Remove reserved registers from tcg_target_reg_alloc_order
[qemu/mini2440.git] / hw / mc146818rtc.c
blob9640afe7b3323ba5fe92bbe30ed73ffcd7ccb2f0
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 #include "hpet_emul.h"
31 //#define DEBUG_CMOS
33 #define RTC_SECONDS 0
34 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES 2
36 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS 4
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
43 #define RTC_MONTH 8
44 #define RTC_YEAR 9
46 #define RTC_REG_A 10
47 #define RTC_REG_B 11
48 #define RTC_REG_C 12
49 #define RTC_REG_D 13
51 #define REG_A_UIP 0x80
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_SQWE 0x08
58 #define REG_B_DM 0x04
60 struct RTCState {
61 uint8_t cmos_data[128];
62 uint8_t cmos_index;
63 struct tm current_tm;
64 int base_year;
65 qemu_irq irq;
66 qemu_irq sqw_irq;
67 int it_shift;
68 /* periodic timer */
69 QEMUTimer *periodic_timer;
70 int64_t next_periodic_time;
71 /* second update */
72 int64_t next_second_time;
73 #ifdef TARGET_I386
74 uint32_t irq_coalesced;
75 uint32_t period;
76 #endif
77 QEMUTimer *second_timer;
78 QEMUTimer *second_timer2;
81 static void rtc_irq_raise(qemu_irq irq) {
82 /* When HPET is operating in legacy mode, RTC interrupts are disabled
83 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
84 * mode is established while interrupt is raised. We want it to
85 * be lowered in any case
87 #if defined TARGET_I386 || defined TARGET_X86_64
88 if (!hpet_in_legacy_mode())
89 #endif
90 qemu_irq_raise(irq);
93 static void rtc_set_time(RTCState *s);
94 static void rtc_copy_date(RTCState *s);
96 static void rtc_timer_update(RTCState *s, int64_t current_time)
98 int period_code, period;
99 int64_t cur_clock, next_irq_clock;
100 int enable_pie;
102 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
103 #if defined TARGET_I386 || defined TARGET_X86_64
104 /* disable periodic timer if hpet is in legacy mode, since interrupts are
105 * disabled anyway.
107 enable_pie = !hpet_in_legacy_mode();
108 #else
109 enable_pie = 1;
110 #endif
111 if (period_code != 0
112 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
113 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
114 if (period_code <= 2)
115 period_code += 7;
116 /* period in 32 Khz cycles */
117 period = 1 << (period_code - 1);
118 #ifdef TARGET_I386
119 if(period != s->period)
120 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
121 s->period = period;
122 #endif
123 /* compute 32 khz clock */
124 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
125 next_irq_clock = (cur_clock & ~(period - 1)) + period;
126 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
127 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
128 } else {
129 #ifdef TARGET_I386
130 s->irq_coalesced = 0;
131 #endif
132 qemu_del_timer(s->periodic_timer);
136 static void rtc_periodic_timer(void *opaque)
138 RTCState *s = opaque;
140 rtc_timer_update(s, s->next_periodic_time);
141 #ifdef TARGET_I386
142 if ((s->cmos_data[RTC_REG_C] & 0xc0) && rtc_td_hack) {
143 s->irq_coalesced++;
144 return;
146 #endif
147 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
148 s->cmos_data[RTC_REG_C] |= 0xc0;
149 rtc_irq_raise(s->irq);
151 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
152 /* Not square wave at all but we don't want 2048Hz interrupts!
