Remove reserved registers from tcg_target_reg_alloc_order
[qemu/mini2440.git] / exec.c
blob9671199a19ea16a11e3efb962156fd1634fbe2d7
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
63 #define SMC_BITMAP_USE_THRESHOLD 10
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
109 #if !defined(CONFIG_USER_ONLY)
110 ram_addr_t phys_ram_size;
111 int phys_ram_fd;
112 uint8_t *phys_ram_base;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115 static ram_addr_t phys_ram_alloc_offset = 0;
116 #endif
118 CPUState *first_cpu;
119 /* current CPU in the current thread. It is only valid inside
120 cpu_exec() */
121 CPUState *cpu_single_env;
122 /* 0 = Do not count executed instructions.
123 1 = Precise instruction counting.
124 2 = Adaptive rate instruction counting. */
125 int use_icount = 0;
126 /* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
128 int64_t qemu_icount;
130 typedef struct PageDesc {
131 /* list of TBs intersecting this ram page */
132 TranslationBlock *first_tb;
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count;
136 uint8_t *code_bitmap;
137 #if defined(CONFIG_USER_ONLY)
138 unsigned long flags;
139 #endif
140 } PageDesc;
142 typedef struct PhysPageDesc {
143 /* offset in host memory of the page + io_index in the low bits */
144 ram_addr_t phys_offset;
145 ram_addr_t region_offset;
146 } PhysPageDesc;
148 #define L2_BITS 10
149 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150 /* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
154 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
155 #else
156 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
157 #endif
159 #define L1_SIZE (1 << L1_BITS)
160 #define L2_SIZE (1 << L2_BITS)
162 unsigned long qemu_real_host_page_size;
163 unsigned long qemu_host_page_bits;
164 unsigned long qemu_host_page_size;
165 unsigned long qemu_host_page_mask;
167 /* XXX: for system emulation, it could just be an array */
168 static PageDesc *l1_map[L1_SIZE];
169 static PhysPageDesc **l1_phys_map;
171 #if !defined(CONFIG_USER_ONLY)
172 static void io_mem_init(void);
174 /* io memory support */
175 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
176 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
177 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
178 static char io_mem_used[IO_MEM_NB_ENTRIES];
179 static int io_mem_watch;
180 #endif
182 /* log support */
183 static const char *logfilename = "/tmp/qemu.log";
184 FILE *logfile;
185 int loglevel;
186 static int log_append = 0;
188 /* statistics */
189 static int tlb_flush_count;
190 static int tb_flush_count;
191 static int tb_phys_invalidate_count;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 target_phys_addr_t base;
196 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
197 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
198 void *opaque[TARGET_PAGE_SIZE][2][4];
199 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
200 } subpage_t;
202 #ifdef _WIN32
203 static void map_exec(void *addr, long size)
205 DWORD old_protect;
206 VirtualProtect(addr, size,
207 PAGE_EXECUTE_READWRITE, &old_protect);
210 #else
211 static void map_exec(void *addr, long size)
213 unsigned long start, end, page_size;
215 page_size = getpagesize();
216 start = (unsigned long)addr;
217 start &= ~(page_size - 1);
219 end = (unsigned long)addr + size;
220 end += page_size - 1;
221 end &= ~(page_size - 1);
223 mprotect((void *)start, end - start,
224 PROT_READ | PROT_WRITE | PROT_EXEC);
226 #endif
228 static void page_init(void)
230 /* NOTE: we can always suppose that qemu_host_page_size >=
231 TARGET_PAGE_SIZE */
232 #ifdef _WIN32
234 SYSTEM_INFO system_info;
236 GetSystemInfo(&system_info);
237 qemu_real_host_page_size = system_info.dwPageSize;
239 #else
240 qemu_real_host_page_size = getpagesize();
241 #endif
242 if (qemu_host_page_size == 0)
243 qemu_host_page_size = qemu_real_host_page_size;
244 if (qemu_host_page_size < TARGET_PAGE_SIZE)
245 qemu_host_page_size = TARGET_PAGE_SIZE;
246 qemu_host_page_bits = 0;
247 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
248 qemu_host_page_bits++;
249 qemu_host_page_mask = ~(qemu_host_page_size - 1);
250 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
251 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
253 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
255 long long startaddr, endaddr;
256 FILE *f;
257 int n;
259 mmap_lock();
260 last_brk = (unsigned long)sbrk(0);
261 f = fopen("/proc/self/maps", "r");
262 if (f) {
263 do {
264 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
265 if (n == 2) {
266 startaddr = MIN(startaddr,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
268 endaddr = MIN(endaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 page_set_flags(startaddr & TARGET_PAGE_MASK,
271 TARGET_PAGE_ALIGN(endaddr),
272 PAGE_RESERVED);
274 } while (!feof(f));
275 fclose(f);
277 mmap_unlock();
279 #endif
282 static inline PageDesc **page_l1_map(target_ulong index)
284 #if TARGET_LONG_BITS > 32
285 /* Host memory outside guest VM. For 32-bit targets we have already
286 excluded high addresses. */
287 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
288 return NULL;
289 #endif
290 return &l1_map[index >> L2_BITS];
293 static inline PageDesc *page_find_alloc(target_ulong index)
295 PageDesc **lp, *p;
296 lp = page_l1_map(index);
297 if (!lp)
298 return NULL;
300 p = *lp;
301 if (!p) {
302 /* allocate if not found */
303 #if defined(CONFIG_USER_ONLY)
304 size_t len = sizeof(PageDesc) * L2_SIZE;
305 /* Don't use qemu_malloc because it may recurse. */
306 p = mmap(0, len, PROT_READ | PROT_WRITE,
307 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
308 *lp = p;
309 if (h2g_valid(p)) {
310 unsigned long addr = h2g(p);
311 page_set_flags(addr & TARGET_PAGE_MASK,
312 TARGET_PAGE_ALIGN(addr + len),
313 PAGE_RESERVED);
315 #else
316 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
317 *lp = p;
318 #endif
320 return p + (index & (L2_SIZE - 1));
323 static inline PageDesc *page_find(target_ulong index)
325 PageDesc **lp, *p;
326 lp = page_l1_map(index);
327 if (!lp)
328 return NULL;
330 p = *lp;
331 if (!p)
332 return 0;
333 return p + (index & (L2_SIZE - 1));
336 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
338 void **lp, **p;
339 PhysPageDesc *pd;
341 p = (void **)l1_phys_map;
342 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
344 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
345 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
346 #endif
347 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
348 p = *lp;
349 if (!p) {
350 /* allocate if not found */
351 if (!alloc)
352 return NULL;
353 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
354 memset(p, 0, sizeof(void *) * L1_SIZE);
355 *lp = p;
357 #endif
358 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
359 pd = *lp;
360 if (!pd) {
361 int i;
362 /* allocate if not found */
363 if (!alloc)
364 return NULL;
365 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
366 *lp = pd;
367 for (i = 0; i < L2_SIZE; i++) {
368 pd[i].phys_offset = IO_MEM_UNASSIGNED;
369 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
372 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
375 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
377 return phys_page_find_alloc(index, 0);
380 #if !defined(CONFIG_USER_ONLY)
381 static void tlb_protect_code(ram_addr_t ram_addr);
382 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
383 target_ulong vaddr);
384 #define mmap_lock() do { } while(0)
385 #define mmap_unlock() do { } while(0)
386 #endif
388 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390 #if defined(CONFIG_USER_ONLY)
391 /* Currently it is not recommanded to allocate big chunks of data in
392 user mode. It will change when a dedicated libc will be used */
393 #define USE_STATIC_CODE_GEN_BUFFER
394 #endif
396 #ifdef USE_STATIC_CODE_GEN_BUFFER
397 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
398 #endif
400 static void code_gen_alloc(unsigned long tb_size)
402 #ifdef USE_STATIC_CODE_GEN_BUFFER
403 code_gen_buffer = static_code_gen_buffer;
404 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
405 map_exec(code_gen_buffer, code_gen_buffer_size);
406 #else
407 code_gen_buffer_size = tb_size;
408 if (code_gen_buffer_size == 0) {
409 #if defined(CONFIG_USER_ONLY)
410 /* in user mode, phys_ram_size is not meaningful */
411 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
412 #else
413 /* XXX: needs ajustments */
414 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
415 #endif
417 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
418 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
419 /* The code gen buffer location may have constraints depending on
420 the host cpu and OS */
421 #if defined(__linux__)
423 int flags;
424 void *start = NULL;
426 flags = MAP_PRIVATE | MAP_ANONYMOUS;
427 #if defined(__x86_64__)
428 flags |= MAP_32BIT;
429 /* Cannot map more than that */
430 if (code_gen_buffer_size > (800 * 1024 * 1024))
431 code_gen_buffer_size = (800 * 1024 * 1024);
432 #elif defined(__sparc_v9__)
433 // Map the buffer below 2G, so we can use direct calls and branches
434 flags |= MAP_FIXED;
435 start = (void *) 0x60000000UL;
436 if (code_gen_buffer_size > (512 * 1024 * 1024))
437 code_gen_buffer_size = (512 * 1024 * 1024);
438 #elif defined(__arm__)
439 /* Map the buffer below 32M, so we can use direct calls and branches */
440 flags |= MAP_FIXED;
441 start = (void *) 0x01000000UL;
442 if (code_gen_buffer_size > 16 * 1024 * 1024)
443 code_gen_buffer_size = 16 * 1024 * 1024;
444 #endif
445 code_gen_buffer = mmap(start, code_gen_buffer_size,
446 PROT_WRITE | PROT_READ | PROT_EXEC,
447 flags, -1, 0);
448 if (code_gen_buffer == MAP_FAILED) {
449 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
450 exit(1);
453 #elif defined(__FreeBSD__) || defined(__DragonFly__)
455 int flags;
456 void *addr = NULL;
457 flags = MAP_PRIVATE | MAP_ANONYMOUS;
458 #if defined(__x86_64__)
459 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
460 * 0x40000000 is free */
461 flags |= MAP_FIXED;
462 addr = (void *)0x40000000;
463 /* Cannot map more than that */
464 if (code_gen_buffer_size > (800 * 1024 * 1024))
465 code_gen_buffer_size = (800 * 1024 * 1024);
466 #endif
467 code_gen_buffer = mmap(addr, code_gen_buffer_size,
468 PROT_WRITE | PROT_READ | PROT_EXEC,
469 flags, -1, 0);
470 if (code_gen_buffer == MAP_FAILED) {
471 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
472 exit(1);
475 #else
476 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
477 map_exec(code_gen_buffer, code_gen_buffer_size);
478 #endif
479 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
480 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
481 code_gen_buffer_max_size = code_gen_buffer_size -
482 code_gen_max_block_size();
483 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
484 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
487 /* Must be called before using the QEMU cpus. 'tb_size' is the size
488 (in bytes) allocated to the translation buffer. Zero means default
489 size. */
490 void cpu_exec_init_all(unsigned long tb_size)
492 cpu_gen_init();
493 code_gen_alloc(tb_size);
494 code_gen_ptr = code_gen_buffer;
495 page_init();
496 #if !defined(CONFIG_USER_ONLY)
497 io_mem_init();
498 #endif
501 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
503 #define CPU_COMMON_SAVE_VERSION 1
505 static void cpu_common_save(QEMUFile *f, void *opaque)
507 CPUState *env = opaque;
509 qemu_put_be32s(f, &env->halted);
510 qemu_put_be32s(f, &env->interrupt_request);
513 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
515 CPUState *env = opaque;
517 if (version_id != CPU_COMMON_SAVE_VERSION)
518 return -EINVAL;
520 qemu_get_be32s(f, &env->halted);
521 qemu_get_be32s(f, &env->interrupt_request);
522 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
523 version_id is increased. */
524 env->interrupt_request &= ~0x01;
525 tlb_flush(env, 1);
527 return 0;
529 #endif
531 void cpu_exec_init(CPUState *env)
533 CPUState **penv;
534 int cpu_index;
536 #if defined(CONFIG_USER_ONLY)
537 cpu_list_lock();
538 #endif
539 env->next_cpu = NULL;
540 penv = &first_cpu;
541 cpu_index = 0;
542 while (*penv != NULL) {
543 penv = (CPUState **)&(*penv)->next_cpu;
544 cpu_index++;
546 env->cpu_index = cpu_index;
547 TAILQ_INIT(&env->breakpoints);
548 TAILQ_INIT(&env->watchpoints);
549 *penv = env;
550 #if defined(CONFIG_USER_ONLY)
551 cpu_list_unlock();
552 #endif
553 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
554 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
555 cpu_common_save, cpu_common_load, env);
556 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
557 cpu_save, cpu_load, env);
558 #endif
561 static inline void invalidate_page_bitmap(PageDesc *p)
563 if (p->code_bitmap) {
564 qemu_free(p->code_bitmap);
565 p->code_bitmap = NULL;
567 p->code_write_count = 0;
570 /* set to NULL all the 'first_tb' fields in all PageDescs */
571 static void page_flush_tb(void)
573 int i, j;
574 PageDesc *p;
576 for(i = 0; i < L1_SIZE; i++) {
577 p = l1_map[i];
578 if (p) {
579 for(j = 0; j < L2_SIZE; j++) {
580 p->first_tb = NULL;
581 invalidate_page_bitmap(p);
582 p++;
588 /* flush all the translation blocks */
589 /* XXX: tb_flush is currently not thread safe */
590 void tb_flush(CPUState *env1)
592 CPUState *env;
593 #if defined(DEBUG_FLUSH)
594 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
595 (unsigned long)(code_gen_ptr - code_gen_buffer),
596 nb_tbs, nb_tbs > 0 ?
