Do not use load_seg_vm to load CS in real mode iret handling
[qemu/mini2440.git] / vl.c
blob743e613e7a69e06af774cd70d08d6129b324f306
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/boards.h"
26 #include "hw/usb.h"
27 #include "hw/pcmcia.h"
28 #include "hw/pc.h"
29 #include "hw/audiodev.h"
30 #include "hw/isa.h"
31 #include "hw/baum.h"
32 #include "hw/bt.h"
33 #include "net.h"
34 #include "console.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #include "qemu-timer.h"
38 #include "qemu-char.h"
39 #include "block.h"
40 #include "audio/audio.h"
42 #include <unistd.h>
43 #include <fcntl.h>
44 #include <signal.h>
45 #include <time.h>
46 #include <errno.h>
47 #include <sys/time.h>
48 #include <zlib.h>
50 #ifndef _WIN32
51 #include <sys/times.h>
52 #include <sys/wait.h>
53 #include <termios.h>
54 #include <sys/poll.h>
55 #include <sys/mman.h>
56 #include <sys/ioctl.h>
57 #include <sys/socket.h>
58 #include <netinet/in.h>
59 #include <dirent.h>
60 #include <netdb.h>
61 #include <sys/select.h>
62 #include <arpa/inet.h>
63 #ifdef _BSD
64 #include <sys/stat.h>
65 #if !defined(__APPLE__) && !defined(__OpenBSD__)
66 #include <libutil.h>
67 #endif
68 #ifdef __OpenBSD__
69 #include <net/if.h>
70 #endif
71 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
72 #include <freebsd/stdlib.h>
73 #else
74 #ifdef __linux__
75 #include <linux/if.h>
76 #include <linux/if_tun.h>
77 #include <pty.h>
78 #include <malloc.h>
79 #include <linux/rtc.h>
81 /* For the benefit of older linux systems which don't supply it,
82 we use a local copy of hpet.h. */
83 /* #include <linux/hpet.h> */
84 #include "hpet.h"
86 #include <linux/ppdev.h>
87 #include <linux/parport.h>
88 #endif
89 #ifdef __sun__
90 #include <sys/stat.h>
91 #include <sys/ethernet.h>
92 #include <sys/sockio.h>
93 #include <netinet/arp.h>
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_icmp.h> // must come after ip.h
98 #include <netinet/udp.h>
99 #include <netinet/tcp.h>
100 #include <net/if.h>
101 #include <syslog.h>
102 #include <stropts.h>
103 #endif
104 #endif
105 #endif
107 #include "qemu_socket.h"
109 #if defined(CONFIG_SLIRP)
110 #include "libslirp.h"
111 #endif
113 #if defined(__OpenBSD__)
114 #include <util.h>
115 #endif
117 #if defined(CONFIG_VDE)
118 #include <libvdeplug.h>
119 #endif
121 #ifdef _WIN32
122 #include <malloc.h>
123 #include <sys/timeb.h>
124 #include <mmsystem.h>
125 #define getopt_long_only getopt_long
126 #define memalign(align, size) malloc(size)
127 #endif
129 #ifdef CONFIG_SDL
130 #ifdef __APPLE__
131 #include <SDL/SDL.h>
132 #endif
133 #endif /* CONFIG_SDL */
135 #ifdef CONFIG_COCOA
136 #undef main
137 #define main qemu_main
138 #endif /* CONFIG_COCOA */
140 #include "disas.h"
142 #include "exec-all.h"
144 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
145 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
146 #ifdef __sun__
147 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
148 #else
149 #define SMBD_COMMAND "/usr/sbin/smbd"
150 #endif
152 //#define DEBUG_UNUSED_IOPORT
153 //#define DEBUG_IOPORT
155 #ifdef TARGET_PPC
156 #define DEFAULT_RAM_SIZE 144
157 #else
158 #define DEFAULT_RAM_SIZE 128
159 #endif
161 /* Max number of USB devices that can be specified on the commandline. */
162 #define MAX_USB_CMDLINE 8
164 /* XXX: use a two level table to limit memory usage */
165 #define MAX_IOPORTS 65536
167 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
168 const char *bios_name = NULL;
169 static void *ioport_opaque[MAX_IOPORTS];
170 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
171 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
172 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
173 to store the VM snapshots */
174 DriveInfo drives_table[MAX_DRIVES+1];
175 int nb_drives;
176 /* point to the block driver where the snapshots are managed */
177 static BlockDriverState *bs_snapshots;
178 static int vga_ram_size;
179 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
180 static DisplayState display_state;
181 int nographic;
182 static int curses;
183 const char* keyboard_layout = NULL;
184 int64_t ticks_per_sec;
185 ram_addr_t ram_size;
186 int nb_nics;
187 NICInfo nd_table[MAX_NICS];
188 int vm_running;
189 static int rtc_utc = 1;
190 static int rtc_date_offset = -1; /* -1 means no change */
191 int cirrus_vga_enabled = 1;
192 int vmsvga_enabled = 0;
193 #ifdef TARGET_SPARC
194 int graphic_width = 1024;
195 int graphic_height = 768;
196 int graphic_depth = 8;
197 #else
198 int graphic_width = 800;
199 int graphic_height = 600;
200 int graphic_depth = 15;
201 #endif
202 static int full_screen = 0;
203 static int no_frame = 0;
204 int no_quit = 0;
205 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
206 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
207 #ifdef TARGET_I386
208 int win2k_install_hack = 0;
209 #endif
210 int usb_enabled = 0;
211 static VLANState *first_vlan;
212 int smp_cpus = 1;
213 const char *vnc_display;
214 #if defined(TARGET_SPARC)
215 #define MAX_CPUS 16
216 #elif defined(TARGET_I386)
217 #define MAX_CPUS 255
218 #else
219 #define MAX_CPUS 1
220 #endif
221 int acpi_enabled = 1;
222 int fd_bootchk = 1;
223 int no_reboot = 0;
224 int no_shutdown = 0;
225 int cursor_hide = 1;
226 int graphic_rotate = 0;
227 int daemonize = 0;
228 const char *option_rom[MAX_OPTION_ROMS];
229 int nb_option_roms;
230 int semihosting_enabled = 0;
231 int autostart = 1;
232 #ifdef TARGET_ARM
233 int old_param = 0;
234 #endif
235 const char *qemu_name;
236 int alt_grab = 0;
237 #ifdef TARGET_SPARC
