Merge commit 'origin/master' into dev-mini2440-staging
[qemu/mini2440.git] / gdbstub.c
blob518c939f452d4b318c73ca6a9b3474c8dc81b374
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_TRAP = 5,
49 GDB_SIGNAL_UNKNOWN = 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table[] = {
61 TARGET_SIGHUP,
62 TARGET_SIGINT,
63 TARGET_SIGQUIT,
64 TARGET_SIGILL,
65 TARGET_SIGTRAP,
66 TARGET_SIGABRT,
67 -1, /* SIGEMT */
68 TARGET_SIGFPE,
69 TARGET_SIGKILL,
70 TARGET_SIGBUS,
71 TARGET_SIGSEGV,
72 TARGET_SIGSYS,
73 TARGET_SIGPIPE,
74 TARGET_SIGALRM,
75 TARGET_SIGTERM,
76 TARGET_SIGURG,
77 TARGET_SIGSTOP,
78 TARGET_SIGTSTP,
79 TARGET_SIGCONT,
80 TARGET_SIGCHLD,
81 TARGET_SIGTTIN,
82 TARGET_SIGTTOU,
83 TARGET_SIGIO,
84 TARGET_SIGXCPU,
85 TARGET_SIGXFSZ,
86 TARGET_SIGVTALRM,
87 TARGET_SIGPROF,
88 TARGET_SIGWINCH,
89 -1, /* SIGLOST */
90 TARGET_SIGUSR1,
91 TARGET_SIGUSR2,
92 #ifdef TARGET_SIGPWR
93 TARGET_SIGPWR,
94 #else
95 -1,
96 #endif
97 -1, /* SIGPOLL */
98 -1,
99 -1,
109 #ifdef __SIGRTMIN
110 __SIGRTMIN + 1,
111 __SIGRTMIN + 2,
112 __SIGRTMIN + 3,
113 __SIGRTMIN + 4,
114 __SIGRTMIN + 5,
115 __SIGRTMIN + 6,
116 __SIGRTMIN + 7,
117 __SIGRTMIN + 8,
118 __SIGRTMIN + 9,
119 __SIGRTMIN + 10,
120 __SIGRTMIN + 11,
121 __SIGRTMIN + 12,
122 __SIGRTMIN + 13,
123 __SIGRTMIN + 14,
124 __SIGRTMIN + 15,
125 __SIGRTMIN + 16,
126 __SIGRTMIN + 17,
127 __SIGRTMIN + 18,
128 __SIGRTMIN + 19,
129 __SIGRTMIN + 20,
130 __SIGRTMIN + 21,
131 __SIGRTMIN + 22,
132 __SIGRTMIN + 23,
133 __SIGRTMIN + 24,
134 __SIGRTMIN + 25,
135 __SIGRTMIN + 26,
136 __SIGRTMIN + 27,
137 __SIGRTMIN + 28,
138 __SIGRTMIN + 29,
139 __SIGRTMIN + 30,
140 __SIGRTMIN + 31,
141 -1, /* SIGCANCEL */
142 __SIGRTMIN,
143 __SIGRTMIN + 32,
144 __SIGRTMIN + 33,
145 __SIGRTMIN + 34,
146 __SIGRTMIN + 35,
147 __SIGRTMIN + 36,
148 __SIGRTMIN + 37,
149 __SIGRTMIN + 38,
150 __SIGRTMIN + 39,
151 __SIGRTMIN + 40,
152 __SIGRTMIN + 41,
153 __SIGRTMIN + 42,
154 __SIGRTMIN + 43,
155 __SIGRTMIN + 44,
156 __SIGRTMIN + 45,
157 __SIGRTMIN + 46,
158 __SIGRTMIN + 47,
159 __SIGRTMIN + 48,
160 __SIGRTMIN + 49,
161 __SIGRTMIN + 50,
162 __SIGRTMIN + 51,
163 __SIGRTMIN + 52,
164 __SIGRTMIN + 53,
165 __SIGRTMIN + 54,
166 __SIGRTMIN + 55,
167 __SIGRTMIN + 56,
168 __SIGRTMIN + 57,
169 __SIGRTMIN + 58,
170 __SIGRTMIN + 59,
171 __SIGRTMIN + 60,
172 __SIGRTMIN + 61,
173 __SIGRTMIN + 62,
174 __SIGRTMIN + 63,
175 __SIGRTMIN + 64,
176 __SIGRTMIN + 65,
177 __SIGRTMIN + 66,
178 __SIGRTMIN + 67,
179 __SIGRTMIN + 68,
180 __SIGRTMIN + 69,
181 __SIGRTMIN + 70,
182 __SIGRTMIN + 71,
183 __SIGRTMIN + 72,
184 __SIGRTMIN + 73,
185 __SIGRTMIN + 74,
186 __SIGRTMIN + 75,
187 __SIGRTMIN + 76,
188 __SIGRTMIN + 77,
189 __SIGRTMIN + 78,
190 __SIGRTMIN + 79,
191 __SIGRTMIN + 80,
192 __SIGRTMIN + 81,
193 __SIGRTMIN + 82,
194 __SIGRTMIN + 83,
195 __SIGRTMIN + 84,
196 __SIGRTMIN + 85,
197 __SIGRTMIN + 86,
198 __SIGRTMIN + 87,
199 __SIGRTMIN + 88,
200 __SIGRTMIN + 89,
201 __SIGRTMIN + 90,
202 __SIGRTMIN + 91,
203 __SIGRTMIN + 92,
204 __SIGRTMIN + 93,
205 __SIGRTMIN + 94,
206 __SIGRTMIN + 95,
207 -1, /* SIGINFO */
208 -1, /* UNKNOWN */
209 -1, /* DEFAULT */
216 #endif
218 #else
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
222 enum {
223 TARGET_SIGINT = 2,
224 TARGET_SIGTRAP = 5
227 static int gdb_signal_table[] = {
230 TARGET_SIGINT,
233 TARGET_SIGTRAP
235 #endif
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig)
240 int i;
241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
242 if (gdb_signal_table[i] == sig)
243 return i;
244 return GDB_SIGNAL_UNKNOWN;
246 #endif
248 static int gdb_signal_to_target (int sig)
250 if (sig < ARRAY_SIZE (gdb_signal_table))
251 return gdb_signal_table[sig];
252 else
253 return -1;
256 //#define DEBUG_GDB
258 typedef struct GDBRegisterState {
259 int base_reg;
260 int num_regs;
261 gdb_reg_cb get_reg;
262 gdb_reg_cb set_reg;
263 const char *xml;
264 struct GDBRegisterState *next;
265 } GDBRegisterState;
267 enum RSState {
268 RS_INACTIVE,
269 RS_IDLE,
270 RS_GETLINE,
271 RS_CHKSUM1,
272 RS_CHKSUM2,
273 RS_SYSCALL,
275 typedef struct GDBState {
276 CPUState *c_cpu; /* current CPU for step/continue ops */
277 CPUState *g_cpu; /* current CPU for other ops */
278 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
279 enum RSState state; /* parsing state */
280 char line_buf[MAX_PACKET_LENGTH];
281 int line_buf_index;
282 int line_csum;
283 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
284 int last_packet_len;
285 int signal;
286 #ifdef CONFIG_USER_ONLY
287 int fd;
288 int running_state;
289 #else
290 CharDriverState *chr;
291 CharDriverState *mon_chr;
292 #endif
293 } GDBState;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300 static GDBState *gdbserver_state;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd = -1;
311 static int get_char(GDBState *s)
313 uint8_t ch;
314 int ret;
316 for(;;) {
317 ret = recv(s->fd, &ch, 1, 0);
318 if (ret < 0) {
319 if (errno == ECONNRESET)
320 s->fd = -1;
321 if (errno != EINTR && errno != EAGAIN)
322 return -1;
323 } else if (ret == 0) {
324 close(s->fd);
325 s->fd = -1;
326 return -1;
327 } else {
328 break;
331 return ch;
333 #endif
335 static gdb_syscall_complete_cb gdb_current_syscall_cb;
337 enum {
338 GDB_SYS_UNKNOWN,
339 GDB_SYS_ENABLED,
340 GDB_SYS_DISABLED,
341 } gdb_syscall_mode;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
349 : GDB_SYS_DISABLED);
351 return gdb_syscall_mode == GDB_SYS_ENABLED;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState *s)
357 #ifdef CONFIG_USER_ONLY
358 s->running_state = 1;
359 #else
360 vm_start();
361 #endif
364 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
366 #ifdef CONFIG_USER_ONLY
367 int ret;
369 while (len > 0) {
370 ret = send(s->fd, buf, len, 0);
371 if (ret < 0) {
