MINI2440: General update
[qemu/mini2440.git] / hw / cuda.c
blob145aa9c2adede0cec62cbd6d317857dcb48798e8
1 /*
2 * QEMU PowerMac CUDA device support
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw.h"
26 #include "ppc_mac.h"
27 #include "qemu-timer.h"
28 #include "sysemu.h"
30 /* XXX: implement all timer modes */
32 /* debug CUDA */
33 //#define DEBUG_CUDA
35 /* debug CUDA packets */
36 //#define DEBUG_CUDA_PACKET
38 #ifdef DEBUG_CUDA
39 #define CUDA_DPRINTF(fmt, ...) \
40 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
41 #else
42 #define CUDA_DPRINTF(fmt, ...)
43 #endif
45 /* Bits in B data register: all active low */
46 #define TREQ 0x08 /* Transfer request (input) */
47 #define TACK 0x10 /* Transfer acknowledge (output) */
48 #define TIP 0x20 /* Transfer in progress (output) */
50 /* Bits in ACR */
51 #define SR_CTRL 0x1c /* Shift register control bits */
52 #define SR_EXT 0x0c /* Shift on external clock */
53 #define SR_OUT 0x10 /* Shift out if 1 */
55 /* Bits in IFR and IER */
56 #define IER_SET 0x80 /* set bits in IER */
57 #define IER_CLR 0 /* clear bits in IER */
58 #define SR_INT 0x04 /* Shift register full/empty */
59 #define T1_INT 0x40 /* Timer 1 interrupt */
60 #define T2_INT 0x20 /* Timer 2 interrupt */
62 /* Bits in ACR */
63 #define T1MODE 0xc0 /* Timer 1 mode */
64 #define T1MODE_CONT 0x40 /* continuous interrupts */
66 /* commands (1st byte) */
67 #define ADB_PACKET 0
68 #define CUDA_PACKET 1
69 #define ERROR_PACKET 2
70 #define TIMER_PACKET 3
71 #define POWER_PACKET 4
72 #define MACIIC_PACKET 5
73 #define PMU_PACKET 6
76 /* CUDA commands (2nd byte) */
77 #define CUDA_WARM_START 0x0
78 #define CUDA_AUTOPOLL 0x1
79 #define CUDA_GET_6805_ADDR 0x2
80 #define CUDA_GET_TIME 0x3
81 #define CUDA_GET_PRAM 0x7
82 #define CUDA_SET_6805_ADDR 0x8
83 #define CUDA_SET_TIME 0x9
84 #define CUDA_POWERDOWN 0xa
85 #define CUDA_POWERUP_TIME 0xb
86 #define CUDA_SET_PRAM 0xc
87 #define CUDA_MS_RESET 0xd
88 #define CUDA_SEND_DFAC 0xe
89 #define CUDA_BATTERY_SWAP_SENSE 0x10
90 #define CUDA_RESET_SYSTEM 0x11
91 #define CUDA_SET_IPL 0x12
92 #define CUDA_FILE_SERVER_FLAG 0x13
93 #define CUDA_SET_AUTO_RATE 0x14
94 #define CUDA_GET_AUTO_RATE 0x16
95 #define CUDA_SET_DEVICE_LIST 0x19
96 #define CUDA_GET_DEVICE_LIST 0x1a
97 #define CUDA_SET_ONE_SECOND_MODE 0x1b
98 #define CUDA_SET_POWER_MESSAGES 0x21
99 #define CUDA_GET_SET_IIC 0x22
100 #define CUDA_WAKEUP 0x23
101 #define CUDA_TIMER_TICKLE 0x24
102 #define CUDA_COMBINED_FORMAT_IIC 0x25
104 #define CUDA_TIMER_FREQ (4700000 / 6)
105 #define CUDA_ADB_POLL_FREQ 50
107 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
108 #define RTC_OFFSET 2082844800
110 typedef struct CUDATimer {
111 int index;
112 uint16_t latch;
113 uint16_t counter_value; /* counter value at load time */
114 int64_t load_time;
115 int64_t next_irq_time;
116 QEMUTimer *timer;
117 } CUDATimer;
119 typedef struct CUDAState {
120 /* cuda registers */
121 uint8_t b; /* B-side data */
122 uint8_t a; /* A-side data */
123 uint8_t dirb; /* B-side direction (1=output) */
124 uint8_t dira; /* A-side direction (1=output) */
125 uint8_t sr; /* Shift register */
126 uint8_t acr; /* Auxiliary control register */
127 uint8_t pcr; /* Peripheral control register */
128 uint8_t ifr; /* Interrupt flag register */
129 uint8_t ier; /* Interrupt enable register */
130 uint8_t anh; /* A-side data, no handshake */
132 CUDATimer timers[2];
134 uint32_t tick_offset;
136 uint8_t last_b; /* last value of B register */
137 uint8_t last_acr; /* last value of B register */
139 int data_in_size;
140 int data_in_index;
141 int data_out_index;
143 qemu_irq irq;
144 uint8_t autopoll;
145 uint8_t data_in[128];
