val)
179 target_ulong hid0;
181 hid0 = env->spr[SPR_HID0];
182 if ((val ^ hid0) & 0x00000008) {
183 /* Change current endianness */
184 env->hflags &= ~(1 << MSR_LE);
185 env->hflags_nmsr &= ~(1 << MSR_LE);
186 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
187 env->hflags |= env->hflags_nmsr;
188 qemu_log("%s: set endianness to %c => " ADDRX "\n",
189 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
191 env->spr[SPR_HID0] = (uint32_t)val;
194 void helper_store_403_pbr (uint32_t num, target_ulong value)
196 if (likely(env->pb[num] != value)) {
197 env->pb[num] = value;
198 /* Should be optimized */
199 tlb_flush(env, 1);
203 target_ulong helper_load_40x_pit (void)
205 return load_40x_pit(env);
208 void helper_store_40x_pit (target_ulong val)
210 store_40x_pit(env, val);
213 void helper_store_40x_dbcr0 (target_ulong val)
215 store_40x_dbcr0(env, val);
218 void helper_store_40x_sler (target_ulong val)
220 store_40x_sler(env, val);
223 void helper_store_booke_tcr (target_ulong val)
225 store_booke_tcr(env, val);
228 void helper_store_booke_tsr (target_ulong val)
230 store_booke_tsr(env, val);
233 void helper_store_ibatu (uint32_t nr, target_ulong val)
235 ppc_store_ibatu(env, nr, val);
238 void helper_store_ibatl (uint32_t nr, target_ulong val)
240 ppc_store_ibatl(env, nr, val);
243 void helper_store_dbatu (uint32_t nr, target_ulong val)
245 ppc_store_dbatu(env, nr, val);
248 void helper_store_dbatl (uint32_t nr, target_ulong val)
250 ppc_store_dbatl(env, nr, val);
253 void helper_store_601_batl (uint32_t nr, target_ulong val)
255 ppc_store_ibatl_601(env, nr, val);
258 void helper_store_601_batu (uint32_t nr, target_ulong val)
260 ppc_store_ibatu_601(env, nr, val);
262 #endif
264 /*****************************************************************************/
265 /* Memory load and stores */
267 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
269 #if defined(TARGET_PPC64)
270 if (!msr_sf)
271 return (uint32_t)(addr + arg);
272 else
273 #endif
274 return addr + arg;
277 void helper_lmw (target_ulong addr, uint32_t reg)
279 for (; reg < 32; reg++) {
280 if (msr_le)
281 env->gpr[reg] = bswap32(ldl(addr));
282 else
283 env->gpr[reg] = ldl(addr);
284 addr = addr_add(addr, 4);
288 void helper_stmw (target_ulong addr, uint32_t reg)
290 for (; reg < 32; reg++) {
291 if (msr_le)
292 stl(addr, bswap32((uint32_t)env->gpr[reg]));
293 else
294 stl(addr, (uint32_t)env->gpr[reg]);
295 addr = addr_add(addr, 4);
299 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
301 int sh;
302 for (; nb > 3; nb -= 4) {
303 env->gpr[reg] = ldl(addr);
304 reg = (reg + 1) % 32;
305 addr = addr_add(addr, 4);
307 if (unlikely(nb > 0)) {
308 env->gpr[reg] = 0;
309 for (sh = 24; nb > 0; nb--, sh -= 8) {
310 env->gpr[reg] |= ldub(addr) << sh;
311 addr = addr_add(addr, 1);
315 /* PPC32 specification says we must generate an exception if
316 * rA is in the range of registers to be loaded.
317 * In an other hand, IBM says this is valid, but rA won't be loaded.
318 * For now, I'll follow the spec...
320 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
322 if (likely(xer_bc != 0)) {
323 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
324 (reg < rb && (reg + xer_bc) > rb))) {
325 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
326 POWERPC_EXCP_INVAL |
327 POWERPC_EXCP_INVAL_LSWX);
328 } else {
329 helper_lsw(addr, xer_bc, reg);
334 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
336 int sh;
337 for (; nb > 3; nb -= 4) {
338 stl(addr, env->gpr[reg]);
339 reg = (reg + 1) % 32;
340 addr = addr_add(addr, 4);
342 if (unlikely(nb > 0)) {
343 for (sh = 24; nb > 0; nb--, sh -= 8) {
344 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
345 addr = addr_add(addr, 1);
350 static void do_dcbz(target_ulong addr, int dcache_line_size)
352 addr &= ~(dcache_line_size - 1);
353 int i;
354 for (i = 0 ; i < dcache_line_size ; i += 4) {
355 stl(addr + i , 0);
357 if (env->reserve == addr)
358 env->reserve = (target_ulong)-1ULL;
361 void helper_dcbz(target_ulong addr)
363 do_dcbz(addr, env->dcache_line_size);
366 void helper_dcbz_970(target_ulong addr)
368 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
369 do_dcbz(addr, 32);
370 else
371 do_dcbz(addr, env->dcache_line_size);
374 void helper_icbi(target_ulong addr)
376 uint32_t tmp;
378 addr &= ~(env->dcache_line_size - 1);
379 /* Invalidate one cache line :
380 * PowerPC specification says this is to be treated like a load
381 * (not a fetch) by the MMU. To be sure it will be so,
382 * do the load "by hand".
384 tmp = ldl(addr);
385 tb_invalidate_page_range(addr, addr + env->icache_line_size);
388 // XXX: to be tested
389 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
391 int i, c, d;
392 d = 24;
393 for (i = 0; i < xer_bc; i++) {
394 c = ldub(addr);
395 addr = addr_add(addr, 1);
396 /* ra (if not 0) and rb are never modified */
397 if (likely(reg != rb && (ra == 0 || reg != ra))) {
398 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
400 if (unlikely(c == xer_cmp))
401 break;
402 if (likely(d != 0)) {
403 d -= 8;
404 } else {
405 d = 24;
406 reg++;
407 reg = reg & 0x1F;
410 return i;
413 /*****************************************************************************/
414 /* Fixed point operations helpers */
415 #if defined(TARGET_PPC64)
417 /* multiply high word */
418 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
420 uint64_t tl, th;
422 muls64(&tl, &th, arg1, arg2);
423 return th;
426 /* multiply high word unsigned */
427 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
429 uint64_t tl, th;
431 mulu64(&tl, &th, arg1, arg2);
432 return th;
435 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
437 int64_t th;
438 uint64_t tl;
440 muls64(&tl, (uint64_t *)&th, arg1, arg2);
441 /* If th != 0 && th != -1, then we had an overflow */
442 if (likely((uint64_t)(th + 1) <= 1)) {
443 env->xer &= ~(1 << XER_OV);
444 } else {
445 env->xer |= (1 << XER_OV) | (1 << XER_SO);
447 return (int64_t)tl;
449 #endif
451 target_ulong helper_cntlzw (target_ulong t)
453 return clz32(t);
456 #if defined(TARGET_PPC64)
457 target_ulong helper_cntlzd (target_ulong t)
459 return clz64(t);
461 #endif
463 /* shift right arithmetic helper */
464 target_ulong helper_sraw (target_ulong value, target_ulong shift)
466 int32_t ret;
468 if (likely(!(shift & 0x20))) {
469 if (likely((uint32_t)shift != 0)) {
470 shift &= 0x1f;
471 ret = (int32_t)value >> shift;
472 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
473 env->xer &= ~(1 << XER_CA);
474 } else {
475 env->xer |= (1 << XER_CA);
477 } else {
478 ret = (int32_t)value;
479 env->xer &= ~(1 << XER_CA);
481 } else {
482 ret = (int32_t)value >> 31;
483 if (ret) {
484 env->xer |= (1 << XER_CA);
485 } else {
486 env->xer &= ~(1 << XER_CA);
489 return (target_long)ret;
492 #if defined(TARGET_PPC64)
493 target_ulong helper_srad (target_ulong value, target_ulong shift)
495 int64_t ret;
497 if (likely(!(shift & 0x40))) {
498 if (likely((uint64_t)shift != 0)) {
499 shift &= 0x3f;
500 ret = (int64_t)value >> shift;
501 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
502 env->xer &= ~(1 << XER_CA);
503 } else {
504 env->xer |= (1 << XER_CA);
506 } else {
507 ret = (int64_t)value;
508 env->xer &= ~(1 << XER_CA);
510 } else {
511 ret = (int64_t)value >> 63;
512 if (ret) {
513 env->xer |= (1 << XER_CA);
514 } else {
515 env->xer &= ~(1 << XER_CA);
518 return ret;
520 #endif
522 target_ulong helper_popcntb (target_ulong val)
524 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
525 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
526 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
527 return val;
530 #if defined(TARGET_PPC64)
531 target_ulong helper_popcntb_64 (target_ulong val)
533 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
534 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
535 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
536 return val;
538 #endif
540 /*****************************************************************************/
541 /* Floating point operations helpers */
542 uint64_t helper_float32_to_float64(uint32_t arg)
544 CPU_FloatU f;
545 CPU_DoubleU d;
546 f.l = arg;
547 d.d = float32_to_float64(f.f, &env->fp_status);
548 return d.ll;
551 uint32_t helper_float64_to_float32(uint64_t arg)
553 CPU_FloatU f;
554 CPU_DoubleU d;
555 d.ll = arg;
556 f.f = float64_to_float32(d.d, &env->fp_status);
557 return f.l;
560 static always_inline int isden (float64 d)
562 CPU_DoubleU u;
564 u.d = d;
566 return ((u.ll >> 52) & 0x7FF) == 0;
569 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
571 CPU_DoubleU farg;
572 int isneg;
573 int ret;
574 farg.ll = arg;
575 isneg = float64_is_neg(farg.d);
576 if (unlikely(float64_is_nan(farg.d))) {
577 if (float64_is_signaling_nan(farg.d)) {
578 /* Signaling NaN: flags are undefined */
579 ret = 0x00;
580 } else {
581 /* Quiet NaN */
582 ret = 0x11;
584 } else if (unlikely(float64_is_infinity(farg.d))) {
585 /* +/- infinity */
586 if (isneg)
587 ret = 0x09;
588 else
589 ret = 0x05;
590 } else {
591 if (float64_is_zero(farg.d)) {
592 /* +/- zero */
593 if (isneg)
594 ret = 0x12;
595 else
596 ret = 0x02;
597 } else {
598 if (isden(farg.d)) {
599 /* Denormalized numbers */
600 ret = 0x10;
601 } else {
602 /* Normalized numbers */
603 ret = 0x00;
605 if (isneg) {
606 ret |= 0x08;
607 } else {
608 ret |= 0x04;
612 if (set_fprf) {
613 /* We update FPSCR_FPRF */
614 env->fpscr &= ~(0x1F << FPSCR_FPRF);
615 env->fpscr |= ret << FPSCR_FPRF;
617 /* We just need fpcc to update Rc1 */
618 return ret & 0xF;
621 /* Floating-point invalid operations exception */
622 static always_inline uint64_t fload_invalid_op_excp (int op)
624 uint64_t ret = 0;
625 int ve;
627 ve = fpscr_ve;
628 switch (op) {
629 case POWERPC_EXCP_FP_VXSNAN:
630 env->fpscr |= 1 << FPSCR_VXSNAN;
631 break;
632 case POWERPC_EXCP_FP_VXSOFT:
633 env->fpscr |= 1 << FPSCR_VXSOFT;
634 break;
635 case POWERPC_EXCP_FP_VXISI:
636 /* Magnitude subtraction of infinities */
637 env->fpscr |= 1 << FPSCR_VXISI;
638 goto update_arith;
639 case POWERPC_EXCP_FP_VXIDI:
640 /* Division of infinity by infinity */
641 env->fpscr |= 1 << FPSCR_VXIDI;
642 goto update_arith;
643 case POWERPC_EXCP_FP_VXZDZ:
644 /* Division of zero by zero */
645 env->fpscr |= 1 << FPSCR_VXZDZ;
646 goto update_arith;
647 case POWERPC_EXCP_FP_VXIMZ:
648 /* Multiplication of zero by infinity */
649 env->fpscr |= 1 << FPSCR_VXIMZ;
650 goto update_arith;
651 case POWERPC_EXCP_FP_VXVC:
652 /* Ordered comparison of NaN */
653 env->fpscr |= 1 << FPSCR_VXVC;
654 env->fpscr &= ~(0xF << FPSCR_FPCC);
655 env->fpscr |= 0x11 << FPSCR_FPCC;
656 /* We must update the target FPR before raising the exception */
657 if (ve != 0) {
658 env->exception_index = POWERPC_EXCP_PROGRAM;
659 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
660 /* Update the floating-point enabled exception summary */
661 env->fpscr |= 1 << FPSCR_FEX;
662 /* Exception is differed */
663 ve = 0;
665 break;
666 case POWERPC_EXCP_FP_VXSQRT:
667 /* Square root of a negative number */
668 env->fpscr |= 1 << FPSCR_VXSQRT;
669 update_arith:
670 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
671 if (ve == 0) {
672 /* Set the result to quiet NaN */
673 ret = 0xFFF8000000000000ULL;
674 env->fpscr &= ~(0xF << FPSCR_FPCC);
675 env->fpscr |= 0x11 << FPSCR_FPCC;
677 break;
678 case POWERPC_EXCP_FP_VXCVI:
679 /* Invalid conversion */
680 env->fpscr |= 1 << FPSCR_VXCVI;
681 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
682 if (ve == 0) {
683 /* Set the result to quiet NaN */
684 ret = 0xFFF8000000000000ULL;
685 env->fpscr &= ~(0xF << FPSCR_FPCC);
686 env->fpscr |= 0x11 << FPSCR_FPCC;
688 break;
690 /* Update the floating-point invalid operation summary */
691 env->fpscr |= 1 << FPSCR_VX;
692 /* Update the floating-point exception summary */
693 env->fpscr |= 1 << FPSCR_FX;
694 if (ve != 0) {
695 /* Update the floating-point enabled exception summary */
696 env->fpscr |= 1 << FPSCR_FEX;