372 if (errno != EINTR && errno != EAGAIN)
373 return;
374 } else {
375 buf += ret;
376 len -= ret;
379 #else
380 qemu_chr_write(s->chr, buf, len);
381 #endif
384 static inline int fromhex(int v)
386 if (v >= '0' && v <= '9')
387 return v - '0';
388 else if (v >= 'A' && v <= 'F')
389 return v - 'A' + 10;
390 else if (v >= 'a' && v <= 'f')
391 return v - 'a' + 10;
392 else
393 return 0;
396 static inline int tohex(int v)
398 if (v < 10)
399 return v + '0';
400 else
401 return v - 10 + 'a';
404 static void memtohex(char *buf, const uint8_t *mem, int len)
406 int i, c;
407 char *q;
408 q = buf;
409 for(i = 0; i < len; i++) {
410 c = mem[i];
411 *q++ = tohex(c >> 4);
412 *q++ = tohex(c & 0xf);
414 *q = '\0';
417 static void hextomem(uint8_t *mem, const char *buf, int len)
419 int i;
421 for(i = 0; i < len; i++) {
422 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
423 buf += 2;
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState *s, const char *buf, int len)
430 int csum, i;
431 uint8_t *p;
433 for(;;) {
434 p = s->last_packet;
435 *(p++) = '$';
436 memcpy(p, buf, len);
437 p += len;
438 csum = 0;
439 for(i = 0; i < len; i++) {
440 csum += buf[i];
442 *(p++) = '#';
443 *(p++) = tohex((csum >> 4) & 0xf);
444 *(p++) = tohex((csum) & 0xf);
446 s->last_packet_len = p - s->last_packet;
447 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
449 #ifdef CONFIG_USER_ONLY
450 i = get_char(s);
451 if (i < 0)
452 return -1;
453 if (i == '+')
454 break;
455 #else
456 break;
457 #endif
459 return 0;
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState *s, const char *buf)
465 #ifdef DEBUG_GDB
466 printf("reply='%s'\n", buf);
467 #endif
469 return put_packet_binary(s, buf, strlen(buf));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
478 return 1; \
479 } while(0)
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
482 return 2; \
483 } while(0)
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
486 return 4; \
487 } while(0)
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
490 return 8; \
491 } while(0)
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
496 #else
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
499 #endif
501 #if defined(TARGET_I386)
503 #ifdef TARGET_X86_64
504 static const int gpr_map[16] = {
505 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
506 8, 9, 10, 11, 12, 13, 14, 15
508 #else
509 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
510 #endif
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
516 if (n < CPU_NB_REGS) {
517 GET_REGL(env->regs[gpr_map[n]]);
518 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
519 /* FIXME: byteswap float values. */
520 #ifdef USE_X86LDOUBLE
521 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
522 #else
523 memset(mem_buf, 0, 10);
524 #endif
525 return 10;
526 } else if (n >= CPU_NB_REGS + 24) {
527 n -= CPU_NB_REGS + 24;
528 if (n < CPU_NB_REGS) {
529 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
530 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
531 return 16;
532 } else if (n == CPU_NB_REGS) {
533 GET_REG32(env->mxcsr);
535 } else {
536 n -= CPU_NB_REGS;
537 switch (n) {
538 case 0: GET_REGL(env->eip);
539 case 1: GET_REG32(env->eflags);
540 case 2: GET_REG32(env->segs[R_CS].selector);
541 case 3: GET_REG32(env->segs[R_SS].selector);
542 case 4: GET_REG32(env->segs[R_DS].selector);
543 case 5: GET_REG32(env->segs[R_ES].selector);
544 case 6: GET_REG32(env->segs[R_FS].selector);
545 case 7: GET_REG32(env->segs[R_GS].selector);
546 /* 8...15 x87 regs. */
547 case 16: GET_REG32(env->fpuc);
548 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
549 case 18: GET_REG32(0); /* ftag */
550 case 19: GET_REG32(0); /* fiseg */
551 case 20: GET_REG32(0); /* fioff */
552 case 21: GET_REG32(0); /* foseg */
553 case 22: GET_REG32(0); /* fooff */
554 case 23: GET_REG32(0); /* fop */
555 /* 24+ xmm regs. */
558 return 0;
561 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
563 uint32_t tmp;
565 if (i < CPU_NB_REGS) {
566 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
567 return sizeof(target_ulong);
568 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
569 i -= CPU_NB_REGS + 8;
570 #ifdef USE_X86LDOUBLE
571 memcpy(&env->fpregs[i], mem_buf, 10);
572 #endif
573 return 10;
574 } else if (i >= CPU_NB_REGS + 24) {
575 i -= CPU_NB_REGS + 24;
576 if (i < CPU_NB_REGS) {
577 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
578 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
579 return 16;
580 } else if (i == CPU_NB_REGS) {
581 env->mxcsr = ldl_p(mem_buf);
582 return 4;
584 } else {
585 i -= CPU_NB_REGS;
586 switch (i) {
587 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
588 case 1: env->eflags = ldl_p(mem_buf); return 4;
589 #if defined(CONFIG_USER_ONLY)
590 #define LOAD_SEG(index, sreg)\
591 tmp = ldl_p(mem_buf);\
592 if (tmp != env->segs[sreg].selector)\
593 cpu_x86_load_seg(env, sreg, tmp);
594 #else
595 /* FIXME: Honor segment registers. Needs to avoid raising an exception
596 when the selector is invalid. */
597 #define LOAD_SEG(index, sreg) do {} while(0)
598 #endif
599 case 2: LOAD_SEG(10, R_CS); return 4;
600 case 3: LOAD_SEG(11, R_SS); return 4;
601 case 4: LOAD_SEG(12, R_DS); return 4;
602 case 5: LOAD_SEG(13, R_ES); return 4;
603 case 6: LOAD_SEG(14, R_FS); return 4;
604 case 7: LOAD_SEG(15, R_GS); return 4;
605 /* 8...15 x87 regs. */
606 case 16: env->fpuc = ldl_p(mem_buf); return 4;
607 case 17:
608 tmp = ldl_p(mem_buf);
609 env->fpstt = (tmp >> 11) & 7;
610 env->fpus = tmp & ~0x3800;
611 return 4;
612 case 18: /* ftag */ return 4;
613 case 19: /* fiseg */ return 4;
614 case 20: /* fioff */ return 4;
615 case 21: /* foseg */ return 4;
616 case 22: /* fooff */ return 4;