597 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
598 #endif
599 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
600 cpu_abort(env1, "Internal error: code buffer overflow\n");
602 nb_tbs = 0;
604 for(env = first_cpu; env != NULL; env = env->next_cpu) {
605 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
608 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
609 page_flush_tb();
611 code_gen_ptr = code_gen_buffer;
612 /* XXX: flush processor icache at this point if cache flush is
613 expensive */
614 tb_flush_count++;
617 #ifdef DEBUG_TB_CHECK
619 static void tb_invalidate_check(target_ulong address)
621 TranslationBlock *tb;
622 int i;
623 address &= TARGET_PAGE_MASK;
624 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
625 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
626 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
627 address >= tb->pc + tb->size)) {
628 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
629 address, (long)tb->pc, tb->size);
635 /* verify that all the pages have correct rights for code */
636 static void tb_page_check(void)
638 TranslationBlock *tb;
639 int i, flags1, flags2;
641 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
642 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
643 flags1 = page_get_flags(tb->pc);
644 flags2 = page_get_flags(tb->pc + tb->size - 1);
645 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
646 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
647 (long)tb->pc, tb->size, flags1, flags2);
653 static void tb_jmp_check(TranslationBlock *tb)
655 TranslationBlock *tb1;
656 unsigned int n1;
658 /* suppress any remaining jumps to this TB */
659 tb1 = tb->jmp_first;
660 for(;;) {
661 n1 = (long)tb1 & 3;
662 tb1 = (TranslationBlock *)((long)tb1 & ~3);
663 if (n1 == 2)
664 break;
665 tb1 = tb1->jmp_next[n1];
667 /* check end of list */
668 if (tb1 != tb) {
669 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
673 #endif
675 /* invalidate one TB */
676 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
677 int next_offset)
679 TranslationBlock *tb1;
680 for(;;) {
681 tb1 = *ptb;
682 if (tb1 == tb) {
683 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
684 break;
686 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
690 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
692 TranslationBlock *tb1;
693 unsigned int n1;
695 for(;;) {
696 tb1 = *ptb;
697 n1 = (long)tb1 & 3;
698 tb1 = (TranslationBlock *)((long)tb1 & ~3);
699 if (tb1 == tb) {
700 *ptb = tb1->page_next[n1];
701 break;
703 ptb = &tb1->page_next[n1];
707 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
709 TranslationBlock *tb1, **ptb;
710 unsigned int n1;
712 ptb = &tb->jmp_next[n];
713 tb1 = *ptb;
714 if (tb1) {
715 /* find tb(n) in circular list */
716 for(;;) {
717 tb1 = *ptb;
718 n1 = (long)tb1 & 3;
719 tb1 = (TranslationBlock *)((long)tb1 & ~3);
720 if (n1 == n && tb1 == tb)
721 break;
722 if (n1 == 2) {
723 ptb = &tb1->jmp_first;
724 } else {
725 ptb = &tb1->jmp_next[n1];
728 /* now we can suppress tb(n) from the list */
729 *ptb = tb->jmp_next[n];
731 tb->jmp_next[n] = NULL;
735 /* reset the jump entry 'n' of a TB so that it is not chained to
736 another TB */
737 static inline void tb_reset_jump(TranslationBlock *tb, int n)
739 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
742 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
744 CPUState *env;
745 PageDesc *p;
746 unsigned int h, n1;
747 target_phys_addr_t phys_pc;
748 TranslationBlock *tb1, *tb2;
750 /* remove the TB from the hash list */
751 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
752 h = tb_phys_hash_func(phys_pc);
753 tb_remove(&tb_phys_hash[h], tb,
754 offsetof(TranslationBlock, phys_hash_next));
756 /* remove the TB from the page list */
757 if (tb->page_addr[0] != page_addr) {
758 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
759 tb_page_remove(&p->first_tb, tb);
760 invalidate_page_bitmap(p);
762 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
763 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
764 tb_page_remove(&p->first_tb, tb);
765 invalidate_page_bitmap(p);
768 tb_invalidated_flag = 1;
770 /* remove the TB from the hash list */
771 h = tb_jmp_cache_hash_func(tb->pc);
772 for(env = first_cpu; env != NULL; env = env->next_cpu) {
773 if (env->tb_jmp_cache[h] == tb)
774 env->tb_jmp_cache[h] = NULL;
777 /* suppress this TB from the two jump lists */
778 tb_jmp_remove(tb, 0);
779 tb_jmp_remove(tb, 1);
781 /* suppress any remaining jumps to this TB */
782 tb1 = tb->jmp_first;
783 for(;;) {
784 n1 = (long)tb1 & 3;
785 if (n1 == 2)
786 break;
787 tb1 = (TranslationBlock *)((long)tb1 & ~3);
788 tb2 = tb1->jmp_next[n1];
789 tb_reset_jump(tb1, n1);
790 tb1->jmp_next[n1] = NULL;
791 tb1 = tb2;
793 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
795 tb_phys_invalidate_count++;
798 static inline void set_bits(uint8_t *tab, int start, int len)
800 int end, mask, end1;
802 end = start + len;
803 tab += start >> 3;
804 mask = 0xff << (start & 7);
805 if ((start & ~7) == (end & ~7)) {
806 if (start < end) {
807 mask &= ~(0xff << (end & 7));
808 *tab |= mask;
810 } else {
811 *tab++ |= mask;
812 start = (start + 8) & ~7;
813 end1 = end & ~7;
814 while (start < end1) {
815 *tab++ = 0xff;
816 start += 8;
818 if (start < end) {
819 mask = ~(0xff << (end & 7));
820 *tab |= mask;
825 static void build_page_bitmap(PageDesc *p)
827 int n, tb_start, tb_end;
828 TranslationBlock *tb;
830 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
832 tb = p->first_tb;
833 while (tb != NULL) {
834 n = (long)tb & 3;
835 tb = (TranslationBlock *)((long)tb & ~3);
836 /* NOTE: this is subtle as a TB may span two physical pages */
837 if (n == 0) {
838 /* NOTE: tb_end may be after the end of the page, but
839 it is not a problem */
840 tb_start = tb->pc & ~TARGET_PAGE_MASK;
841 tb_end = tb_start + tb->size;
842 if (tb_end > TARGET_PAGE_SIZE)
843 tb_end = TARGET_PAGE_SIZE;
844 } else {
845 tb_start = 0;
846 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
848 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
849 tb = tb->page_next[n];
853 TranslationBlock *tb_gen_code(CPUState *env,
854 target_ulong pc, target_ulong cs_base,
855 int flags, int cflags)
857 TranslationBlock *tb;
858 uint8_t *tc_ptr;
859 target_ulong phys_pc, phys_page2, virt_page2;
860 int code_gen_size;
862 phys_pc = get_phys_addr_code(env, pc);
863 tb = tb_alloc(pc);
864 if (!tb) {
865 /* flush must be done */
866 tb_flush(env);
867 /* cannot fail at this point */
868 tb = tb_alloc(pc);
869 /* Don't forget to invalidate previous TB info. */
870 tb_invalidated_flag = 1;
872 tc_ptr = code_gen_ptr;
873 tb->tc_ptr = tc_ptr;
874 tb->cs_base = cs_base;
875 tb->flags = flags;
876 tb->cflags = cflags;
877 cpu_gen_code(env, tb, &code_gen_size);
878 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
880 /* check next page if needed */
881 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
882 phys_page2 = -1;
883 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
884 phys_page2 = get_phys_addr_code(env, virt_page2);
886 tb_link_phys(tb, phys_pc, phys_page2);
887 return tb;
890 /* invalidate all TBs which intersect with the target physical page
891 starting in range [start;end[. NOTE: start and end must refer to
892 the same physical page. 'is_cpu_write_access' should be true if called
893 from a real cpu write access: the virtual CPU will exit the current
894 TB if code is modified inside this TB. */
895 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
896 int is_cpu_write_access)
898 TranslationBlock *tb, *tb_next, *saved_tb;
899 CPUState *env = cpu_single_env;
900 target_ulong tb_start, tb_end;
901 PageDesc *p;
902 int n;
903 #ifdef TARGET_HAS_PRECISE_SMC
904 int current_tb_not_found = is_cpu_write_access;
905 TranslationBlock *current_tb = NULL;
906 int current_tb_modified = 0;
907 target_ulong current_pc = 0;
908 target_ulong current_cs_base = 0;
909 int current_flags = 0;
910 #endif /* TARGET_HAS_PRECISE_SMC */
912 p = page_find(start >> TARGET_PAGE_BITS);
913 if (!p)
914 return;
915 if (!p->code_bitmap &&
916 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
917 is_cpu_write_access) {
918 /* build code bitmap */
919 build_page_bitmap(p);
922 /* we remove all the TBs in the range [start, end[ */
923 /* XXX: see if in some cases it could be faster to invalidate all the code */
924 tb = p->first_tb;
925 while (tb != NULL) {
926 n = (long)tb & 3;
927 tb = (TranslationBlock *)((long)tb & ~3);
928 tb_next = tb->page_next[n];
929 /* NOTE: this is subtle as a TB may span two physical pages */
930 if (n == 0) {
931 /* NOTE: tb_end may be after the end of the page, but
932 it is not a problem */
933 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
934 tb_end = tb_start + tb->size;
935 } else {
936 tb_start = tb->page_addr[1];
937 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
939 if (!(tb_end <= start || tb_start >= end)) {
940 #ifdef TARGET_HAS_PRECISE_SMC
941 if (current_tb_not_found) {
942 current_tb_not_found = 0;
943 current_tb = NULL;
944 if (env->mem_io_pc) {
945 /* now we have a real cpu fault */
946 current_tb = tb_find_pc(env->mem_io_pc);
949 if (current_tb == tb &&
950 (current_tb->cflags & CF_COUNT_MASK) != 1) {
951 /* If we are modifying the current TB, we must stop
952 its execution. We could be more precise by checking
953 that the modification is after the current PC, but it
954 would require a specialized function to partially
955 restore the CPU state */
957 current_tb_modified = 1;
958 cpu_restore_state(current_tb, env,
959 env->mem_io_pc, NULL);
960 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
961 &current_flags);
963 #endif /* TARGET_HAS_PRECISE_SMC */
964 /* we need to do that to handle the case where a signal
965 occurs while doing tb_phys_invalidate() */
966 saved_tb = NULL;
967 if (env) {
968 saved_tb = env->current_tb;
969 env->current_tb = NULL;
971 tb_phys_invalidate(tb, -1);
972 if (env) {
973 env->current_tb = saved_tb;
974 if (env->interrupt_request && env->current_tb)
975 cpu_interrupt(env, env->interrupt_request);
978 tb = tb_next;
980 #if !defined(CONFIG_USER_ONLY)
981 /* if no code remaining, no need to continue to use slow writes */
982 if (!p->first_tb) {
983 invalidate_page_bitmap(p);
984 if (is_cpu_write_access) {
985 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
988 #endif
989 #ifdef TARGET_HAS_PRECISE_SMC
990 if (current_tb_modified) {
991 /* we generate a block containing just the instruction
992 modifying the memory. It will ensure that it cannot modify
993 itself */
994 env->current_tb = NULL;
995 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
996 cpu_resume_from_signal(env, NULL);
998 #endif
1001 /* len must be <= 8 and start must be a multiple of len */
1002 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1004 PageDesc *p;
1005 int offset, b;
1006 #if 0
1007 if (1) {
1008 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1009 cpu_single_env->mem_io_vaddr, len,
1010 cpu_single_env->eip,
1011 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1013 #endif
1014 p = page_find(start >> TARGET_PAGE_BITS);
1015 if (!p)
1016 return;
1017 if (p->code_bitmap) {
1018 offset = start & ~TARGET_PAGE_MASK;
1019 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1020 if (b & ((1 << len) - 1))
1021 goto do_invalidate;
1022 } else {
1023 do_invalidate:
1024 tb_invalidate_phys_page_range(start, start + len, 1);
1028 #if !defined(CONFIG_SOFTMMU)
1029 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1030 unsigned long pc, void *puc)
1032 TranslationBlock *tb;