697 if (msr_fe0 != 0 || msr_fe1 != 0)
698 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
700 return ret;
703 static always_inline void float_zero_divide_excp (void)
705 env->fpscr |= 1 << FPSCR_ZX;
706 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
707 /* Update the floating-point exception summary */
708 env->fpscr |= 1 << FPSCR_FX;
709 if (fpscr_ze != 0) {
710 /* Update the floating-point enabled exception summary */
711 env->fpscr |= 1 << FPSCR_FEX;
712 if (msr_fe0 != 0 || msr_fe1 != 0) {
713 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
714 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
719 static always_inline void float_overflow_excp (void)
721 env->fpscr |= 1 << FPSCR_OX;
722 /* Update the floating-point exception summary */
723 env->fpscr |= 1 << FPSCR_FX;
724 if (fpscr_oe != 0) {
725 /* XXX: should adjust the result */
726 /* Update the floating-point enabled exception summary */
727 env->fpscr |= 1 << FPSCR_FEX;
728 /* We must update the target FPR before raising the exception */
729 env->exception_index = POWERPC_EXCP_PROGRAM;
730 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
731 } else {
732 env->fpscr |= 1 << FPSCR_XX;
733 env->fpscr |= 1 << FPSCR_FI;
737 static always_inline void float_underflow_excp (void)
739 env->fpscr |= 1 << FPSCR_UX;
740 /* Update the floating-point exception summary */
741 env->fpscr |= 1 << FPSCR_FX;
742 if (fpscr_ue != 0) {
743 /* XXX: should adjust the result */
744 /* Update the floating-point enabled exception summary */
745 env->fpscr |= 1 << FPSCR_FEX;
746 /* We must update the target FPR before raising the exception */
747 env->exception_index = POWERPC_EXCP_PROGRAM;
748 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
752 static always_inline void float_inexact_excp (void)
754 env->fpscr |= 1 << FPSCR_XX;
755 /* Update the floating-point exception summary */
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_xe != 0) {
758 /* Update the floating-point enabled exception summary */
759 env->fpscr |= 1 << FPSCR_FEX;
760 /* We must update the target FPR before raising the exception */
761 env->exception_index = POWERPC_EXCP_PROGRAM;
762 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
766 static always_inline void fpscr_set_rounding_mode (void)
768 int rnd_type;
770 /* Set rounding mode */
771 switch (fpscr_rn) {
772 case 0:
773 /* Best approximation (round to nearest) */
774 rnd_type = float_round_nearest_even;
775 break;
776 case 1:
777 /* Smaller magnitude (round toward zero) */
778 rnd_type = float_round_to_zero;
779 break;
780 case 2:
781 /* Round toward +infinite */
782 rnd_type = float_round_up;
783 break;
784 default:
785 case 3:
786 /* Round toward -infinite */
787 rnd_type = float_round_down;
788 break;
790 set_float_rounding_mode(rnd_type, &env->fp_status);
793 void helper_fpscr_clrbit (uint32_t bit)
795 int prev;
797 prev = (env->fpscr >> bit) & 1;
798 env->fpscr &= ~(1 << bit);
799 if (prev == 1) {
800 switch (bit) {
801 case FPSCR_RN1:
802 case FPSCR_RN:
803 fpscr_set_rounding_mode();
804 break;
805 default:
806 break;
811 void helper_fpscr_setbit (uint32_t bit)
813 int prev;
815 prev = (env->fpscr >> bit) & 1;
816 env->fpscr |= 1 << bit;
817 if (prev == 0) {
818 switch (bit) {
819 case FPSCR_VX:
820 env->fpscr |= 1 << FPSCR_FX;
821 if (fpscr_ve)
822 goto raise_ve;
823 case FPSCR_OX:
824 env->fpscr |= 1 << FPSCR_FX;
825 if (fpscr_oe)
826 goto raise_oe;
827 break;
828 case FPSCR_UX:
829 env->fpscr |= 1 << FPSCR_FX;
830 if (fpscr_ue)
831 goto raise_ue;
832 break;
833 case FPSCR_ZX:
834 env->fpscr |= 1 << FPSCR_FX;
835 if (fpscr_ze)
836 goto raise_ze;
837 break;
838 case FPSCR_XX:
839 env->fpscr |= 1 << FPSCR_FX;
840 if (fpscr_xe)
841 goto raise_xe;
842 break;
843 case FPSCR_VXSNAN:
844 case FPSCR_VXISI:
845 case FPSCR_VXIDI:
846 case FPSCR_VXZDZ:
847 case FPSCR_VXIMZ:
848 case FPSCR_VXVC:
849 case FPSCR_VXSOFT:
850 case FPSCR_VXSQRT:
851 case FPSCR_VXCVI:
852 env->fpscr |= 1 << FPSCR_VX;
853 env->fpscr |= 1 << FPSCR_FX;
854 if (fpscr_ve != 0)
855 goto raise_ve;
856 break;
857 case FPSCR_VE:
858 if (fpscr_vx != 0) {
859 raise_ve:
860 env->error_code = POWERPC_EXCP_FP;
861 if (fpscr_vxsnan)
862 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
863 if (fpscr_vxisi)
864 env->error_code |= POWERPC_EXCP_FP_VXISI;
865 if (fpscr_vxidi)
866 env->error_code |= POWERPC_EXCP_FP_VXIDI;
867 if (fpscr_vxzdz)
868 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
869 if (fpscr_vximz)
870 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
871 if (fpscr_vxvc)
872 env->error_code |= POWERPC_EXCP_FP_VXVC;
873 if (fpscr_vxsoft)
874 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
875 if (fpscr_vxsqrt)
876 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
877 if (fpscr_vxcvi)
878 env->error_code |= POWERPC_EXCP_FP_VXCVI;
879 goto raise_excp;
881 break;
882 case FPSCR_OE:
883 if (fpscr_ox != 0) {
884 raise_oe:
885 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
886 goto raise_excp;
888 break;
889 case FPSCR_UE:
890 if (fpscr_ux != 0) {
891 raise_ue:
892 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
893 goto raise_excp;
895 break;
896 case FPSCR_ZE:
897 if (fpscr_zx != 0) {
898 raise_ze:
899 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
900 goto raise_excp;
902 break;
903 case FPSCR_XE:
904 if (fpscr_xx != 0) {
905 raise_xe:
906 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
907 goto raise_excp;
909 break;
910 case FPSCR_RN1:
911 case FPSCR_RN:
912 fpscr_set_rounding_mode();
913 break;
914 default:
915 break;
916 raise_excp:
917 /* Update the floating-point enabled exception summary */
918 env->fpscr |= 1 << FPSCR_FEX;
919 /* We have to update Rc1 before raising the exception */
920 env->exception_index = POWERPC_EXCP_PROGRAM;
921 break;
926 void helper_store_fpscr (uint64_t arg, uint32_t mask)
929 * We use only the 32 LSB of the incoming fpr
931 uint32_t prev, new;
932 int i;
934 prev = env->fpscr;
935 new = (uint32_t)arg;
936 new &= ~0x60000000;
937 new |= prev & 0x60000000;
938 for (i = 0; i < 8; i++) {
939 if (mask & (1 << i)) {
940 env->fpscr &= ~(0xF << (4 * i));
941 env->fpscr |= new & (0xF << (4 * i));
944 /* Update VX and FEX */
945 if (fpscr_ix != 0)
946 env->fpscr |= 1 << FPSCR_VX;
947 else
948 env->fpscr &= ~(1 << FPSCR_VX);
949 if ((fpscr_ex & fpscr_eex) != 0) {
950 env->fpscr |= 1 << FPSCR_FEX;
951 env->exception_index = POWERPC_EXCP_PROGRAM;
952 /* XXX: we should compute it properly */
953 env->error_code = POWERPC_EXCP_FP;
955 else
956 env->fpscr &= ~(1 << FPSCR_FEX);
957 fpscr_set_rounding_mode();
960 void helper_float_check_status (void)
962 #ifdef CONFIG_SOFTFLOAT
963 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
964 (env->error_code & POWERPC_EXCP_FP)) {
965 /* Differred floating-point exception after target FPR update */
966 if (msr_fe0 != 0 || msr_fe1 != 0)
967 helper_raise_exception_err(env->exception_index, env->error_code);
968 } else {
969 int status = get_float_exception_flags(&env->fp_status);
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp();
972 } else if (status & float_flag_overflow) {
973 float_overflow_excp();
974 } else if (status & float_flag_underflow) {
975 float_underflow_excp();
976 } else if (status & float_flag_inexact) {
977 float_inexact_excp();
980 #else
981 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
982 (env->error_code & POWERPC_EXCP_FP)) {
983 /* Differred floating-point exception after target FPR update */
984 if (msr_fe0 != 0 || msr_fe1 != 0)
985 helper_raise_exception_err(env->exception_index, env->error_code);
987 #endif
990 #ifdef CONFIG_SOFTFLOAT
991 void helper_reset_fpstatus (void)
993 set_float_exception_flags(0, &env->fp_status);
995 #endif
997 /* fadd - fadd. */
998 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
1000 CPU_DoubleU farg1, farg2;
1002 farg1.ll = arg1;
1003 farg2.ll = arg2;
1004 #if USE_PRECISE_EMULATION
1005 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1006 float64_is_signaling_nan(farg2.d))) {
1007 /* sNaN addition */
1008 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1009 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1010 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1011 /* Magnitude subtraction of infinities */
1012 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1013 } else {
1014 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1016 #else
1017 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1018 #endif
1019 return farg1.ll;
1022 /* fsub - fsub. */
1023 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1025 CPU_DoubleU farg1, farg2;
1027 farg1.ll = arg1;
1028 farg2.ll = arg2;
1029 #if USE_PRECISE_EMULATION
1031 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1032 float64_is_signaling_nan(farg2.d))) {
1033 /* sNaN subtraction */
1034 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1035 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1036 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1037 /* Magnitude subtraction of infinities */
1038 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1039 } else {
1040 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1043 #else
1044 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1045 #endif
1046 return farg1.ll;
1049 /* fmul - fmul. */
1050 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1052 CPU_DoubleU farg1, farg2;
1054 farg1.ll = arg1;
1055 farg2.ll = arg2;
1056 #if USE_PRECISE_EMULATION
1057 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1058 float64_is_signaling_nan(farg2.d))) {
1059 /* sNaN multiplication */
1060 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1061 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1062 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1063 /* Multiplication of zero by infinity */
1064 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1065 } else {
1066 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1068 #else
1069 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1070 #endif
1071 return farg1.ll;
1074 /* fdiv - fdiv. */
1075 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1077 CPU_DoubleU farg1, farg2;
1079 farg1.ll = arg1;
1080 farg2.ll = arg2;
1081 #if USE_PRECISE_EMULATION
1082 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1083 float64_is_signaling_nan(farg2.d))) {
1084 /* sNaN division */
1085 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1086 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1087 /* Division of infinity by infinity */
1088 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1089 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1090 /* Division of zero by zero */
1091 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1092 } else {
1093 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1095 #else
1096 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1097 #endif
1098 return farg1.ll;
1101 /* fabs */
1102 uint64_t helper_fabs (uint64_t arg)
1104 CPU_DoubleU farg;
1106 farg.ll = arg;
1107 farg.d = float64_abs(farg.d);
1108 return farg.ll;
1111 /* fnabs */
1112 uint64_t helper_fnabs (uint64_t arg)
1114 CPU_DoubleU farg;
1116 farg.ll = arg;
1117 farg.d = float64_abs(farg.d);
1118 farg.d = float64_chs(farg.d);
1119 return farg.ll;
1122 /* fneg */
1123 uint64_t helper_fneg (uint64_t arg)
1125 CPU_DoubleU farg;
1127 farg.ll = arg;
1128 farg.d = float64_chs(farg.d);
1129 return farg.ll;
1132 /* fctiw - fctiw. */
1133 uint64_t helper_fctiw (uint64_t arg)
1135 CPU_DoubleU farg;
1136 farg.ll = arg;
1138 if (unlikely(float64_is_signaling_nan(farg.d))) {
1139 /* sNaN conversion */
1140 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1141 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1142 /* qNan / infinity conversion */
1143 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1144 } else {
1145 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1146 #if USE_PRECISE_EMULATION
1147 /* XXX: higher bits are not supposed to be significant.