153 Must be seen as a pulse. */
154 qemu_irq_raise(s->sqw_irq);
158 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
160 RTCState *s = opaque;
162 if ((addr & 1) == 0) {
163 s->cmos_index = data & 0x7f;
164 } else {
165 #ifdef DEBUG_CMOS
166 printf("cmos: write index=0x%02x val=0x%02x\n",
167 s->cmos_index, data);
168 #endif
169 switch(s->cmos_index) {
170 case RTC_SECONDS_ALARM:
171 case RTC_MINUTES_ALARM:
172 case RTC_HOURS_ALARM:
173 /* XXX: not supported */
174 s->cmos_data[s->cmos_index] = data;
175 break;
176 case RTC_SECONDS:
177 case RTC_MINUTES:
178 case RTC_HOURS:
179 case RTC_DAY_OF_WEEK:
180 case RTC_DAY_OF_MONTH:
181 case RTC_MONTH:
182 case RTC_YEAR:
183 s->cmos_data[s->cmos_index] = data;
184 /* if in set mode, do not update the time */
185 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
186 rtc_set_time(s);
188 break;
189 case RTC_REG_A:
190 /* UIP bit is read only */
191 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
192 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
193 rtc_timer_update(s, qemu_get_clock(vm_clock));
194 break;
195 case RTC_REG_B:
196 if (data & REG_B_SET) {
197 /* set mode: reset UIP mode */
198 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
199 data &= ~REG_B_UIE;
200 } else {
201 /* if disabling set mode, update the time */
202 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
203 rtc_set_time(s);
206 s->cmos_data[RTC_REG_B] = data;
207 rtc_timer_update(s, qemu_get_clock(vm_clock));
208 break;
209 case RTC_REG_C:
210 case RTC_REG_D:
211 /* cannot write to them */
212 break;
213 default:
214 s->cmos_data[s->cmos_index] = data;
215 break;
220 static inline int to_bcd(RTCState *s, int a)
222 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
223 return a;
224 } else {
225 return ((a / 10) << 4) | (a % 10);
229 static inline int from_bcd(RTCState *s, int a)
231 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
232 return a;
233 } else {
234 return ((a >> 4) * 10) + (a & 0x0f);
238 static void rtc_set_time(RTCState *s)
240 struct tm *tm = &s->current_tm;
242 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
243 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
244 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
245 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
246 (s->cmos_data[RTC_HOURS] & 0x80)) {
247 tm->tm_hour += 12;
249 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
250 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
251 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
252 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
255 static void rtc_copy_date(RTCState *s)
257 const struct tm *tm = &s->current_tm;
258 int year;
260 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
261 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
262 if (s->cmos_data[RTC_REG_B] & 0x02) {
263 /* 24 hour format */
264 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
265 } else {
266 /* 12 hour format */
267 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
268 if (tm->tm_hour >= 12)
269 s->cmos_data[RTC_HOURS] |= 0x80;
271 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
272 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
273 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
274 year = (tm->tm_year - s->base_year) % 100;
275 if (year < 0)
276 year += 100;
277 s->cmos_data[RTC_YEAR] = to_bcd(s, year);
280 /* month is between 0 and 11. */
281 static int get_days_in_month(int month, int year)
283 static const int days_tab[12] = {
284 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
286 int d;
287 if ((unsigned )month >= 12)
288 return 31;
289 d = days_tab[month];
290 if (month == 1) {
291 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
292 d++;
294 return d;
297 /* update 'tm' to the next second */
298 static void rtc_next_second(struct tm *tm)
300 int days_in_month;
302 tm->tm_sec++;
303 if ((unsigned)tm->tm_sec >= 60) {
304 tm->tm_sec = 0;
305 tm->tm_min++;
306 if ((unsigned)tm->tm_min >= 60) {
307 tm->tm_min = 0;
308 tm->tm_hour++;
309 if ((unsigned)tm->tm_hour >= 24) {
310 tm->tm_hour = 0;
311 /* next day */
312 tm->tm_wday++;
313 if ((unsigned)tm->tm_wday >= 7)
314 tm->tm_wday = 0;
315 days_in_month = get_days_in_month(tm->tm_mon,
316 tm->tm_year + 1900);
317 tm->tm_mday++;
318 if (tm->tm_mday < 1) {
319 tm->tm_mday = 1;
320 } else if (tm->tm_mday > days_in_month) {
321 tm->tm_mday = 1;
322 tm->tm_mon++;
323 if (tm->tm_mon >= 12) {
324 tm->tm_mon = 0;