238 unsigned int nb_prom_envs = 0;
239 const char *prom_envs[MAX_PROM_ENVS];
240 #endif
241 static int nb_drives_opt;
242 static struct drive_opt {
243 const char *file;
244 char opt[1024];
245 } drives_opt[MAX_DRIVES];
247 static CPUState *cur_cpu;
248 static CPUState *next_cpu;
249 static int event_pending = 1;
250 /* Conversion factor from emulated instructions to virtual clock ticks. */
251 static int icount_time_shift;
252 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
253 #define MAX_ICOUNT_SHIFT 10
254 /* Compensate for varying guest execution speed. */
255 static int64_t qemu_icount_bias;
256 static QEMUTimer *icount_rt_timer;
257 static QEMUTimer *icount_vm_timer;
259 uint8_t qemu_uuid[16];
261 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
263 /***********************************************************/
264 /* x86 ISA bus support */
266 target_phys_addr_t isa_mem_base = 0;
267 PicState2 *isa_pic;
269 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
270 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
272 static uint32_t ioport_read(int index, uint32_t address)
274 static IOPortReadFunc *default_func[3] = {
275 default_ioport_readb,
276 default_ioport_readw,
277 default_ioport_readl
279 IOPortReadFunc *func = ioport_read_table[index][address];
280 if (!func)
281 func = default_func[index];
282 return func(ioport_opaque[address], address);
285 static void ioport_write(int index, uint32_t address, uint32_t data)
287 static IOPortWriteFunc *default_func[3] = {
288 default_ioport_writeb,
289 default_ioport_writew,
290 default_ioport_writel
292 IOPortWriteFunc *func = ioport_write_table[index][address];
293 if (!func)
294 func = default_func[index];
295 func(ioport_opaque[address], address, data);
298 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
300 #ifdef DEBUG_UNUSED_IOPORT
301 fprintf(stderr, "unused inb: port=0x%04x\n", address);
302 #endif
303 return 0xff;
306 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
308 #ifdef DEBUG_UNUSED_IOPORT
309 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
310 #endif
313 /* default is to make two byte accesses */
314 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
316 uint32_t data;
317 data = ioport_read(0, address);
318 address = (address + 1) & (MAX_IOPORTS - 1);
319 data |= ioport_read(0, address) << 8;
320 return data;
323 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
325 ioport_write(0, address, data & 0xff);
326 address = (address + 1) & (MAX_IOPORTS - 1);
327 ioport_write(0, address, (data >> 8) & 0xff);
330 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
332 #ifdef DEBUG_UNUSED_IOPORT
333 fprintf(stderr, "unused inl: port=0x%04x\n", address);
334 #endif
335 return 0xffffffff;
338 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
340 #ifdef DEBUG_UNUSED_IOPORT
341 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
342 #endif
345 /* size is the word size in byte */
346 int register_ioport_read(int start, int length, int size,
347 IOPortReadFunc *func, void *opaque)
349 int i, bsize;
351 if (size == 1) {
352 bsize = 0;
353 } else if (size == 2) {
354 bsize = 1;
355 } else if (size == 4) {
356 bsize = 2;
357 } else {
358 hw_error("register_ioport_read: invalid size");
359 return -1;
361 for(i = start; i < start + length; i += size) {
362 ioport_read_table[bsize][i] = func;
363 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
364 hw_error("register_ioport_read: invalid opaque");
365 ioport_opaque[i] = opaque;
367 return 0;
370 /* size is the word size in byte */
371 int register_ioport_write(int start, int length, int size,
372 IOPortWriteFunc *func, void *opaque)
374 int i, bsize;
376 if (size == 1) {
377 bsize = 0;
378 } else if (size == 2) {
379 bsize = 1;
380 } else if (size == 4) {
381 bsize = 2;
382 } else {
383 hw_error("register_ioport_write: invalid size");
384 return -1;
386 for(i = start; i < start + length; i += size) {
387 ioport_write_table[bsize][i] = func;
388 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
389 hw_error("register_ioport_write: invalid opaque");
390 ioport_opaque[i] = opaque;
392 return 0;
395 void isa_unassign_ioport(int start, int length)
397 int i;
399 for(i = start; i < start + length; i++) {
400 ioport_read_table[0][i] = default_ioport_readb;
401 ioport_read_table[1][i] = default_ioport_readw;
402 ioport_read_table[2][i] = default_ioport_readl;
404 ioport_write_table[0][i] = default_ioport_writeb;
405 ioport_write_table[1][i] = default_ioport_writew;
406 ioport_write_table[2][i] = default_ioport_writel;
410 /***********************************************************/
412 void cpu_outb(CPUState *env, int addr, int val)
414 #ifdef DEBUG_IOPORT
415 if (loglevel & CPU_LOG_IOPORT)
416 fprintf(logfile, "outb: %04x %02x\n", addr, val);
417 #endif
418 ioport_write(0, addr, val);
419 #ifdef USE_KQEMU
420 if (env)
421 env->last_io_time = cpu_get_time_fast();
422 #endif
425 void cpu_outw(CPUState *env, int addr, int val)
427 #ifdef DEBUG_IOPORT
428 if (loglevel & CPU_LOG_IOPORT)
429 fprintf(logfile, "outw: %04x %04x\n", addr, val);
430 #endif
431 ioport_write(1, addr, val);
432 #ifdef USE_KQEMU
433 if (env)
434 env->last_io_time = cpu_get_time_fast();
435 #endif
438 void cpu_outl(CPUState *env, int addr, int val)
440 #ifdef DEBUG_IOPORT
441 if (loglevel & CPU_LOG_IOPORT)
442 fprintf(logfile, "outl: %04x %08x\n", addr, val);
443 #endif
444 ioport_write(2, addr, val);
445 #ifdef USE_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
451 int cpu_inb(CPUState *env, int addr)