617 case 23: /* fop */ return 4;
618 /* 24+ xmm regs. */
621 /* Unrecognised register. */
622 return 0;
625 #elif defined (TARGET_PPC)
627 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
628 expects whatever the target description contains. Due to a
629 historical mishap the FP registers appear in between core integer
630 regs and PC, MSR, CR, and so forth. We hack round this by giving the
631 FP regs zero size when talking to a newer gdb. */
632 #define NUM_CORE_REGS 71
633 #if defined (TARGET_PPC64)
634 #define GDB_CORE_XML "power64-core.xml"
635 #else
636 #define GDB_CORE_XML "power-core.xml"
637 #endif
639 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
641 if (n < 32) {
642 /* gprs */
643 GET_REGL(env->gpr[n]);
644 } else if (n < 64) {
645 /* fprs */
646 if (gdb_has_xml)
647 return 0;
648 stfq_p(mem_buf, env->fpr[n-32]);
649 return 8;
650 } else {
651 switch (n) {
652 case 64: GET_REGL(env->nip);
653 case 65: GET_REGL(env->msr);
654 case 66:
656 uint32_t cr = 0;
657 int i;
658 for (i = 0; i < 8; i++)
659 cr |= env->crf[i] << (32 - ((i + 1) * 4));
660 GET_REG32(cr);
662 case 67: GET_REGL(env->lr);
663 case 68: GET_REGL(env->ctr);
664 case 69: GET_REGL(env->xer);
665 case 70:
667 if (gdb_has_xml)
668 return 0;
669 GET_REG32(0); /* fpscr */
673 return 0;
676 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
678 if (n < 32) {
679 /* gprs */
680 env->gpr[n] = ldtul_p(mem_buf);
681 return sizeof(target_ulong);
682 } else if (n < 64) {
683 /* fprs */
684 if (gdb_has_xml)
685 return 0;
686 env->fpr[n-32] = ldfq_p(mem_buf);
687 return 8;
688 } else {
689 switch (n) {
690 case 64:
691 env->nip = ldtul_p(mem_buf);
692 return sizeof(target_ulong);
693 case 65:
694 ppc_store_msr(env, ldtul_p(mem_buf));
695 return sizeof(target_ulong);
696 case 66:
698 uint32_t cr = ldl_p(mem_buf);
699 int i;
700 for (i = 0; i < 8; i++)
701 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
702 return 4;
704 case 67:
705 env->lr = ldtul_p(mem_buf);
706 return sizeof(target_ulong);
707 case 68:
708 env->ctr = ldtul_p(mem_buf);
709 return sizeof(target_ulong);
710 case 69:
711 env->xer = ldtul_p(mem_buf);
712 return sizeof(target_ulong);
713 case 70:
714 /* fpscr */
715 if (gdb_has_xml)
716 return 0;
717 return 4;
720 return 0;
723 #elif defined (TARGET_SPARC)
725 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
726 #define NUM_CORE_REGS 86
727 #else
728 #define NUM_CORE_REGS 72
729 #endif
731 #ifdef TARGET_ABI32
732 #define GET_REGA(val) GET_REG32(val)
733 #else
734 #define GET_REGA(val) GET_REGL(val)
735 #endif
737 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
739 if (n < 8) {
740 /* g0..g7 */
741 GET_REGA(env->gregs[n]);
743 if (n < 32) {
744 /* register window */
745 GET_REGA(env->regwptr[n - 8]);
747 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
748 if (n < 64) {
749 /* fprs */
750 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
752 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
753 switch (n) {
754 case 64: GET_REGA(env->y);
755 case 65: GET_REGA(GET_PSR(env));
756 case 66: GET_REGA(env->wim);
757 case 67: GET_REGA(env->tbr);
758 case 68: GET_REGA(env->pc);
759 case 69: GET_REGA(env->npc);
760 case 70: GET_REGA(env->fsr);
761 case 71: GET_REGA(0); /* csr */
762 default: GET_REGA(0);
764 #else
765 if (n < 64) {
766 /* f0-f31 */
767 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
769 if (n < 80) {
770 /* f32-f62 (double width, even numbers only) */
771 uint64_t val;
773 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
774 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
775 GET_REG64(val);
777 switch (n) {
778 case 80: GET_REGL(env->pc);
779 case 81: GET_REGL(env->npc);
780 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
781 ((env->asi & 0xff) << 24) |
782 ((env->pstate & 0xfff) << 8) |
783 GET_CWP64(env));
784 case 83: GET_REGL(env->fsr);
785 case 84: GET_REGL(env->fprs);
786 case 85: GET_REGL(env->y);
788 #endif
789 return 0;
792 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
794 #if defined(TARGET_ABI32)
795 abi_ulong tmp;
797 tmp = ldl_p(mem_buf);
798 #else
799 target_ulong tmp;
801 tmp = ldtul_p(mem_buf);
802 #endif
804 if (n < 8) {
805 /* g0..g7 */
806 env->gregs[n] = tmp;
807 } else if (n < 32) {
808 /* register window */
809 env->regwptr[n - 8] = tmp;
811 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
812 else if (n < 64) {
813 /* fprs */
814 *((uint32_t *)&env->fpr[n - 32]) = tmp;
815 } else {
816 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
817 switch (n) {
818 case 64: env->y = tmp; break;
819 case 65: PUT_PSR(env, tmp); break;
820 case 66: env->wim = tmp; break;
821 case 67: env->tbr = tmp; break;
822 case 68: env->pc = tmp; break;
823 case 69: env->npc = tmp; break;
824 case 70: env->fsr = tmp; break;
825 default: return 0;
828 return 4;
829 #else
830 else if (n < 64) {
831 /* f0-f31 */
832 env->fpr[n] = ldfl_p(mem_buf);
833 return 4;
834 } else if (n < 80) {
835 /* f32-f62 (double width, even numbers only) */
836 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
838 } else {
839 switch (n) {
840 case 80: env->pc = tmp; break;
841 case 81: env->npc = tmp; break;
842 case 82:
843 PUT_CCR(env, tmp >> 32);
844 env->asi = (tmp >> 24) & 0xff;
845 env->pstate = (tmp >> 8) & 0xfff;
846 PUT_CWP64(env, tmp & 0xff);
847 break;
848 case 83: env->fsr = tmp; break;
849 case 84: env->fprs = tmp; break;
850 case 85: env->y = tmp; break;
851 default: return 0;
854 return 8;
855 #endif
857 #elif defined (TARGET_ARM)
859 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
860 whatever the target description contains. Due to a historical mishap
861 the FPA registers appear in between core integer regs and the CPSR.