146 uint8_t data_out[16];
147 QEMUTimer *adb_poll_timer;
148 } CUDAState;
150 static CUDAState cuda_state;
151 ADBBusState adb_bus;
153 static void cuda_update(CUDAState *s);
154 static void cuda_receive_packet_from_host(CUDAState *s,
155 const uint8_t *data, int len);
156 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
157 int64_t current_time);
159 static void cuda_update_irq(CUDAState *s)
161 if (s->ifr & s->ier & (SR_INT | T1_INT)) {
162 qemu_irq_raise(s->irq);
163 } else {
164 qemu_irq_lower(s->irq);
168 static unsigned int get_counter(CUDATimer *s)
170 int64_t d;
171 unsigned int counter;
173 d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
174 CUDA_TIMER_FREQ, ticks_per_sec);
175 if (s->index == 0) {
176 /* the timer goes down from latch to -1 (period of latch + 2) */
177 if (d <= (s->counter_value + 1)) {
178 counter = (s->counter_value - d) & 0xffff;
179 } else {
180 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
181 counter = (s->latch - counter) & 0xffff;
183 } else {
184 counter = (s->counter_value - d) & 0xffff;
186 return counter;
189 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
191 CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
192 ti->load_time = qemu_get_clock(vm_clock);
193 ti->counter_value = val;
194 cuda_timer_update(s, ti, ti->load_time);
197 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
199 int64_t d, next_time;
200 unsigned int counter;
202 /* current counter value */
203 d = muldiv64(current_time - s->load_time,
204 CUDA_TIMER_FREQ, ticks_per_sec);
205 /* the timer goes down from latch to -1 (period of latch + 2) */
206 if (d <= (s->counter_value + 1)) {
207 counter = (s->counter_value - d) & 0xffff;
208 } else {
209 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
210 counter = (s->latch - counter) & 0xffff;
213 /* Note: we consider the irq is raised on 0 */
214 if (counter == 0xffff) {
215 next_time = d + s->latch + 1;
216 } else if (counter == 0) {
217 next_time = d + s->latch + 2;
218 } else {
219 next_time = d + counter;
221 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
222 s->latch, d, next_time - d);
223 next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
224 s->load_time;
225 if (next_time <= current_time)
226 next_time = current_time + 1;
227 return next_time;
230 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
231 int64_t current_time)
233 if (!ti->timer)
234 return;
235 if ((s->acr & T1MODE) != T1MODE_CONT) {
236 qemu_del_timer(ti->timer);
237 } else {
238 ti->next_irq_time = get_next_irq_time(ti, current_time);
239 qemu_mod_timer(ti->timer, ti->next_irq_time);
243 static void cuda_timer1(void *opaque)
245 CUDAState *s = opaque;
246 CUDATimer *ti = &s->timers[0];
248 cuda_timer_update(s, ti, ti->next_irq_time);
249 s->ifr |= T1_INT;
250 cuda_update_irq(s);
253 static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
255 CUDAState *s = opaque;
256 uint32_t val;
258 addr = (addr >> 9) & 0xf;
259 switch(addr) {
260 case 0:
261 val = s->b;
262 break;
263 case 1:
264 val = s->a;
265 break;
266 case 2:
267 val = s->dirb;
268 break;
269 case 3:
270 val = s->dira;
271 break;
272 case 4:
273 val = get_counter(&s->timers[0]) & 0xff;
274 s->ifr &= ~T1_INT;
275 cuda_update_irq(s);
276 break;
277 case 5:
278 val = get_counter(&s->timers[0]) >> 8;
279 cuda_update_irq(s);
280 break;
281 case 6:
282 val = s->timers[0].latch & 0xff;
283 break;
284 case 7:
285 /* XXX: check this */
286 val = (s->timers[0].latch >> 8) & 0xff;
287 break;
288 case 8:
289 val = get_counter(&s->timers[1]) & 0xff;
290 s->ifr &= ~T2_INT;
291 break;
292 case 9:
293 val = get_counter(&s->timers[1]) >> 8;
294 break;