325 tm->tm_year++;
334 static void rtc_update_second(void *opaque)
336 RTCState *s = opaque;
337 int64_t delay;
339 /* if the oscillator is not in normal operation, we do not update */
340 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
341 s->next_second_time += ticks_per_sec;
342 qemu_mod_timer(s->second_timer, s->next_second_time);
343 } else {
344 rtc_next_second(&s->current_tm);
346 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
347 /* update in progress bit */
348 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
350 /* should be 244 us = 8 / 32768 seconds, but currently the
351 timers do not have the necessary resolution. */
352 delay = (ticks_per_sec * 1) / 100;
353 if (delay < 1)
354 delay = 1;
355 qemu_mod_timer(s->second_timer2,
356 s->next_second_time + delay);
360 static void rtc_update_second2(void *opaque)
362 RTCState *s = opaque;
364 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
365 rtc_copy_date(s);
368 /* check alarm */
369 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
370 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
371 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
372 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
373 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
374 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
375 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
377 s->cmos_data[RTC_REG_C] |= 0xa0;
378 rtc_irq_raise(s->irq);
382 /* update ended interrupt */
383 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
384 s->cmos_data[RTC_REG_C] |= 0x90;
385 rtc_irq_raise(s->irq);
388 /* clear update in progress bit */
389 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
391 s->next_second_time += ticks_per_sec;
392 qemu_mod_timer(s->second_timer, s->next_second_time);
395 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
397 RTCState *s = opaque;
398 int ret;
399 if ((addr & 1) == 0) {
400 return 0xff;
401 } else {
402 switch(s->cmos_index) {
403 case RTC_SECONDS:
404 case RTC_MINUTES:
405 case RTC_HOURS:
406 case RTC_DAY_OF_WEEK:
407 case RTC_DAY_OF_MONTH:
408 case RTC_MONTH:
409 case RTC_YEAR:
410 ret = s->cmos_data[s->cmos_index];
411 break;
412 case RTC_REG_A:
413 ret = s->cmos_data[s->cmos_index];
414 break;
415 case RTC_REG_C:
416 ret = s->cmos_data[s->cmos_index];
417 qemu_irq_lower(s->irq);
418 #ifdef TARGET_I386
419 if(s->irq_coalesced) {
420 apic_reset_irq_delivered();
421 qemu_irq_raise(s->irq);
422 if (apic_get_irq_delivered())
423 s->irq_coalesced--;
424 break;
426 #endif
427 s->cmos_data[RTC_REG_C] = 0x00;
428 break;
429 default:
430 ret = s->cmos_data[s->cmos_index];
431 break;
433 #ifdef DEBUG_CMOS
434 printf("cmos: read index=0x%02x val=0x%02x\n",
435 s->cmos_index, ret);
436 #endif
437 return ret;
441 void rtc_set_memory(RTCState *s, int addr, int val)
443 if (addr >= 0 && addr <= 127)
444 s->cmos_data[addr] = val;
447 void rtc_set_date(RTCState *s, const struct tm *tm)
449 s->current_tm = *tm;
450 rtc_copy_date(s);
453 /* PC cmos mappings */
454 #define REG_IBM_CENTURY_BYTE 0x32
455 #define REG_IBM_PS2_CENTURY_BYTE 0x37
457 static void rtc_set_date_from_host(RTCState *s)
459 struct tm tm;
460 int val;
462 /* set the CMOS date */
463 qemu_get_timedate(&tm, 0);
464 rtc_set_date(s, &tm);
466 val = to_bcd(s, (tm.tm_year / 100) + 19);
467 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
468 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
471 static void rtc_save(QEMUFile *f, void *opaque)
473 RTCState *s = opaque;
475 qemu_put_buffer(f, s->cmos_data, 128);
476 qemu_put_8s(f, &s->cmos_index);
478 qemu_put_be32(f, s->current_tm.tm_sec);
479 qemu_put_be32(f, s->current_tm.tm_min);
480 qemu_put_be32(f, s->current_tm.tm_hour);
481 qemu_put_be32(f, s->current_tm.tm_wday);
482 qemu_put_be32(f, s->current_tm.tm_mday);
483 qemu_put_be32(f, s->current_tm.tm_mon);
484 qemu_put_be32(f, s->current_tm.tm_year);
486 qemu_put_timer(f, s->periodic_timer);
487 qemu_put_be64(f, s->next_periodic_time);
489 qemu_put_be64(f, s->next_second_time);
490 qemu_put_timer(f, s->second_timer);
491 qemu_put_timer(f, s->second_timer2);
494 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
496 RTCState *s = opaque;
498 if (version_id != 1)
499 return -EINVAL;
501 qemu_get_buffer(f, s->cmos_data, 128);
502 qemu_get_8s(f, &s->cmos_index);
504 s->current_tm.tm_sec=qemu_get_be32(f);
505 s->current_tm.tm_min=qemu_get_be32(f);
506 s->current_tm.tm_hour=qemu_get_be32(f);
507 s->current_tm.tm_wday=qemu_get_be32(f);