862 We hack round this by giving the FPA regs zero size when talking to a
863 newer gdb. */
864 #define NUM_CORE_REGS 26
865 #define GDB_CORE_XML "arm-core.xml"
867 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
869 if (n < 16) {
870 /* Core integer register. */
871 GET_REG32(env->regs[n]);
873 if (n < 24) {
874 /* FPA registers. */
875 if (gdb_has_xml)
876 return 0;
877 memset(mem_buf, 0, 12);
878 return 12;
880 switch (n) {
881 case 24:
882 /* FPA status register. */
883 if (gdb_has_xml)
884 return 0;
885 GET_REG32(0);
886 case 25:
887 /* CPSR */
888 GET_REG32(cpsr_read(env));
890 /* Unknown register. */
891 return 0;
894 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
896 uint32_t tmp;
898 tmp = ldl_p(mem_buf);
900 /* Mask out low bit of PC to workaround gdb bugs. This will probably
901 cause problems if we ever implement the Jazelle DBX extensions. */
902 if (n == 15)
903 tmp &= ~1;
905 if (n < 16) {
906 /* Core integer register. */
907 env->regs[n] = tmp;
908 return 4;
910 if (n < 24) { /* 16-23 */
911 /* FPA registers (ignored). */
912 if (gdb_has_xml)
913 return 0;
914 return 12;
916 switch (n) {
917 case 24:
918 /* FPA status register (ignored). */
919 if (gdb_has_xml)
920 return 0;
921 return 4;
922 case 25:
923 /* CPSR */
924 cpsr_write (env, tmp, 0xffffffff);
925 return 4;
927 /* Unknown register. */
928 return 0;
931 #elif defined (TARGET_M68K)
933 #define NUM_CORE_REGS 18
935 #define GDB_CORE_XML "cf-core.xml"
937 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
939 if (n < 8) {
940 /* D0-D7 */
941 GET_REG32(env->dregs[n]);
942 } else if (n < 16) {
943 /* A0-A7 */
944 GET_REG32(env->aregs[n - 8]);
945 } else {
946 switch (n) {
947 case 16: GET_REG32(env->sr);
948 case 17: GET_REG32(env->pc);
951 /* FP registers not included here because they vary between
952 ColdFire and m68k. Use XML bits for these. */
953 return 0;
956 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
958 uint32_t tmp;
960 tmp = ldl_p(mem_buf);
962 if (n < 8) {
963 /* D0-D7 */
964 env->dregs[n] = tmp;
965 } else if (n < 8) {
966 /* A0-A7 */
967 env->aregs[n - 8] = tmp;
968 } else {
969 switch (n) {
970 case 16: env->sr = tmp; break;
971 case 17: env->pc = tmp; break;
972 default: return 0;
975 return 4;
977 #elif defined (TARGET_MIPS)
979 #define NUM_CORE_REGS 73
981 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
983 if (n < 32) {
984 GET_REGL(env->active_tc.gpr[n]);
986 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
987 if (n >= 38 && n < 70) {
988 if (env->CP0_Status & (1 << CP0St_FR))
989 GET_REGL(env->active_fpu.fpr[n - 38].d);
990 else
991 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
993 switch (n) {
994 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
995 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
998 switch (n) {
999 case 32: GET_REGL((int32_t)env->CP0_Status);
1000 case 33: GET_REGL(env->active_tc.LO[0]);
1001 case 34: GET_REGL(env->active_tc.HI[0]);
1002 case 35: GET_REGL(env->CP0_BadVAddr);
1003 case 36: GET_REGL((int32_t)env->CP0_Cause);
1004 case 37: GET_REGL(env->active_tc.PC);
1005 case 72: GET_REGL(0); /* fp */
1006 case 89: GET_REGL((int32_t)env->CP0_PRid);
1008 if (n >= 73 && n <= 88) {
1009 /* 16 embedded regs. */
1010 GET_REGL(0);
1013 return 0;
1016 /* convert MIPS rounding mode in FCR31 to IEEE library */
1017 static unsigned int ieee_rm[] =
1019 float_round_nearest_even,
1020 float_round_to_zero,
1021 float_round_up,
1022 float_round_down
1024 #define RESTORE_ROUNDING_MODE \
1025 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1027 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1029 target_ulong tmp;
1031 tmp = ldtul_p(mem_buf);
1033 if (n < 32) {
1034 env->active_tc.gpr[n] = tmp;
1035 return sizeof(target_ulong);
1037 if (env->CP0_Config1 & (1 << CP0C1_FP)
1038 && n >= 38 && n < 73) {
1039 if (n < 70) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 env->active_fpu.fpr[n - 38].d = tmp;
1042 else
1043 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1045 switch (n) {
1046 case 70:
1047 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1048 /* set rounding mode */
1049 RESTORE_ROUNDING_MODE;
1050 #ifndef CONFIG_SOFTFLOAT
1051 /* no floating point exception for native float */
1052 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1053 #endif
1054 break;
1055 case 71: env->active_fpu.fcr0 = tmp; break;
1057 return sizeof(target_ulong);
1059 switch (n) {
1060 case 32: env->CP0_Status = tmp; break;
1061 case 33: env->active_tc.LO[0] = tmp; break;
1062 case 34: env->active_tc.HI[0] = tmp; break;
1063 case 35: env->CP0_BadVAddr = tmp; break;
1064 case 36: env->CP0_Cause = tmp; break;
1065 case 37: env->active_tc.PC = tmp; break;
1066 case 72: /* fp, ignored */ break;
1067 default:
1068 if (n > 89)
1069 return 0;
1070 /* Other registers are readonly. Ignore writes. */
1071 break;
1074 return sizeof(target_ulong);
1076 #elif defined (TARGET_SH4)
1078 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1079 /* FIXME: We should use XML for this. */
1081 #define NUM_CORE_REGS 59
1083 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1085 if (n < 8) {
1086 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1087 GET_REGL(env->gregs[n + 16]);
1088 } else {
1089 GET_REGL(env->gregs[n]);
1091 } else if (n < 16) {
1092 GET_REGL(env->gregs[n - 8]);
1093 } else if (n >= 25 && n < 41) {
1094 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1095 } else if (n >= 43 && n < 51) {
1096 GET_REGL(env->gregs[n - 43]);
1097 } else if (n >= 51 && n < 59) {
1098 GET_REGL(env->gregs[n - (51 - 16)]);
1100 switch (n) {
1101 case 16: GET_REGL(env->pc);
1102 case 17: GET_REGL(env->pr);
1103 case 18: GET_REGL(env->gbr);
1104 case 19: GET_REGL(env->vbr);
1105 case 20: GET_REGL(env->mach);
1106 case 21: GET_REGL(env->macl);
1107 case 22: GET_REGL(env->sr);
1108 case 23: GET_REGL(env->fpul);
1109 case 24: GET_REGL(env->fpscr);
1110 case 41: GET_REGL(env->ssr);
1111 case 42: GET_REGL(env->spc);
1114 return 0;
1117 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1119 uint32_t tmp;
1121 tmp = ldl_p(mem_buf);
1123 if (n < 8) {
1124 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1125 env->gregs[n + 16] = tmp;
1126 } else {
1127 env->gregs[n] = tmp;
1129 return 4;
1130 } else if (n < 16) {
1131 env->gregs[n - 8] = tmp;
1132 return 4;
1133 } else if (n >= 25 && n < 41) {
1134 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1135 } else if (n >= 43 && n < 51) {
1136 env->gregs[n - 43] = tmp;
1137 return 4;
1138 } else if (n >= 51 && n < 59) {
1139 env->gregs[n - (51 - 16)] = tmp;
1140 return 4;
1142 switch (n) {
1143 case 16: env->pc = tmp;
1144 case 17: env->pr = tmp;
1145 case 18: env->gbr = tmp;
1146 case 19: env->vbr = tmp;
1147 case 20: env->mach = tmp;
1148 case 21: env->macl = tmp;
1149 case 22: env->sr = tmp;
1150 case 23: env->fpul = tmp;
1151 case 24: env->fpscr = tmp;
1152 case 41: env->ssr = tmp;
1153 case 42: env->spc = tmp;
1154 default: return 0;
1157 return 4;
1159 #elif defined (TARGET_CRIS)
1161 #define NUM_CORE_REGS 49
1163 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1165 uint8_t srs;
1167 srs = env->pregs[PR_SRS];
1168 if (n < 16) {
1169 GET_REG32(env->regs[n]);
1172 if (n >= 21 && n < 32) {
1173 GET_REG32(env->pregs[n - 16]);
1175 if (n >= 33 && n < 49) {
1176 GET_REG32(env->sregs[srs][n - 33]);
1178 switch (n) {
1179 case 16: GET_REG8(env->pregs[0]);
1180 case 17: GET_REG8(env->pregs[1]);
1181 case 18: GET_REG32(env->pregs[2]);
1182 case 19: GET_REG8(srs);
1183 case 20: GET_REG16(env->pregs[4]);
1184 case 32: GET_REG32(env->pc);
1187 return 0;
