nand: boot code cleanup
[qemu/mini2440.git] / target-i386 / kvm.c
blobfe67eed0a21f4484f81227e186513056e299c94c
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
27 //#define DEBUG_KVM
29 #ifdef DEBUG_KVM
30 #define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32 #else
33 #define dprintf(fmt, ...) \
34 do { } while (0)
35 #endif
37 #ifdef KVM_CAP_EXT_CPUID
39 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
41 struct kvm_cpuid2 *cpuid;
42 int r, size;
44 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46 cpuid->nent = max;
47 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48 if (r < 0) {
49 if (r == -E2BIG) {
50 qemu_free(cpuid);
51 return NULL;
52 } else {
53 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
54 strerror(-r));
55 exit(1);
58 return cpuid;
61 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
63 struct kvm_cpuid2 *cpuid;
64 int i, max;
65 uint32_t ret = 0;
66 uint32_t cpuid_1_edx;
68 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
69 return -1U;
72 max = 1;
73 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
74 max *= 2;
77 for (i = 0; i < cpuid->nent; ++i) {
78 if (cpuid->entries[i].function == function) {
79 switch (reg) {
80 case R_EAX:
81 ret = cpuid->entries[i].eax;
82 break;
83 case R_EBX:
84 ret = cpuid->entries[i].ebx;
85 break;
86 case R_ECX:
87 ret = cpuid->entries[i].ecx;
88 break;
89 case R_EDX:
90 ret = cpuid->entries[i].edx;
91 if (function == 0x80000001) {
92 /* On Intel, kvm returns cpuid according to the Intel spec,
93 * so add missing bits according to the AMD spec:
95 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
96 ret |= cpuid_1_edx & 0xdfeff7ff;
98 break;
103 qemu_free(cpuid);
105 return ret;
108 #else
110 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
112 return -1U;
115 #endif
117 int kvm_arch_init_vcpu(CPUState *env)
119 struct {
120 struct kvm_cpuid2 cpuid;
121 struct kvm_cpuid_entry2 entries[100];
122 } __attribute__((packed)) cpuid_data;
123 uint32_t limit, i, j, cpuid_i;
124 uint32_t unused;
126 cpuid_i = 0;
128 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
130 for (i = 0; i <= limit; i++) {
131 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
133 switch (i) {
134 case 2: {
135 /* Keep reading function 2 till all the input is received */
136 int times;
138 c->function = i;
139 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
140 KVM_CPUID_FLAG_STATE_READ_NEXT;
141 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
142 times = c->eax & 0xff;
144 for (j = 1; j < times; ++j) {
145 c = &cpuid_data.entries[cpuid_i++];
146 c->function = i;
147 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
148 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
150 break;
152 case 4:
153 case 0xb:
154 case 0xd:
155 for (j = 0; ; j++) {
156 c->function = i;
157 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
158 c->index = j;
159 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
161 if (i == 4 && c->eax == 0)
162 break;
163 if (i == 0xb && !(c->ecx & 0xff00))
164 break;
165 if (i == 0xd && c->eax == 0)
166 break;
168 c = &cpuid_data.entries[cpuid_i++];
170 break;
171 default:
172 c->function = i;
173 c->flags = 0;
174 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
175 break;
178 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
180 for (i = 0x80000000; i <= limit; i++) {
181 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
183 c->function = i;
184 c->flags = 0;
185 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
188 cpuid_data.cpuid.nent = cpuid_i;
190 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
193 static int kvm_has_msr_star(CPUState *env)
195 static int has_msr_star;
196 int ret;
198 /* first time */
199 if (has_msr_star == 0) {
200 struct kvm_msr_list msr_list, *kvm_msr_list;
202 has_msr_star = -1;
204 /* Obtain MSR list from KVM. These are the MSRs that we must
205 * save/restore */
206 msr_list.nmsrs = 0;
207 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
208 if (ret < 0)
209 return 0;
211 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
212 msr_list.nmsrs * sizeof(msr_list.indices[0]));
214 kvm_msr_list->nmsrs = msr_list.nmsrs;
215 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
216 if (ret >= 0) {
217 int i;
219 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
220 if (kvm_msr_list->indices[i] == MSR_STAR) {
221 has_msr_star = 1;
222 break;
227 free(kvm_msr_list);
230 if (has_msr_star == 1)
231 return 1;
232 return 0;
235 int kvm_arch_init(KVMState *s, int smp_cpus)
237 int ret;
239 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
240 * directly. In order to use vm86 mode, a TSS is needed. Since this
241 * must be part of guest physical memory, we need to allocate it. Older
242 * versions of KVM just assumed that it would be at the end of physical
243 * memory but that doesn't work with more than 4GB of memory. We simply
244 * refuse to work with those older versions of KVM. */
245 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
246 if (ret <= 0) {
247 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
248 return ret;
251 /* this address is 3 pages before the bios, and the bios should present
252 * as unavaible memory. FIXME, need to ensure the e820 map deals with
253 * this?