295 case 10:
296 val = s->sr;
297 s->ifr &= ~SR_INT;
298 cuda_update_irq(s);
299 break;
300 case 11:
301 val = s->acr;
302 break;
303 case 12:
304 val = s->pcr;
305 break;
306 case 13:
307 val = s->ifr;
308 if (s->ifr & s->ier)
309 val |= 0x80;
310 break;
311 case 14:
312 val = s->ier | 0x80;
313 break;
314 default:
315 case 15:
316 val = s->anh;
317 break;
319 if (addr != 13 || val != 0)
320 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
321 return val;
324 static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
326 CUDAState *s = opaque;
328 addr = (addr >> 9) & 0xf;
329 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
331 switch(addr) {
332 case 0:
333 s->b = val;
334 cuda_update(s);
335 break;
336 case 1:
337 s->a = val;
338 break;
339 case 2:
340 s->dirb = val;
341 break;
342 case 3:
343 s->dira = val;
344 break;
345 case 4:
346 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
347 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
348 break;
349 case 5:
350 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
351 s->ifr &= ~T1_INT;
352 set_counter(s, &s->timers[0], s->timers[0].latch);
353 break;
354 case 6:
355 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
356 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
357 break;
358 case 7:
359 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
360 s->ifr &= ~T1_INT;
361 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
362 break;
363 case 8:
364 s->timers[1].latch = val;
365 set_counter(s, &s->timers[1], val);
366 break;
367 case 9:
368 set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
369 break;
370 case 10:
371 s->sr = val;
372 break;
373 case 11:
374 s->acr = val;
375 cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
376 cuda_update(s);
377 break;
378 case 12:
379 s->pcr = val;
380 break;
381 case 13:
382 /* reset bits */
383 s->ifr &= ~val;
384 cuda_update_irq(s);
385 break;
386 case 14:
387 if (val & IER_SET) {
388 /* set bits */
389 s->ier |= val & 0x7f;
390 } else {
391 /* reset bits */
392 s->ier &= ~val;
394 cuda_update_irq(s);
395 break;
396 default:
397 case 15:
398 s->anh = val;
399 break;
403 /* NOTE: TIP and TREQ are negated */
404 static void cuda_update(CUDAState *s)
406 int packet_received, len;
408 packet_received = 0;
409 if (!(s->b & TIP)) {
410 /* transfer requested from host */
412 if (s->acr & SR_OUT) {
413 /* data output */
414 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
415 if (s->data_out_index < sizeof(s->data_out)) {
416 CUDA_DPRINTF("send: %02x\n", s->sr);
417 s->data_out[s->data_out_index++] = s->sr;
418 s->ifr |= SR_INT;
419 cuda_update_irq(s);
422 } else {
423 if (s->data_in_index < s->data_in_size) {
424 /* data input */
425 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
426 s->sr = s->data_in[s->data_in_index++];
427 CUDA_DPRINTF("recv: %02x\n", s->sr);
428 /* indicate end of transfer */
429 if (s->data_in_index >= s->data_in_size) {
430 s->b = (s->b | TREQ);
432 s->ifr |= SR_INT;
433 cuda_update_irq(s);
437 } else {
438 /* no transfer requested: handle sync case */
439 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
440 /* update TREQ state each time TACK change state */
441 if (s->b & TACK)
442 s->b = (s->b | TREQ);
443 else
444 s->b = (s->b & ~TREQ);
445 s->ifr |= SR_INT;
446 cuda_update_irq(s);
447 } else {
448 if (!(s->last_b & TIP)) {
449 /* handle end of host to cuda transfer */
450 packet_received = (s->data_out_index > 0);
451 /* always an IRQ at the end of transfer */
452 s->ifr |= SR_INT;
453 cuda_update_irq(s);
455 /* signal if there is data to read */
456 if (s->data_in_index < s->data_in_size) {
457 s->b = (s->b & ~TREQ);