1190 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1192 uint32_t tmp;
1194 if (n > 49)
1195 return 0;
1197 tmp = ldl_p(mem_buf);
1199 if (n < 16) {
1200 env->regs[n] = tmp;
1203 if (n >= 21 && n < 32) {
1204 env->pregs[n - 16] = tmp;
1207 /* FIXME: Should support function regs be writable? */
1208 switch (n) {
1209 case 16: return 1;
1210 case 17: return 1;
1211 case 18: env->pregs[PR_PID] = tmp; break;
1212 case 19: return 1;
1213 case 20: return 2;
1214 case 32: env->pc = tmp; break;
1217 return 4;
1219 #elif defined (TARGET_ALPHA)
1221 #define NUM_CORE_REGS 65
1223 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1225 if (n < 31) {
1226 GET_REGL(env->ir[n]);
1228 else if (n == 31) {
1229 GET_REGL(0);
1231 else if (n<63) {
1232 uint64_t val;
1234 val=*((uint64_t *)&env->fir[n-32]);
1235 GET_REGL(val);
1237 else if (n==63) {
1238 GET_REGL(env->fpcr);
1240 else if (n==64) {
1241 GET_REGL(env->pc);
1243 else {
1244 GET_REGL(0);
1247 return 0;
1250 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1252 target_ulong tmp;
1253 tmp = ldtul_p(mem_buf);
1255 if (n < 31) {
1256 env->ir[n] = tmp;
1259 if (n > 31 && n < 63) {
1260 env->fir[n - 32] = ldfl_p(mem_buf);
1263 if (n == 64 ) {
1264 env->pc=tmp;
1267 return 8;
1269 #else
1271 #define NUM_CORE_REGS 0
1273 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1275 return 0;
1278 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1280 return 0;
1283 #endif
1285 static int num_g_regs = NUM_CORE_REGS;
1287 #ifdef GDB_CORE_XML
1288 /* Encode data using the encoding for 'x' packets. */
1289 static int memtox(char *buf, const char *mem, int len)
1291 char *p = buf;
1292 char c;
1294 while (len--) {
1295 c = *(mem++);
1296 switch (c) {
1297 case '#': case '$': case '*': case '}':
1298 *(p++) = '}';
1299 *(p++) = c ^ 0x20;
1300 break;
1301 default:
1302 *(p++) = c;
1303 break;
1306 return p - buf;
1309 static const char *get_feature_xml(const char *p, const char **newp)
1311 extern const char *const xml_builtin[][2];
1312 size_t len;
1313 int i;
1314 const char *name;
1315 static char target_xml[1024];
1317 len = 0;
1318 while (p[len] && p[len] != ':')
1319 len++;
1320 *newp = p + len;
1322 name = NULL;
1323 if (strncmp(p, "target.xml", len) == 0) {
1324 /* Generate the XML description for this CPU. */
1325 if (!target_xml[0]) {
1326 GDBRegisterState *r;
1328 snprintf(target_xml, sizeof(target_xml),
1329 "<?xml version=\"1.0\"?>"
1330 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1331 "<target>"
1332 "<xi:include href=\"%s\"/>",
1333 GDB_CORE_XML);
1335 for (r = first_cpu->gdb_regs; r; r = r->next) {
1336 strcat(target_xml, "<xi:include href=\"");
1337 strcat(target_xml, r->xml);
1338 strcat(target_xml, "\"/>");
1340 strcat(target_xml, "</target>");
1342 return target_xml;
1344 for (i = 0; ; i++) {
1345 name = xml_builtin[i][0];
1346 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1347 break;
1349 return name ? xml_builtin[i][1] : NULL;
1351 #endif
1353 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1355 GDBRegisterState *r;
1357 if (reg < NUM_CORE_REGS)
1358 return cpu_gdb_read_register(env, mem_buf, reg);
1360 for (r = env->gdb_regs; r; r = r->next) {
1361 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1362 return r->get_reg(env, mem_buf, reg - r->base_reg);
1365 return 0;
1368 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1370 GDBRegisterState *r;
1372 if (reg < NUM_CORE_REGS)
1373 return cpu_gdb_write_register(env, mem_buf, reg);
1375 for (r = env->gdb_regs; r; r = r->next) {
1376 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1377 return r->set_reg(env, mem_buf, reg - r->base_reg);
1380 return 0;
1383 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1384 specifies the first register number and these registers are included in
1385 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1386 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1389 void gdb_register_coprocessor(CPUState * env,
1390 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1391 int num_regs, const char *xml, int g_pos)
1393 GDBRegisterState *s;
1394 GDBRegisterState **p;
1395 static int last_reg = NUM_CORE_REGS;
1397 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1398 s->base_reg = last_reg;
1399 s->num_regs = num_regs;
1400 s->get_reg = get_reg;
1401 s->set_reg = set_reg;
1402 s->xml = xml;
1403 p = &env->gdb_regs;
1404 while (*p) {
1405 /* Check for duplicates. */
1406 if (strcmp((*p)->xml, xml) == 0)
1407 return;
1408 p = &(*p)->next;
1410 /* Add to end of list. */
1411 last_reg += num_regs;
1412 *p = s;
1413 if (g_pos) {
1414 if (g_pos != s->base_reg) {
1415 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1416 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1417 } else {
1418 num_g_regs = last_reg;
1423 #ifndef CONFIG_USER_ONLY
1424 static const int xlat_gdb_type[] = {
1425 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1426 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1427 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1429 #endif
1431 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1433 CPUState *env;
1434 int err = 0;
1436 if (kvm_enabled())
1437 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1439 switch (type) {
1440 case GDB_BREAKPOINT_SW:
1441 case GDB_BREAKPOINT_HW:
1442 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1443 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1444 if (err)
1445 break;
1447 return err;
1448 #ifndef CONFIG_USER_ONLY
1449 case GDB_WATCHPOINT_WRITE:
1450 case GDB_WATCHPOINT_READ:
1451 case GDB_WATCHPOINT_ACCESS:
1452 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1453 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1454 NULL);
1455 if (err)
1456 break;
1458 return err;
1459 #endif
1460 default:
1461 return -ENOSYS;
1465 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1467 CPUState *env;
1468 int err = 0;
1470 if (kvm_enabled())
1471 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1473 switch (type) {
1474 case GDB_BREAKPOINT_SW:
1475 case GDB_BREAKPOINT_HW:
1476 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1477 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1478 if (err)
1479 break;
1481 return err;
1482 #ifndef CONFIG_USER_ONLY
1483 case GDB_WATCHPOINT_WRITE:
1484 case GDB_WATCHPOINT_READ:
1485 case GDB_WATCHPOINT_ACCESS:
1486 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1487 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1488 if (err)
1489 break;
1491 return err;
1492 #endif
1493 default:
1494 return -ENOSYS;
1498 static void gdb_breakpoint_remove_all(void)
1500 CPUState *env;
1502 if (kvm_enabled()) {
1503 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1504 return;
1507 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1508 cpu_breakpoint_remove_all(env, BP_GDB);
1509 #ifndef CONFIG_USER_ONLY
1510 cpu_watchpoint_remove_all(env, BP_GDB);
1511 #endif
1515 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1517 CPUState *env;
1518 const char *p;
1519 int ch, reg_size, type, res, thread;
1520 char buf[MAX_PACKET_LENGTH];
1521 uint8_t mem_buf[MAX_PACKET_LENGTH];
1522 uint8_t *registers;
1523 target_ulong addr, len;
1525 #ifdef DEBUG_GDB
1526 printf("command='%s'\n", line_buf);
1527 #endif
1528 p = line_buf;
1529 ch = *p++;
1530 switch(ch) {
1531 case '?':
1532 /* TODO: Make this return the correct value for user-mode. */
1533 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1534 s->c_cpu->cpu_index+1);
1535 put_packet(s, buf);
1536 /* Remove all the breakpoints when this query is issued,
1537 * because gdb is doing and initial connect and the state
1538 * should be cleaned up.