255 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
258 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
260 lhs->selector = rhs->selector;
261 lhs->base = rhs->base;
262 lhs->limit = rhs->limit;
263 lhs->type = 3;
264 lhs->present = 1;
265 lhs->dpl = 3;
266 lhs->db = 0;
267 lhs->s = 1;
268 lhs->l = 0;
269 lhs->g = 0;
270 lhs->avl = 0;
271 lhs->unusable = 0;
274 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
276 unsigned flags = rhs->flags;
277 lhs->selector = rhs->selector;
278 lhs->base = rhs->base;
279 lhs->limit = rhs->limit;
280 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
281 lhs->present = (flags & DESC_P_MASK) != 0;
282 lhs->dpl = rhs->selector & 3;
283 lhs->db = (flags >> DESC_B_SHIFT) & 1;
284 lhs->s = (flags & DESC_S_MASK) != 0;
285 lhs->l = (flags >> DESC_L_SHIFT) & 1;
286 lhs->g = (flags & DESC_G_MASK) != 0;
287 lhs->avl = (flags & DESC_AVL_MASK) != 0;
288 lhs->unusable = 0;
291 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
293 lhs->selector = rhs->selector;
294 lhs->base = rhs->base;
295 lhs->limit = rhs->limit;
296 lhs->flags =
297 (rhs->type << DESC_TYPE_SHIFT)
298 | (rhs->present * DESC_P_MASK)
299 | (rhs->dpl << DESC_DPL_SHIFT)
300 | (rhs->db << DESC_B_SHIFT)
301 | (rhs->s * DESC_S_MASK)
302 | (rhs->l << DESC_L_SHIFT)
303 | (rhs->g * DESC_G_MASK)
304 | (rhs->avl * DESC_AVL_MASK);
307 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
309 if (set)
310 *kvm_reg = *qemu_reg;
311 else
312 *qemu_reg = *kvm_reg;
315 static int kvm_getput_regs(CPUState *env, int set)
317 struct kvm_regs regs;
318 int ret = 0;
320 if (!set) {
321 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
322 if (ret < 0)
323 return ret;
326 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
327 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
328 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
329 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
330 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
331 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
332 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
333 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
334 #ifdef TARGET_X86_64
335 kvm_getput_reg(&regs.r8, &env->regs[8], set);
336 kvm_getput_reg(&regs.r9, &env->regs[9], set);
337 kvm_getput_reg(&regs.r10, &env->regs[10], set);
338 kvm_getput_reg(&regs.r11, &env->regs[11], set);
339 kvm_getput_reg(&regs.r12, &env->regs[12], set);
340 kvm_getput_reg(&regs.r13, &env->regs[13], set);
341 kvm_getput_reg(&regs.r14, &env->regs[14], set);
342 kvm_getput_reg(&regs.r15, &env->regs[15], set);
343 #endif
345 kvm_getput_reg(&regs.rflags, &env->eflags, set);
346 kvm_getput_reg(&regs.rip, &env->eip, set);
348 if (set)
349 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
351 return ret;
354 static int kvm_put_fpu(CPUState *env)
356 struct kvm_fpu fpu;
357 int i;
359 memset(&fpu, 0, sizeof fpu);
360 fpu.fsw = env->fpus & ~(7 << 11);
361 fpu.fsw |= (env->fpstt & 7) << 11;
362 fpu.fcw = env->fpuc;
363 for (i = 0; i < 8; ++i)
364 fpu.ftwx |= (!env->fptags[i]) << i;
365 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
366 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
367 fpu.mxcsr = env->mxcsr;
369 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
372 static int kvm_put_sregs(CPUState *env)
374 struct kvm_sregs sregs;
376 memcpy(sregs.interrupt_bitmap,
377 env->interrupt_bitmap,
378 sizeof(sregs.interrupt_bitmap));
380 if ((env->eflags & VM_MASK)) {
381 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
382 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
383 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
384 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
385 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
386 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
387 } else {
388 set_seg(&sregs.cs, &env->segs[R_CS]);
389 set_seg(&sregs.ds, &env->segs[R_DS]);
390 set_seg(&sregs.es, &env->segs[R_ES]);
391 set_seg(&sregs.fs, &env->segs[R_FS]);
392 set_seg(&sregs.gs, &env->segs[R_GS]);
393 set_seg(&sregs.ss, &env->segs[R_SS]);
395 if (env->cr[0] & CR0_PE_MASK) {