1148 * to make tests easier, return the same as a real PowerPC 750
1150 farg.ll |= 0xFFF80000ULL << 32;
1151 #endif
1153 return farg.ll;
1156 /* fctiwz - fctiwz. */
1157 uint64_t helper_fctiwz (uint64_t arg)
1159 CPU_DoubleU farg;
1160 farg.ll = arg;
1162 if (unlikely(float64_is_signaling_nan(farg.d))) {
1163 /* sNaN conversion */
1164 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1165 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1166 /* qNan / infinity conversion */
1167 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1168 } else {
1169 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1170 #if USE_PRECISE_EMULATION
1171 /* XXX: higher bits are not supposed to be significant.
1172 * to make tests easier, return the same as a real PowerPC 750
1174 farg.ll |= 0xFFF80000ULL << 32;
1175 #endif
1177 return farg.ll;
1180 #if defined(TARGET_PPC64)
1181 /* fcfid - fcfid. */
1182 uint64_t helper_fcfid (uint64_t arg)
1184 CPU_DoubleU farg;
1185 farg.d = int64_to_float64(arg, &env->fp_status);
1186 return farg.ll;
1189 /* fctid - fctid. */
1190 uint64_t helper_fctid (uint64_t arg)
1192 CPU_DoubleU farg;
1193 farg.ll = arg;
1195 if (unlikely(float64_is_signaling_nan(farg.d))) {
1196 /* sNaN conversion */
1197 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1198 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1199 /* qNan / infinity conversion */
1200 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1201 } else {
1202 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1204 return farg.ll;
1207 /* fctidz - fctidz. */
1208 uint64_t helper_fctidz (uint64_t arg)
1210 CPU_DoubleU farg;
1211 farg.ll = arg;
1213 if (unlikely(float64_is_signaling_nan(farg.d))) {
1214 /* sNaN conversion */
1215 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1216 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1217 /* qNan / infinity conversion */
1218 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1219 } else {
1220 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1222 return farg.ll;
1225 #endif
1227 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1229 CPU_DoubleU farg;
1230 farg.ll = arg;
1232 if (unlikely(float64_is_signaling_nan(farg.d))) {
1233 /* sNaN round */
1234 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1235 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1236 /* qNan / infinity round */
1237 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1238 } else {
1239 set_float_rounding_mode(rounding_mode, &env->fp_status);
1240 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1241 /* Restore rounding mode from FPSCR */
1242 fpscr_set_rounding_mode();
1244 return farg.ll;
1247 uint64_t helper_frin (uint64_t arg)
1249 return do_fri(arg, float_round_nearest_even);
1252 uint64_t helper_friz (uint64_t arg)
1254 return do_fri(arg, float_round_to_zero);
1257 uint64_t helper_frip (uint64_t arg)
1259 return do_fri(arg, float_round_up);
1262 uint64_t helper_frim (uint64_t arg)
1264 return do_fri(arg, float_round_down);
1267 /* fmadd - fmadd. */
1268 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1270 CPU_DoubleU farg1, farg2, farg3;
1272 farg1.ll = arg1;
1273 farg2.ll = arg2;
1274 farg3.ll = arg3;
1275 #if USE_PRECISE_EMULATION
1276 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1277 float64_is_signaling_nan(farg2.d) ||
1278 float64_is_signaling_nan(farg3.d))) {
1279 /* sNaN operation */
1280 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1281 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1282 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1283 /* Multiplication of zero by infinity */
1284 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1285 } else {
1286 #ifdef FLOAT128
1287 /* This is the way the PowerPC specification defines it */
1288 float128 ft0_128, ft1_128;
1290 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1291 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1292 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1293 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1294 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1295 /* Magnitude subtraction of infinities */
1296 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1297 } else {
1298 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1299 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1300 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1302 #else
1303 /* This is OK on x86 hosts */
1304 farg1.d = (farg1.d * farg2.d) + farg3.d;
1305 #endif
1307 #else
1308 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1309 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1310 #endif
1311 return farg1.ll;
1314 /* fmsub - fmsub. */
1315 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1317 CPU_DoubleU farg1, farg2, farg3;
1319 farg1.ll = arg1;
1320 farg2.ll = arg2;
1321 farg3.ll = arg3;
1322 #if USE_PRECISE_EMULATION
1323 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1324 float64_is_signaling_nan(farg2.d) ||
1325 float64_is_signaling_nan(farg3.d))) {
1326 /* sNaN operation */
1327 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1328 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1329 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1330 /* Multiplication of zero by infinity */
1331 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1332 } else {
1333 #ifdef FLOAT128
1334 /* This is the way the PowerPC specification defines it */
1335 float128 ft0_128, ft1_128;
1337 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1338 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1339 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1340 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1341 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1342 /* Magnitude subtraction of infinities */
1343 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1344 } else {
1345 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1346 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1347 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1349 #else
1350 /* This is OK on x86 hosts */
1351 farg1.d = (farg1.d * farg2.d) - farg3.d;
1352 #endif
1354 #else
1355 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1356 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1357 #endif
1358 return farg1.ll;
1361 /* fnmadd - fnmadd. */
1362 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1364 CPU_DoubleU farg1, farg2, farg3;
1366 farg1.ll = arg1;
1367 farg2.ll = arg2;
1368 farg3.ll = arg3;
1370 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1371 float64_is_signaling_nan(farg2.d) ||
1372 float64_is_signaling_nan(farg3.d))) {
1373 /* sNaN operation */
1374 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1375 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1376 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1377 /* Multiplication of zero by infinity */
1378 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1379 } else {
1380 #if USE_PRECISE_EMULATION
1381 #ifdef FLOAT128
1382 /* This is the way the PowerPC specification defines it */
1383 float128 ft0_128, ft1_128;
1385 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1386 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1387 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1388 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1389 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1390 /* Magnitude subtraction of infinities */
1391 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1392 } else {
1393 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1394 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1395 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1397 #else
1398 /* This is OK on x86 hosts */
1399 farg1.d = (farg1.d * farg2.d) + farg3.d;
1400 #endif
1401 #else
1402 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1403 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1404 #endif
1405 if (likely(!float64_is_nan(farg1.d)))
1406 farg1.d = float64_chs(farg1.d);
1408 return farg1.ll;
1411 /* fnmsub - fnmsub. */
1412 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1414 CPU_DoubleU farg1, farg2, farg3;
1416 farg1.ll = arg1;
1417 farg2.ll = arg2;
1418 farg3.ll = arg3;
1420 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1421 float64_is_signaling_nan(farg2.d) ||
1422 float64_is_signaling_nan(farg3.d))) {
1423 /* sNaN operation */
1424 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1425 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1426 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1427 /* Multiplication of zero by infinity */
1428 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1429 } else {
1430 #if USE_PRECISE_EMULATION
1431 #ifdef FLOAT128
1432 /* This is the way the PowerPC specification defines it */
1433 float128 ft0_128, ft1_128;
1435 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1436 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1437 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1438 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1439 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1440 /* Magnitude subtraction of infinities */
1441 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1442 } else {
1443 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1444 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1445 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1447 #else
1448 /* This is OK on x86 hosts */
1449 farg1.d = (farg1.d * farg2.d) - farg3.d;
1450 #endif
1451 #else
1452 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1453 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1454 #endif
1455 if (likely(!float64_is_nan(farg1.d)))
1456 farg1.d = float64_chs(farg1.d);
1458 return farg1.ll;
1461 /* frsp - frsp. */
1462 uint64_t helper_frsp (uint64_t arg)
1464 CPU_DoubleU farg;
1465 float32 f32;
1466 farg.ll = arg;
1468 #if USE_PRECISE_EMULATION
1469 if (unlikely(float64_is_signaling_nan(farg.d))) {
1470 /* sNaN square root */
1471 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1472 } else {
1473 f32 = float64_to_float32(farg.d, &env->fp_status);
1474 farg.d = float32_to_float64(f32, &env->fp_status);
1476 #else
1477 f32 = float64_to_float32(farg.d, &env->fp_status);
1478 farg.d = float32_to_float64(f32, &env->fp_status);
1479 #endif
1480 return farg.ll;
1483 /* fsqrt - fsqrt. */
1484 uint64_t helper_fsqrt (uint64_t arg)
1486 CPU_DoubleU farg;
1487 farg.ll = arg;
1489 if (unlikely(float64_is_signaling_nan(farg.d))) {
1490 /* sNaN square root */
1491 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1492 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1493 /* Square root of a negative nonzero number */
1494 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1495 } else {
1496 farg.d = float64_sqrt(farg.d, &env->fp_status);
1498 return farg.ll;
1501 /* fre - fre. */
1502 uint64_t helper_fre (uint64_t arg)
1504 CPU_DoubleU farg;
1505 farg.ll = arg;
1507 if (unlikely(float64_is_signaling_nan(farg.d))) {
1508 /* sNaN reciprocal */
1509 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1510 } else {
1511 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1513 return farg.d;
1516 /* fres - fres. */
1517 uint64_t helper_fres (uint64_t arg)
1519 CPU_DoubleU farg;
1520 float32 f32;
1521 farg.ll = arg;
1523 if (unlikely(float64_is_signaling_nan(farg.d))) {
1524 /* sNaN reciprocal */
1525 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1526 } else {
1527 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1528 f32 = float64_to_float32(farg.d, &env->fp_status);
1529 farg.d = float32_to_float64(f32, &env->fp_status);
1531 return farg.ll;
1534 /* frsqrte - frsqrte. */
1535 uint64_t helper_frsqrte (uint64_t arg)
1537 CPU_DoubleU farg;
1538 float32 f32;
1539 farg.ll = arg;
1541 if (unlikely(float64_is_signaling_nan(farg.d))) {
1542 /* sNaN reciprocal square root */
1543 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1544 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1545 /* Reciprocal square root of a negative nonzero number */
1546 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1547 } else {
1548 farg.d = float64_sqrt(farg.d, &env->fp_status);
1549 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1550 f32 = float64_to_float32(farg.d, &env->fp_status);
1551 farg.d = float32_to_float64(f32, &env->fp_status);
1553 return farg.ll;
1556 /* fsel - fsel. */
1557 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1559 CPU_DoubleU farg1;
1561 farg1.ll = arg1;
1563 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1564 return arg2;
1565 else
1566 return arg3;
1569 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1571 CPU_DoubleU farg1, farg2;
1572 uint32_t ret = 0;
1573 farg1.ll = arg1;
1574 farg2.ll = arg2;
1576 if (unlikely(float64_is_nan(farg1.d) ||
1577 float64_is_nan(farg2.d))) {
1578 ret = 0x01UL;
1579 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1580 ret = 0x08UL;
1581 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1582 ret = 0x04UL;
1583 } else {
1584 ret = 0x02UL;
1587 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1588 env->fpscr |= ret << FPSCR_FPRF;
1589 env->crf[crfD] = ret;
1590 if (unlikely(ret == 0x01UL
1591 && (float64_is_signaling_nan(farg1.d) ||
1592 float64_is_signaling_nan(farg2.d)))) {
1593 /* sNaN comparison */
1594 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1598 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1600 CPU_DoubleU farg1, farg2;
1601 uint32_t ret = 0;
1602 farg1.ll = arg1;
1603 farg2.ll = arg2;
1605 if (unlikely(float64_is_nan(farg1.d) ||
1606 float64_is_nan(farg2.d))) {
1607 ret = 0x01UL;
1608 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1609 ret = 0x08UL;
1610 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1611 ret = 0x04UL;
1612 } else {
1613 ret = 0x02UL;
1616 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1617 env->fpscr |= ret << FPSCR_FPRF;
1618 env->crf[crfD] = ret;
1619 if (unlikely (ret == 0x01UL)) {
1620 if (float64_is_signaling_nan(farg1.d) ||
1621 float64_is_signaling_nan(farg2.d)) {
1622 /* sNaN comparison */
1623 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1624 POWERPC_EXCP_FP_VXVC);
1625 } else {
1626 /* qNaN comparison */
1627 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1632 #if !defined (CONFIG_USER_ONLY)
1633 void helper_store_msr (target_ulong val)
1635 val = hreg_store_msr(env, val, 0);
1636 if (val != 0) {
1637 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1638 helper_raise_exception(val);
1642 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1643 target_ulong msrm, int keep_msrh)
1645 #if defined(TARGET_PPC64)
1646 if (msr & (1ULL << MSR_SF)) {
1647 nip = (uint64_t)nip;
1648 msr &= (uint64_t)msrm;
1649 } else {
1650 nip = (uint32_t)nip;
1651 msr = (uint32_t)(msr & msrm);
1652 if (keep_msrh)
1653 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1655 #else
1656 nip = (uint32_t)nip;
1657 msr &= (uint32_t)msrm;
1658 #endif
1659 /* XXX: beware: this is false if VLE is supported */
1660 env->nip = nip & ~((target_ulong)0x00000003);
1661 hreg_store_msr(env, msr, 1);
1662 #if defined (DEBUG_OP)
1663 cpu_dump_rfi(env->nip, env->msr);
1664 #endif
1665 /* No need to raise an exception here,
1666 * as rfi is always the last insn of a TB
1668 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1671 void helper_rfi (void)
1673 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1674 ~((target_ulong)0xFFFF0000), 1);
1677 #if defined(TARGET_PPC64)
1678 void helper_rfid (void)
1680 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1681 ~((target_ulong)0xFFFF0000), 0);
1684 void helper_hrfid (void)
1686 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1687 ~((target_ulong)0xFFFF0000), 0);
1689 #endif
1690 #endif
1692 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1694 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1695 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1696 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1697 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1698 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1699 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1703 #if defined(TARGET_PPC64)
1704 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1706 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1707 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1708 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1709 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1710 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1711 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1713 #endif
1715 /*****************************************************************************/
1716 /* PowerPC 601 specific instructions (POWER bridge) */
1718 target_ulong helper_clcs (uint32_t arg)
1720 switch (arg) {
1721 case 0x0CUL:
1722 /* Instruction cache line size */
1723 return env->icache_line_size;
1724 break;
1725 case 0x0DUL:
1726 /* Data cache line size */
1727 return env->dcache_line_size;
1728 break;
1729 case 0x0EUL:
1730 /* Minimum cache line size */
1731 return (env->icache_line_size < env->dcache_line_size) ?