453 int val;
454 val = ioport_read(0, addr);
455 #ifdef DEBUG_IOPORT
456 if (loglevel & CPU_LOG_IOPORT)
457 fprintf(logfile, "inb : %04x %02x\n", addr, val);
458 #endif
459 #ifdef USE_KQEMU
460 if (env)
461 env->last_io_time = cpu_get_time_fast();
462 #endif
463 return val;
466 int cpu_inw(CPUState *env, int addr)
468 int val;
469 val = ioport_read(1, addr);
470 #ifdef DEBUG_IOPORT
471 if (loglevel & CPU_LOG_IOPORT)
472 fprintf(logfile, "inw : %04x %04x\n", addr, val);
473 #endif
474 #ifdef USE_KQEMU
475 if (env)
476 env->last_io_time = cpu_get_time_fast();
477 #endif
478 return val;
481 int cpu_inl(CPUState *env, int addr)
483 int val;
484 val = ioport_read(2, addr);
485 #ifdef DEBUG_IOPORT
486 if (loglevel & CPU_LOG_IOPORT)
487 fprintf(logfile, "inl : %04x %08x\n", addr, val);
488 #endif
489 #ifdef USE_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
496 /***********************************************************/
497 void hw_error(const char *fmt, ...)
499 va_list ap;
500 CPUState *env;
502 va_start(ap, fmt);
503 fprintf(stderr, "qemu: hardware error: ");
504 vfprintf(stderr, fmt, ap);
505 fprintf(stderr, "\n");
506 for(env = first_cpu; env != NULL; env = env->next_cpu) {
507 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
508 #ifdef TARGET_I386
509 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
510 #else
511 cpu_dump_state(env, stderr, fprintf, 0);
512 #endif
514 va_end(ap);
515 abort();
518 /***********************************************************/
519 /* keyboard/mouse */
521 static QEMUPutKBDEvent *qemu_put_kbd_event;
522 static void *qemu_put_kbd_event_opaque;
523 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
524 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
526 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
528 qemu_put_kbd_event_opaque = opaque;
529 qemu_put_kbd_event = func;
532 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
533 void *opaque, int absolute,
534 const char *name)
536 QEMUPutMouseEntry *s, *cursor;
538 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
539 if (!s)
540 return NULL;
542 s->qemu_put_mouse_event = func;
543 s->qemu_put_mouse_event_opaque = opaque;
544 s->qemu_put_mouse_event_absolute = absolute;
545 s->qemu_put_mouse_event_name = qemu_strdup(name);
546 s->next = NULL;
548 if (!qemu_put_mouse_event_head) {
549 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
550 return s;
553 cursor = qemu_put_mouse_event_head;
554 while (cursor->next != NULL)
555 cursor = cursor->next;
557 cursor->next = s;
558 qemu_put_mouse_event_current = s;
560 return s;
563 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
565 QEMUPutMouseEntry *prev = NULL, *cursor;
567 if (!qemu_put_mouse_event_head || entry == NULL)
568 return;
570 cursor = qemu_put_mouse_event_head;
571 while (cursor != NULL && cursor != entry) {
572 prev = cursor;
573 cursor = cursor->next;
576 if (cursor == NULL) // does not exist or list empty
577 return;
578 else if (prev == NULL) { // entry is head
579 qemu_put_mouse_event_head = cursor->next;
580 if (qemu_put_mouse_event_current == entry)
581 qemu_put_mouse_event_current = cursor->next;
582 qemu_free(entry->qemu_put_mouse_event_name);
583 qemu_free(entry);
584 return;
587 prev->next = entry->next;
589 if (qemu_put_mouse_event_current == entry)
590 qemu_put_mouse_event_current = prev;
592 qemu_free(entry->qemu_put_mouse_event_name);
593 qemu_free(entry);
596 void kbd_put_keycode(int keycode)
598 if (qemu_put_kbd_event) {
599 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
603 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
605 QEMUPutMouseEvent *mouse_event;
606 void *mouse_event_opaque;
607 int width;
609 if (!qemu_put_mouse_event_current) {
610 return;
613 mouse_event =
614 qemu_put_mouse_event_current->qemu_put_mouse_event;
615 mouse_event_opaque =
616 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
618 if (mouse_event) {
619 if (graphic_rotate) {
620 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
621 width = 0x7fff;
622 else
623 width = graphic_width - 1;
624 mouse_event(mouse_event_opaque,
625 width - dy, dx, dz, buttons_state);
626 } else
627 mouse_event(mouse_event_opaque,
628 dx, dy, dz, buttons_state);
632 int kbd_mouse_is_absolute(void)
634 if (!qemu_put_mouse_event_current)
635 return 0;
637 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
640 void do_info_mice(void)
642 QEMUPutMouseEntry *cursor;
643 int index = 0;
645 if (!qemu_put_mouse_event_head) {
646 term_printf("No mouse devices connected\n");
647 return;
650 term_printf("Mouse devices available:\n");
651 cursor = qemu_put_mouse_event_head;
652 while (cursor != NULL) {
653 term_printf("%c Mouse #%d: %s\n",
654 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
655 index, cursor->qemu_put_mouse_event_name);
656 index++;
657 cursor = cursor->next;
661 void do_mouse_set(int index)
663 QEMUPutMouseEntry *cursor;
664 int i = 0;
666 if (!qemu_put_mouse_event_head) {
667 term_printf("No mouse devices connected\n");
668 return;
671 cursor = qemu_put_mouse_event_head;
672 while (cursor != NULL && index != i) {
673 i++;
674 cursor = cursor->next;
677 if (cursor != NULL)
678 qemu_put_mouse_event_current = cursor;
679 else
680 term_printf("Mouse at given index not found\n");
683 /* compute with 96 bit intermediate result: (a*b)/c */
684 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
686 union {
687 uint64_t ll;
688 struct {
689 #ifdef WORDS_BIGENDIAN
690 uint32_t high, low;
691 #else
692 uint32_t low, high;
693 #endif
694 } l;