508 s->current_tm.tm_mday=qemu_get_be32(f);
509 s->current_tm.tm_mon=qemu_get_be32(f);
510 s->current_tm.tm_year=qemu_get_be32(f);
512 qemu_get_timer(f, s->periodic_timer);
513 s->next_periodic_time=qemu_get_be64(f);
515 s->next_second_time=qemu_get_be64(f);
516 qemu_get_timer(f, s->second_timer);
517 qemu_get_timer(f, s->second_timer2);
518 return 0;
521 #ifdef TARGET_I386
522 static void rtc_save_td(QEMUFile *f, void *opaque)
524 RTCState *s = opaque;
526 qemu_put_be32(f, s->irq_coalesced);
527 qemu_put_be32(f, s->period);
530 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
532 RTCState *s = opaque;
534 if (version_id != 1)
535 return -EINVAL;
537 s->irq_coalesced = qemu_get_be32(f);
538 s->period = qemu_get_be32(f);
539 return 0;
541 #endif
543 RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
545 RTCState *s;
547 s = qemu_mallocz(sizeof(RTCState));
549 s->irq = irq;
550 s->sqw_irq = sqw_irq;
551 s->cmos_data[RTC_REG_A] = 0x26;
552 s->cmos_data[RTC_REG_B] = 0x02;
553 s->cmos_data[RTC_REG_C] = 0x00;
554 s->cmos_data[RTC_REG_D] = 0x80;
556 s->base_year = base_year;
557 rtc_set_date_from_host(s);
559 s->periodic_timer = qemu_new_timer(vm_clock,
560 rtc_periodic_timer, s);
561 s->second_timer = qemu_new_timer(vm_clock,
562 rtc_update_second, s);
563 s->second_timer2 = qemu_new_timer(vm_clock,
564 rtc_update_second2, s);
566 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
567 qemu_mod_timer(s->second_timer2, s->next_second_time);
569 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
570 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
572 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
573 #ifdef TARGET_I386
574 if (rtc_td_hack)
575 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
576 #endif
577 return s;
580 RTCState *rtc_init(int base, qemu_irq irq, int base_year)
582 return rtc_init_sqw(base, irq, NULL, base_year);
585 /* Memory mapped interface */
586 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
588 RTCState *s = opaque;
590 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
593 static void cmos_mm_writeb (void *opaque,
594 target_phys_addr_t addr, uint32_t value)
596 RTCState *s = opaque;
598 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
601 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
603 RTCState *s = opaque;
604 uint32_t val;
606 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
607 #ifdef TARGET_WORDS_BIGENDIAN
608 val = bswap16(val);
609 #endif
610 return val;
613 static void cmos_mm_writew (void *opaque,
614 target_phys_addr_t addr, uint32_t value)
616 RTCState *s = opaque;
617 #ifdef TARGET_WORDS_BIGENDIAN
618 value = bswap16(value);
619 #endif
620 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
623 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
625 RTCState *s = opaque;
626 uint32_t val;
628 val = cmos_ioport_read(s, addr >> s->it_shift);
629 #ifdef TARGET_WORDS_BIGENDIAN
630 val = bswap32(val);
631 #endif
632 return val;
635 static void cmos_mm_writel (void *opaque,
636 target_phys_addr_t addr, uint32_t value)
638 RTCState *s = opaque;
639 #ifdef TARGET_WORDS_BIGENDIAN
640 value = bswap32(value);
641 #endif
642 cmos_ioport_write(s, addr >> s->it_shift, value);
645 static CPUReadMemoryFunc *rtc_mm_read[] = {
646 &cmos_mm_readb,
647 &cmos_mm_readw,
648 &cmos_mm_readl,
651 static CPUWriteMemoryFunc *rtc_mm_write[] = {
652 &cmos_mm_writeb,
653 &cmos_mm_writew,
654 &cmos_mm_writel,
657 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
658 int base_year)
660 RTCState *s;
661 int io_memory;
663 s = qemu_mallocz(sizeof(RTCState));
665 s->irq = irq;
666 s->cmos_data[RTC_REG_A] = 0x26;
667 s->cmos_data[RTC_REG_B] = 0x02;
668 s->cmos_data[RTC_REG_C] = 0x00;
669 s->cmos_data[RTC_REG_D] = 0x80;
671 s->base_year = base_year;
672 rtc_set_date_from_host(s);
674 s->periodic_timer = qemu_new_timer(vm_clock,
675 rtc_periodic_timer, s);
676 s->second_timer = qemu_new_timer(vm_clock,
677 rtc_update_second, s);
678 s->second_timer2 = qemu_new_timer(vm_clock,
679 rtc_update_second2, s);
681 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
682 qemu_mod_timer(s->second_timer2, s->next_second_time);
684 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
685 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
687 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
688 #ifdef TARGET_I386
689 if (rtc_td_hack)
690 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
691 #endif
692 return s;