1732 env->icache_line_size : env->dcache_line_size;
1733 break;
1734 case 0x0FUL:
1735 /* Maximum cache line size */
1736 return (env->icache_line_size > env->dcache_line_size) ?
1737 env->icache_line_size : env->dcache_line_size;
1738 break;
1739 default:
1740 /* Undefined */
1741 return 0;
1742 break;
1746 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1748 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1750 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1751 (int32_t)arg2 == 0) {
1752 env->spr[SPR_MQ] = 0;
1753 return INT32_MIN;
1754 } else {
1755 env->spr[SPR_MQ] = tmp % arg2;
1756 return tmp / (int32_t)arg2;
1760 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1762 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1764 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1765 (int32_t)arg2 == 0) {
1766 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1767 env->spr[SPR_MQ] = 0;
1768 return INT32_MIN;
1769 } else {
1770 env->spr[SPR_MQ] = tmp % arg2;
1771 tmp /= (int32_t)arg2;
1772 if ((int32_t)tmp != tmp) {
1773 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1774 } else {
1775 env->xer &= ~(1 << XER_OV);
1777 return tmp;
1781 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1783 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1784 (int32_t)arg2 == 0) {
1785 env->spr[SPR_MQ] = 0;
1786 return INT32_MIN;
1787 } else {
1788 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1789 return (int32_t)arg1 / (int32_t)arg2;
1793 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1795 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1796 (int32_t)arg2 == 0) {
1797 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1798 env->spr[SPR_MQ] = 0;
1799 return INT32_MIN;
1800 } else {
1801 env->xer &= ~(1 << XER_OV);
1802 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1803 return (int32_t)arg1 / (int32_t)arg2;
1807 #if !defined (CONFIG_USER_ONLY)
1808 target_ulong helper_rac (target_ulong addr)
1810 mmu_ctx_t ctx;
1811 int nb_BATs;
1812 target_ulong ret = 0;
1814 /* We don't have to generate many instances of this instruction,
1815 * as rac is supervisor only.
1817 /* XXX: FIX THIS: Pretend we have no BAT */
1818 nb_BATs = env->nb_BATs;
1819 env->nb_BATs = 0;
1820 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1821 ret = ctx.raddr;
1822 env->nb_BATs = nb_BATs;
1823 return ret;
1826 void helper_rfsvc (void)
1828 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1830 #endif
1832 /*****************************************************************************/
1833 /* 602 specific instructions */
1834 /* mfrom is the most crazy instruction ever seen, imho ! */
1835 /* Real implementation uses a ROM table. Do the same */
1836 /* Extremly decomposed:
1837 * -arg / 256
1838 * return 256 * log10(10 + 1.0) + 0.5
1840 #if !defined (CONFIG_USER_ONLY)
1841 target_ulong helper_602_mfrom (target_ulong arg)
1843 if (likely(arg < 602)) {
1844 #include "mfrom_table.c"
1845 return mfrom_ROM_table[arg];
1846 } else {
1847 return 0;
1850 #endif
1852 /*****************************************************************************/
1853 /* Embedded PowerPC specific helpers */
1855 /* XXX: to be improved to check access rights when in user-mode */
1856 target_ulong helper_load_dcr (target_ulong dcrn)
1858 target_ulong val = 0;
1860 if (unlikely(env->dcr_env == NULL)) {
1861 qemu_log("No DCR environment\n");
1862 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1863 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1864 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1865 qemu_log("DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1866 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1867 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1869 return val;
1872 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1874 if (unlikely(env->dcr_env == NULL)) {
1875 qemu_log("No DCR environment\n");
1876 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1877 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1878 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1879 qemu_log("DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1880 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1881 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1885 #if !defined(CONFIG_USER_ONLY)
1886 void helper_40x_rfci (void)
1888 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1889 ~((target_ulong)0xFFFF0000), 0);
1892 void helper_rfci (void)
1894 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1895 ~((target_ulong)0x3FFF0000), 0);
1898 void helper_rfdi (void)
1900 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1901 ~((target_ulong)0x3FFF0000), 0);
1904 void helper_rfmci (void)
1906 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1907 ~((target_ulong)0x3FFF0000), 0);
1909 #endif
1911 /* 440 specific */
1912 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1914 target_ulong mask;
1915 int i;
1917 i = 1;
1918 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1919 if ((high & mask) == 0) {
1920 if (update_Rc) {
1921 env->crf[0] = 0x4;
1923 goto done;
1925 i++;
1927 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1928 if ((low & mask) == 0) {
1929 if (update_Rc) {
1930 env->crf[0] = 0x8;
1932 goto done;
1934 i++;
1936 if (update_Rc) {
1937 env->crf[0] = 0x2;
1939 done:
1940 env->xer = (env->xer & ~0x7F) | i;
1941 if (update_Rc) {
1942 env->crf[0] |= xer_so;
1944 return i;
1947 /*****************************************************************************/
1948 /* Altivec extension helpers */
1949 #if defined(WORDS_BIGENDIAN)
1950 #define HI_IDX 0
1951 #define LO_IDX 1
1952 #else
1953 #define HI_IDX 1
1954 #define LO_IDX 0
1955 #endif
1957 #if defined(WORDS_BIGENDIAN)
1958 #define VECTOR_FOR_INORDER_I(index, element) \
1959 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1960 #else
1961 #define VECTOR_FOR_INORDER_I(index, element) \
1962 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1963 #endif
1965 /* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
1966 * execute the following block. */
1967 #define DO_HANDLE_NAN(result, x) \
1968 if (float32_is_nan(x) || float32_is_signaling_nan(x)) { \
1969 CPU_FloatU __f; \
1970 __f.f = x; \
1971 __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
1972 result = __f.f; \
1973 } else
1975 #define HANDLE_NAN1(result, x) \
1976 DO_HANDLE_NAN(result, x)
1977 #define HANDLE_NAN2(result, x, y) \
1978 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
1979 #define HANDLE_NAN3(result, x, y, z) \
1980 DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
1982 /* Saturating arithmetic helpers. */
1983 #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1984 static always_inline to_type cvt##from##to (from_type x, int *sat) \
1986 to_type r; \
1987 if (use_min && x < min) { \
1988 r = min; \
1989 *sat = 1; \
1990 } else if (use_max && x > max) { \
1991 r = max; \
1992 *sat = 1; \
1993 } else { \
1994 r = x; \
1996 return r; \
1998 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
1999 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
2000 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
2001 SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
2002 SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
2003 SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
2004 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
2005 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
2006 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
2007 #undef SATCVT
2009 #define LVE(name, access, swap, element) \
2010 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2012 size_t n_elems = ARRAY_SIZE(r->element); \
2013 int adjust = HI_IDX*(n_elems-1); \
2014 int sh = sizeof(r->element[0]) >> 1; \
2015 int index = (addr & 0xf) >> sh; \
2016 if(msr_le) { \
2017 r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2018 } else { \
2019 r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2022 #define I(x) (x)
2023 LVE(lvebx, ldub, I, u8)
2024 LVE(lvehx, lduw, bswap16, u16)
2025 LVE(lvewx, ldl, bswap32, u32)
2026 #undef I
2027 #undef LVE
2029 void helper_lvsl (ppc_avr_t *r, target_ulong sh)
2031 int i, j = (sh & 0xf);
2033 VECTOR_FOR_INORDER_I (i, u8) {
2034 r->u8[i] = j++;
2038 void helper_lvsr (ppc_avr_t *r, target_ulong sh)
2040 int i, j = 0x10 - (sh & 0xf);
2042 VECTOR_FOR_INORDER_I (i, u8) {
2043 r->u8[i] = j++;
2047 #define STVE(name, access, swap, element) \
2048 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2050 size_t n_elems = ARRAY_SIZE(r->element); \
2051 int adjust = HI_IDX*(n_elems-1); \
2052 int sh = sizeof(r->element[0]) >> 1; \
2053 int index = (addr & 0xf) >> sh; \
2054 if(msr_le) { \
2055 access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2056 } else { \
2057 access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2060 #define I(x) (x)
2061 STVE(stvebx, stb, I, u8)
2062 STVE(stvehx, stw, bswap16, u16)
2063 STVE(stvewx, stl, bswap32, u32)
2064 #undef I
2065 #undef LVE
2067 void helper_mtvscr (ppc_avr_t *r)
2069 #if defined(WORDS_BIGENDIAN)
2070 env->vscr = r->u32[3];
2071 #else
2072 env->vscr = r->u32[0];
2073 #endif
2074 set_flush_to_zero(vscr_nj, &env->vec_status);
2077 void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2079 int i;
2080 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2081 r->u32[i] = ~a->u32[i] < b->u32[i];
2085 #define VARITH_DO(name, op, element) \
2086 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2088 int i; \
2089 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2090 r->element[i] = a->element[i] op b->element[i]; \
2093 #define VARITH(suffix, element) \
2094 VARITH_DO(add##suffix, +, element) \
2095 VARITH_DO(sub##suffix, -, element)
2096 VARITH(ubm, u8)
2097 VARITH(uhm, u16)
2098 VARITH(uwm, u32)
2099 #undef VARITH_DO
2100 #undef VARITH
2102 #define VARITHSAT_CASE(type, op, cvt, element) \
2104 type result = (type)a->element[i] op (type)b->element[i]; \
2105 r->element[i] = cvt(result, &sat); \
2108 #define VARITHSAT_DO(name, op, optype, cvt, element) \
2109 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2111 int sat = 0; \
2112 int i; \
2113 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2114 switch (sizeof(r->element[0])) { \
2115 case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
2116 case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
2117 case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
2120 if (sat) { \
2121 env->vscr |= (1 << VSCR_SAT); \
2124 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
2125 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
2126 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
2127 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
2128 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
2129 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
2130 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
2131 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
2132 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
2133 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
2134 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
2135 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
2136 #undef VARITHSAT_CASE