695 } u, res;
696 uint64_t rl, rh;
698 u.ll = a;
699 rl = (uint64_t)u.l.low * (uint64_t)b;
700 rh = (uint64_t)u.l.high * (uint64_t)b;
701 rh += (rl >> 32);
702 res.l.high = rh / c;
703 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
704 return res.ll;
707 /***********************************************************/
708 /* real time host monotonic timer */
710 #define QEMU_TIMER_BASE 1000000000LL
712 #ifdef WIN32
714 static int64_t clock_freq;
716 static void init_get_clock(void)
718 LARGE_INTEGER freq;
719 int ret;
720 ret = QueryPerformanceFrequency(&freq);
721 if (ret == 0) {
722 fprintf(stderr, "Could not calibrate ticks\n");
723 exit(1);
725 clock_freq = freq.QuadPart;
728 static int64_t get_clock(void)
730 LARGE_INTEGER ti;
731 QueryPerformanceCounter(&ti);
732 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
735 #else
737 static int use_rt_clock;
739 static void init_get_clock(void)
741 use_rt_clock = 0;
742 #if defined(__linux__)
744 struct timespec ts;
745 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
746 use_rt_clock = 1;
749 #endif
752 static int64_t get_clock(void)
754 #if defined(__linux__)
755 if (use_rt_clock) {
756 struct timespec ts;
757 clock_gettime(CLOCK_MONOTONIC, &ts);
758 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
759 } else
760 #endif
762 /* XXX: using gettimeofday leads to problems if the date
763 changes, so it should be avoided. */
764 struct timeval tv;
765 gettimeofday(&tv, NULL);
766 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
769 #endif
771 /* Return the virtual CPU time, based on the instruction counter. */
772 static int64_t cpu_get_icount(void)
774 int64_t icount;
775 CPUState *env = cpu_single_env;;
776 icount = qemu_icount;
777 if (env) {
778 if (!can_do_io(env))
779 fprintf(stderr, "Bad clock read\n");
780 icount -= (env->icount_decr.u16.low + env->icount_extra);
782 return qemu_icount_bias + (icount << icount_time_shift);
785 /***********************************************************/
786 /* guest cycle counter */
788 static int64_t cpu_ticks_prev;
789 static int64_t cpu_ticks_offset;
790 static int64_t cpu_clock_offset;
791 static int cpu_ticks_enabled;
793 /* return the host CPU cycle counter and handle stop/restart */
794 int64_t cpu_get_ticks(void)
796 if (use_icount) {
797 return cpu_get_icount();
799 if (!cpu_ticks_enabled) {
800 return cpu_ticks_offset;
801 } else {
802 int64_t ticks;
803 ticks = cpu_get_real_ticks();
804 if (cpu_ticks_prev > ticks) {
805 /* Note: non increasing ticks may happen if the host uses
806 software suspend */
807 cpu_ticks_offset += cpu_ticks_prev - ticks;
809 cpu_ticks_prev = ticks;
810 return ticks + cpu_ticks_offset;
814 /* return the host CPU monotonic timer and handle stop/restart */
815 static int64_t cpu_get_clock(void)
817 int64_t ti;
818 if (!cpu_ticks_enabled) {
819 return cpu_clock_offset;
820 } else {
821 ti = get_clock();
822 return ti + cpu_clock_offset;
826 /* enable cpu_get_ticks() */
827 void cpu_enable_ticks(void)
829 if (!cpu_ticks_enabled) {
830 cpu_ticks_offset -= cpu_get_real_ticks();
831 cpu_clock_offset -= get_clock();
832 cpu_ticks_enabled = 1;
836 /* disable cpu_get_ticks() : the clock is stopped. You must not call
837 cpu_get_ticks() after that. */
838 void cpu_disable_ticks(void)
840 if (cpu_ticks_enabled) {
841 cpu_ticks_offset = cpu_get_ticks();
842 cpu_clock_offset = cpu_get_clock();
843 cpu_ticks_enabled = 0;
847 /***********************************************************/
848 /* timers */
850 #define QEMU_TIMER_REALTIME 0
851 #define QEMU_TIMER_VIRTUAL 1
853 struct QEMUClock {
854 int type;
855 /* XXX: add frequency */
858 struct QEMUTimer {
859 QEMUClock *clock;
860 int64_t expire_time;
861 QEMUTimerCB *cb;
862 void *opaque;
863 struct QEMUTimer *next;
866 struct qemu_alarm_timer {
867 char const *name;
868 unsigned int flags;
870 int (*start)(struct qemu_alarm_timer *t);
871 void (*stop)(struct qemu_alarm_timer *t);
872 void (*rearm)(struct qemu_alarm_timer *t);
873 void *priv;
876 #define ALARM_FLAG_DYNTICKS 0x1
877 #define ALARM_FLAG_EXPIRED 0x2
879 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
881 return t->flags & ALARM_FLAG_DYNTICKS;
884 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
886 if (!alarm_has_dynticks(t))
887 return;
889 t->rearm(t);
892 /* TODO: MIN_TIMER_REARM_US should be optimized */
893 #define MIN_TIMER_REARM_US 250
895 static struct qemu_alarm_timer *alarm_timer;
897 #ifdef _WIN32
899 struct qemu_alarm_win32 {
900 MMRESULT timerId;
901 HANDLE host_alarm;
902 unsigned int period;
903 } alarm_win32_data = {0, NULL, -1};
905 static int win32_start_timer(struct qemu_alarm_timer *t);
906 static void win32_stop_timer(struct qemu_alarm_timer *t);
907 static void win32_rearm_timer(struct qemu_alarm_timer *t);
909 #else
911 static int unix_start_timer(struct qemu_alarm_timer *t);
912 static void unix_stop_timer(struct qemu_alarm_timer *t);
914 #ifdef __linux__
916 static int dynticks_start_timer(struct qemu_alarm_timer *t);
917 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
918 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
920 static int hpet_start_timer(struct qemu_alarm_timer *t);
921 static void hpet_stop_timer(struct qemu_alarm_timer *t);
923 static int rtc_start_timer(struct qemu_alarm_timer *t);
924 static void rtc_stop_timer(struct qemu_alarm_timer *t);
926 #endif /* __linux__ */
928 #endif /* _WIN32 */
930 /* Correlation between real and virtual time is always going to be
931 fairly approximate, so ignore small variation.