1540 gdb_breakpoint_remove_all();
1541 break;
1542 case 'c':
1543 if (*p != '\0') {
1544 addr = strtoull(p, (char **)&p, 16);
1545 #if defined(TARGET_I386)
1546 s->c_cpu->eip = addr;
1547 cpu_synchronize_state(s->c_cpu, 1);
1548 #elif defined (TARGET_PPC)
1549 s->c_cpu->nip = addr;
1550 #elif defined (TARGET_SPARC)
1551 s->c_cpu->pc = addr;
1552 s->c_cpu->npc = addr + 4;
1553 #elif defined (TARGET_ARM)
1554 s->c_cpu->regs[15] = addr;
1555 #elif defined (TARGET_SH4)
1556 s->c_cpu->pc = addr;
1557 #elif defined (TARGET_MIPS)
1558 s->c_cpu->active_tc.PC = addr;
1559 #elif defined (TARGET_CRIS)
1560 s->c_cpu->pc = addr;
1561 #elif defined (TARGET_ALPHA)
1562 s->c_cpu->pc = addr;
1563 #endif
1565 s->signal = 0;
1566 gdb_continue(s);
1567 return RS_IDLE;
1568 case 'C':
1569 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1570 if (s->signal == -1)
1571 s->signal = 0;
1572 gdb_continue(s);
1573 return RS_IDLE;
1574 case 'k':
1575 /* Kill the target */
1576 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1577 exit(0);
1578 case 'D':
1579 /* Detach packet */
1580 gdb_breakpoint_remove_all();
1581 gdb_continue(s);
1582 put_packet(s, "OK");
1583 break;
1584 case 's':
1585 if (*p != '\0') {
1586 addr = strtoull(p, (char **)&p, 16);
1587 #if defined(TARGET_I386)
1588 s->c_cpu->eip = addr;
1589 cpu_synchronize_state(s->c_cpu, 1);
1590 #elif defined (TARGET_PPC)
1591 s->c_cpu->nip = addr;
1592 #elif defined (TARGET_SPARC)
1593 s->c_cpu->pc = addr;
1594 s->c_cpu->npc = addr + 4;
1595 #elif defined (TARGET_ARM)
1596 s->c_cpu->regs[15] = addr;
1597 #elif defined (TARGET_SH4)
1598 s->c_cpu->pc = addr;
1599 #elif defined (TARGET_MIPS)
1600 s->c_cpu->active_tc.PC = addr;
1601 #elif defined (TARGET_CRIS)
1602 s->c_cpu->pc = addr;
1603 #elif defined (TARGET_ALPHA)
1604 s->c_cpu->pc = addr;
1605 #endif
1607 cpu_single_step(s->c_cpu, sstep_flags);
1608 gdb_continue(s);
1609 return RS_IDLE;
1610 case 'F':
1612 target_ulong ret;
1613 target_ulong err;
1615 ret = strtoull(p, (char **)&p, 16);
1616 if (*p == ',') {
1617 p++;
1618 err = strtoull(p, (char **)&p, 16);
1619 } else {
1620 err = 0;
1622 if (*p == ',')
1623 p++;
1624 type = *p;
1625 if (gdb_current_syscall_cb)
1626 gdb_current_syscall_cb(s->c_cpu, ret, err);
1627 if (type == 'C') {
1628 put_packet(s, "T02");
1629 } else {
1630 gdb_continue(s);
1633 break;
1634 case 'g':
1635 cpu_synchronize_state(s->g_cpu, 0);
1636 len = 0;
1637 for (addr = 0; addr < num_g_regs; addr++) {
1638 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1639 len += reg_size;
1641 memtohex(buf, mem_buf, len);
1642 put_packet(s, buf);
1643 break;
1644 case 'G':
1645 registers = mem_buf;
1646 len = strlen(p) / 2;
1647 hextomem((uint8_t *)registers, p, len);
1648 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1649 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1650 len -= reg_size;
1651 registers += reg_size;
1653 cpu_synchronize_state(s->g_cpu, 1);
1654 put_packet(s, "OK");
1655 break;
1656 case 'm':
1657 addr = strtoull(p, (char **)&p, 16);
1658 if (*p == ',')
1659 p++;
1660 len = strtoull(p, NULL, 16);
1661 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1662 put_packet (s, "E14");
1663 } else {
1664 memtohex(buf, mem_buf, len);
1665 put_packet(s, buf);
1667 break;
1668 case 'M':
1669 addr = strtoull(p, (char **)&p, 16);
1670 if (*p == ',')
1671 p++;
1672 len = strtoull(p, (char **)&p, 16);
1673 if (*p == ':')
1674 p++;
1675 hextomem(mem_buf, p, len);
1676 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1677 put_packet(s, "E14");
1678 else
1679 put_packet(s, "OK");
1680 break;
1681 case 'p':
1682 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1683 This works, but can be very slow. Anything new enough to
1684 understand XML also knows how to use this properly. */
1685 if (!gdb_has_xml)
1686 goto unknown_command;
1687 addr = strtoull(p, (char **)&p, 16);
1688 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1689 if (reg_size) {
1690 memtohex(buf, mem_buf, reg_size);
1691 put_packet(s, buf);
1692 } else {
1693 put_packet(s, "E14");
1695 break;
1696 case 'P':
1697 if (!gdb_has_xml)
1698 goto unknown_command;
1699 addr = strtoull(p, (char **)&p, 16);
1700 if (*p == '=')
1701 p++;
1702 reg_size = strlen(p) / 2;
1703 hextomem(mem_buf, p, reg_size);
1704 gdb_write_register(s->g_cpu, mem_buf, addr);
1705 put_packet(s, "OK");
1706 break;
1707 case 'Z':
1708 case 'z':
1709 type = strtoul(p, (char **)&p, 16);
1710 if (*p == ',')
1711 p++;
1712 addr = strtoull(p, (char **)&p, 16);
1713 if (*p == ',')
1714 p++;
1715 len = strtoull(p, (char **)&p, 16);
1716 if (ch == 'Z')
1717 res = gdb_breakpoint_insert(addr, len, type);
1718 else
1719 res = gdb_breakpoint_remove(addr, len, type);
1720 if (res >= 0)
1721 put_packet(s, "OK");
1722 else if (res == -ENOSYS)
1723 put_packet(s, "");
1724 else
1725 put_packet(s, "E22");
1726 break;
1727 case 'H':
1728 type = *p++;
1729 thread = strtoull(p, (char **)&p, 16);
1730 if (thread == -1 || thread == 0) {
1731 put_packet(s, "OK");
1732 break;
1734 for (env = first_cpu; env != NULL; env = env->next_cpu)
1735 if (env->cpu_index + 1 == thread)
1736 break;
1737 if (env == NULL) {
1738 put_packet(s, "E22");
1739 break;
1741 switch (type) {
1742 case 'c':
1743 s->c_cpu = env;
1744 put_packet(s, "OK");
1745 break;
1746 case 'g':
1747 s->g_cpu = env;
1748 put_packet(s, "OK");
1749 break;
1750 default:
1751 put_packet(s, "E22");
1752 break;
1754 break;
1755 case 'T':
1756 thread = strtoull(p, (char **)&p, 16);
1757 #ifndef CONFIG_USER_ONLY
1758 if (thread > 0 && thread < smp_cpus + 1)
1759 #else
1760 if (thread == 1)
1761 #endif
1762 put_packet(s, "OK");
1763 else
1764 put_packet(s, "E22");
1765 break;
1766 case 'q':
1767 case 'Q':
1768 /* parse any 'q' packets here */
1769 if (!strcmp(p,"qemu.sstepbits")) {
1770 /* Query Breakpoint bit definitions */
1771 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1772 SSTEP_ENABLE,
1773 SSTEP_NOIRQ,
1774 SSTEP_NOTIMER);
1775 put_packet(s, buf);
1776 break;
1777 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1778 /* Display or change the sstep_flags */
1779 p += 10;
1780 if (*p != '=') {
1781 /* Display current setting */
1782 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1783 put_packet(s, buf);
1784 break;
1786 p++;
1787 type = strtoul(p, (char **)&p, 16);
1788 sstep_flags = type;
1789 put_packet(s, "OK");
1790 break;
1791 } else if (strcmp(p,"C") == 0) {
1792 /* "Current thread" remains vague in the spec, so always return
1793 * the first CPU (gdb returns the first thread). */
1794 put_packet(s, "QC1");
1795 break;
1796 } else if (strcmp(p,"fThreadInfo") == 0) {
1797 s->query_cpu = first_cpu;
1798 goto report_cpuinfo;
1799 } else if (strcmp(p,"sThreadInfo") == 0) {