2137 #undef VARITHSAT_DO
2138 #undef VARITHSAT_SIGNED
2139 #undef VARITHSAT_UNSIGNED
2141 #define VAVG_DO(name, element, etype) \
2142 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2144 int i; \
2145 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2146 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2147 r->element[i] = x >> 1; \
2151 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2152 VAVG_DO(avgs##type, signed_element, signed_type) \
2153 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2154 VAVG(b, s8, int16_t, u8, uint16_t)
2155 VAVG(h, s16, int32_t, u16, uint32_t)
2156 VAVG(w, s32, int64_t, u32, uint64_t)
2157 #undef VAVG_DO
2158 #undef VAVG
2160 #define VCF(suffix, cvt, element) \
2161 void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
2163 int i; \
2164 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2165 float32 t = cvt(b->element[i], &env->vec_status); \
2166 r->f[i] = float32_scalbn (t, -uim, &env->vec_status); \
2169 VCF(ux, uint32_to_float32, u32)
2170 VCF(sx, int32_to_float32, s32)
2171 #undef VCF
2173 #define VCMP_DO(suffix, compare, element, record) \
2174 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2176 uint32_t ones = (uint32_t)-1; \
2177 uint32_t all = ones; \
2178 uint32_t none = 0; \
2179 int i; \
2180 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2181 uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2182 switch (sizeof (a->element[0])) { \
2183 case 4: r->u32[i] = result; break; \
2184 case 2: r->u16[i] = result; break; \
2185 case 1: r->u8[i] = result; break; \
2187 all &= result; \
2188 none |= result; \
2190 if (record) { \
2191 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2194 #define VCMP(suffix, compare, element) \
2195 VCMP_DO(suffix, compare, element, 0) \
2196 VCMP_DO(suffix##_dot, compare, element, 1)
2197 VCMP(equb, ==, u8)
2198 VCMP(equh, ==, u16)
2199 VCMP(equw, ==, u32)
2200 VCMP(gtub, >, u8)
2201 VCMP(gtuh, >, u16)
2202 VCMP(gtuw, >, u32)
2203 VCMP(gtsb, >, s8)
2204 VCMP(gtsh, >, s16)
2205 VCMP(gtsw, >, s32)
2206 #undef VCMP_DO
2207 #undef VCMP
2209 void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2211 int sat = 0;
2212 int i;
2214 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2215 int32_t prod = a->s16[i] * b->s16[i];
2216 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2217 r->s16[i] = cvtswsh (t, &sat);
2220 if (sat) {
2221 env->vscr |= (1 << VSCR_SAT);
2225 void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2227 int sat = 0;
2228 int i;
2230 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2231 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
2232 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2233 r->s16[i] = cvtswsh (t, &sat);
2236 if (sat) {
2237 env->vscr |= (1 << VSCR_SAT);
2241 #define VMINMAX_DO(name, compare, element) \
2242 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2244 int i; \
2245 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2246 if (a->element[i] compare b->element[i]) { \
2247 r->element[i] = b->element[i]; \
2248 } else { \
2249 r->element[i] = a->element[i]; \
2253 #define VMINMAX(suffix, element) \
2254 VMINMAX_DO(min##suffix, >, element) \
2255 VMINMAX_DO(max##suffix, <, element)
2256 VMINMAX(sb, s8)
2257 VMINMAX(sh, s16)
2258 VMINMAX(sw, s32)
2259 VMINMAX(ub, u8)
2260 VMINMAX(uh, u16)
2261 VMINMAX(uw, u32)
2262 #undef VMINMAX_DO
2263 #undef VMINMAX
2265 #define VMINMAXFP(suffix, rT, rF) \
2266 void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2268 int i; \
2269 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2270 HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
2271 if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
2272 r->f[i] = rT->f[i]; \
2273 } else { \
2274 r->f[i] = rF->f[i]; \
2279 VMINMAXFP(minfp, a, b)
2280 VMINMAXFP(maxfp, b, a)
2281 #undef VMINMAXFP
2283 void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2285 int i;
2286 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2287 int32_t prod = a->s16[i] * b->s16[i];
2288 r->s16[i] = (int16_t) (prod + c->s16[i]);
2292 #define VMRG_DO(name, element, highp) \
2293 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2295 ppc_avr_t result; \
2296 int i; \
2297 size_t n_elems = ARRAY_SIZE(r->element); \
2298 for (i = 0; i < n_elems/2; i++) { \
2299 if (highp) { \
2300 result.element[i*2+HI_IDX] = a->element[i]; \
2301 result.element[i*2+LO_IDX] = b->element[i]; \
2302 } else { \
2303 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2304 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2307 *r = result; \
2309 #if defined(WORDS_BIGENDIAN)
2310 #define MRGHI 0
2311 #define MRGLO 1
2312 #else
2313 #define MRGHI 1
2314 #define MRGLO 0
2315 #endif
2316 #define VMRG(suffix, element) \
2317 VMRG_DO(mrgl##suffix, element, MRGHI) \
2318 VMRG_DO(mrgh##suffix, element, MRGLO)
2319 VMRG(b, u8)
2320 VMRG(h, u16)
2321 VMRG(w, u32)
2322 #undef VMRG_DO
2323 #undef VMRG
2324 #undef MRGHI
2325 #undef MRGLO
2327 void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2329 int32_t prod[16];
2330 int i;
2332 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
2333 prod[i] = (int32_t)a->s8[i] * b->u8[i];
2336 VECTOR_FOR_INORDER_I(i, s32) {
2337 r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2341 void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2343 int32_t prod[8];
2344 int i;
2346 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2347 prod[i] = a->s16[i] * b->s16[i];
2350 VECTOR_FOR_INORDER_I(i, s32) {
2351 r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
2355 void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2357 int32_t prod[8];
2358 int i;
2359 int sat = 0;
2361 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2362 prod[i] = (int32_t)a->s16[i] * b->s16[i];
2365 VECTOR_FOR_INORDER_I (i, s32) {
2366 int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
2367 r->u32[i] = cvtsdsw(t, &sat);
2370 if (sat) {
2371 env->vscr |= (1 << VSCR_SAT);
2375 void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2377 uint16_t prod[16];
2378 int i;
2380 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2381 prod[i] = a->u8[i] * b->u8[i];
2384 VECTOR_FOR_INORDER_I(i, u32) {
2385 r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2389 void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2391 uint32_t prod[8];
2392 int i;
2394 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2395 prod[i] = a->u16[i] * b->u16[i];
2398 VECTOR_FOR_INORDER_I(i, u32) {
2399 r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
2403 void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2405 uint32_t prod[8];
2406 int i;
2407 int sat = 0;
2409 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2410 prod[i] = a->u16[i] * b->u16[i];
2413 VECTOR_FOR_INORDER_I (i, s32) {
2414 uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
2415 r->u32[i] = cvtuduw(t, &sat);
2418 if (sat) {
2419 env->vscr |= (1 << VSCR_SAT);
2423 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2424 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2426 int i; \
2427 VECTOR_FOR_INORDER_I(i, prod_element) { \
2428 if (evenp) { \
2429 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2430 } else { \
2431 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2435 #define VMUL(suffix, mul_element, prod_element) \
2436 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2437 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2438 VMUL(sb, s8, s16)
2439 VMUL(sh, s16, s32)
2440 VMUL(ub, u8, u16)
2441 VMUL(uh, u16, u32)
2442 #undef VMUL_DO
2443 #undef VMUL
2445 void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2447 ppc_avr_t result;
2448 int i;
2449 VECTOR_FOR_INORDER_I (i, u8) {
2450 int s = c->u8[i] & 0x1f;
2451 #if defined(WORDS_BIGENDIAN)
2452 int index = s & 0xf;
2453 #else
2454 int index = 15 - (s & 0xf);
2455 #endif
2456 if (s & 0x10) {
2457 result.u8[i] = b->u8[index];
2458 } else {
2459 result.u8[i] = a->u8[index];
2462 *r = result;
2465 #if defined(WORDS_BIGENDIAN)
2466 #define PKBIG 1
2467 #else
2468 #define PKBIG 0
2469 #endif
2470 void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2472 int i, j;
2473 ppc_avr_t result;
2474 #if defined(WORDS_BIGENDIAN)
2475 const ppc_avr_t *x[2] = { a, b };
2476 #else
2477 const ppc_avr_t *x[2] = { b, a };
2478 #endif
2480 VECTOR_FOR_INORDER_I (i, u64) {
2481 VECTOR_FOR_INORDER_I (j, u32){
2482 uint32_t e = x[i]->u32[j];
2483 result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
2484 ((e >> 6) & 0x3e0) |
2485 ((e >> 3) & 0x1f));
2488 *r = result;
2491 #define VPK(suffix, from, to, cvt, dosat) \
2492 void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2494 int i; \
2495 int sat = 0; \
2496 ppc_avr_t result; \
2497 ppc_avr_t *a0 = PKBIG ? a : b; \
2498 ppc_avr_t *a1 = PKBIG ? b : a; \
2499 VECTOR_FOR_INORDER_I (i, from) { \
2500 result.to[i] = cvt(a0->from[i], &sat); \
2501 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
2503 *r = result; \
2504 if (dosat && sat) { \
2505 env->vscr |= (1 << VSCR_SAT); \
2508 #define I(x, y) (x)
2509 VPK(shss, s16, s8, cvtshsb, 1)
2510 VPK(shus, s16, u8, cvtshub, 1)
2511 VPK(swss, s32, s16, cvtswsh, 1)
2512 VPK(swus, s32, u16, cvtswuh, 1)
2513 VPK(uhus, u16, u8, cvtuhub, 1)
2514 VPK(uwus, u32, u16, cvtuwuh, 1)
2515 VPK(uhum, u16, u8, I, 0)
2516 VPK(uwum, u32, u16, I, 0)
2517 #undef I
2518 #undef VPK
2519 #undef PKBIG
2521 #define VRFI(suffix, rounding) \
2522 void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2524 int i; \
2525 float_status s = env->vec_status; \
2526 set_float_rounding_mode(rounding, &s); \
2527 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
2528 HANDLE_NAN1(r->f[i], b->f[i]) { \
2529 r->f[i] = float32_round_to_int (b->f[i], &s); \
2533 VRFI(n, float_round_nearest_even)
2534 VRFI(m, float_round_down)
2535 VRFI(p, float_round_up)
2536 VRFI(z, float_round_to_zero)
2537 #undef VRFI
2539 #define VROTATE(suffix, element) \
2540 void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2542 int i; \
2543 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2544 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2545 unsigned int shift = b->element[i] & mask; \
2546 r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2549 VROTATE(b, u8)
2550 VROTATE(h, u16)
2551 VROTATE(w, u32)
2552 #undef VROTATE
2554 void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2556 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
2557 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
2560 void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b)
2562 int i;
2563 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
2564 HANDLE_NAN1(r->f[i], b->f[i]) {
2565 r->f[i] = float32_log2(b->f[i], &env->vec_status);
2570 #if defined(WORDS_BIGENDIAN)
2571 #define LEFT 0
2572 #define RIGHT 1
2573 #else
2574 #define LEFT 1
2575 #define RIGHT 0
2576 #endif
2577 /* The specification says that the results are undefined if all of the
2578 * shift counts are not identical. We check to make sure that they are
2579 * to conform to what real hardware appears to do. */
2580 #define VSHIFT(suffix, leftp) \
2581 void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2583 int shift = b->u8[LO_IDX*0x15] & 0x7; \
2584 int doit = 1; \
2585 int i; \