932 When the guest is idle real and virtual time will be aligned in
933 the IO wait loop. */
934 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
936 static void icount_adjust(void)
938 int64_t cur_time;
939 int64_t cur_icount;
940 int64_t delta;
941 static int64_t last_delta;
942 /* If the VM is not running, then do nothing. */
943 if (!vm_running)
944 return;
946 cur_time = cpu_get_clock();
947 cur_icount = qemu_get_clock(vm_clock);
948 delta = cur_icount - cur_time;
949 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
950 if (delta > 0
951 && last_delta + ICOUNT_WOBBLE < delta * 2
952 && icount_time_shift > 0) {
953 /* The guest is getting too far ahead. Slow time down. */
954 icount_time_shift--;
956 if (delta < 0
957 && last_delta - ICOUNT_WOBBLE > delta * 2
958 && icount_time_shift < MAX_ICOUNT_SHIFT) {
959 /* The guest is getting too far behind. Speed time up. */
960 icount_time_shift++;
962 last_delta = delta;
963 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
966 static void icount_adjust_rt(void * opaque)
968 qemu_mod_timer(icount_rt_timer,
969 qemu_get_clock(rt_clock) + 1000);
970 icount_adjust();
973 static void icount_adjust_vm(void * opaque)
975 qemu_mod_timer(icount_vm_timer,
976 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
977 icount_adjust();
980 static void init_icount_adjust(void)
982 /* Have both realtime and virtual time triggers for speed adjustment.
983 The realtime trigger catches emulated time passing too slowly,
984 the virtual time trigger catches emulated time passing too fast.
985 Realtime triggers occur even when idle, so use them less frequently
986 than VM triggers. */
987 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
988 qemu_mod_timer(icount_rt_timer,
989 qemu_get_clock(rt_clock) + 1000);
990 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
991 qemu_mod_timer(icount_vm_timer,
992 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
995 static struct qemu_alarm_timer alarm_timers[] = {
996 #ifndef _WIN32
997 #ifdef __linux__
998 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
999 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1000 /* HPET - if available - is preferred */
1001 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1002 /* ...otherwise try RTC */
1003 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1004 #endif
1005 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1006 #else
1007 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1008 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1009 {"win32", 0, win32_start_timer,
1010 win32_stop_timer, NULL, &alarm_win32_data},
1011 #endif
1012 {NULL, }
1015 static void show_available_alarms(void)
1017 int i;
1019 printf("Available alarm timers, in order of precedence:\n");
1020 for (i = 0; alarm_timers[i].name; i++)
1021 printf("%s\n", alarm_timers[i].name);
1024 static void configure_alarms(char const *opt)
1026 int i;
1027 int cur = 0;
1028 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1029 char *arg;
1030 char *name;
1031 struct qemu_alarm_timer tmp;
1033 if (!strcmp(opt, "?")) {
1034 show_available_alarms();
1035 exit(0);
1038 arg = strdup(opt);
1040 /* Reorder the array */
1041 name = strtok(arg, ",");
1042 while (name) {
1043 for (i = 0; i < count && alarm_timers[i].name; i++) {
1044 if (!strcmp(alarm_timers[i].name, name))
1045 break;
1048 if (i == count) {
1049 fprintf(stderr, "Unknown clock %s\n", name);
1050 goto next;
1053 if (i < cur)
1054 /* Ignore */
1055 goto next;
1057 /* Swap */
1058 tmp = alarm_timers[i];
1059 alarm_timers[i] = alarm_timers[cur];
1060 alarm_timers[cur] = tmp;
1062 cur++;
1063 next:
1064 name = strtok(NULL, ",");
1067 free(arg);
1069 if (cur) {
1070 /* Disable remaining timers */
1071 for (i = cur; i < count; i++)
1072 alarm_timers[i].name = NULL;
1073 } else {
1074 show_available_alarms();
1075 exit(1);
1079 QEMUClock *rt_clock;
1080 QEMUClock *vm_clock;
1082 static QEMUTimer *active_timers[2];
1084 static QEMUClock *qemu_new_clock(int type)
1086 QEMUClock *clock;
1087 clock = qemu_mallocz(sizeof(QEMUClock));
1088 if (!clock)
1089 return NULL;
1090 clock->type = type;
1091 return clock;
1094 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1096 QEMUTimer *ts;
1098 ts = qemu_mallocz(sizeof(QEMUTimer));
1099 ts->clock = clock;
1100 ts->cb = cb;
1101 ts->opaque = opaque;
1102 return ts;
1105 void qemu_free_timer(QEMUTimer *ts)
1107 qemu_free(ts);
1110 /* stop a timer, but do not dealloc it */
1111 void qemu_del_timer(QEMUTimer *ts)
1113 QEMUTimer **pt, *t;
1115 /* NOTE: this code must be signal safe because
1116 qemu_timer_expired() can be called from a signal. */
1117 pt = &active_timers[ts->clock->type];
1118 for(;;) {
1119 t = *pt;
1120 if (!t)
1121 break;
1122 if (t == ts) {
1123 *pt = t->next;
1124 break;
1126 pt = &t->next;
1130 /* modify the current timer so that it will be fired when current_time