396 /* force ss cpl to cs cpl */
397 sregs.ss.selector = (sregs.ss.selector & ~3) |
398 (sregs.cs.selector & 3);
399 sregs.ss.dpl = sregs.ss.selector & 3;
403 set_seg(&sregs.tr, &env->tr);
404 set_seg(&sregs.ldt, &env->ldt);
406 sregs.idt.limit = env->idt.limit;
407 sregs.idt.base = env->idt.base;
408 sregs.gdt.limit = env->gdt.limit;
409 sregs.gdt.base = env->gdt.base;
411 sregs.cr0 = env->cr[0];
412 sregs.cr2 = env->cr[2];
413 sregs.cr3 = env->cr[3];
414 sregs.cr4 = env->cr[4];
416 sregs.cr8 = cpu_get_apic_tpr(env);
417 sregs.apic_base = cpu_get_apic_base(env);
419 sregs.efer = env->efer;
421 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
424 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
425 uint32_t index, uint64_t value)
427 entry->index = index;
428 entry->data = value;
431 static int kvm_put_msrs(CPUState *env)
433 struct {
434 struct kvm_msrs info;
435 struct kvm_msr_entry entries[100];
436 } msr_data;
437 struct kvm_msr_entry *msrs = msr_data.entries;
438 int n = 0;
440 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
441 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
442 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
443 if (kvm_has_msr_star(env))
444 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
445 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
446 #ifdef TARGET_X86_64
447 /* FIXME if lm capable */
448 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
449 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
450 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
451 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
452 #endif
453 msr_data.info.nmsrs = n;
455 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
460 static int kvm_get_fpu(CPUState *env)
462 struct kvm_fpu fpu;
463 int i, ret;
465 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
466 if (ret < 0)
467 return ret;
469 env->fpstt = (fpu.fsw >> 11) & 7;
470 env->fpus = fpu.fsw;
471 env->fpuc = fpu.fcw;
472 for (i = 0; i < 8; ++i)
473 env->fptags[i] = !((fpu.ftwx >> i) & 1);
474 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
475 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
476 env->mxcsr = fpu.mxcsr;
478 return 0;
481 static int kvm_get_sregs(CPUState *env)
483 struct kvm_sregs sregs;
484 uint32_t hflags;
485 int ret;
487 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
488 if (ret < 0)
489 return ret;
491 memcpy(env->interrupt_bitmap,
492 sregs.interrupt_bitmap,
493 sizeof(sregs.interrupt_bitmap));
495 get_seg(&env->segs[R_CS], &sregs.cs);
496 get_seg(&env->segs[R_DS], &sregs.ds);
497 get_seg(&env->segs[R_ES], &sregs.es);
498 get_seg(&env->segs[R_FS], &sregs.fs);
499 get_seg(&env->segs[R_GS], &sregs.gs);
500 get_seg(&env->segs[R_SS], &sregs.ss);
502 get_seg(&env->tr, &sregs.tr);
503 get_seg(&env->ldt, &sregs.ldt);
505 env->idt.limit = sregs.idt.limit;
506 env->idt.base = sregs.idt.base;
507 env->gdt.limit = sregs.gdt.limit;
508 env->gdt.base = sregs.gdt.base;
510 env->cr[0] = sregs.cr0;
511 env->cr[2] = sregs.cr2;
512 env->cr[3] = sregs.cr3;
513 env->cr[4] = sregs.cr4;
515 cpu_set_apic_base(env, sregs.apic_base);
517 env->efer = sregs.efer;
518 //cpu_set_apic_tpr(env, sregs.cr8);
520 #define HFLAG_COPY_MASK ~( \
521 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
522 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
523 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
524 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
528 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
529 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
530 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
531 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
532 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
533 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
534 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
536 if (env->efer & MSR_EFER_LMA) {
537 hflags |= HF_LMA_MASK;
540 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
541 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
542 } else {
543 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
544 (DESC_B_SHIFT - HF_CS32_SHIFT);