1033 PageDesc *p;
1034 int n;
1035 #ifdef TARGET_HAS_PRECISE_SMC
1036 TranslationBlock *current_tb = NULL;
1037 CPUState *env = cpu_single_env;
1038 int current_tb_modified = 0;
1039 target_ulong current_pc = 0;
1040 target_ulong current_cs_base = 0;
1041 int current_flags = 0;
1042 #endif
1044 addr &= TARGET_PAGE_MASK;
1045 p = page_find(addr >> TARGET_PAGE_BITS);
1046 if (!p)
1047 return;
1048 tb = p->first_tb;
1049 #ifdef TARGET_HAS_PRECISE_SMC
1050 if (tb && pc != 0) {
1051 current_tb = tb_find_pc(pc);
1053 #endif
1054 while (tb != NULL) {
1055 n = (long)tb & 3;
1056 tb = (TranslationBlock *)((long)tb & ~3);
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb == tb &&
1059 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1060 /* If we are modifying the current TB, we must stop
1061 its execution. We could be more precise by checking
1062 that the modification is after the current PC, but it
1063 would require a specialized function to partially
1064 restore the CPU state */
1066 current_tb_modified = 1;
1067 cpu_restore_state(current_tb, env, pc, puc);
1068 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1069 &current_flags);
1071 #endif /* TARGET_HAS_PRECISE_SMC */
1072 tb_phys_invalidate(tb, addr);
1073 tb = tb->page_next[n];
1075 p->first_tb = NULL;
1076 #ifdef TARGET_HAS_PRECISE_SMC
1077 if (current_tb_modified) {
1078 /* we generate a block containing just the instruction
1079 modifying the memory. It will ensure that it cannot modify
1080 itself */
1081 env->current_tb = NULL;
1082 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1083 cpu_resume_from_signal(env, puc);
1085 #endif
1087 #endif
1089 /* add the tb in the target page and protect it if necessary */
1090 static inline void tb_alloc_page(TranslationBlock *tb,
1091 unsigned int n, target_ulong page_addr)
1093 PageDesc *p;
1094 TranslationBlock *last_first_tb;
1096 tb->page_addr[n] = page_addr;
1097 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1098 tb->page_next[n] = p->first_tb;
1099 last_first_tb = p->first_tb;
1100 p->first_tb = (TranslationBlock *)((long)tb | n);
1101 invalidate_page_bitmap(p);
1103 #if defined(TARGET_HAS_SMC) || 1
1105 #if defined(CONFIG_USER_ONLY)
1106 if (p->flags & PAGE_WRITE) {
1107 target_ulong addr;
1108 PageDesc *p2;
1109 int prot;
1111 /* force the host page as non writable (writes will have a
1112 page fault + mprotect overhead) */
1113 page_addr &= qemu_host_page_mask;
1114 prot = 0;
1115 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1116 addr += TARGET_PAGE_SIZE) {
1118 p2 = page_find (addr >> TARGET_PAGE_BITS);
1119 if (!p2)
1120 continue;
1121 prot |= p2->flags;
1122 p2->flags &= ~PAGE_WRITE;
1123 page_get_flags(addr);
1125 mprotect(g2h(page_addr), qemu_host_page_size,
1126 (prot & PAGE_BITS) & ~PAGE_WRITE);
1127 #ifdef DEBUG_TB_INVALIDATE
1128 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1129 page_addr);
1130 #endif
1132 #else
1133 /* if some code is already present, then the pages are already
1134 protected. So we handle the case where only the first TB is
1135 allocated in a physical page */
1136 if (!last_first_tb) {
1137 tlb_protect_code(page_addr);
1139 #endif
1141 #endif /* TARGET_HAS_SMC */
1144 /* Allocate a new translation block. Flush the translation buffer if
1145 too many translation blocks or too much generated code. */
1146 TranslationBlock *tb_alloc(target_ulong pc)
1148 TranslationBlock *tb;
1150 if (nb_tbs >= code_gen_max_blocks ||
1151 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1152 return NULL;
1153 tb = &tbs[nb_tbs++];
1154 tb->pc = pc;
1155 tb->cflags = 0;
1156 return tb;
1159 void tb_free(TranslationBlock *tb)
1161 /* In practice this is mostly used for single use temporary TB
1162 Ignore the hard cases and just back up if this TB happens to
1163 be the last one generated. */
1164 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1165 code_gen_ptr = tb->tc_ptr;
1166 nb_tbs--;
1170 /* add a new TB and link it to the physical page tables. phys_page2 is
1171 (-1) to indicate that only one page contains the TB. */
1172 void tb_link_phys(TranslationBlock *tb,
1173 target_ulong phys_pc, target_ulong phys_page2)
1175 unsigned int h;
1176 TranslationBlock **ptb;
1178 /* Grab the mmap lock to stop another thread invalidating this TB
1179 before we are done. */
1180 mmap_lock();
1181 /* add in the physical hash table */
1182 h = tb_phys_hash_func(phys_pc);
1183 ptb = &tb_phys_hash[h];
1184 tb->phys_hash_next = *ptb;
1185 *ptb = tb;
1187 /* add in the page list */
1188 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1189 if (phys_page2 != -1)
1190 tb_alloc_page(tb, 1, phys_page2);
1191 else
1192 tb->page_addr[1] = -1;
1194 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1195 tb->jmp_next[0] = NULL;
1196 tb->jmp_next[1] = NULL;
1198 /* init original jump addresses */
1199 if (tb->tb_next_offset[0] != 0xffff)
1200 tb_reset_jump(tb, 0);
1201 if (tb->tb_next_offset[1] != 0xffff)
1202 tb_reset_jump(tb, 1);
1204 #ifdef DEBUG_TB_CHECK
1205 tb_page_check();
1206 #endif
1207 mmap_unlock();
1210 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1211 tb[1].tc_ptr. Return NULL if not found */
1212 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1214 int m_min, m_max, m;
1215 unsigned long v;
1216 TranslationBlock *tb;
1218 if (nb_tbs <= 0)
1219 return NULL;
1220 if (tc_ptr < (unsigned long)code_gen_buffer ||
1221 tc_ptr >= (unsigned long)code_gen_ptr)
1222 return NULL;
1223 /* binary search (cf Knuth) */
1224 m_min = 0;
1225 m_max = nb_tbs - 1;
1226 while (m_min <= m_max) {
1227 m = (m_min + m_max) >> 1;
1228 tb = &tbs[m];
1229 v = (unsigned long)tb->tc_ptr;
1230 if (v == tc_ptr)
1231 return tb;
1232 else if (tc_ptr < v) {
1233 m_max = m - 1;
1234 } else {
1235 m_min = m + 1;
1238 return &tbs[m_max];
1241 static void tb_reset_jump_recursive(TranslationBlock *tb);
1243 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1245 TranslationBlock *tb1, *tb_next, **ptb;
1246 unsigned int n1;
1248 tb1 = tb->jmp_next[n];
1249 if (tb1 != NULL) {
1250 /* find head of list */
1251 for(;;) {
1252 n1 = (long)tb1 & 3;
1253 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1254 if (n1 == 2)
1255 break;
1256 tb1 = tb1->jmp_next[n1];
1258 /* we are now sure now that tb jumps to tb1 */
1259 tb_next = tb1;
1261 /* remove tb from the jmp_first list */
1262 ptb = &tb_next->jmp_first;
1263 for(;;) {
1264 tb1 = *ptb;
1265 n1 = (long)tb1 & 3;
1266 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1267 if (n1 == n && tb1 == tb)
1268 break;
1269 ptb = &tb1->jmp_next[n1];
1271 *ptb = tb->jmp_next[n];
1272 tb->jmp_next[n] = NULL;
1274 /* suppress the jump to next tb in generated code */
1275 tb_reset_jump(tb, n);
1277 /* suppress jumps in the tb on which we could have jumped */
1278 tb_reset_jump_recursive(tb_next);
1282 static void tb_reset_jump_recursive(TranslationBlock *tb)
1284 tb_reset_jump_recursive2(tb, 0);
1285 tb_reset_jump_recursive2(tb, 1);
1288 #if defined(TARGET_HAS_ICE)
1289 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1291 target_phys_addr_t addr;
1292 target_ulong pd;
1293 ram_addr_t ram_addr;
1294 PhysPageDesc *p;
1296 addr = cpu_get_phys_page_debug(env, pc);
1297 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1298 if (!p) {
1299 pd = IO_MEM_UNASSIGNED;
1300 } else {
1301 pd = p->phys_offset;
1303 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1304 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1306 #endif
1308 /* Add a watchpoint. */
1309 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1310 int flags, CPUWatchpoint **watchpoint)
1312 target_ulong len_mask = ~(len - 1);
1313 CPUWatchpoint *wp;
1315 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1316 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1317 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1318 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1319 return -EINVAL;
1321 wp = qemu_malloc(sizeof(*wp));
1323 wp->vaddr = addr;
1324 wp->len_mask = len_mask;
1325 wp->flags = flags;
1327 /* keep all GDB-injected watchpoints in front */
1328 if (flags & BP_GDB)
1329 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1330 else
1331 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1333 tlb_flush_page(env, addr);
1335 if (watchpoint)
1336 *watchpoint = wp;
1337 return 0;
1340 /* Remove a specific watchpoint. */
1341 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1342 int flags)
1344 target_ulong len_mask = ~(len - 1);
1345 CPUWatchpoint *wp;
1347 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1348 if (addr == wp->vaddr && len_mask == wp->len_mask
1349 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1350 cpu_watchpoint_remove_by_ref(env, wp);
1351 return 0;
1354 return -ENOENT;
1357 /* Remove a specific watchpoint by reference. */
1358 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1360 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1362 tlb_flush_page(env, watchpoint->vaddr);
1364 qemu_free(watchpoint);
1367 /* Remove all matching watchpoints. */
1368 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1370 CPUWatchpoint *wp, *next;
1372 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1373 if (wp->flags & mask)
1374 cpu_watchpoint_remove_by_ref(env, wp);
1378 /* Add a breakpoint. */
1379 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1380 CPUBreakpoint **breakpoint)
1382 #if defined(TARGET_HAS_ICE)
1383 CPUBreakpoint *bp;
1385 bp = qemu_malloc(sizeof(*bp));
1387 bp->pc = pc;
1388 bp->flags = flags;
1390 /* keep all GDB-injected breakpoints in front */
1391 if (flags & BP_GDB)
1392 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1393 else
1394 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1396 breakpoint_invalidate(env, pc);
1398 if (breakpoint)
1399 *breakpoint = bp;
1400 return 0;
1401 #else
1402 return -ENOSYS;
1403 #endif
1406 /* Remove a specific breakpoint. */
1407 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1412 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1413 if (bp->pc == pc && bp->flags == flags) {
1414 cpu_breakpoint_remove_by_ref(env, bp);
1415 return 0;
1418 return -ENOENT;
1419 #else
1420 return -ENOSYS;
1421 #endif
1424 /* Remove a specific breakpoint by reference. */
1425 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1427 #if defined(TARGET_HAS_ICE)
1428 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1430 breakpoint_invalidate(env, breakpoint->pc);
1432 qemu_free(breakpoint);
1433 #endif
1436 /* Remove all matching breakpoints. */
1437 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1439 #if defined(TARGET_HAS_ICE)
1440 CPUBreakpoint *bp, *next;
1442 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1443 if (bp->flags & mask)
1444 cpu_breakpoint_remove_by_ref(env, bp);
1446 #endif
1449 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1450 CPU loop after each instruction */
1451 void cpu_single_step(CPUState *env, int enabled)
1453 #if defined(TARGET_HAS_ICE)
1454 if (env->singlestep_enabled != enabled) {
1455 env->singlestep_enabled = enabled;
1456 if (kvm_enabled())
1457 kvm_update_guest_debug(env, 0);
1458 else {
1459 /* must flush all the translated code to avoid inconsistancies */
1460 /* XXX: only flush what is necessary */
1461 tb_flush(env);
1464 #endif
1467 /* enable or disable low levels log */
1468 void cpu_set_log(int log_flags)
1470 loglevel = log_flags;
1471 if (loglevel && !logfile) {
1472 logfile = fopen(logfilename, log_append ? "a" : "w");
1473 if (!logfile) {
1474 perror(logfilename);
1475 _exit(1);
1477 #if !defined(CONFIG_SOFTMMU)
1478 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1480 static char logfile_buf[4096];