462 s->last_acr = s->acr;
463 s->last_b = s->b;
465 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
466 recursively */
467 if (packet_received) {
468 len = s->data_out_index;
469 s->data_out_index = 0;
470 cuda_receive_packet_from_host(s, s->data_out, len);
474 static void cuda_send_packet_to_host(CUDAState *s,
475 const uint8_t *data, int len)
477 #ifdef DEBUG_CUDA_PACKET
479 int i;
480 printf("cuda_send_packet_to_host:\n");
481 for(i = 0; i < len; i++)
482 printf(" %02x", data[i]);
483 printf("\n");
485 #endif
486 memcpy(s->data_in, data, len);
487 s->data_in_size = len;
488 s->data_in_index = 0;
489 cuda_update(s);
490 s->ifr |= SR_INT;
491 cuda_update_irq(s);
494 static void cuda_adb_poll(void *opaque)
496 CUDAState *s = opaque;
497 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
498 int olen;
500 olen = adb_poll(&adb_bus, obuf + 2);
501 if (olen > 0) {
502 obuf[0] = ADB_PACKET;
503 obuf[1] = 0x40; /* polled data */
504 cuda_send_packet_to_host(s, obuf, olen + 2);
506 qemu_mod_timer(s->adb_poll_timer,
507 qemu_get_clock(vm_clock) +
508 (ticks_per_sec / CUDA_ADB_POLL_FREQ));
511 static void cuda_receive_packet(CUDAState *s,
512 const uint8_t *data, int len)
514 uint8_t obuf[16];
515 int autopoll;
516 uint32_t ti;
518 switch(data[0]) {
519 case CUDA_AUTOPOLL:
520 autopoll = (data[1] != 0);
521 if (autopoll != s->autopoll) {
522 s->autopoll = autopoll;
523 if (autopoll) {
524 qemu_mod_timer(s->adb_poll_timer,
525 qemu_get_clock(vm_clock) +
526 (ticks_per_sec / CUDA_ADB_POLL_FREQ));
527 } else {
528 qemu_del_timer(s->adb_poll_timer);
531 obuf[0] = CUDA_PACKET;
532 obuf[1] = data[1];
533 cuda_send_packet_to_host(s, obuf, 2);
534 break;
535 case CUDA_SET_TIME:
536 ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
537 s->tick_offset = ti - (qemu_get_clock(vm_clock) / ticks_per_sec);
538 obuf[0] = CUDA_PACKET;
539 obuf[1] = 0;
540 obuf[2] = 0;
541 cuda_send_packet_to_host(s, obuf, 3);
542 break;
543 case CUDA_GET_TIME:
544 ti = s->tick_offset + (qemu_get_clock(vm_clock) / ticks_per_sec);
545 obuf[0] = CUDA_PACKET;
546 obuf[1] = 0;
547 obuf[2] = 0;
548 obuf[3] = ti >> 24;
549 obuf[4] = ti >> 16;
550 obuf[5] = ti >> 8;
551 obuf[6] = ti;
552 cuda_send_packet_to_host(s, obuf, 7);
553 break;
554 case CUDA_FILE_SERVER_FLAG:
555 case CUDA_SET_DEVICE_LIST:
556 case CUDA_SET_AUTO_RATE:
557 case CUDA_SET_POWER_MESSAGES:
558 obuf[0] = CUDA_PACKET;
559 obuf[1] = 0;
560 cuda_send_packet_to_host(s, obuf, 2);
561 break;
562 case CUDA_POWERDOWN:
563 obuf[0] = CUDA_PACKET;
564 obuf[1] = 0;
565 cuda_send_packet_to_host(s, obuf, 2);
566 qemu_system_shutdown_request();
567 break;
568 case CUDA_RESET_SYSTEM:
569 obuf[0] = CUDA_PACKET;
570 obuf[1] = 0;
571 cuda_send_packet_to_host(s, obuf, 2);
572 qemu_system_reset_request();
573 break;
574 default:
575 break;
579 static void cuda_receive_packet_from_host(CUDAState *s,
580 const uint8_t *data, int len)
582 #ifdef DEBUG_CUDA_PACKET
584 int i;
585 printf("cuda_receive_packet_from_host:\n");
586 for(i = 0; i < len; i++)
587 printf(" %02x", data[i]);
588 printf("\n");
590 #endif
591 switch(data[0]) {
592 case ADB_PACKET:
594 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
595 int olen;
596 olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
597 if (olen > 0) {
598 obuf[0] = ADB_PACKET;
599 obuf[1] = 0x00;
600 } else {
601 /* error */
602 obuf[0] = ADB_PACKET;
603 obuf[1] = -olen;
604 olen = 0;
606 cuda_send_packet_to_host(s, obuf, olen + 2);
608 break;
609 case CUDA_PACKET:
610 cuda_receive_packet(s, data + 1, len - 1);
611 break;
615 static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
619 static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