545 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
546 (DESC_B_SHIFT - HF_SS32_SHIFT);
547 if (!(env->cr[0] & CR0_PE_MASK) ||
548 (env->eflags & VM_MASK) ||
549 !(hflags & HF_CS32_MASK)) {
550 hflags |= HF_ADDSEG_MASK;
551 } else {
552 hflags |= ((env->segs[R_DS].base |
553 env->segs[R_ES].base |
554 env->segs[R_SS].base) != 0) <<
555 HF_ADDSEG_SHIFT;
558 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
560 return 0;
563 static int kvm_get_msrs(CPUState *env)
565 struct {
566 struct kvm_msrs info;
567 struct kvm_msr_entry entries[100];
568 } msr_data;
569 struct kvm_msr_entry *msrs = msr_data.entries;
570 int ret, i, n;
572 n = 0;
573 msrs[n++].index = MSR_IA32_SYSENTER_CS;
574 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
575 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
576 if (kvm_has_msr_star(env))
577 msrs[n++].index = MSR_STAR;
578 msrs[n++].index = MSR_IA32_TSC;
579 #ifdef TARGET_X86_64
580 /* FIXME lm_capable_kernel */
581 msrs[n++].index = MSR_CSTAR;
582 msrs[n++].index = MSR_KERNELGSBASE;
583 msrs[n++].index = MSR_FMASK;
584 msrs[n++].index = MSR_LSTAR;
585 #endif
586 msr_data.info.nmsrs = n;
587 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
588 if (ret < 0)
589 return ret;
591 for (i = 0; i < ret; i++) {
592 switch (msrs[i].index) {
593 case MSR_IA32_SYSENTER_CS:
594 env->sysenter_cs = msrs[i].data;
595 break;
596 case MSR_IA32_SYSENTER_ESP:
597 env->sysenter_esp = msrs[i].data;
598 break;
599 case MSR_IA32_SYSENTER_EIP:
600 env->sysenter_eip = msrs[i].data;
601 break;
602 case MSR_STAR:
603 env->star = msrs[i].data;
604 break;
605 #ifdef TARGET_X86_64
606 case MSR_CSTAR:
607 env->cstar = msrs[i].data;
608 break;
609 case MSR_KERNELGSBASE:
610 env->kernelgsbase = msrs[i].data;
611 break;
612 case MSR_FMASK:
613 env->fmask = msrs[i].data;
614 break;
615 case MSR_LSTAR:
616 env->lstar = msrs[i].data;
617 break;
618 #endif
619 case MSR_IA32_TSC:
620 env->tsc = msrs[i].data;
621 break;
625 return 0;
628 int kvm_arch_put_registers(CPUState *env)
630 int ret;
632 ret = kvm_getput_regs(env, 1);
633 if (ret < 0)
634 return ret;
636 ret = kvm_put_fpu(env);
637 if (ret < 0)
638 return ret;
640 ret = kvm_put_sregs(env);
641 if (ret < 0)
642 return ret;
644 ret = kvm_put_msrs(env);
645 if (ret < 0)
646 return ret;
648 return 0;
651 int kvm_arch_get_registers(CPUState *env)
653 int ret;
655 ret = kvm_getput_regs(env, 0);
656 if (ret < 0)
657 return ret;
659 ret = kvm_get_fpu(env);
660 if (ret < 0)
661 return ret;
663 ret = kvm_get_sregs(env);
664 if (ret < 0)
665 return ret;
667 ret = kvm_get_msrs(env);
668 if (ret < 0)
669 return ret;
671 return 0;
674 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
676 /* Try to inject an interrupt if the guest can accept it */
677 if (run->ready_for_interrupt_injection &&
678 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
679 (env->eflags & IF_MASK)) {
680 int irq;
682 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
683 irq = cpu_get_pic_interrupt(env);
684 if (irq >= 0) {
685 struct kvm_interrupt intr;
686 intr.irq = irq;
687 /* FIXME: errors */
688 dprintf("injected interrupt %d\n", irq);
689 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
693 /* If we have an interrupt but the guest is not ready to receive an
694 * interrupt, request an interrupt window exit. This will
695 * cause a return to userspace as soon as the guest is ready to
696 * receive interrupts. */
697 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
698 run->request_interrupt_window = 1;
699 else
700 run->request_interrupt_window = 0;
702 dprintf("setting tpr\n");
703 run->cr8 = cpu_get_apic_tpr(env);
705 return 0;
708 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
710 if (run->if_flag)
711 env->eflags |= IF_MASK;
712 else
713 env->eflags &= ~IF_MASK;
715 cpu_set_apic_tpr(env, run->cr8);
716 cpu_set_apic_base(env, run->apic_base);
718 return 0;
721 static int kvm_handle_halt(CPUState *env)
723 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
724 (env->eflags & IF_MASK)) &&
725 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
726 env->halted = 1;
727 env->exception_index = EXCP_HLT;