1481 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1483 #else
1484 setvbuf(logfile, NULL, _IOLBF, 0);
1485 #endif
1486 log_append = 1;
1488 if (!loglevel && logfile) {
1489 fclose(logfile);
1490 logfile = NULL;
1494 void cpu_set_log_filename(const char *filename)
1496 logfilename = strdup(filename);
1497 if (logfile) {
1498 fclose(logfile);
1499 logfile = NULL;
1501 cpu_set_log(loglevel);
1504 static void cpu_unlink_tb(CPUState *env)
1506 #if defined(USE_NPTL)
1507 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1508 problem and hope the cpu will stop of its own accord. For userspace
1509 emulation this often isn't actually as bad as it sounds. Often
1510 signals are used primarily to interrupt blocking syscalls. */
1511 #else
1512 TranslationBlock *tb;
1513 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1515 tb = env->current_tb;
1516 /* if the cpu is currently executing code, we must unlink it and
1517 all the potentially executing TB */
1518 if (tb && !testandset(&interrupt_lock)) {
1519 env->current_tb = NULL;
1520 tb_reset_jump_recursive(tb);
1521 resetlock(&interrupt_lock);
1523 #endif
1526 /* mask must never be zero, except for A20 change call */
1527 void cpu_interrupt(CPUState *env, int mask)
1529 int old_mask;
1531 old_mask = env->interrupt_request;
1532 env->interrupt_request |= mask;
1534 if (use_icount) {
1535 env->icount_decr.u16.high = 0xffff;
1536 #ifndef CONFIG_USER_ONLY
1537 if (!can_do_io(env)
1538 && (mask & ~old_mask) != 0) {
1539 cpu_abort(env, "Raised interrupt while not in I/O function");
1541 #endif
1542 } else {
1543 cpu_unlink_tb(env);
1547 void cpu_reset_interrupt(CPUState *env, int mask)
1549 env->interrupt_request &= ~mask;
1552 void cpu_exit(CPUState *env)
1554 env->exit_request = 1;
1555 cpu_unlink_tb(env);
1558 const CPULogItem cpu_log_items[] = {
1559 { CPU_LOG_TB_OUT_ASM, "out_asm",
1560 "show generated host assembly code for each compiled TB" },
1561 { CPU_LOG_TB_IN_ASM, "in_asm",
1562 "show target assembly code for each compiled TB" },
1563 { CPU_LOG_TB_OP, "op",
1564 "show micro ops for each compiled TB" },
1565 { CPU_LOG_TB_OP_OPT, "op_opt",
1566 "show micro ops "
1567 #ifdef TARGET_I386
1568 "before eflags optimization and "
1569 #endif
1570 "after liveness analysis" },
1571 { CPU_LOG_INT, "int",
1572 "show interrupts/exceptions in short format" },
1573 { CPU_LOG_EXEC, "exec",
1574 "show trace before each executed TB (lots of logs)" },
1575 { CPU_LOG_TB_CPU, "cpu",
1576 "show CPU state before block translation" },
1577 #ifdef TARGET_I386
1578 { CPU_LOG_PCALL, "pcall",
1579 "show protected mode far calls/returns/exceptions" },
1580 { CPU_LOG_RESET, "cpu_reset",
1581 "show CPU state before CPU resets" },
1582 #endif
1583 #ifdef DEBUG_IOPORT
1584 { CPU_LOG_IOPORT, "ioport",
1585 "show all i/o ports accesses" },
1586 #endif
1587 { 0, NULL, NULL },
1590 static int cmp1(const char *s1, int n, const char *s2)
1592 if (strlen(s2) != n)
1593 return 0;
1594 return memcmp(s1, s2, n) == 0;
1597 /* takes a comma separated list of log masks. Return 0 if error. */
1598 int cpu_str_to_log_mask(const char *str)
1600 const CPULogItem *item;
1601 int mask;
1602 const char *p, *p1;
1604 p = str;
1605 mask = 0;
1606 for(;;) {
1607 p1 = strchr(p, ',');
1608 if (!p1)
1609 p1 = p + strlen(p);
1610 if(cmp1(p,p1-p,"all")) {
1611 for(item = cpu_log_items; item->mask != 0; item++) {
1612 mask |= item->mask;
1614 } else {
1615 for(item = cpu_log_items; item->mask != 0; item++) {
1616 if (cmp1(p, p1 - p, item->name))
1617 goto found;
1619 return 0;
1621 found:
1622 mask |= item->mask;
1623 if (*p1 != ',')
1624 break;
1625 p = p1 + 1;
1627 return mask;
1630 void cpu_abort(CPUState *env, const char *fmt, ...)
1632 va_list ap;
1633 va_list ap2;
1635 va_start(ap, fmt);
1636 va_copy(ap2, ap);
1637 fprintf(stderr, "qemu: fatal: ");
1638 vfprintf(stderr, fmt, ap);
1639 fprintf(stderr, "\n");
1640 #ifdef TARGET_I386
1641 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1642 #else
1643 cpu_dump_state(env, stderr, fprintf, 0);
1644 #endif
1645 if (qemu_log_enabled()) {
1646 qemu_log("qemu: fatal: ");
1647 qemu_log_vprintf(fmt, ap2);
1648 qemu_log("\n");
1649 #ifdef TARGET_I386
1650 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1651 #else
1652 log_cpu_state(env, 0);
1653 #endif
1654 qemu_log_flush();
1655 qemu_log_close();
1657 va_end(ap2);
1658 va_end(ap);
1659 abort();
1662 CPUState *cpu_copy(CPUState *env)
1664 CPUState *new_env = cpu_init(env->cpu_model_str);
1665 CPUState *next_cpu = new_env->next_cpu;
1666 int cpu_index = new_env->cpu_index;
1667 #if defined(TARGET_HAS_ICE)
1668 CPUBreakpoint *bp;
1669 CPUWatchpoint *wp;
1670 #endif
1672 memcpy(new_env, env, sizeof(CPUState));
1674 /* Preserve chaining and index. */
1675 new_env->next_cpu = next_cpu;
1676 new_env->cpu_index = cpu_index;
1678 /* Clone all break/watchpoints.
1679 Note: Once we support ptrace with hw-debug register access, make sure
1680 BP_CPU break/watchpoints are handled correctly on clone. */
1681 TAILQ_INIT(&env->breakpoints);
1682 TAILQ_INIT(&env->watchpoints);
1683 #if defined(TARGET_HAS_ICE)
1684 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1685 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1687 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1688 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1689 wp->flags, NULL);
1691 #endif
1693 return new_env;
1696 #if !defined(CONFIG_USER_ONLY)
1698 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1700 unsigned int i;
1702 /* Discard jump cache entries for any tb which might potentially
1703 overlap the flushed page. */
1704 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1705 memset (&env->tb_jmp_cache[i], 0,
1706 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1708 i = tb_jmp_cache_hash_page(addr);
1709 memset (&env->tb_jmp_cache[i], 0,
1710 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1713 /* NOTE: if flush_global is true, also flush global entries (not
1714 implemented yet) */
1715 void tlb_flush(CPUState *env, int flush_global)
1717 int i;
1719 #if defined(DEBUG_TLB)
1720 printf("tlb_flush:\n");
1721 #endif
1722 /* must reset current TB so that interrupts cannot modify the
1723 links while we are modifying them */
1724 env->current_tb = NULL;
1726 for(i = 0; i < CPU_TLB_SIZE; i++) {
1727 env->tlb_table[0][i].addr_read = -1;
1728 env->tlb_table[0][i].addr_write = -1;
1729 env->tlb_table[0][i].addr_code = -1;
1730 env->tlb_table[1][i].addr_read = -1;
1731 env->tlb_table[1][i].addr_write = -1;
1732 env->tlb_table[1][i].addr_code = -1;
1733 #if (NB_MMU_MODES >= 3)
1734 env->tlb_table[2][i].addr_read = -1;
1735 env->tlb_table[2][i].addr_write = -1;
1736 env->tlb_table[2][i].addr_code = -1;
1737 #endif
1738 #if (NB_MMU_MODES >= 4)
1739 env->tlb_table[3][i].addr_read = -1;
1740 env->tlb_table[3][i].addr_write = -1;
1741 env->tlb_table[3][i].addr_code = -1;
1742 #endif
1743 #if (NB_MMU_MODES >= 5)
1744 env->tlb_table[4][i].addr_read = -1;
1745 env->tlb_table[4][i].addr_write = -1;
1746 env->tlb_table[4][i].addr_code = -1;
1747 #endif
1751 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1753 #ifdef USE_KQEMU
1754 if (env->kqemu_enabled) {
1755 kqemu_flush(env, flush_global);
1757 #endif
1758 tlb_flush_count++;
1761 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1763 if (addr == (tlb_entry->addr_read &
1764 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1765 addr == (tlb_entry->addr_write &
1766 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1767 addr == (tlb_entry->addr_code &
1768 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1769 tlb_entry->addr_read = -1;
1770 tlb_entry->addr_write = -1;
1771 tlb_entry->addr_code = -1;
1775 void tlb_flush_page(CPUState *env, target_ulong addr)
1777 int i;
1779 #if defined(DEBUG_TLB)
1780 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1781 #endif
1782 /* must reset current TB so that interrupts cannot modify the
1783 links while we are modifying them */
1784 env->current_tb = NULL;
1786 addr &= TARGET_PAGE_MASK;
1787 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1788 tlb_flush_entry(&env->tlb_table[0][i], addr);
1789 tlb_flush_entry(&env->tlb_table[1][i], addr);
1790 #if (NB_MMU_MODES >= 3)
1791 tlb_flush_entry(&env->tlb_table[2][i], addr);
1792 #endif
1793 #if (NB_MMU_MODES >= 4)
1794 tlb_flush_entry(&env->tlb_table[3][i], addr);
1795 #endif
1796 #if (NB_MMU_MODES >= 5)
1797 tlb_flush_entry(&env->tlb_table[4][i], addr);
1798 #endif
1800 tlb_flush_jmp_cache(env, addr);
1802 #ifdef USE_KQEMU
1803 if (env->kqemu_enabled) {
1804 kqemu_flush_page(env, addr);
1806 #endif
1809 /* update the TLBs so that writes to code in the virtual page 'addr'
1810 can be detected */
1811 static void tlb_protect_code(ram_addr_t ram_addr)
1813 cpu_physical_memory_reset_dirty(ram_addr,
1814 ram_addr + TARGET_PAGE_SIZE,
1815 CODE_DIRTY_FLAG);
1818 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1819 tested for self modifying code */
1820 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1821 target_ulong vaddr)
1823 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1826 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1827 unsigned long start, unsigned long length)
1829 unsigned long addr;
1830 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1831 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1832 if ((addr - start) < length) {
1833 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1838 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1839 int dirty_flags)
1841 CPUState *env;
1842 unsigned long length, start1;
1843 int i, mask, len;
1844 uint8_t *p;
1846 start &= TARGET_PAGE_MASK;
1847 end = TARGET_PAGE_ALIGN(end);
1849 length = end - start;
1850 if (length == 0)
1851 return;
1852 len = length >> TARGET_PAGE_BITS;
1853 #ifdef USE_KQEMU
1854 /* XXX: should not depend on cpu context */
1855 env = first_cpu;
1856 if (env->kqemu_enabled) {
1857 ram_addr_t addr;
1858 addr = start;
1859 for(i = 0; i < len; i++) {
1860 kqemu_set_notdirty(env, addr);
1861 addr += TARGET_PAGE_SIZE;
1864 #endif
1865 mask = ~dirty_flags;
1866 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1867 for(i = 0; i < len; i++)
1868 p[i] &= mask;
1870 /* we modify the TLB cache so that the dirty bit will be set again
1871 when accessing the range */
1872 start1 = start + (unsigned long)phys_ram_base;
1873 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1874 for(i = 0; i < CPU_TLB_SIZE; i++)
1875 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1876 for(i = 0; i < CPU_TLB_SIZE; i++)
1877 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1878 #if (NB_MMU_MODES >= 3)
1879 for(i = 0; i < CPU_TLB_SIZE; i++)
1880 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1881 #endif
1882 #if (NB_MMU_MODES >= 4)
1883 for(i = 0; i < CPU_TLB_SIZE; i++)
1884 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1885 #endif
1886 #if (NB_MMU_MODES >= 5)
1887 for(i = 0; i < CPU_TLB_SIZE; i++)
1888 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1889 #endif
1893 int cpu_physical_memory_set_dirty_tracking(int enable)
1895 in_migration = enable;
1896 return 0;
1899 int cpu_physical_memory_get_dirty_tracking(void)
1901 return in_migration;
1904 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1906 if (kvm_enabled())
1907 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1910 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1912 ram_addr_t ram_addr;
1914 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1915 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1916 tlb_entry->addend - (unsigned long)phys_ram_base;