2586 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
2587 doit = doit && ((b->u8[i] & 0x7) == shift); \
2589 if (doit) { \
2590 if (shift == 0) { \
2591 *r = *a; \
2592 } else if (leftp) { \
2593 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
2594 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
2595 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
2596 } else { \
2597 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
2598 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
2599 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
2603 VSHIFT(l, LEFT)
2604 VSHIFT(r, RIGHT)
2605 #undef VSHIFT
2606 #undef LEFT
2607 #undef RIGHT
2609 #define VSL(suffix, element) \
2610 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2612 int i; \
2613 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2614 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2615 unsigned int shift = b->element[i] & mask; \
2616 r->element[i] = a->element[i] << shift; \
2619 VSL(b, u8)
2620 VSL(h, u16)
2621 VSL(w, u32)
2622 #undef VSL
2624 void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
2626 int sh = shift & 0xf;
2627 int i;
2628 ppc_avr_t result;
2630 #if defined(WORDS_BIGENDIAN)
2631 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2632 int index = sh + i;
2633 if (index > 0xf) {
2634 result.u8[i] = b->u8[index-0x10];
2635 } else {
2636 result.u8[i] = a->u8[index];
2639 #else
2640 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2641 int index = (16 - sh) + i;
2642 if (index > 0xf) {
2643 result.u8[i] = a->u8[index-0x10];
2644 } else {
2645 result.u8[i] = b->u8[index];
2648 #endif
2649 *r = result;
2652 void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2654 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2656 #if defined (WORDS_BIGENDIAN)
2657 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2658 memset (&r->u8[16-sh], 0, sh);
2659 #else
2660 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2661 memset (&r->u8[0], 0, sh);
2662 #endif
2665 /* Experimental testing shows that hardware masks the immediate. */
2666 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2667 #if defined(WORDS_BIGENDIAN)
2668 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2669 #else
2670 #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2671 #endif
2672 #define VSPLT(suffix, element) \
2673 void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2675 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
2676 int i; \
2677 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2678 r->element[i] = s; \
2681 VSPLT(b, u8)
2682 VSPLT(h, u16)
2683 VSPLT(w, u32)
2684 #undef VSPLT
2685 #undef SPLAT_ELEMENT
2686 #undef _SPLAT_MASKED
2688 #define VSPLTI(suffix, element, splat_type) \
2689 void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
2691 splat_type x = (int8_t)(splat << 3) >> 3; \
2692 int i; \
2693 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2694 r->element[i] = x; \
2697 VSPLTI(b, s8, int8_t)
2698 VSPLTI(h, s16, int16_t)
2699 VSPLTI(w, s32, int32_t)
2700 #undef VSPLTI
2702 #define VSR(suffix, element) \
2703 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2705 int i; \
2706 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2707 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2708 unsigned int shift = b->element[i] & mask; \
2709 r->element[i] = a->element[i] >> shift; \
2712 VSR(ab, s8)
2713 VSR(ah, s16)
2714 VSR(aw, s32)
2715 VSR(b, u8)
2716 VSR(h, u16)
2717 VSR(w, u32)
2718 #undef VSR
2720 void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2722 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2724 #if defined (WORDS_BIGENDIAN)
2725 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2726 memset (&r->u8[0], 0, sh);
2727 #else
2728 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2729 memset (&r->u8[16-sh], 0, sh);
2730 #endif
2733 void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2735 int i;
2736 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2737 r->u32[i] = a->u32[i] >= b->u32[i];
2741 void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2743 int64_t t;
2744 int i, upper;
2745 ppc_avr_t result;
2746 int sat = 0;
2748 #if defined(WORDS_BIGENDIAN)
2749 upper = ARRAY_SIZE(r->s32)-1;
2750 #else
2751 upper = 0;
2752 #endif
2753 t = (int64_t)b->s32[upper];
2754 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2755 t += a->s32[i];
2756 result.s32[i] = 0;
2758 result.s32[upper] = cvtsdsw(t, &sat);
2759 *r = result;
2761 if (sat) {
2762 env->vscr |= (1 << VSCR_SAT);
2766 void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2768 int i, j, upper;
2769 ppc_avr_t result;
2770 int sat = 0;
2772 #if defined(WORDS_BIGENDIAN)
2773 upper = 1;
2774 #else
2775 upper = 0;
2776 #endif
2777 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2778 int64_t t = (int64_t)b->s32[upper+i*2];
2779 result.u64[i] = 0;
2780 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2781 t += a->s32[2*i+j];
2783 result.s32[upper+i*2] = cvtsdsw(t, &sat);
2786 *r = result;
2787 if (sat) {
2788 env->vscr |= (1 << VSCR_SAT);
2792 void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2794 int i, j;
2795 int sat = 0;
2797 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2798 int64_t t = (int64_t)b->s32[i];
2799 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2800 t += a->s8[4*i+j];
2802 r->s32[i] = cvtsdsw(t, &sat);
2805 if (sat) {
2806 env->vscr |= (1 << VSCR_SAT);
2810 void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2812 int sat = 0;
2813 int i;
2815 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2816 int64_t t = (int64_t)b->s32[i];
2817 t += a->s16[2*i] + a->s16[2*i+1];
2818 r->s32[i] = cvtsdsw(t, &sat);
2821 if (sat) {
2822 env->vscr |= (1 << VSCR_SAT);
2826 void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2828 int i, j;
2829 int sat = 0;
2831 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2832 uint64_t t = (uint64_t)b->u32[i];
2833 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2834 t += a->u8[4*i+j];
2836 r->u32[i] = cvtuduw(t, &sat);
2839 if (sat) {
2840 env->vscr |= (1 << VSCR_SAT);
2844 #if defined(WORDS_BIGENDIAN)
2845 #define UPKHI 1
2846 #define UPKLO 0
2847 #else
2848 #define UPKHI 0
2849 #define UPKLO 1
2850 #endif
2851 #define VUPKPX(suffix, hi) \
2852 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2854 int i; \
2855 ppc_avr_t result; \
2856 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2857 uint16_t e = b->u16[hi ? i : i+4]; \
2858 uint8_t a = (e >> 15) ? 0xff : 0; \
2859 uint8_t r = (e >> 10) & 0x1f; \
2860 uint8_t g = (e >> 5) & 0x1f; \
2861 uint8_t b = e & 0x1f; \
2862 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2864 *r = result; \
2866 VUPKPX(lpx, UPKLO)
2867 VUPKPX(hpx, UPKHI)
2868 #undef VUPKPX
2870 #define VUPK(suffix, unpacked, packee, hi) \
2871 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2873 int i; \
2874 ppc_avr_t result; \
2875 if (hi) { \
2876 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2877 result.unpacked[i] = b->packee[i]; \
2879 } else { \
2880 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
2881 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2884 *r = result; \
2886 VUPK(hsb, s16, s8, UPKHI)
2887 VUPK(hsh, s32, s16, UPKHI)
2888 VUPK(lsb, s16, s8, UPKLO)
2889 VUPK(lsh, s32, s16, UPKLO)
2890 #undef VUPK
2891 #undef UPKHI
2892 #undef UPKLO
2894 #undef DO_HANDLE_NAN
2895 #undef HANDLE_NAN1
2896 #undef HANDLE_NAN2
2897 #undef HANDLE_NAN3
2898 #undef VECTOR_FOR_INORDER_I
2899 #undef HI_IDX
2900 #undef LO_IDX
2902 /*****************************************************************************/
2903 /* SPE extension helpers */
2904 /* Use a table to make this quicker */
2905 static uint8_t hbrev[16] = {
2906 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2907 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2910 static always_inline uint8_t byte_reverse (uint8_t val)
2912 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2915 static always_inline uint32_t word_reverse (uint32_t val)
2917 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2918 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2921 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2922 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2924 uint32_t a, b, d, mask;
2926 mask = UINT32_MAX >> (32 - MASKBITS);
2927 a = arg1 & mask;
2928 b = arg2 & mask;
2929 d = word_reverse(1 + word_reverse(a | ~b));
2930 return (arg1 & ~mask) | (d & b);
2933 uint32_t helper_cntlsw32 (uint32_t val)
2935 if (val & 0x80000000)
2936 return clz32(~val);
2937 else
2938 return clz32(val);
2941 uint32_t helper_cntlzw32 (uint32_t val)
2943 return clz32(val);
2946 /* Single-precision floating-point conversions */
2947 static always_inline uint32_t efscfsi (uint32_t val)
2949 CPU_FloatU u;
2951 u.f = int32_to_float32(val, &env->vec_status);
2953 return u.l;
2956 static always_inline uint32_t efscfui (uint32_t val)
2958 CPU_FloatU u;
2960 u.f = uint32_to_float32(val, &env->vec_status);
2962 return u.l;
2965 static always_inline int32_t efsctsi (uint32_t val)
2967 CPU_FloatU u;
2969 u.l = val;
2970 /* NaN are not treated the same way IEEE 754 does */
2971 if (unlikely(float32_is_nan(u.f)))
2972 return 0;
2974 return float32_to_int32(u.f, &env->vec_status);
2977 static always_inline uint32_t efsctui (uint32_t val)
2979 CPU_FloatU u;
2981 u.l = val;
2982 /* NaN are not treated the same way IEEE 754 does */
2983 if (unlikely(float32_is_nan(u.f)))
2984 return 0;
2986 return float32_to_uint32(u.f, &env->vec_status);
2989 static always_inline uint32_t efsctsiz (uint32_t val)
2991 CPU_FloatU u;
2993 u.l = val;
2994 /* NaN are not treated the same way IEEE 754 does */
2995 if (unlikely(float32_is_nan(u.f)))
2996 return 0;
2998 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
3001 static always_inline uint32_t efsctuiz (uint32_t val)
3003 CPU_FloatU u;
3005 u.l = val;
3006 /* NaN are not treated the same way IEEE 754 does */
3007 if (unlikely(float32_is_nan(u.f)))
3008 return 0;
3010 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
3013 static always_inline uint32_t efscfsf (uint32_t val)
3015 CPU_FloatU u;
3016 float32 tmp;
3018 u.f = int32_to_float32(val, &env->vec_status);
3019 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
3020 u.f = float32_div(u.f, tmp, &env->vec_status);
3022 return u.l;
3025 static always_inline uint32_t efscfuf (uint32_t val)
3027 CPU_FloatU u;
3028 float32 tmp;
3030 u.f = uint32_to_float32(val, &env->vec_status);
3031 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3032 u.f = float32_div(u.f, tmp, &env->vec_status);
3034 return u.l;
3037 static always_inline uint32_t efsctsf (uint32_t val)
3039 CPU_FloatU u;
3040 float32 tmp;
3042 u.l = val;
3043 /* NaN are not treated the same way IEEE 754 does */
3044 if (unlikely(float32_is_nan(u.f)))
3045 return 0;
3046 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3047 u.f = float32_mul(u.f, tmp, &env->vec_status);
3049 return float32_to_int32(u.f, &env->vec_status);
3052 static always_inline uint32_t efsctuf (uint32_t val)
3054 CPU_FloatU u;
3055 float32 tmp;
3057 u.l = val;
3058 /* NaN are not treated the same way IEEE 754 does */
3059 if (unlikely(float32_is_nan(u.f)))
3060 return 0;