1131 >= expire_time. The corresponding callback will be called. */
1132 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1134 QEMUTimer **pt, *t;
1136 qemu_del_timer(ts);
1138 /* add the timer in the sorted list */
1139 /* NOTE: this code must be signal safe because
1140 qemu_timer_expired() can be called from a signal. */
1141 pt = &active_timers[ts->clock->type];
1142 for(;;) {
1143 t = *pt;
1144 if (!t)
1145 break;
1146 if (t->expire_time > expire_time)
1147 break;
1148 pt = &t->next;
1150 ts->expire_time = expire_time;
1151 ts->next = *pt;
1152 *pt = ts;
1154 /* Rearm if necessary */
1155 if (pt == &active_timers[ts->clock->type]) {
1156 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1157 qemu_rearm_alarm_timer(alarm_timer);
1159 /* Interrupt execution to force deadline recalculation. */
1160 if (use_icount && cpu_single_env) {
1161 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1166 int qemu_timer_pending(QEMUTimer *ts)
1168 QEMUTimer *t;
1169 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1170 if (t == ts)
1171 return 1;
1173 return 0;
1176 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1178 if (!timer_head)
1179 return 0;
1180 return (timer_head->expire_time <= current_time);
1183 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1185 QEMUTimer *ts;
1187 for(;;) {
1188 ts = *ptimer_head;
1189 if (!ts || ts->expire_time > current_time)
1190 break;
1191 /* remove timer from the list before calling the callback */
1192 *ptimer_head = ts->next;
1193 ts->next = NULL;
1195 /* run the callback (the timer list can be modified) */
1196 ts->cb(ts->opaque);
1200 int64_t qemu_get_clock(QEMUClock *clock)
1202 switch(clock->type) {
1203 case QEMU_TIMER_REALTIME:
1204 return get_clock() / 1000000;
1205 default:
1206 case QEMU_TIMER_VIRTUAL:
1207 if (use_icount) {
1208 return cpu_get_icount();
1209 } else {
1210 return cpu_get_clock();
1215 static void init_timers(void)
1217 init_get_clock();
1218 ticks_per_sec = QEMU_TIMER_BASE;
1219 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1220 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1223 /* save a timer */
1224 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1226 uint64_t expire_time;
1228 if (qemu_timer_pending(ts)) {
1229 expire_time = ts->expire_time;
1230 } else {
1231 expire_time = -1;
1233 qemu_put_be64(f, expire_time);
1236 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1238 uint64_t expire_time;
1240 expire_time = qemu_get_be64(f);
1241 if (expire_time != -1) {
1242 qemu_mod_timer(ts, expire_time);
1243 } else {
1244 qemu_del_timer(ts);
1248 static void timer_save(QEMUFile *f, void *opaque)
1250 if (cpu_ticks_enabled) {
1251 hw_error("cannot save state if virtual timers are running");
1253 qemu_put_be64(f, cpu_ticks_offset);
1254 qemu_put_be64(f, ticks_per_sec);
1255 qemu_put_be64(f, cpu_clock_offset);
1258 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1260 if (version_id != 1 && version_id != 2)
1261 return -EINVAL;
1262 if (cpu_ticks_enabled) {
1263 return -EINVAL;
1265 cpu_ticks_offset=qemu_get_be64(f);
1266 ticks_per_sec=qemu_get_be64(f);
1267 if (version_id == 2) {
1268 cpu_clock_offset=qemu_get_be64(f);
1270 return 0;
1273 #ifdef _WIN32
1274 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1275 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1276 #else
1277 static void host_alarm_handler(int host_signum)
1278 #endif
1280 #if 0
1281 #define DISP_FREQ 1000
1283 static int64_t delta_min = INT64_MAX;
1284 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1285 static int count;
1286 ti = qemu_get_clock(vm_clock);
1287 if (last_clock != 0) {
1288 delta = ti - last_clock;
1289 if (delta < delta_min)
1290 delta_min = delta;
1291 if (delta > delta_max)
1292 delta_max = delta;
1293 delta_cum += delta;
1294 if (++count == DISP_FREQ) {
1295 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1296 muldiv64(delta_min, 1000000, ticks_per_sec),
1297 muldiv64(delta_max, 1000000, ticks_per_sec),
1298 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1299 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1300 count = 0;
1301 delta_min = INT64_MAX;
1302 delta_max = 0;
1303 delta_cum = 0;
1306 last_clock = ti;
1308 #endif
1309 if (alarm_has_dynticks(alarm_timer) ||
1310 (!use_icount &&
1311 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1312 qemu_get_clock(vm_clock))) ||
1313 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1314 qemu_get_clock(rt_clock))) {
1315 #ifdef _WIN32
1316 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1317 SetEvent(data->host_alarm);
1318 #endif
1319 CPUState *env = next_cpu;
1321 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1323 if (env) {
1324 /* stop the currently executing cpu because a timer occured */
1325 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1326 #ifdef USE_KQEMU
1327 if (env->kqemu_enabled) {
1328 kqemu_cpu_interrupt(env);
1330 #endif