1917 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1918 tlb_entry->addr_write |= TLB_NOTDIRTY;
1923 /* update the TLB according to the current state of the dirty bits */
1924 void cpu_tlb_update_dirty(CPUState *env)
1926 int i;
1927 for(i = 0; i < CPU_TLB_SIZE; i++)
1928 tlb_update_dirty(&env->tlb_table[0][i]);
1929 for(i = 0; i < CPU_TLB_SIZE; i++)
1930 tlb_update_dirty(&env->tlb_table[1][i]);
1931 #if (NB_MMU_MODES >= 3)
1932 for(i = 0; i < CPU_TLB_SIZE; i++)
1933 tlb_update_dirty(&env->tlb_table[2][i]);
1934 #endif
1935 #if (NB_MMU_MODES >= 4)
1936 for(i = 0; i < CPU_TLB_SIZE; i++)
1937 tlb_update_dirty(&env->tlb_table[3][i]);
1938 #endif
1939 #if (NB_MMU_MODES >= 5)
1940 for(i = 0; i < CPU_TLB_SIZE; i++)
1941 tlb_update_dirty(&env->tlb_table[4][i]);
1942 #endif
1945 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1947 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1948 tlb_entry->addr_write = vaddr;
1951 /* update the TLB corresponding to virtual page vaddr
1952 so that it is no longer dirty */
1953 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1955 int i;
1957 vaddr &= TARGET_PAGE_MASK;
1958 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1959 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1960 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1961 #if (NB_MMU_MODES >= 3)
1962 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1963 #endif
1964 #if (NB_MMU_MODES >= 4)
1965 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1966 #endif
1967 #if (NB_MMU_MODES >= 5)
1968 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
1969 #endif
1972 /* add a new TLB entry. At most one entry for a given virtual address
1973 is permitted. Return 0 if OK or 2 if the page could not be mapped
1974 (can only happen in non SOFTMMU mode for I/O pages or pages
1975 conflicting with the host address space). */
1976 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1977 target_phys_addr_t paddr, int prot,
1978 int mmu_idx, int is_softmmu)
1980 PhysPageDesc *p;
1981 unsigned long pd;
1982 unsigned int index;
1983 target_ulong address;
1984 target_ulong code_address;
1985 target_phys_addr_t addend;
1986 int ret;
1987 CPUTLBEntry *te;
1988 CPUWatchpoint *wp;
1989 target_phys_addr_t iotlb;
1991 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1992 if (!p) {
1993 pd = IO_MEM_UNASSIGNED;
1994 } else {
1995 pd = p->phys_offset;
1997 #if defined(DEBUG_TLB)
1998 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1999 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2000 #endif
2002 ret = 0;
2003 address = vaddr;
2004 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2005 /* IO memory case (romd handled later) */
2006 address |= TLB_MMIO;
2008 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
2009 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2010 /* Normal RAM. */
2011 iotlb = pd & TARGET_PAGE_MASK;
2012 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2013 iotlb |= IO_MEM_NOTDIRTY;
2014 else
2015 iotlb |= IO_MEM_ROM;
2016 } else {
2017 /* IO handlers are currently passed a phsical address.
2018 It would be nice to pass an offset from the base address
2019 of that region. This would avoid having to special case RAM,
2020 and avoid full address decoding in every device.
2021 We can't use the high bits of pd for this because
2022 IO_MEM_ROMD uses these as a ram address. */
2023 iotlb = (pd & ~TARGET_PAGE_MASK);
2024 if (p) {
2025 iotlb += p->region_offset;
2026 } else {
2027 iotlb += paddr;
2031 code_address = address;
2032 /* Make accesses to pages with watchpoints go via the
2033 watchpoint trap routines. */
2034 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2035 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2036 iotlb = io_mem_watch + paddr;
2037 /* TODO: The memory case can be optimized by not trapping
2038 reads of pages with a write breakpoint. */
2039 address |= TLB_MMIO;
2043 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2044 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2045 te = &env->tlb_table[mmu_idx][index];
2046 te->addend = addend - vaddr;
2047 if (prot & PAGE_READ) {
2048 te->addr_read = address;
2049 } else {
2050 te->addr_read = -1;
2053 if (prot & PAGE_EXEC) {
2054 te->addr_code = code_address;
2055 } else {
2056 te->addr_code = -1;
2058 if (prot & PAGE_WRITE) {
2059 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2060 (pd & IO_MEM_ROMD)) {
2061 /* Write access calls the I/O callback. */
2062 te->addr_write = address | TLB_MMIO;
2063 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2064 !cpu_physical_memory_is_dirty(pd)) {
2065 te->addr_write = address | TLB_NOTDIRTY;
2066 } else {
2067 te->addr_write = address;
2069 } else {
2070 te->addr_write = -1;
2072 return ret;
2075 #else
2077 void tlb_flush(CPUState *env, int flush_global)
2081 void tlb_flush_page(CPUState *env, target_ulong addr)
2085 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2086 target_phys_addr_t paddr, int prot,
2087 int mmu_idx, int is_softmmu)
2089 return 0;
2092 /* dump memory mappings */
2093 void page_dump(FILE *f)
2095 unsigned long start, end;
2096 int i, j, prot, prot1;
2097 PageDesc *p;
2099 fprintf(f, "%-8s %-8s %-8s %s\n",
2100 "start", "end", "size", "prot");
2101 start = -1;
2102 end = -1;
2103 prot = 0;
2104 for(i = 0; i <= L1_SIZE; i++) {
2105 if (i < L1_SIZE)
2106 p = l1_map[i];
2107 else
2108 p = NULL;
2109 for(j = 0;j < L2_SIZE; j++) {
2110 if (!p)
2111 prot1 = 0;
2112 else
2113 prot1 = p[j].flags;
2114 if (prot1 != prot) {
2115 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2116 if (start != -1) {
2117 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2118 start, end, end - start,
2119 prot & PAGE_READ ? 'r' : '-',
2120 prot & PAGE_WRITE ? 'w' : '-',
2121 prot & PAGE_EXEC ? 'x' : '-');
2123 if (prot1 != 0)
2124 start = end;
2125 else
2126 start = -1;
2127 prot = prot1;
2129 if (!p)
2130 break;
2135 int page_get_flags(target_ulong address)
2137 PageDesc *p;
2139 p = page_find(address >> TARGET_PAGE_BITS);
2140 if (!p)
2141 return 0;
2142 return p->flags;
2145 /* modify the flags of a page and invalidate the code if
2146 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2147 depending on PAGE_WRITE */
2148 void page_set_flags(target_ulong start, target_ulong end, int flags)
2150 PageDesc *p;
2151 target_ulong addr;
2153 /* mmap_lock should already be held. */
2154 start = start & TARGET_PAGE_MASK;
2155 end = TARGET_PAGE_ALIGN(end);
2156 if (flags & PAGE_WRITE)
2157 flags |= PAGE_WRITE_ORG;
2158 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2159 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2160 /* We may be called for host regions that are outside guest
2161 address space. */
2162 if (!p)
2163 return;
2164 /* if the write protection is set, then we invalidate the code
2165 inside */
2166 if (!(p->flags & PAGE_WRITE) &&
2167 (flags & PAGE_WRITE) &&
2168 p->first_tb) {
2169 tb_invalidate_phys_page(addr, 0, NULL);
2171 p->flags = flags;
2175 int page_check_range(target_ulong start, target_ulong len, int flags)
2177 PageDesc *p;
2178 target_ulong end;
2179 target_ulong addr;
2181 if (start + len < start)
2182 /* we've wrapped around */
2183 return -1;
2185 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2186 start = start & TARGET_PAGE_MASK;
2188 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2189 p = page_find(addr >> TARGET_PAGE_BITS);
2190 if( !p )
2191 return -1;
2192 if( !(p->flags & PAGE_VALID) )
2193 return -1;
2195 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2196 return -1;
2197 if (flags & PAGE_WRITE) {
2198 if (!(p->flags & PAGE_WRITE_ORG))
2199 return -1;
2200 /* unprotect the page if it was put read-only because it
2201 contains translated code */
2202 if (!(p->flags & PAGE_WRITE)) {
2203 if (!page_unprotect(addr, 0, NULL))
2204 return -1;
2206 return 0;
2209 return 0;
2212 /* called from signal handler: invalidate the code and unprotect the
2213 page. Return TRUE if the fault was succesfully handled. */
2214 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2216 unsigned int page_index, prot, pindex;
2217 PageDesc *p, *p1;
2218 target_ulong host_start, host_end, addr;
2220 /* Technically this isn't safe inside a signal handler. However we
2221 know this only ever happens in a synchronous SEGV handler, so in
2222 practice it seems to be ok. */
2223 mmap_lock();
2225 host_start = address & qemu_host_page_mask;
2226 page_index = host_start >> TARGET_PAGE_BITS;
2227 p1 = page_find(page_index);
2228 if (!p1) {
2229 mmap_unlock();
2230 return 0;
2232 host_end = host_start + qemu_host_page_size;
2233 p = p1;
2234 prot = 0;
2235 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2236 prot |= p->flags;
2237 p++;
2239 /* if the page was really writable, then we change its
2240 protection back to writable */
2241 if (prot & PAGE_WRITE_ORG) {
2242 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2243 if (!(p1[pindex].flags & PAGE_WRITE)) {
2244 mprotect((void *)g2h(host_start), qemu_host_page_size,
2245 (prot & PAGE_BITS) | PAGE_WRITE);
2246 p1[pindex].flags |= PAGE_WRITE;
2247 /* and since the content will be modified, we must invalidate
2248 the corresponding translated code. */
2249 tb_invalidate_phys_page(address, pc, puc);
2250 #ifdef DEBUG_TB_CHECK
2251 tb_invalidate_check(address);
2252 #endif
2253 mmap_unlock();
2254 return 1;
2257 mmap_unlock();
2258 return 0;
2261 static inline void tlb_set_dirty(CPUState *env,
2262 unsigned long addr, target_ulong vaddr)
2265 #endif /* defined(CONFIG_USER_ONLY) */
2267 #if !defined(CONFIG_USER_ONLY)
2269 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2270 ram_addr_t memory, ram_addr_t region_offset);
2271 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2272 ram_addr_t orig_memory, ram_addr_t region_offset);
2273 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2274 need_subpage) \
2275 do { \
2276 if (addr > start_addr) \
2277 start_addr2 = 0; \
2278 else { \
2279 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2280 if (start_addr2 > 0) \
2281 need_subpage = 1; \
2284 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2285 end_addr2 = TARGET_PAGE_SIZE - 1; \
2286 else { \
2287 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2288 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2289 need_subpage = 1; \
2291 } while (0)
2293 /* register physical memory. 'size' must be a multiple of the target
2294 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2295 io memory page. The address used when calling the IO function is
2296 the offset from the start of the region, plus region_offset. Both
2297 start_region and regon_offset are rounded down to a page boundary
2298 before calculating this offset. This should not be a problem unless
2299 the low bits of start_addr and region_offset differ. */
2300 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2301 ram_addr_t size,
2302 ram_addr_t phys_offset,
2303 ram_addr_t region_offset)
2305 target_phys_addr_t addr, end_addr;
2306 PhysPageDesc *p;
2307 CPUState *env;
2308 ram_addr_t orig_size = size;
2309 void *subpage;
2311 #ifdef USE_KQEMU
2312 /* XXX: should not depend on cpu context */
2313 env = first_cpu;
2314 if (env->kqemu_enabled) {
2315 kqemu_set_phys_mem(start_addr, size, phys_offset);
2317 #endif
2318 if (kvm_enabled())
2319 kvm_set_phys_mem(start_addr, size, phys_offset);
2321 if (phys_offset == IO_MEM_UNASSIGNED) {
2322 region_offset = start_addr;
2324 region_offset &= TARGET_PAGE_MASK;
2325 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2326 end_addr = start_addr + (target_phys_addr_t)size;