3061 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
3062 u.f = float32_mul(u.f, tmp, &env->vec_status);
3064 return float32_to_uint32(u.f, &env->vec_status);
3067 #define HELPER_SPE_SINGLE_CONV(name) \
3068 uint32_t helper_e##name (uint32_t val) \
3070 return e##name(val); \
3072 /* efscfsi */
3073 HELPER_SPE_SINGLE_CONV(fscfsi);
3074 /* efscfui */
3075 HELPER_SPE_SINGLE_CONV(fscfui);
3076 /* efscfuf */
3077 HELPER_SPE_SINGLE_CONV(fscfuf);
3078 /* efscfsf */
3079 HELPER_SPE_SINGLE_CONV(fscfsf);
3080 /* efsctsi */
3081 HELPER_SPE_SINGLE_CONV(fsctsi);
3082 /* efsctui */
3083 HELPER_SPE_SINGLE_CONV(fsctui);
3084 /* efsctsiz */
3085 HELPER_SPE_SINGLE_CONV(fsctsiz);
3086 /* efsctuiz */
3087 HELPER_SPE_SINGLE_CONV(fsctuiz);
3088 /* efsctsf */
3089 HELPER_SPE_SINGLE_CONV(fsctsf);
3090 /* efsctuf */
3091 HELPER_SPE_SINGLE_CONV(fsctuf);
3093 #define HELPER_SPE_VECTOR_CONV(name) \
3094 uint64_t helper_ev##name (uint64_t val) \
3096 return ((uint64_t)e##name(val >> 32) << 32) | \
3097 (uint64_t)e##name(val); \
3099 /* evfscfsi */
3100 HELPER_SPE_VECTOR_CONV(fscfsi);
3101 /* evfscfui */
3102 HELPER_SPE_VECTOR_CONV(fscfui);
3103 /* evfscfuf */
3104 HELPER_SPE_VECTOR_CONV(fscfuf);
3105 /* evfscfsf */
3106 HELPER_SPE_VECTOR_CONV(fscfsf);
3107 /* evfsctsi */
3108 HELPER_SPE_VECTOR_CONV(fsctsi);
3109 /* evfsctui */
3110 HELPER_SPE_VECTOR_CONV(fsctui);
3111 /* evfsctsiz */
3112 HELPER_SPE_VECTOR_CONV(fsctsiz);
3113 /* evfsctuiz */
3114 HELPER_SPE_VECTOR_CONV(fsctuiz);
3115 /* evfsctsf */
3116 HELPER_SPE_VECTOR_CONV(fsctsf);
3117 /* evfsctuf */
3118 HELPER_SPE_VECTOR_CONV(fsctuf);
3120 /* Single-precision floating-point arithmetic */
3121 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
3123 CPU_FloatU u1, u2;
3124 u1.l = op1;
3125 u2.l = op2;
3126 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
3127 return u1.l;
3130 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
3132 CPU_FloatU u1, u2;
3133 u1.l = op1;
3134 u2.l = op2;
3135 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
3136 return u1.l;
3139 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
3141 CPU_FloatU u1, u2;
3142 u1.l = op1;
3143 u2.l = op2;
3144 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
3145 return u1.l;
3148 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
3150 CPU_FloatU u1, u2;
3151 u1.l = op1;
3152 u2.l = op2;
3153 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
3154 return u1.l;
3157 #define HELPER_SPE_SINGLE_ARITH(name) \
3158 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3160 return e##name(op1, op2); \
3162 /* efsadd */
3163 HELPER_SPE_SINGLE_ARITH(fsadd);
3164 /* efssub */
3165 HELPER_SPE_SINGLE_ARITH(fssub);
3166 /* efsmul */
3167 HELPER_SPE_SINGLE_ARITH(fsmul);
3168 /* efsdiv */
3169 HELPER_SPE_SINGLE_ARITH(fsdiv);
3171 #define HELPER_SPE_VECTOR_ARITH(name) \
3172 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
3174 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
3175 (uint64_t)e##name(op1, op2); \
3177 /* evfsadd */
3178 HELPER_SPE_VECTOR_ARITH(fsadd);
3179 /* evfssub */
3180 HELPER_SPE_VECTOR_ARITH(fssub);
3181 /* evfsmul */
3182 HELPER_SPE_VECTOR_ARITH(fsmul);
3183 /* evfsdiv */
3184 HELPER_SPE_VECTOR_ARITH(fsdiv);
3186 /* Single-precision floating-point comparisons */
3187 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
3189 CPU_FloatU u1, u2;
3190 u1.l = op1;
3191 u2.l = op2;
3192 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
3195 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
3197 CPU_FloatU u1, u2;
3198 u1.l = op1;
3199 u2.l = op2;
3200 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
3203 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
3205 CPU_FloatU u1, u2;
3206 u1.l = op1;
3207 u2.l = op2;
3208 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
3211 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
3213 /* XXX: TODO: test special values (NaN, infinites, ...) */
3214 return efststlt(op1, op2);
3217 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
3219 /* XXX: TODO: test special values (NaN, infinites, ...) */
3220 return efststgt(op1, op2);
3223 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
3225 /* XXX: TODO: test special values (NaN, infinites, ...) */
3226 return efststeq(op1, op2);
3229 #define HELPER_SINGLE_SPE_CMP(name) \
3230 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3232 return e##name(op1, op2) << 2; \
3234 /* efststlt */
3235 HELPER_SINGLE_SPE_CMP(fststlt);
3236 /* efststgt */
3237 HELPER_SINGLE_SPE_CMP(fststgt);
3238 /* efststeq */
3239 HELPER_SINGLE_SPE_CMP(fststeq);
3240 /* efscmplt */
3241 HELPER_SINGLE_SPE_CMP(fscmplt);
3242 /* efscmpgt */
3243 HELPER_SINGLE_SPE_CMP(fscmpgt);
3244 /* efscmpeq */
3245 HELPER_SINGLE_SPE_CMP(fscmpeq);
3247 static always_inline uint32_t evcmp_merge (int t0, int t1)
3249 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
3252 #define HELPER_VECTOR_SPE_CMP(name) \
3253 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
3255 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
3257 /* evfststlt */
3258 HELPER_VECTOR_SPE_CMP(fststlt);
3259 /* evfststgt */
3260 HELPER_VECTOR_SPE_CMP(fststgt);
3261 /* evfststeq */
3262 HELPER_VECTOR_SPE_CMP(fststeq);
3263 /* evfscmplt */
3264 HELPER_VECTOR_SPE_CMP(fscmplt);
3265 /* evfscmpgt */
3266 HELPER_VECTOR_SPE_CMP(fscmpgt);
3267 /* evfscmpeq */
3268 HELPER_VECTOR_SPE_CMP(fscmpeq);
3270 /* Double-precision floating-point conversion */
3271 uint64_t helper_efdcfsi (uint32_t val)
3273 CPU_DoubleU u;
3275 u.d = int32_to_float64(val, &env->vec_status);
3277 return u.ll;
3280 uint64_t helper_efdcfsid (uint64_t val)
3282 CPU_DoubleU u;
3284 u.d = int64_to_float64(val, &env->vec_status);
3286 return u.ll;
3289 uint64_t helper_efdcfui (uint32_t val)
3291 CPU_DoubleU u;
3293 u.d = uint32_to_float64(val, &env->vec_status);
3295 return u.ll;
3298 uint64_t helper_efdcfuid (uint64_t val)
3300 CPU_DoubleU u;
3302 u.d = uint64_to_float64(val, &env->vec_status);
3304 return u.ll;
3307 uint32_t helper_efdctsi (uint64_t val)
3309 CPU_DoubleU u;
3311 u.ll = val;
3312 /* NaN are not treated the same way IEEE 754 does */
3313 if (unlikely(float64_is_nan(u.d)))
3314 return 0;
3316 return float64_to_int32(u.d, &env->vec_status);
3319 uint32_t helper_efdctui (uint64_t val)
3321 CPU_DoubleU u;
3323 u.ll = val;
3324 /* NaN are not treated the same way IEEE 754 does */
3325 if (unlikely(float64_is_nan(u.d)))
3326 return 0;
3328 return float64_to_uint32(u.d, &env->vec_status);
3331 uint32_t helper_efdctsiz (uint64_t val)
3333 CPU_DoubleU u;
3335 u.ll = val;
3336 /* NaN are not treated the same way IEEE 754 does */
3337 if (unlikely(float64_is_nan(u.d)))
3338 return 0;
3340 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
3343 uint64_t helper_efdctsidz (uint64_t val)
3345 CPU_DoubleU u;
3347 u.ll = val;
3348 /* NaN are not treated the same way IEEE 754 does */
3349 if (unlikely(float64_is_nan(u.d)))
3350 return 0;
3352 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
3355 uint32_t helper_efdctuiz (uint64_t val)
3357 CPU_DoubleU u;
3359 u.ll = val;
3360 /* NaN are not treated the same way IEEE 754 does */
3361 if (unlikely(float64_is_nan(u.d)))
3362 return 0;
3364 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
3367 uint64_t helper_efdctuidz (uint64_t val)
3369 CPU_DoubleU u;
3371 u.ll = val;
3372 /* NaN are not treated the same way IEEE 754 does */
3373 if (unlikely(float64_is_nan(u.d)))
3374 return 0;
3376 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
3379 uint64_t helper_efdcfsf (uint32_t val)
3381 CPU_DoubleU u;
3382 float64 tmp;
3384 u.d = int32_to_float64(val, &env->vec_status);
3385 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
3386 u.d = float64_div(u.d, tmp, &env->vec_status);
3388 return u.ll;
3391 uint64_t helper_efdcfuf (uint32_t val)
3393 CPU_DoubleU u;
3394 float64 tmp;
3396 u.d = uint32_to_float64(val, &env->vec_status);
3397 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
3398 u.d = float64_div(u.d, tmp, &env->vec_status);
3400 return u.ll;
3403 uint32_t helper_efdctsf (uint64_t val)
3405 CPU_DoubleU u;
3406 float64 tmp;
3408 u.ll = val;
3409 /* NaN are not treated the same way IEEE 754 does */
3410 if (unlikely(float64_is_nan(u.d)))
3411 return 0;
3412 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
3413 u.d = float64_mul(u.d, tmp, &env->vec_status);
3415 return float64_to_int32(u.d, &env->vec_status);
3418 uint32_t helper_efdctuf (uint64_t val)
3420 CPU_DoubleU u;
3421 float64 tmp;
3423 u.ll = val;
3424 /* NaN are not treated the same way IEEE 754 does */
3425 if (unlikely(float64_is_nan(u.d)))
3426 return 0;
3427 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
3428 u.d = float64_mul(u.d, tmp, &env->vec_status);
3430 return float64_to_uint32(u.d, &env->vec_status);
3433 uint32_t helper_efscfd (uint64_t val)
3435 CPU_DoubleU u1;
3436 CPU_FloatU u2;
3438 u1.ll = val;
3439 u2.f = float64_to_float32(u1.d, &env->vec_status);
3441 return u2.l;
3444 uint64_t helper_efdcfs (uint32_t val)
3446 CPU_DoubleU u2;
3447 CPU_FloatU u1;
3449 u1.l = val;
3450 u2.d = float32_to_float64(u1.f, &env->vec_status);
3452 return u2.ll;
3455 /* Double precision fixed-point arithmetic */
3456 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
3458 CPU_DoubleU u1, u2;
3459 u1.ll = op1;
3460 u2.ll = op2;
3461 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
3462 return u1.ll;
3465 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
3467 CPU_DoubleU u1, u2;
3468 u1.ll = op1;
3469 u2.ll = op2;
3470 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
3471 return u1.ll;
3474 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
3476 CPU_DoubleU u1, u2;
3477 u1.ll = op1;
3478 u2.ll = op2;
3479 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
3480 return u1.ll;
3483 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
3485 CPU_DoubleU u1, u2;
3486 u1.ll = op1;
3487 u2.ll = op2;
3488 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
3489 return u1.ll;
3492 /* Double precision floating point helpers */
3493 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
3495 CPU_DoubleU u1, u2;
3496 u1.ll = op1;
3497 u2.ll = op2;
3498 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
3501 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
3503 CPU_DoubleU u1, u2;
3504 u1.ll = op1;
3505 u2.ll = op2;
3506 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
3509 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
3511 CPU_DoubleU u1, u2;
3512 u1.ll = op1;
3513 u2.ll = op2;
3514 return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0;
3517 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
3519 /* XXX: TODO: test special values (NaN, infinites, ...) */
3520 return helper_efdtstlt(op1, op2);
3523 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
3525 /* XXX: TODO: test special values (NaN, infinites, ...) */
3526 return helper_efdtstgt(op1, op2);
3529 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
3531 /* XXX: TODO: test special values (NaN, infinites, ...) */
3532 return helper_efdtsteq(op1, op2);
3535 /*****************************************************************************/
3536 /* Softmmu support */
3537 #if !defined (CONFIG_USER_ONLY)
3539 #define MMUSUFFIX _mmu
3541 #define SHIFT 0