1800 report_cpuinfo:
1801 if (s->query_cpu) {
1802 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1803 put_packet(s, buf);
1804 s->query_cpu = s->query_cpu->next_cpu;
1805 } else
1806 put_packet(s, "l");
1807 break;
1808 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1809 thread = strtoull(p+16, (char **)&p, 16);
1810 for (env = first_cpu; env != NULL; env = env->next_cpu)
1811 if (env->cpu_index + 1 == thread) {
1812 cpu_synchronize_state(env, 0);
1813 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1814 "CPU#%d [%s]", env->cpu_index,
1815 env->halted ? "halted " : "running");
1816 memtohex(buf, mem_buf, len);
1817 put_packet(s, buf);
1818 break;
1820 break;
1822 #ifdef CONFIG_USER_ONLY
1823 else if (strncmp(p, "Offsets", 7) == 0) {
1824 TaskState *ts = s->c_cpu->opaque;
1826 snprintf(buf, sizeof(buf),
1827 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1828 ";Bss=" TARGET_ABI_FMT_lx,
1829 ts->info->code_offset,
1830 ts->info->data_offset,
1831 ts->info->data_offset);
1832 put_packet(s, buf);
1833 break;
1835 #else /* !CONFIG_USER_ONLY */
1836 else if (strncmp(p, "Rcmd,", 5) == 0) {
1837 int len = strlen(p + 5);
1839 if ((len % 2) != 0) {
1840 put_packet(s, "E01");
1841 break;
1843 hextomem(mem_buf, p + 5, len);
1844 len = len / 2;
1845 mem_buf[len++] = 0;
1846 qemu_chr_read(s->mon_chr, mem_buf, len);
1847 put_packet(s, "OK");
1848 break;
1850 #endif /* !CONFIG_USER_ONLY */
1851 if (strncmp(p, "Supported", 9) == 0) {
1852 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1853 #ifdef GDB_CORE_XML
1854 strcat(buf, ";qXfer:features:read+");
1855 #endif
1856 put_packet(s, buf);
1857 break;
1859 #ifdef GDB_CORE_XML
1860 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1861 const char *xml;
1862 target_ulong total_len;
1864 gdb_has_xml = 1;
1865 p += 19;
1866 xml = get_feature_xml(p, &p);
1867 if (!xml) {
1868 snprintf(buf, sizeof(buf), "E00");
1869 put_packet(s, buf);
1870 break;
1873 if (*p == ':')
1874 p++;
1875 addr = strtoul(p, (char **)&p, 16);
1876 if (*p == ',')
1877 p++;
1878 len = strtoul(p, (char **)&p, 16);
1880 total_len = strlen(xml);
1881 if (addr > total_len) {
1882 snprintf(buf, sizeof(buf), "E00");
1883 put_packet(s, buf);
1884 break;
1886 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1887 len = (MAX_PACKET_LENGTH - 5) / 2;
1888 if (len < total_len - addr) {
1889 buf[0] = 'm';
1890 len = memtox(buf + 1, xml + addr, len);
1891 } else {
1892 buf[0] = 'l';
1893 len = memtox(buf + 1, xml + addr, total_len - addr);
1895 put_packet_binary(s, buf, len + 1);
1896 break;
1898 #endif
1899 /* Unrecognised 'q' command. */
1900 goto unknown_command;
1902 default:
1903 unknown_command:
1904 /* put empty packet */
1905 buf[0] = '\0';
1906 put_packet(s, buf);
1907 break;
1909 return RS_IDLE;
1912 void gdb_set_stop_cpu(CPUState *env)
1914 gdbserver_state->c_cpu = env;
1915 gdbserver_state->g_cpu = env;
1918 #ifndef CONFIG_USER_ONLY
1919 static void gdb_vm_state_change(void *opaque, int running, int reason)
1921 GDBState *s = gdbserver_state;
1922 CPUState *env = s->c_cpu;
1923 char buf[256];
1924 const char *type;
1925 int ret;
1927 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1928 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1929 return;
1931 /* disable single step if it was enable */
1932 cpu_single_step(env, 0);
1934 if (reason == EXCP_DEBUG) {
1935 if (env->watchpoint_hit) {
1936 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1937 case BP_MEM_READ:
1938 type = "r";
1939 break;
1940 case BP_MEM_ACCESS:
1941 type = "a";
1942 break;
1943 default:
1944 type = "";
1945 break;
1947 snprintf(buf, sizeof(buf),
1948 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1949 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1950 env->watchpoint_hit->vaddr);
1951 put_packet(s, buf);
1952 env->watchpoint_hit = NULL;
1953 return;
1955 tb_flush(env);
1956 ret = GDB_SIGNAL_TRAP;
1957 } else {
1958 ret = GDB_SIGNAL_INT;
1960 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1961 put_packet(s, buf);
1963 #endif
1965 /* Send a gdb syscall request.
1966 This accepts limited printf-style format specifiers, specifically:
1967 %x - target_ulong argument printed in hex.
1968 %lx - 64-bit argument printed in hex.
1969 %s - string pointer (target_ulong) and length (int) pair. */
1970 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1972 va_list va;
1973 char buf[256];
1974 char *p;
1975 target_ulong addr;
1976 uint64_t i64;
1977 GDBState *s;
1979 s = gdbserver_state;
1980 if (!s)
1981 return;
1982 gdb_current_syscall_cb = cb;
1983 s->state = RS_SYSCALL;
1984 #ifndef CONFIG_USER_ONLY
1985 vm_stop(EXCP_DEBUG);
1986 #endif
1987 s->state = RS_IDLE;
1988 va_start(va, fmt);
1989 p = buf;
1990 *(p++) = 'F';
1991 while (*fmt) {
1992 if (*fmt == '%') {
1993 fmt++;
1994 switch (*fmt++) {
1995 case 'x':
1996 addr = va_arg(va, target_ulong);
1997 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1998 break;
1999 case 'l':
2000 if (*(fmt++) != 'x')
2001 goto bad_format;
2002 i64 = va_arg(va, uint64_t);
2003 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2004 break;
2005 case 's':
2006 addr = va_arg(va, target_ulong);
2007 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2008 addr, va_arg(va, int));
2009 break;
2010 default:
2011 bad_format:
2012 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2013 fmt - 1);
2014 break;
2016 } else {
2017 *(p++) = *(fmt++);
2020 *p = 0;
2021 va_end(va);
2022 put_packet(s, buf);
2023 #ifdef CONFIG_USER_ONLY
2024 gdb_handlesig(s->c_cpu, 0);
2025 #else
2026 cpu_exit(s->c_cpu);
2027 #endif
2030 static void gdb_read_byte(GDBState *s, int ch)
2032 int i, csum;
2033 uint8_t reply;
2035 #ifndef CONFIG_USER_ONLY
2036 if (s->last_packet_len) {
2037 /* Waiting for a response to the last packet. If we see the start
2038 of a new command then abandon the previous response. */
2039 if (ch == '-') {
2040 #ifdef DEBUG_GDB
2041 printf("Got NACK, retransmitting\n");
2042 #endif
2043 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2045 #ifdef DEBUG_GDB
2046 else if (ch == '+')
2047 printf("Got ACK\n");
2048 else
2049 printf("Got '%c' when expecting ACK/NACK\n", ch);
2050 #endif
2051 if (ch == '+' || ch == '$')
2052 s->last_packet_len = 0;
2053 if (ch != '$')
2054 return;
2056 if (vm_running) {
2057 /* when the CPU is running, we cannot do anything except stop
2058 it when receiving a char */
2059 vm_stop(EXCP_INTERRUPT);
2060 } else
2061 #endif
2063 switch(s->state) {
2064 case RS_IDLE:
2065 if (ch == '$') {
2066 s->line_buf_index = 0;
2067 s->state = RS_GETLINE;
2069 break;
2070 case RS_GETLINE:
2071 if (ch == '#') {
2072 s->state = RS_CHKSUM1;
2073 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2074 s->state = RS_IDLE;