2327 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2328 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2329 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2330 ram_addr_t orig_memory = p->phys_offset;
2331 target_phys_addr_t start_addr2, end_addr2;
2332 int need_subpage = 0;
2334 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2335 need_subpage);
2336 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2337 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2338 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2339 &p->phys_offset, orig_memory,
2340 p->region_offset);
2341 } else {
2342 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2343 >> IO_MEM_SHIFT];
2345 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2346 region_offset);
2347 p->region_offset = 0;
2348 } else {
2349 p->phys_offset = phys_offset;
2350 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2351 (phys_offset & IO_MEM_ROMD))
2352 phys_offset += TARGET_PAGE_SIZE;
2354 } else {
2355 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2356 p->phys_offset = phys_offset;
2357 p->region_offset = region_offset;
2358 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2359 (phys_offset & IO_MEM_ROMD)) {
2360 phys_offset += TARGET_PAGE_SIZE;
2361 } else {
2362 target_phys_addr_t start_addr2, end_addr2;
2363 int need_subpage = 0;
2365 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2366 end_addr2, need_subpage);
2368 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2369 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2370 &p->phys_offset, IO_MEM_UNASSIGNED,
2371 addr & TARGET_PAGE_MASK);
2372 subpage_register(subpage, start_addr2, end_addr2,
2373 phys_offset, region_offset);
2374 p->region_offset = 0;
2378 region_offset += TARGET_PAGE_SIZE;
2381 /* since each CPU stores ram addresses in its TLB cache, we must
2382 reset the modified entries */
2383 /* XXX: slow ! */
2384 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2385 tlb_flush(env, 1);
2389 /* XXX: temporary until new memory mapping API */
2390 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2392 PhysPageDesc *p;
2394 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2395 if (!p)
2396 return IO_MEM_UNASSIGNED;
2397 return p->phys_offset;
2400 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2402 if (kvm_enabled())
2403 kvm_coalesce_mmio_region(addr, size);
2406 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2408 if (kvm_enabled())
2409 kvm_uncoalesce_mmio_region(addr, size);
2412 /* XXX: better than nothing */
2413 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2415 ram_addr_t addr;
2416 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2417 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2418 (uint64_t)size, (uint64_t)phys_ram_size);
2419 abort();
2421 addr = phys_ram_alloc_offset;
2422 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2423 return addr;
2426 void qemu_ram_free(ram_addr_t addr)
2430 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2431 This may only be used if you actually allocated the ram, and
2432 aready know how but the ram block is. */
2433 void *qemu_get_ram_ptr(ram_addr_t addr)
2435 return phys_ram_base + addr;
2438 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2440 #ifdef DEBUG_UNASSIGNED
2441 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2442 #endif
2443 #if defined(TARGET_SPARC)
2444 do_unassigned_access(addr, 0, 0, 0, 1);
2445 #endif
2446 return 0;
2449 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2451 #ifdef DEBUG_UNASSIGNED
2452 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2453 #endif
2454 #if defined(TARGET_SPARC)
2455 do_unassigned_access(addr, 0, 0, 0, 2);
2456 #endif
2457 return 0;
2460 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2462 #ifdef DEBUG_UNASSIGNED
2463 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2464 #endif
2465 #if defined(TARGET_SPARC)
2466 do_unassigned_access(addr, 0, 0, 0, 4);
2467 #endif
2468 return 0;
2471 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2473 #ifdef DEBUG_UNASSIGNED
2474 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2475 #endif
2476 #if defined(TARGET_SPARC)
2477 do_unassigned_access(addr, 1, 0, 0, 1);
2478 #endif
2481 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2483 #ifdef DEBUG_UNASSIGNED
2484 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2485 #endif
2486 #if defined(TARGET_SPARC)
2487 do_unassigned_access(addr, 1, 0, 0, 2);
2488 #endif
2491 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2493 #ifdef DEBUG_UNASSIGNED
2494 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2495 #endif
2496 #if defined(TARGET_SPARC)
2497 do_unassigned_access(addr, 1, 0, 0, 4);
2498 #endif
2501 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2502 unassigned_mem_readb,
2503 unassigned_mem_readw,
2504 unassigned_mem_readl,
2507 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2508 unassigned_mem_writeb,
2509 unassigned_mem_writew,
2510 unassigned_mem_writel,
2513 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2514 uint32_t val)
2516 int dirty_flags;
2517 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2518 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2519 #if !defined(CONFIG_USER_ONLY)
2520 tb_invalidate_phys_page_fast(ram_addr, 1);
2521 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2522 #endif
2524 stb_p(phys_ram_base + ram_addr, val);
2525 #ifdef USE_KQEMU
2526 if (cpu_single_env->kqemu_enabled &&
2527 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2528 kqemu_modify_page(cpu_single_env, ram_addr);
2529 #endif
2530 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2531 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2532 /* we remove the notdirty callback only if the code has been
2533 flushed */
2534 if (dirty_flags == 0xff)
2535 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2538 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2539 uint32_t val)
2541 int dirty_flags;
2542 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2543 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2544 #if !defined(CONFIG_USER_ONLY)
2545 tb_invalidate_phys_page_fast(ram_addr, 2);
2546 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2547 #endif
2549 stw_p(phys_ram_base + ram_addr, val);
2550 #ifdef USE_KQEMU
2551 if (cpu_single_env->kqemu_enabled &&
2552 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2553 kqemu_modify_page(cpu_single_env, ram_addr);
2554 #endif
2555 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2556 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2557 /* we remove the notdirty callback only if the code has been
2558 flushed */
2559 if (dirty_flags == 0xff)
2560 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2563 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2564 uint32_t val)
2566 int dirty_flags;
2567 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2568 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2569 #if !defined(CONFIG_USER_ONLY)
2570 tb_invalidate_phys_page_fast(ram_addr, 4);
2571 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2572 #endif
2574 stl_p(phys_ram_base + ram_addr, val);
2575 #ifdef USE_KQEMU
2576 if (cpu_single_env->kqemu_enabled &&
2577 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2578 kqemu_modify_page(cpu_single_env, ram_addr);
2579 #endif
2580 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2581 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2582 /* we remove the notdirty callback only if the code has been
2583 flushed */
2584 if (dirty_flags == 0xff)
2585 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2588 static CPUReadMemoryFunc *error_mem_read[3] = {
2589 NULL, /* never used */
2590 NULL, /* never used */
2591 NULL, /* never used */
2594 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2595 notdirty_mem_writeb,
2596 notdirty_mem_writew,
2597 notdirty_mem_writel,
2600 /* Generate a debug exception if a watchpoint has been hit. */
2601 static void check_watchpoint(int offset, int len_mask, int flags)
2603 CPUState *env = cpu_single_env;
2604 target_ulong pc, cs_base;
2605 TranslationBlock *tb;
2606 target_ulong vaddr;
2607 CPUWatchpoint *wp;
2608 int cpu_flags;
2610 if (env->watchpoint_hit) {
2611 /* We re-entered the check after replacing the TB. Now raise
2612 * the debug interrupt so that is will trigger after the
2613 * current instruction. */
2614 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2615 return;
2617 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2618 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2619 if ((vaddr == (wp->vaddr & len_mask) ||
2620 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2621 wp->flags |= BP_WATCHPOINT_HIT;
2622 if (!env->watchpoint_hit) {
2623 env->watchpoint_hit = wp;
2624 tb = tb_find_pc(env->mem_io_pc);
2625 if (!tb) {
2626 cpu_abort(env, "check_watchpoint: could not find TB for "
2627 "pc=%p", (void *)env->mem_io_pc);
2629 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2630 tb_phys_invalidate(tb, -1);
2631 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2632 env->exception_index = EXCP_DEBUG;
2633 } else {
2634 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2635 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2637 cpu_resume_from_signal(env, NULL);
2639 } else {
2640 wp->flags &= ~BP_WATCHPOINT_HIT;
2645 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2646 so these check for a hit then pass through to the normal out-of-line
2647 phys routines. */
2648 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2650 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2651 return ldub_phys(addr);
2654 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2656 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2657 return lduw_phys(addr);
2660 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2662 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2663 return ldl_phys(addr);
2666 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2667 uint32_t val)
2669 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2670 stb_phys(addr, val);
2673 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2674 uint32_t val)
2676 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2677 stw_phys(addr, val);
2680 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2681 uint32_t val)
2683 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2684 stl_phys(addr, val);
2687 static CPUReadMemoryFunc *watch_mem_read[3] = {
2688 watch_mem_readb,
2689 watch_mem_readw,
2690 watch_mem_readl,
2693 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2694 watch_mem_writeb,
2695 watch_mem_writew,
2696 watch_mem_writel,
2699 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2700 unsigned int len)
2702 uint32_t ret;
2703 unsigned int idx;
2705 idx = SUBPAGE_IDX(addr);
2706 #if defined(DEBUG_SUBPAGE)
2707 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2708 mmio, len, addr, idx);
2709 #endif
2710 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2711 addr + mmio->region_offset[idx][0][len]);
2713 return ret;
2716 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2717 uint32_t value, unsigned int len)
2719 unsigned int idx;
2721 idx = SUBPAGE_IDX(addr);
2722 #if defined(DEBUG_SUBPAGE)
2723 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2724 mmio, len, addr, idx, value);
2725 #endif
2726 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2727 addr + mmio->region_offset[idx][1][len],
2728 value);
2731 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2733 #if defined(DEBUG_SUBPAGE)