728 return 0;
731 return 1;
734 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
736 int ret = 0;
738 switch (run->exit_reason) {
739 case KVM_EXIT_HLT:
740 dprintf("handle_hlt\n");
741 ret = kvm_handle_halt(env);
742 break;
745 return ret;
748 #ifdef KVM_CAP_SET_GUEST_DEBUG
749 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
751 const static uint8_t int3 = 0xcc;
753 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
754 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
755 return -EINVAL;
756 return 0;
759 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
761 uint8_t int3;
763 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
764 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
765 return -EINVAL;
766 return 0;
769 static struct {
770 target_ulong addr;
771 int len;
772 int type;
773 } hw_breakpoint[4];
775 static int nb_hw_breakpoint;
777 static int find_hw_breakpoint(target_ulong addr, int len, int type)
779 int n;
781 for (n = 0; n < nb_hw_breakpoint; n++)
782 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
783 (hw_breakpoint[n].len == len || len == -1))
784 return n;
785 return -1;
788 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
789 target_ulong len, int type)
791 switch (type) {
792 case GDB_BREAKPOINT_HW:
793 len = 1;
794 break;
795 case GDB_WATCHPOINT_WRITE:
796 case GDB_WATCHPOINT_ACCESS:
797 switch (len) {
798 case 1:
799 break;
800 case 2:
801 case 4:
802 case 8:
803 if (addr & (len - 1))
804 return -EINVAL;
805 break;
806 default:
807 return -EINVAL;
809 break;
810 default:
811 return -ENOSYS;
814 if (nb_hw_breakpoint == 4)
815 return -ENOBUFS;
817 if (find_hw_breakpoint(addr, len, type) >= 0)
818 return -EEXIST;
820 hw_breakpoint[nb_hw_breakpoint].addr = addr;
821 hw_breakpoint[nb_hw_breakpoint].len = len;
822 hw_breakpoint[nb_hw_breakpoint].type = type;
823 nb_hw_breakpoint++;
825 return 0;
828 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
829 target_ulong len, int type)
831 int n;
833 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
834 if (n < 0)
835 return -ENOENT;
837 nb_hw_breakpoint--;
838 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
840 return 0;
843 void kvm_arch_remove_all_hw_breakpoints(void)
845 nb_hw_breakpoint = 0;
848 static CPUWatchpoint hw_watchpoint;
850 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
852 int handle = 0;
853 int n;
855 if (arch_info->exception == 1) {
856 if (arch_info->dr6 & (1 << 14)) {
857 if (cpu_single_env->singlestep_enabled)
858 handle = 1;
859 } else {
860 for (n = 0; n < 4; n++)
861 if (arch_info->dr6 & (1 << n))
862 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
863 case 0x0:
864 handle = 1;
865 break;
866 case 0x1:
867 handle = 1;
868 cpu_single_env->watchpoint_hit = &hw_watchpoint;
869 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
870 hw_watchpoint.flags = BP_MEM_WRITE;
871 break;
872 case 0x3:
873 handle = 1;
874 cpu_single_env->watchpoint_hit = &hw_watchpoint;
875 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
876 hw_watchpoint.flags = BP_MEM_ACCESS;
877 break;
880 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
881 handle = 1;
883 if (!handle)
884 kvm_update_guest_debug(cpu_single_env,
885 (arch_info->exception == 1) ?
886 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
888 return handle;
891 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
893 const uint8_t type_code[] = {
894 [GDB_BREAKPOINT_HW] = 0x0,
895 [GDB_WATCHPOINT_WRITE] = 0x1,
896 [GDB_WATCHPOINT_ACCESS] = 0x3
898 const uint8_t len_code[] = {
899 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
901 int n;
903 if (kvm_sw_breakpoints_active(env))
904 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
906 if (nb_hw_breakpoint > 0) {
907 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
908 dbg->arch.debugreg[7] = 0x0600;
909 for (n = 0; n < nb_hw_breakpoint; n++) {
910 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
911 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
912 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
913 (len_code[hw_breakpoint[n].len] << (18 + n*4));
917 #endif /* KVM_CAP_SET_GUEST_DEBUG */