2075 } else {
2076 s->line_buf[s->line_buf_index++] = ch;
2078 break;
2079 case RS_CHKSUM1:
2080 s->line_buf[s->line_buf_index] = '\0';
2081 s->line_csum = fromhex(ch) << 4;
2082 s->state = RS_CHKSUM2;
2083 break;
2084 case RS_CHKSUM2:
2085 s->line_csum |= fromhex(ch);
2086 csum = 0;
2087 for(i = 0; i < s->line_buf_index; i++) {
2088 csum += s->line_buf[i];
2090 if (s->line_csum != (csum & 0xff)) {
2091 reply = '-';
2092 put_buffer(s, &reply, 1);
2093 s->state = RS_IDLE;
2094 } else {
2095 reply = '+';
2096 put_buffer(s, &reply, 1);
2097 s->state = gdb_handle_packet(s, s->line_buf);
2099 break;
2100 default:
2101 abort();
2106 #ifdef CONFIG_USER_ONLY
2108 gdb_queuesig (void)
2110 GDBState *s;
2112 s = gdbserver_state;
2114 if (gdbserver_fd < 0 || s->fd < 0)
2115 return 0;
2116 else
2117 return 1;
2121 gdb_handlesig (CPUState *env, int sig)
2123 GDBState *s;
2124 char buf[256];
2125 int n;
2127 s = gdbserver_state;
2128 if (gdbserver_fd < 0 || s->fd < 0)
2129 return sig;
2131 /* disable single step if it was enabled */
2132 cpu_single_step(env, 0);
2133 tb_flush(env);
2135 if (sig != 0)
2137 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2138 put_packet(s, buf);
2140 /* put_packet() might have detected that the peer terminated the
2141 connection. */
2142 if (s->fd < 0)
2143 return sig;
2145 sig = 0;
2146 s->state = RS_IDLE;
2147 s->running_state = 0;
2148 while (s->running_state == 0) {
2149 n = read (s->fd, buf, 256);
2150 if (n > 0)
2152 int i;
2154 for (i = 0; i < n; i++)
2155 gdb_read_byte (s, buf[i]);
2157 else if (n == 0 || errno != EAGAIN)
2159 /* XXX: Connection closed. Should probably wait for annother
2160 connection before continuing. */
2161 return sig;
2164 sig = s->signal;
2165 s->signal = 0;
2166 return sig;
2169 /* Tell the remote gdb that the process has exited. */
2170 void gdb_exit(CPUState *env, int code)
2172 GDBState *s;
2173 char buf[4];
2175 s = gdbserver_state;
2176 if (gdbserver_fd < 0 || s->fd < 0)
2177 return;
2179 snprintf(buf, sizeof(buf), "W%02x", code);
2180 put_packet(s, buf);
2183 /* Tell the remote gdb that the process has exited due to SIG. */
2184 void gdb_signalled(CPUState *env, int sig)
2186 GDBState *s;
2187 char buf[4];
2189 s = gdbserver_state;
2190 if (gdbserver_fd < 0 || s->fd < 0)
2191 return;
2193 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2194 put_packet(s, buf);
2197 static void gdb_accept(void)
2199 GDBState *s;
2200 struct sockaddr_in sockaddr;
2201 socklen_t len;
2202 int val, fd;
2204 for(;;) {
2205 len = sizeof(sockaddr);
2206 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2207 if (fd < 0 && errno != EINTR) {
2208 perror("accept");
2209 return;
2210 } else if (fd >= 0) {
2211 break;
2215 /* set short latency */
2216 val = 1;
2217 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2219 s = qemu_mallocz(sizeof(GDBState));
2220 s->c_cpu = first_cpu;
2221 s->g_cpu = first_cpu;
2222 s->fd = fd;
2223 gdb_has_xml = 0;
2225 gdbserver_state = s;
2227 fcntl(fd, F_SETFL, O_NONBLOCK);
2230 static int gdbserver_open(int port)
2232 struct sockaddr_in sockaddr;
2233 int fd, val, ret;
2235 fd = socket(PF_INET, SOCK_STREAM, 0);
2236 if (fd < 0) {
2237 perror("socket");
2238 return -1;
2241 /* allow fast reuse */
2242 val = 1;
2243 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2245 sockaddr.sin_family = AF_INET;
2246 sockaddr.sin_port = htons(port);
2247 sockaddr.sin_addr.s_addr = 0;
2248 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2249 if (ret < 0) {
2250 perror("bind");
2251 return -1;
2253 ret = listen(fd, 0);
2254 if (ret < 0) {
2255 perror("listen");
2256 return -1;
2258 return fd;
2261 int gdbserver_start(int port)
2263 gdbserver_fd = gdbserver_open(port);
2264 if (gdbserver_fd < 0)
2265 return -1;
2266 /* accept connections */
2267 gdb_accept();
2268 return 0;
2271 /* Disable gdb stub for child processes. */
2272 void gdbserver_fork(CPUState *env)
2274 GDBState *s = gdbserver_state;
2275 if (gdbserver_fd < 0 || s->fd < 0)
2276 return;
2277 close(s->fd);
2278 s->fd = -1;
2279 cpu_breakpoint_remove_all(env, BP_GDB);
2280 cpu_watchpoint_remove_all(env, BP_GDB);
2282 #else
2283 static int gdb_chr_can_receive(void *opaque)
2285 /* We can handle an arbitrarily large amount of data.
2286 Pick the maximum packet size, which is as good as anything. */
2287 return MAX_PACKET_LENGTH;
2290 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2292 int i;
2294 for (i = 0; i < size; i++) {
2295 gdb_read_byte(gdbserver_state, buf[i]);
2299 static void gdb_chr_event(void *opaque, int event)
2301 switch (event) {
2302 case CHR_EVENT_RESET:
2303 vm_stop(EXCP_INTERRUPT);
2304 gdb_has_xml = 0;
2305 break;
2306 default:
2307 break;
2311 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2313 char buf[MAX_PACKET_LENGTH];
2315 buf[0] = 'O';
2316 if (len > (MAX_PACKET_LENGTH/2) - 1)
2317 len = (MAX_PACKET_LENGTH/2) - 1;
2318 memtohex(buf + 1, (uint8_t *)msg, len);
2319 put_packet(s, buf);
2322 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2324 const char *p = (const char *)buf;
2325 int max_sz;
2327 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2328 for (;;) {
2329 if (len <= max_sz) {
2330 gdb_monitor_output(gdbserver_state, p, len);
2331 break;
2333 gdb_monitor_output(gdbserver_state, p, max_sz);
2334 p += max_sz;
2335 len -= max_sz;
2337 return len;
2340 int gdbserver_start(const char *port)
2342 GDBState *s;
2343 char gdbstub_port_name[128];
2344 int port_num;
2345 char *p;
2346 CharDriverState *chr = NULL;
2347 CharDriverState *mon_chr;
2349 if (!port || !*port)
2350 return -1;
2351 if (strcmp(port, "none") != 0) {
2352 port_num = strtol(port, &p, 10);
2353 if (*p == 0) {
2354 /* A numeric value is interpreted as a port number. */
2355 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2356 "tcp::%d,nowait,nodelay,server", port_num);
2357 port = gdbstub_port_name;
2360 chr = qemu_chr_open("gdb", port, NULL);
2361 if (!chr)
2362 return -1;
2364 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2365 gdb_chr_event, NULL);
2368 s = gdbserver_state;
2369 if (!s) {
2370 s = qemu_mallocz(sizeof(GDBState));
2371 gdbserver_state = s;
2373 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2375 /* Initialize a monitor terminal for gdb */
2376 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2377 mon_chr->chr_write = gdb_monitor_write;
2378 monitor_init(mon_chr, 0);
2379 } else {
2380 if (s->chr)
2381 qemu_chr_close(s->chr);
2382 mon_chr = s->mon_chr;
2383 memset(s, 0, sizeof(GDBState));
2385 s->c_cpu = first_cpu;
2386 s->g_cpu = first_cpu;
2387 s->chr = chr;
2388 s->state = chr ? RS_IDLE : RS_INACTIVE;
2389 s->mon_chr = mon_chr;
2391 return 0;
2393 #endif