623 static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
625 return 0;
628 static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
630 return 0;
633 static CPUWriteMemoryFunc *cuda_write[] = {
634 &cuda_writeb,
635 &cuda_writew,
636 &cuda_writel,
639 static CPUReadMemoryFunc *cuda_read[] = {
640 &cuda_readb,
641 &cuda_readw,
642 &cuda_readl,
645 static void cuda_save_timer(QEMUFile *f, CUDATimer *s)
647 qemu_put_be16s(f, &s->latch);
648 qemu_put_be16s(f, &s->counter_value);
649 qemu_put_sbe64s(f, &s->load_time);
650 qemu_put_sbe64s(f, &s->next_irq_time);
651 if (s->timer)
652 qemu_put_timer(f, s->timer);
655 static void cuda_save(QEMUFile *f, void *opaque)
657 CUDAState *s = (CUDAState *)opaque;
659 qemu_put_ubyte(f, s->b);
660 qemu_put_ubyte(f, s->a);
661 qemu_put_ubyte(f, s->dirb);
662 qemu_put_ubyte(f, s->dira);
663 qemu_put_ubyte(f, s->sr);
664 qemu_put_ubyte(f, s->acr);
665 qemu_put_ubyte(f, s->pcr);
666 qemu_put_ubyte(f, s->ifr);
667 qemu_put_ubyte(f, s->ier);
668 qemu_put_ubyte(f, s->anh);
669 qemu_put_sbe32s(f, &s->data_in_size);
670 qemu_put_sbe32s(f, &s->data_in_index);
671 qemu_put_sbe32s(f, &s->data_out_index);
672 qemu_put_ubyte(f, s->autopoll);
673 qemu_put_buffer(f, s->data_in, sizeof(s->data_in));
674 qemu_put_buffer(f, s->data_out, sizeof(s->data_out));
675 qemu_put_be32s(f, &s->tick_offset);
676 cuda_save_timer(f, &s->timers[0]);
677 cuda_save_timer(f, &s->timers[1]);
680 static void cuda_load_timer(QEMUFile *f, CUDATimer *s)
682 qemu_get_be16s(f, &s->latch);
683 qemu_get_be16s(f, &s->counter_value);
684 qemu_get_sbe64s(f, &s->load_time);
685 qemu_get_sbe64s(f, &s->next_irq_time);
686 if (s->timer)
687 qemu_get_timer(f, s->timer);
690 static int cuda_load(QEMUFile *f, void *opaque, int version_id)
692 CUDAState *s = (CUDAState *)opaque;
694 if (version_id != 1)
695 return -EINVAL;
697 s->b = qemu_get_ubyte(f);
698 s->a = qemu_get_ubyte(f);
699 s->dirb = qemu_get_ubyte(f);
700 s->dira = qemu_get_ubyte(f);
701 s->sr = qemu_get_ubyte(f);
702 s->acr = qemu_get_ubyte(f);
703 s->pcr = qemu_get_ubyte(f);
704 s->ifr = qemu_get_ubyte(f);
705 s->ier = qemu_get_ubyte(f);
706 s->anh = qemu_get_ubyte(f);
707 qemu_get_sbe32s(f, &s->data_in_size);
708 qemu_get_sbe32s(f, &s->data_in_index);
709 qemu_get_sbe32s(f, &s->data_out_index);
710 s->autopoll = qemu_get_ubyte(f);
711 qemu_get_buffer(f, s->data_in, sizeof(s->data_in));
712 qemu_get_buffer(f, s->data_out, sizeof(s->data_out));
713 qemu_get_be32s(f, &s->tick_offset);
714 cuda_load_timer(f, &s->timers[0]);
715 cuda_load_timer(f, &s->timers[1]);
717 return 0;
720 static void cuda_reset(void *opaque)
722 CUDAState *s = opaque;
724 s->b = 0;
725 s->a = 0;
726 s->dirb = 0;
727 s->dira = 0;
728 s->sr = 0;
729 s->acr = 0;
730 s->pcr = 0;
731 s->ifr = 0;
732 s->ier = 0;
733 // s->ier = T1_INT | SR_INT;
734 s->anh = 0;
735 s->data_in_size = 0;
736 s->data_in_index = 0;
737 s->data_out_index = 0;
738 s->autopoll = 0;
740 s->timers[0].latch = 0xffff;
741 set_counter(s, &s->timers[0], 0xffff);
743 s->timers[1].latch = 0;
744 set_counter(s, &s->timers[1], 0xffff);
747 void cuda_init (int *cuda_mem_index, qemu_irq irq)
749 struct tm tm;
750 CUDAState *s = &cuda_state;
752 s->irq = irq;
754 s->timers[0].index = 0;
755 s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
757 s->timers[1].index = 1;
759 qemu_get_timedate(&tm, 0);
760 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
762 s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
763 *cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
764 register_savevm("cuda", -1, 1, cuda_save, cuda_load, s);
765 qemu_register_reset(cuda_reset, s);
766 cuda_reset(s);