1332 event_pending = 1;
1336 static int64_t qemu_next_deadline(void)
1338 int64_t delta;
1340 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1341 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1342 qemu_get_clock(vm_clock);
1343 } else {
1344 /* To avoid problems with overflow limit this to 2^32. */
1345 delta = INT32_MAX;
1348 if (delta < 0)
1349 delta = 0;
1351 return delta;
1354 #if defined(__linux__) || defined(_WIN32)
1355 static uint64_t qemu_next_deadline_dyntick(void)
1357 int64_t delta;
1358 int64_t rtdelta;
1360 if (use_icount)
1361 delta = INT32_MAX;
1362 else
1363 delta = (qemu_next_deadline() + 999) / 1000;
1365 if (active_timers[QEMU_TIMER_REALTIME]) {
1366 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1367 qemu_get_clock(rt_clock))*1000;
1368 if (rtdelta < delta)
1369 delta = rtdelta;
1372 if (delta < MIN_TIMER_REARM_US)
1373 delta = MIN_TIMER_REARM_US;
1375 return delta;
1377 #endif
1379 #ifndef _WIN32
1381 #if defined(__linux__)
1383 #define RTC_FREQ 1024
1385 static void enable_sigio_timer(int fd)
1387 struct sigaction act;
1389 /* timer signal */
1390 sigfillset(&act.sa_mask);
1391 act.sa_flags = 0;
1392 act.sa_handler = host_alarm_handler;
1394 sigaction(SIGIO, &act, NULL);
1395 fcntl(fd, F_SETFL, O_ASYNC);
1396 fcntl(fd, F_SETOWN, getpid());
1399 static int hpet_start_timer(struct qemu_alarm_timer *t)
1401 struct hpet_info info;
1402 int r, fd;
1404 fd = open("/dev/hpet", O_RDONLY);
1405 if (fd < 0)
1406 return -1;
1408 /* Set frequency */
1409 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1410 if (r < 0) {
1411 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1412 "error, but for better emulation accuracy type:\n"
1413 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1414 goto fail;
1417 /* Check capabilities */
1418 r = ioctl(fd, HPET_INFO, &info);
1419 if (r < 0)
1420 goto fail;
1422 /* Enable periodic mode */
1423 r = ioctl(fd, HPET_EPI, 0);
1424 if (info.hi_flags && (r < 0))
1425 goto fail;
1427 /* Enable interrupt */
1428 r = ioctl(fd, HPET_IE_ON, 0);
1429 if (r < 0)
1430 goto fail;
1432 enable_sigio_timer(fd);
1433 t->priv = (void *)(long)fd;
1435 return 0;
1436 fail:
1437 close(fd);
1438 return -1;
1441 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1443 int fd = (long)t->priv;
1445 close(fd);
1448 static int rtc_start_timer(struct qemu_alarm_timer *t)
1450 int rtc_fd;
1451 unsigned long current_rtc_freq = 0;
1453 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1454 if (rtc_fd < 0)
1455 return -1;
1456 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1457 if (current_rtc_freq != RTC_FREQ &&
1458 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1459 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1461 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1462 goto fail;
1464 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1465 fail:
1466 close(rtc_fd);
1467 return -1;
1470 enable_sigio_timer(rtc_fd);
1472 t->priv = (void *)(long)rtc_fd;
1474 return 0;
1477 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1479 int rtc_fd = (long)t->priv;
1481 close(rtc_fd);
1484 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1486 struct sigevent ev;
1487 timer_t host_timer;
1488 struct sigaction act;
1490 sigfillset(&act.sa_mask);
1491 act.sa_flags = 0;
1492 act.sa_handler = host_alarm_handler;
1494 sigaction(SIGALRM, &act, NULL);
1496 ev.sigev_value.sival_int = 0;
1497 ev.sigev_notify = SIGEV_SIGNAL;
1498 ev.sigev_signo = SIGALRM;
1500 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1501 perror("timer_create");
1503 /* disable dynticks */
1504 fprintf(stderr, "Dynamic Ticks disabled\n");
1506 return -1;
1509 t->priv = (void *)host_timer;
1511 return 0;
1514 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1516 timer_t host_timer = (timer_t)t->priv;
1518 timer_delete(host_timer);
1521 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1523 timer_t host_timer = (timer_t)t->priv;
1524 struct itimerspec timeout;
1525 int64_t nearest_delta_us = INT64_MAX;
1526 int64_t current_us;
1528 if (!active_timers[QEMU_TIMER_REALTIME] &&
1529 !active_timers[QEMU_TIMER_VIRTUAL])
1530 return;
1532 nearest_delta_us = qemu_next_deadline_dyntick();
1534 /* check whether a timer is already running */
1535 if (timer_gettime(host_timer, &timeout)) {
1536 perror("gettime");
1537 fprintf(stderr, "Internal timer error: aborting\n");
1538 exit(1);
1540 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1541 if (current_us && current_us <= nearest_delta_us)
1542 return;
1544 timeout.it_interval.tv_sec = 0;
1545 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1546 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1547 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1548 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1549 perror("settime");
1550 fprintf(stderr, "Internal timer error: aborting\n");
1551 exit(1);
1555 #endif /* defined(__linux__) */