2734 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2735 #endif
2737 return subpage_readlen(opaque, addr, 0);
2740 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2741 uint32_t value)
2743 #if defined(DEBUG_SUBPAGE)
2744 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2745 #endif
2746 subpage_writelen(opaque, addr, value, 0);
2749 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2751 #if defined(DEBUG_SUBPAGE)
2752 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2753 #endif
2755 return subpage_readlen(opaque, addr, 1);
2758 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2759 uint32_t value)
2761 #if defined(DEBUG_SUBPAGE)
2762 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2763 #endif
2764 subpage_writelen(opaque, addr, value, 1);
2767 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2769 #if defined(DEBUG_SUBPAGE)
2770 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2771 #endif
2773 return subpage_readlen(opaque, addr, 2);
2776 static void subpage_writel (void *opaque,
2777 target_phys_addr_t addr, uint32_t value)
2779 #if defined(DEBUG_SUBPAGE)
2780 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2781 #endif
2782 subpage_writelen(opaque, addr, value, 2);
2785 static CPUReadMemoryFunc *subpage_read[] = {
2786 &subpage_readb,
2787 &subpage_readw,
2788 &subpage_readl,
2791 static CPUWriteMemoryFunc *subpage_write[] = {
2792 &subpage_writeb,
2793 &subpage_writew,
2794 &subpage_writel,
2797 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2798 ram_addr_t memory, ram_addr_t region_offset)
2800 int idx, eidx;
2801 unsigned int i;
2803 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2804 return -1;
2805 idx = SUBPAGE_IDX(start);
2806 eidx = SUBPAGE_IDX(end);
2807 #if defined(DEBUG_SUBPAGE)
2808 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2809 mmio, start, end, idx, eidx, memory);
2810 #endif
2811 memory >>= IO_MEM_SHIFT;
2812 for (; idx <= eidx; idx++) {
2813 for (i = 0; i < 4; i++) {
2814 if (io_mem_read[memory][i]) {
2815 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2816 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2817 mmio->region_offset[idx][0][i] = region_offset;
2819 if (io_mem_write[memory][i]) {
2820 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2821 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2822 mmio->region_offset[idx][1][i] = region_offset;
2827 return 0;
2830 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2831 ram_addr_t orig_memory, ram_addr_t region_offset)
2833 subpage_t *mmio;
2834 int subpage_memory;
2836 mmio = qemu_mallocz(sizeof(subpage_t));
2838 mmio->base = base;
2839 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2840 #if defined(DEBUG_SUBPAGE)
2841 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2842 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2843 #endif
2844 *phys = subpage_memory | IO_MEM_SUBPAGE;
2845 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2846 region_offset);
2848 return mmio;
2851 static int get_free_io_mem_idx(void)
2853 int i;
2855 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2856 if (!io_mem_used[i]) {
2857 io_mem_used[i] = 1;
2858 return i;
2861 return -1;
2864 static void io_mem_init(void)
2866 int i;
2868 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2869 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2870 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2871 for (i=0; i<5; i++)
2872 io_mem_used[i] = 1;
2874 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2875 watch_mem_write, NULL);
2876 /* alloc dirty bits array */
2877 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2878 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2881 /* mem_read and mem_write are arrays of functions containing the
2882 function to access byte (index 0), word (index 1) and dword (index
2883 2). Functions can be omitted with a NULL function pointer. The
2884 registered functions may be modified dynamically later.
2885 If io_index is non zero, the corresponding io zone is
2886 modified. If it is zero, a new io zone is allocated. The return
2887 value can be used with cpu_register_physical_memory(). (-1) is
2888 returned if error. */
2889 int cpu_register_io_memory(int io_index,
2890 CPUReadMemoryFunc **mem_read,
2891 CPUWriteMemoryFunc **mem_write,
2892 void *opaque)
2894 int i, subwidth = 0;
2896 if (io_index <= 0) {
2897 io_index = get_free_io_mem_idx();
2898 if (io_index == -1)
2899 return io_index;
2900 } else {
2901 if (io_index >= IO_MEM_NB_ENTRIES)
2902 return -1;
2905 for(i = 0;i < 3; i++) {
2906 if (!mem_read[i] || !mem_write[i])
2907 subwidth = IO_MEM_SUBWIDTH;
2908 io_mem_read[io_index][i] = mem_read[i];
2909 io_mem_write[io_index][i] = mem_write[i];
2911 io_mem_opaque[io_index] = opaque;
2912 return (io_index << IO_MEM_SHIFT) | subwidth;
2915 void cpu_unregister_io_memory(int io_table_address)
2917 int i;
2918 int io_index = io_table_address >> IO_MEM_SHIFT;
2920 for (i=0;i < 3; i++) {
2921 io_mem_read[io_index][i] = unassigned_mem_read[i];
2922 io_mem_write[io_index][i] = unassigned_mem_write[i];
2924 io_mem_opaque[io_index] = NULL;
2925 io_mem_used[io_index] = 0;
2928 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2930 return io_mem_write[io_index >> IO_MEM_SHIFT];
2933 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2935 return io_mem_read[io_index >> IO_MEM_SHIFT];
2938 #endif /* !defined(CONFIG_USER_ONLY) */
2940 /* physical memory access (slow version, mainly for debug) */
2941 #if defined(CONFIG_USER_ONLY)
2942 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2943 int len, int is_write)
2945 int l, flags;
2946 target_ulong page;
2947 void * p;
2949 while (len > 0) {
2950 page = addr & TARGET_PAGE_MASK;
2951 l = (page + TARGET_PAGE_SIZE) - addr;
2952 if (l > len)
2953 l = len;
2954 flags = page_get_flags(page);
2955 if (!(flags & PAGE_VALID))
2956 return;
2957 if (is_write) {
2958 if (!(flags & PAGE_WRITE))
2959 return;
2960 /* XXX: this code should not depend on lock_user */
2961 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2962 /* FIXME - should this return an error rather than just fail? */
2963 return;
2964 memcpy(p, buf, l);
2965 unlock_user(p, addr, l);
2966 } else {
2967 if (!(flags & PAGE_READ))
2968 return;
2969 /* XXX: this code should not depend on lock_user */
2970 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2971 /* FIXME - should this return an error rather than just fail? */
2972 return;
2973 memcpy(buf, p, l);
2974 unlock_user(p, addr, 0);
2976 len -= l;
2977 buf += l;
2978 addr += l;
2982 #else
2983 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2984 int len, int is_write)
2986 int l, io_index;
2987 uint8_t *ptr;
2988 uint32_t val;
2989 target_phys_addr_t page;
2990 unsigned long pd;
2991 PhysPageDesc *p;
2993 while (len > 0) {
2994 page = addr & TARGET_PAGE_MASK;
2995 l = (page + TARGET_PAGE_SIZE) - addr;
2996 if (l > len)
2997 l = len;
2998 p = phys_page_find(page >> TARGET_PAGE_BITS);
2999 if (!p) {
3000 pd = IO_MEM_UNASSIGNED;
3001 } else {
3002 pd = p->phys_offset;
3005 if (is_write) {
3006 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3007 target_phys_addr_t addr1 = addr;
3008 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3009 if (p)
3010 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3011 /* XXX: could force cpu_single_env to NULL to avoid
3012 potential bugs */
3013 if (l >= 4 && ((addr1 & 3) == 0)) {
3014 /* 32 bit write access */
3015 val = ldl_p(buf);
3016 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3017 l = 4;
3018 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3019 /* 16 bit write access */
3020 val = lduw_p(buf);
3021 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3022 l = 2;
3023 } else {
3024 /* 8 bit write access */
3025 val = ldub_p(buf);
3026 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3027 l = 1;
3029 } else {
3030 unsigned long addr1;
3031 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3032 /* RAM case */
3033 ptr = phys_ram_base + addr1;
3034 memcpy(ptr, buf, l);
3035 if (!cpu_physical_memory_is_dirty(addr1)) {
3036 /* invalidate code */
3037 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3038 /* set dirty bit */
3039 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3040 (0xff & ~CODE_DIRTY_FLAG);
3043 } else {
3044 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3045 !(pd & IO_MEM_ROMD)) {
3046 target_phys_addr_t addr1 = addr;
3047 /* I/O case */
3048 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3049 if (p)
3050 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3051 if (l >= 4 && ((addr1 & 3) == 0)) {
3052 /* 32 bit read access */
3053 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3054 stl_p(buf, val);
3055 l = 4;
3056 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3057 /* 16 bit read access */
3058 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3059 stw_p(buf, val);
3060 l = 2;
3061 } else {
3062 /* 8 bit read access */
3063 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3064 stb_p(buf, val);
3065 l = 1;
3067 } else {
3068 /* RAM case */
3069 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3070 (addr & ~TARGET_PAGE_MASK);
3071 memcpy(buf, ptr, l);
3074 len -= l;
3075 buf += l;
3076 addr += l;
3080 /* used for ROM loading : can write in RAM and ROM */
3081 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3082 const uint8_t *buf, int len)
3084 int l;
3085 uint8_t *ptr;
3086 target_phys_addr_t page;
3087 unsigned long pd;
3088 PhysPageDesc *p;
3090 while (len > 0) {
3091 page = addr & TARGET_PAGE_MASK;
3092 l = (page + TARGET_PAGE_SIZE) - addr;
3093 if (l > len)
3094 l = len;
3095 p = phys_page_find(page >> TARGET_PAGE_BITS);
3096 if (!p) {
3097 pd = IO_MEM_UNASSIGNED;
3098 } else {
3099 pd = p->phys_offset;
3102 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3103 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3104 !(pd & IO_MEM_ROMD)) {
3105 /* do nothing */
3106 } else {
3107 unsigned long addr1;
3108 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3109 /* ROM/RAM case */
3110 ptr = phys_ram_base + addr1;
3111 memcpy(ptr, buf, l);
3113 len -= l;
3114 buf += l;
3115 addr += l;
3119 typedef struct {
3120 void *buffer;
3121 target_phys_addr_t addr;
3122 target_phys_addr_t len;
3123 } BounceBuffer;
3125 static BounceBuffer bounce;
3127 typedef struct MapClient {
3128 void *opaque;
3129 void (*callback)(void *opaque);
3130 LIST_ENTRY(MapClient) link;
3131 } MapClient;
3133 static LIST_HEAD(map_client_list, MapClient) map_client_list
3134 = LIST_HEAD_INITIALIZER(map_client_list);
3136 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3138 MapClient *client = qemu_malloc(sizeof(*client));
3140 client->opaque = opaque;
3141 client->callback = callback;
3142 LIST_INSERT_HEAD(&map_client_list, client, link);
3143 return client;
3146 void cpu_unregister_map_client(void *_client)
3148 MapClient *client = (MapClient *)_client;
3150 LIST_REMOVE(client, link);
3153 static void cpu_notify_map_clients(void)
3155 MapClient *client;
3157 while (!LIST_EMPTY(&map_client_list)) {
3158 client = LIST_FIRST(&map_client_list);
3159 client->callback(client->opaque);
3160 LIST_REMOVE(client, link);
3164 /* Map a physical memory region into a host virtual address.
3165 * May map a subset of the requested range, given by and returned in *plen.
3166 * May return NULL if resources needed to perform the mapping are exhausted.
3167 * Use only for reads OR writes - not for read-modify-write operations.
3168 * Use cpu_register_map_client() to know when retrying the map operation is
3169 * likely to succeed.