3542 #include "softmmu_template.h"
3544 #define SHIFT 1
3545 #include "softmmu_template.h"
3547 #define SHIFT 2
3548 #include "softmmu_template.h"
3550 #define SHIFT 3
3551 #include "softmmu_template.h"
3553 /* try to fill the TLB and return an exception if error. If retaddr is
3554 NULL, it means that the function was called in C code (i.e. not
3555 from generated code or from helper.c) */
3556 /* XXX: fix it to restore all registers */
3557 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3559 TranslationBlock *tb;
3560 CPUState *saved_env;
3561 unsigned long pc;
3562 int ret;
3564 /* XXX: hack to restore env in all cases, even if not called from
3565 generated code */
3566 saved_env = env;
3567 env = cpu_single_env;
3568 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3569 if (unlikely(ret != 0)) {
3570 if (likely(retaddr)) {
3571 /* now we have a real cpu fault */
3572 pc = (unsigned long)retaddr;
3573 tb = tb_find_pc(pc);
3574 if (likely(tb)) {
3575 /* the PC is inside the translated code. It means that we have
3576 a virtual CPU fault */
3577 cpu_restore_state(tb, env, pc, NULL);
3580 helper_raise_exception_err(env->exception_index, env->error_code);
3582 env = saved_env;
3585 /* Segment registers load and store */
3586 target_ulong helper_load_sr (target_ulong sr_num)
3588 return env->sr[sr_num];
3591 void helper_store_sr (target_ulong sr_num, target_ulong val)
3593 ppc_store_sr(env, sr_num, val);
3596 /* SLB management */
3597 #if defined(TARGET_PPC64)
3598 target_ulong helper_load_slb (target_ulong slb_nr)
3600 return ppc_load_slb(env, slb_nr);
3603 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
3605 ppc_store_slb(env, slb_nr, rs);
3608 void helper_slbia (void)
3610 ppc_slb_invalidate_all(env);
3613 void helper_slbie (target_ulong addr)
3615 ppc_slb_invalidate_one(env, addr);
3618 #endif /* defined(TARGET_PPC64) */
3620 /* TLB management */
3621 void helper_tlbia (void)
3623 ppc_tlb_invalidate_all(env);
3626 void helper_tlbie (target_ulong addr)
3628 ppc_tlb_invalidate_one(env, addr);
3631 /* Software driven TLBs management */
3632 /* PowerPC 602/603 software TLB load instructions helpers */
3633 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
3635 target_ulong RPN, CMP, EPN;
3636 int way;
3638 RPN = env->spr[SPR_RPA];
3639 if (is_code) {
3640 CMP = env->spr[SPR_ICMP];
3641 EPN = env->spr[SPR_IMISS];
3642 } else {
3643 CMP = env->spr[SPR_DCMP];
3644 EPN = env->spr[SPR_DMISS];
3646 way = (env->spr[SPR_SRR1] >> 17) & 1;
3647 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3648 " PTE1 " ADDRX " way %d\n",
3649 __func__, new_EPN, EPN, CMP, RPN, way);
3650 /* Store this TLB */
3651 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3652 way, is_code, CMP, RPN);
3655 void helper_6xx_tlbd (target_ulong EPN)
3657 do_6xx_tlb(EPN, 0);
3660 void helper_6xx_tlbi (target_ulong EPN)
3662 do_6xx_tlb(EPN, 1);
3665 /* PowerPC 74xx software TLB load instructions helpers */
3666 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
3668 target_ulong RPN, CMP, EPN;
3669 int way;
3671 RPN = env->spr[SPR_PTELO];
3672 CMP = env->spr[SPR_PTEHI];
3673 EPN = env->spr[SPR_TLBMISS] & ~0x3;
3674 way = env->spr[SPR_TLBMISS] & 0x3;
3675 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3676 " PTE1 " ADDRX " way %d\n",
3677 __func__, new_EPN, EPN, CMP, RPN, way);
3678 /* Store this TLB */
3679 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3680 way, is_code, CMP, RPN);
3683 void helper_74xx_tlbd (target_ulong EPN)
3685 do_74xx_tlb(EPN, 0);
3688 void helper_74xx_tlbi (target_ulong EPN)
3690 do_74xx_tlb(EPN, 1);
3693 static always_inline target_ulong booke_tlb_to_page_size (int size)
3695 return 1024 << (2 * size);
3698 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
3700 int size;
3702 switch (page_size) {
3703 case 0x00000400UL:
3704 size = 0x0;
3705 break;
3706 case 0x00001000UL:
3707 size = 0x1;
3708 break;
3709 case 0x00004000UL:
3710 size = 0x2;
3711 break;
3712 case 0x00010000UL:
3713 size = 0x3;
3714 break;
3715 case 0x00040000UL:
3716 size = 0x4;
3717 break;
3718 case 0x00100000UL:
3719 size = 0x5;
3720 break;
3721 case 0x00400000UL:
3722 size = 0x6;
3723 break;
3724 case 0x01000000UL:
3725 size = 0x7;
3726 break;
3727 case 0x04000000UL:
3728 size = 0x8;
3729 break;
3730 case 0x10000000UL:
3731 size = 0x9;
3732 break;
3733 case 0x40000000UL:
3734 size = 0xA;
3735 break;
3736 #if defined (TARGET_PPC64)
3737 case 0x000100000000ULL:
3738 size = 0xB;
3739 break;
3740 case 0x000400000000ULL:
3741 size = 0xC;
3742 break;
3743 case 0x001000000000ULL:
3744 size = 0xD;
3745 break;
3746 case 0x004000000000ULL:
3747 size = 0xE;
3748 break;
3749 case 0x010000000000ULL:
3750 size = 0xF;
3751 break;
3752 #endif
3753 default:
3754 size = -1;
3755 break;
3758 return size;
3761 /* Helpers for 4xx TLB management */
3762 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3764 ppcemb_tlb_t *tlb;
3765 target_ulong ret;
3766 int size;
3768 entry &= 0x3F;
3769 tlb = &env->tlb[entry].tlbe;
3770 ret = tlb->EPN;
3771 if (tlb->prot & PAGE_VALID)
3772 ret |= 0x400;
3773 size = booke_page_size_to_tlb(tlb->size);
3774 if (size < 0 || size > 0x7)
3775 size = 1;
3776 ret |= size << 7;
3777 env->spr[SPR_40x_PID] = tlb->PID;
3778 return ret;
3781 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3783 ppcemb_tlb_t *tlb;
3784 target_ulong ret;
3786 entry &= 0x3F;
3787 tlb = &env->tlb[entry].tlbe;
3788 ret = tlb->RPN;
3789 if (tlb->prot & PAGE_EXEC)
3790 ret |= 0x200;
3791 if (tlb->prot & PAGE_WRITE)
3792 ret |= 0x100;
3793 return ret;
3796 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3798 ppcemb_tlb_t *tlb;
3799 target_ulong page, end;
3801 LOG_SWTLB("%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3802 entry &= 0x3F;
3803 tlb = &env->tlb[entry].tlbe;
3804 /* Invalidate previous TLB (if it's valid) */
3805 if (tlb->prot & PAGE_VALID) {
3806 end = tlb->EPN + tlb->size;
3807 LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX
3808 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3809 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3810 tlb_flush_page(env, page);
3812 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3813 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3814 * If this ever occurs, one should use the ppcemb target instead
3815 * of the ppc or ppc64 one
3817 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3818 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3819 "are not supported (%d)\n",
3820 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3822 tlb->EPN = val & ~(tlb->size - 1);
3823 if (val & 0x40)
3824 tlb->prot |= PAGE_VALID;
3825 else
3826 tlb->prot &= ~PAGE_VALID;
3827 if (val & 0x20) {
3828 /* XXX: TO BE FIXED */
3829 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3831 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3832 tlb->attr = val & 0xFF;
3833 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3834 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3835 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3836 tlb->prot & PAGE_READ ? 'r' : '-',
3837 tlb->prot & PAGE_WRITE ? 'w' : '-',
3838 tlb->prot & PAGE_EXEC ? 'x' : '-',
3839 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3840 /* Invalidate new TLB (if valid) */
3841 if (tlb->prot & PAGE_VALID) {
3842 end = tlb->EPN + tlb->size;
3843 LOG_SWTLB("%s: invalidate TLB %d start " ADDRX
3844 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3845 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3846 tlb_flush_page(env, page);
3850 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3852 ppcemb_tlb_t *tlb;
3854 LOG_SWTLB("%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3855 entry &= 0x3F;
3856 tlb = &env->tlb[entry].tlbe;
3857 tlb->RPN = val & 0xFFFFFC00;
3858 tlb->prot = PAGE_READ;
3859 if (val & 0x200)
3860 tlb->prot |= PAGE_EXEC;
3861 if (val & 0x100)
3862 tlb->prot |= PAGE_WRITE;
3863 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3864 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3865 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3866 tlb->prot & PAGE_READ ? 'r' : '-',
3867 tlb->prot & PAGE_WRITE ? 'w' : '-',
3868 tlb->prot & PAGE_EXEC ? 'x' : '-',
3869 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3872 target_ulong helper_4xx_tlbsx (target_ulong address)
3874 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3877 /* PowerPC 440 TLB management */
3878 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3880 ppcemb_tlb_t *tlb;
3881 target_ulong EPN, RPN, size;
3882 int do_flush_tlbs;
3884 LOG_SWTLB("%s word %d entry %d value " ADDRX "\n",
3885 __func__, word, (int)entry, value);
3886 do_flush_tlbs = 0;
3887 entry &= 0x3F;
3888 tlb = &env->tlb[entry].tlbe;
3889 switch (word) {
3890 default:
3891 /* Just here to please gcc */
3892 case 0:
3893 EPN = value & 0xFFFFFC00;
3894 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3895 do_flush_tlbs = 1;
3896 tlb->EPN = EPN;
3897 size = booke_tlb_to_page_size((value >> 4) & 0xF);
3898 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3899 do_flush_tlbs = 1;
3900 tlb->size = size;
3901 tlb->attr &= ~0x1;
3902 tlb->attr |= (value >> 8) & 1;
3903 if (value & 0x200) {
3904 tlb->prot |= PAGE_VALID;
3905 } else {
3906 if (tlb->prot & PAGE_VALID) {
3907 tlb->prot &= ~PAGE_VALID;
3908 do_flush_tlbs = 1;
3911 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3912 if (do_flush_tlbs)
3913 tlb_flush(env, 1);
3914 break;
3915 case 1:
3916 RPN = value & 0xFFFFFC0F;
3917 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3918 tlb_flush(env, 1);
3919 tlb->RPN = RPN;
3920 break;
3921 case 2:
3922 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3923 tlb->prot = tlb->prot & PAGE_VALID;
3924 if (value & 0x1)
3925 tlb->prot |= PAGE_READ << 4;
3926 if (value & 0x2)
3927 tlb->prot |= PAGE_WRITE << 4;
3928 if (value & 0x4)
3929 tlb->prot |= PAGE_EXEC << 4;
3930 if (value & 0x8)
3931 tlb->prot |= PAGE_READ;
3932 if (value & 0x10)
3933 tlb->prot |= PAGE_WRITE;
3934 if (value & 0x20)
3935 tlb->prot |= PAGE_EXEC;
3936 break;
3940 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3942 ppcemb_tlb_t *tlb;
3943 target_ulong ret;
3944 int size;
3946 entry &= 0x3F;
3947 tlb = &env->tlb[entry].tlbe;
3948 switch (word) {
3949 default:
3950 /* Just here to please gcc */
3951 case 0:
3952 ret = tlb->EPN;
3953 size = booke_page_size_to_tlb(tlb->size);
3954 if (size < 0 || size > 0xF)
3955 size = 1;
3956 ret |= size << 4;
3957 if (tlb->attr & 0x1)
3958 ret |= 0x100;
3959 if (tlb->prot & PAGE_VALID)
3960 ret |= 0x200;
3961 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3962 env->spr[SPR_440_MMUCR] |= tlb->PID;
3963 break;
3964 case 1:
3965 ret = tlb->RPN;
3966 break;
3967 case 2:
3968 ret = tlb->attr & ~0x1;
3969 if (tlb->prot & (PAGE_READ << 4))
3970 ret |= 0x1;
3971 if (tlb->prot & (PAGE_WRITE << 4))
3972 ret |= 0x2;
3973 if (tlb->prot & (PAGE_EXEC << 4))
3974 ret |= 0x4;
3975 if (tlb->prot & PAGE_READ)
3976 ret |= 0x8;
3977 if (tlb->prot & PAGE_WRITE)
3978 ret |= 0x10;
3979 if (tlb->prot & PAGE_EXEC)
3980 ret |= 0x20;
3981 break;
3983 return ret;
3986 target_ulong helper_440_tlbsx (target_ulong address)
3988 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3991 #endif /* !CONFIG_USER_ONLY */