3171 void *cpu_physical_memory_map(target_phys_addr_t addr,
3172 target_phys_addr_t *plen,
3173 int is_write)
3175 target_phys_addr_t len = *plen;
3176 target_phys_addr_t done = 0;
3177 int l;
3178 uint8_t *ret = NULL;
3179 uint8_t *ptr;
3180 target_phys_addr_t page;
3181 unsigned long pd;
3182 PhysPageDesc *p;
3183 unsigned long addr1;
3185 while (len > 0) {
3186 page = addr & TARGET_PAGE_MASK;
3187 l = (page + TARGET_PAGE_SIZE) - addr;
3188 if (l > len)
3189 l = len;
3190 p = phys_page_find(page >> TARGET_PAGE_BITS);
3191 if (!p) {
3192 pd = IO_MEM_UNASSIGNED;
3193 } else {
3194 pd = p->phys_offset;
3197 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3198 if (done || bounce.buffer) {
3199 break;
3201 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3202 bounce.addr = addr;
3203 bounce.len = l;
3204 if (!is_write) {
3205 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3207 ptr = bounce.buffer;
3208 } else {
3209 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3210 ptr = phys_ram_base + addr1;
3212 if (!done) {
3213 ret = ptr;
3214 } else if (ret + done != ptr) {
3215 break;
3218 len -= l;
3219 addr += l;
3220 done += l;
3222 *plen = done;
3223 return ret;
3226 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3227 * Will also mark the memory as dirty if is_write == 1. access_len gives
3228 * the amount of memory that was actually read or written by the caller.
3230 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3231 int is_write, target_phys_addr_t access_len)
3233 if (buffer != bounce.buffer) {
3234 if (is_write) {
3235 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3236 while (access_len) {
3237 unsigned l;
3238 l = TARGET_PAGE_SIZE;
3239 if (l > access_len)
3240 l = access_len;
3241 if (!cpu_physical_memory_is_dirty(addr1)) {
3242 /* invalidate code */
3243 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3244 /* set dirty bit */
3245 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3246 (0xff & ~CODE_DIRTY_FLAG);
3248 addr1 += l;
3249 access_len -= l;
3252 return;
3254 if (is_write) {
3255 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3257 qemu_free(bounce.buffer);
3258 bounce.buffer = NULL;
3259 cpu_notify_map_clients();
3262 /* warning: addr must be aligned */
3263 uint32_t ldl_phys(target_phys_addr_t addr)
3265 int io_index;
3266 uint8_t *ptr;
3267 uint32_t val;
3268 unsigned long pd;
3269 PhysPageDesc *p;
3271 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3272 if (!p) {
3273 pd = IO_MEM_UNASSIGNED;
3274 } else {
3275 pd = p->phys_offset;
3278 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3279 !(pd & IO_MEM_ROMD)) {
3280 /* I/O case */
3281 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3282 if (p)
3283 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3284 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3285 } else {
3286 /* RAM case */
3287 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3288 (addr & ~TARGET_PAGE_MASK);
3289 val = ldl_p(ptr);
3291 return val;
3294 /* warning: addr must be aligned */
3295 uint64_t ldq_phys(target_phys_addr_t addr)
3297 int io_index;
3298 uint8_t *ptr;
3299 uint64_t val;
3300 unsigned long pd;
3301 PhysPageDesc *p;
3303 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3304 if (!p) {
3305 pd = IO_MEM_UNASSIGNED;
3306 } else {
3307 pd = p->phys_offset;
3310 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3311 !(pd & IO_MEM_ROMD)) {
3312 /* I/O case */
3313 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3314 if (p)
3315 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3316 #ifdef TARGET_WORDS_BIGENDIAN
3317 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3318 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3319 #else
3320 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3321 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3322 #endif
3323 } else {
3324 /* RAM case */
3325 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3326 (addr & ~TARGET_PAGE_MASK);
3327 val = ldq_p(ptr);
3329 return val;
3332 /* XXX: optimize */
3333 uint32_t ldub_phys(target_phys_addr_t addr)
3335 uint8_t val;
3336 cpu_physical_memory_read(addr, &val, 1);
3337 return val;
3340 /* XXX: optimize */
3341 uint32_t lduw_phys(target_phys_addr_t addr)
3343 uint16_t val;
3344 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3345 return tswap16(val);
3348 /* warning: addr must be aligned. The ram page is not masked as dirty
3349 and the code inside is not invalidated. It is useful if the dirty
3350 bits are used to track modified PTEs */
3351 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3353 int io_index;
3354 uint8_t *ptr;
3355 unsigned long pd;
3356 PhysPageDesc *p;
3358 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3359 if (!p) {
3360 pd = IO_MEM_UNASSIGNED;
3361 } else {
3362 pd = p->phys_offset;
3365 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3366 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3367 if (p)
3368 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3369 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3370 } else {
3371 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3372 ptr = phys_ram_base + addr1;
3373 stl_p(ptr, val);
3375 if (unlikely(in_migration)) {
3376 if (!cpu_physical_memory_is_dirty(addr1)) {
3377 /* invalidate code */
3378 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3379 /* set dirty bit */
3380 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3381 (0xff & ~CODE_DIRTY_FLAG);
3387 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3389 int io_index;
3390 uint8_t *ptr;
3391 unsigned long pd;
3392 PhysPageDesc *p;
3394 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3395 if (!p) {
3396 pd = IO_MEM_UNASSIGNED;
3397 } else {
3398 pd = p->phys_offset;
3401 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3402 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3403 if (p)
3404 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3405 #ifdef TARGET_WORDS_BIGENDIAN
3406 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3407 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3408 #else
3409 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3410 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3411 #endif
3412 } else {
3413 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3414 (addr & ~TARGET_PAGE_MASK);
3415 stq_p(ptr, val);
3419 /* warning: addr must be aligned */
3420 void stl_phys(target_phys_addr_t addr, uint32_t val)
3422 int io_index;
3423 uint8_t *ptr;
3424 unsigned long pd;
3425 PhysPageDesc *p;
3427 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3428 if (!p) {
3429 pd = IO_MEM_UNASSIGNED;
3430 } else {
3431 pd = p->phys_offset;
3434 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3435 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3436 if (p)
3437 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3438 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3439 } else {
3440 unsigned long addr1;
3441 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3442 /* RAM case */
3443 ptr = phys_ram_base + addr1;
3444 stl_p(ptr, val);
3445 if (!cpu_physical_memory_is_dirty(addr1)) {
3446 /* invalidate code */
3447 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3448 /* set dirty bit */
3449 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3450 (0xff & ~CODE_DIRTY_FLAG);
3455 /* XXX: optimize */
3456 void stb_phys(target_phys_addr_t addr, uint32_t val)
3458 uint8_t v = val;
3459 cpu_physical_memory_write(addr, &v, 1);
3462 /* XXX: optimize */
3463 void stw_phys(target_phys_addr_t addr, uint32_t val)
3465 uint16_t v = tswap16(val);
3466 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3469 /* XXX: optimize */
3470 void stq_phys(target_phys_addr_t addr, uint64_t val)
3472 val = tswap64(val);
3473 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3476 #endif
3478 /* virtual memory access for debug (includes writing to ROM) */
3479 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3480 uint8_t *buf, int len, int is_write)
3482 int l;
3483 target_phys_addr_t phys_addr;
3484 target_ulong page;
3486 while (len > 0) {
3487 page = addr & TARGET_PAGE_MASK;
3488 phys_addr = cpu_get_phys_page_debug(env, page);
3489 /* if no physical page mapped, return an error */
3490 if (phys_addr == -1)
3491 return -1;
3492 l = (page + TARGET_PAGE_SIZE) - addr;
3493 if (l > len)
3494 l = len;
3495 phys_addr += (addr & ~TARGET_PAGE_MASK);
3496 #if !defined(CONFIG_USER_ONLY)
3497 if (is_write)
3498 cpu_physical_memory_write_rom(phys_addr, buf, l);
3499 else
3500 #endif
3501 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3502 len -= l;
3503 buf += l;
3504 addr += l;
3506 return 0;
3509 /* in deterministic execution mode, instructions doing device I/Os
3510 must be at the end of the TB */
3511 void cpu_io_recompile(CPUState *env, void *retaddr)
3513 TranslationBlock *tb;
3514 uint32_t n, cflags;
3515 target_ulong pc, cs_base;
3516 uint64_t flags;
3518 tb = tb_find_pc((unsigned long)retaddr);
3519 if (!tb) {
3520 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3521 retaddr);
3523 n = env->icount_decr.u16.low + tb->icount;
3524 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3525 /* Calculate how many instructions had been executed before the fault
3526 occurred. */
3527 n = n - env->icount_decr.u16.low;
3528 /* Generate a new TB ending on the I/O insn. */
3529 n++;
3530 /* On MIPS and SH, delay slot instructions can only be restarted if
3531 they were already the first instruction in the TB. If this is not
3532 the first instruction in a TB then re-execute the preceding
3533 branch. */
3534 #if defined(TARGET_MIPS)
3535 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3536 env->active_tc.PC -= 4;
3537 env->icount_decr.u16.low++;
3538 env->hflags &= ~MIPS_HFLAG_BMASK;
3540 #elif defined(TARGET_SH4)
3541 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3542 && n > 1) {
3543 env->pc -= 2;
3544 env->icount_decr.u16.low++;
3545 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3547 #endif
3548 /* This should never happen. */
3549 if (n > CF_COUNT_MASK)
3550 cpu_abort(env, "TB too big during recompile");
3552 cflags = n | CF_LAST_IO;
3553 pc = tb->pc;
3554 cs_base = tb->cs_base;
3555 flags = tb->flags;
3556 tb_phys_invalidate(tb, -1);
3557 /* FIXME: In theory this could raise an exception. In practice
3558 we have already translated the block once so it's probably ok. */
3559 tb_gen_code(env, pc, cs_base, flags, cflags);
3560 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3561 the first in the TB) then we end up generating a whole new TB and
3562 repeating the fault, which is horribly inefficient.
3563 Better would be to execute just this insn uncached, or generate a
3564 second new TB. */
3565 cpu_resume_from_signal(env, NULL);
3568 void dump_exec_info(FILE *f,
3569 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3571 int i, target_code_size, max_target_code_size;
3572 int direct_jmp_count, direct_jmp2_count, cross_page;
3573 TranslationBlock *tb;
3575 target_code_size = 0;
3576 max_target_code_size = 0;
3577 cross_page = 0;
3578 direct_jmp_count = 0;
3579 direct_jmp2_count = 0;
3580 for(i = 0; i < nb_tbs; i++) {
3581 tb = &tbs[i];
3582 target_code_size += tb->size;
3583 if (tb->size > max_target_code_size)
3584 max_target_code_size = tb->size;
3585 if (tb->page_addr[1] != -1)
3586 cross_page++;
3587 if (tb->tb_next_offset[0] != 0xffff) {
3588 direct_jmp_count++;
3589 if (tb->tb_next_offset[1] != 0xffff) {
3590 direct_jmp2_count++;
3594 /* XXX: avoid using doubles ? */
3595 cpu_fprintf(f, "Translation buffer state:\n");
3596 cpu_fprintf(f, "gen code size %ld/%ld\n",
3597 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3598 cpu_fprintf(f, "TB count %d/%d\n",
3599 nb_tbs, code_gen_max_blocks);
3600 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3601 nb_tbs ? target_code_size / nb_tbs : 0,
3602 max_target_code_size);
3603 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3604 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3605 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3606 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3607 cross_page,
3608 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3609 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3610 direct_jmp_count,
3611 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3612 direct_jmp2_count,
3613 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3614 cpu_fprintf(f, "\nStatistics:\n");
3615 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3616 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3617 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3618 tcg_dump_info(f, cpu_fprintf);
3621 #if !defined(CONFIG_USER_ONLY)
3623 #define MMUSUFFIX _cmmu
3624 #define GETPC() NULL
3625 #define env cpu_single_env
3626 #define SOFTMMU_CODE_ACCESS
3628 #define SHIFT 0
3629 #include "softmmu_template.h"
3631 #define SHIFT 1
3632 #include "softmmu_template.h"
3634 #define SHIFT 2
3635 #include "softmmu_template.h"
3637 #define SHIFT 3
3638 #include "softmmu_template.h"
3640 #undef env
3642 #endif