1557 static int unix_start_timer(struct qemu_alarm_timer *t)
1559 struct sigaction act;
1560 struct itimerval itv;
1561 int err;
1563 /* timer signal */
1564 sigfillset(&act.sa_mask);
1565 act.sa_flags = 0;
1566 act.sa_handler = host_alarm_handler;
1568 sigaction(SIGALRM, &act, NULL);
1570 itv.it_interval.tv_sec = 0;
1571 /* for i386 kernel 2.6 to get 1 ms */
1572 itv.it_interval.tv_usec = 999;
1573 itv.it_value.tv_sec = 0;
1574 itv.it_value.tv_usec = 10 * 1000;
1576 err = setitimer(ITIMER_REAL, &itv, NULL);
1577 if (err)
1578 return -1;
1580 return 0;
1583 static void unix_stop_timer(struct qemu_alarm_timer *t)
1585 struct itimerval itv;
1587 memset(&itv, 0, sizeof(itv));
1588 setitimer(ITIMER_REAL, &itv, NULL);
1591 #endif /* !defined(_WIN32) */
1593 #ifdef _WIN32
1595 static int win32_start_timer(struct qemu_alarm_timer *t)
1597 TIMECAPS tc;
1598 struct qemu_alarm_win32 *data = t->priv;
1599 UINT flags;
1601 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1602 if (!data->host_alarm) {
1603 perror("Failed CreateEvent");
1604 return -1;
1607 memset(&tc, 0, sizeof(tc));
1608 timeGetDevCaps(&tc, sizeof(tc));
1610 if (data->period < tc.wPeriodMin)
1611 data->period = tc.wPeriodMin;
1613 timeBeginPeriod(data->period);
1615 flags = TIME_CALLBACK_FUNCTION;
1616 if (alarm_has_dynticks(t))
1617 flags |= TIME_ONESHOT;
1618 else
1619 flags |= TIME_PERIODIC;
1621 data->timerId = timeSetEvent(1, // interval (ms)
1622 data->period, // resolution
1623 host_alarm_handler, // function
1624 (DWORD)t, // parameter
1625 flags);
1627 if (!data->timerId) {
1628 perror("Failed to initialize win32 alarm timer");
1630 timeEndPeriod(data->period);
1631 CloseHandle(data->host_alarm);
1632 return -1;
1635 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1637 return 0;
1640 static void win32_stop_timer(struct qemu_alarm_timer *t)
1642 struct qemu_alarm_win32 *data = t->priv;
1644 timeKillEvent(data->timerId);
1645 timeEndPeriod(data->period);
1647 CloseHandle(data->host_alarm);
1650 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1652 struct qemu_alarm_win32 *data = t->priv;
1653 uint64_t nearest_delta_us;
1655 if (!active_timers[QEMU_TIMER_REALTIME] &&
1656 !active_timers[QEMU_TIMER_VIRTUAL])
1657 return;
1659 nearest_delta_us = qemu_next_deadline_dyntick();
1660 nearest_delta_us /= 1000;
1662 timeKillEvent(data->timerId);
1664 data->timerId = timeSetEvent(1,
1665 data->period,
1666 host_alarm_handler,
1667 (DWORD)t,
1668 TIME_ONESHOT | TIME_PERIODIC);
1670 if (!data->timerId) {
1671 perror("Failed to re-arm win32 alarm timer");
1673 timeEndPeriod(data->period);
1674 CloseHandle(data->host_alarm);
1675 exit(1);
1679 #endif /* _WIN32 */
1681 static void init_timer_alarm(void)
1683 struct qemu_alarm_timer *t = NULL;
1684 int i, err = -1;
1686 for (i = 0; alarm_timers[i].name; i++) {
1687 t = &alarm_timers[i];
1689 err = t->start(t);
1690 if (!err)
1691 break;
1694 if (err) {
1695 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1696 fprintf(stderr, "Terminating\n");
1697 exit(1);
1700 alarm_timer = t;
1703 static void quit_timers(void)
1705 alarm_timer->stop(alarm_timer);
1706 alarm_timer = NULL;
1709 /***********************************************************/
1710 /* host time/date access */
1711 void qemu_get_timedate(struct tm *tm, int offset)
1713 time_t ti;
1714 struct tm *ret;
1716 time(&ti);
1717 ti += offset;
1718 if (rtc_date_offset == -1) {
1719 if (rtc_utc)
1720 ret = gmtime(&ti);
1721 else
1722 ret = localtime(&ti);
1723 } else {
1724 ti -= rtc_date_offset;
1725 ret = gmtime(&ti);
1728 memcpy(tm, ret, sizeof(struct tm));
1731 int qemu_timedate_diff(struct tm *tm)
1733 time_t seconds;
1735 if (rtc_date_offset == -1)
1736 if (rtc_utc)
1737 seconds = mktimegm(tm);
1738 else
1739 seconds = mktime(tm);
1740 else
1741 seconds = mktimegm(tm) + rtc_date_offset;
1743 return seconds - time(NULL);
1746 /***********************************************************/
1747 /* character device */
1749 static void qemu_chr_event(CharDriverState *s, int event)
1751 if (!s->chr_event)
1752 return;
1753 s->chr_event(s->handler_opaque, event);
1756 static void qemu_chr_reset_bh(void *opaque)
1758 CharDriverState *s = opaque;
1759 qemu_chr_event(s, CHR_EVENT_RESET);
1760 qemu_bh_delete(s->bh);
1761 s->bh = NULL;
1764 void qemu_chr_reset(CharDriverState *s)
1766 if (s->bh == NULL) {
1767 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1768 qemu_bh_schedule(s->bh);
1772 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1774 return s->chr_write(s, buf, len);
1777 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1779 if (!s->chr_ioctl)
1780 return -ENOTSUP;
1781 return s->chr_ioctl(s, cmd, arg);
1784 int qemu_chr_can_read(CharDriverState *s)
1786 if (!s->chr_can_read)
1787 return 0;
1788 return s->chr_can_read(s->handler_opaque);
1791 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1793 s->chr_read(s->handler_opaque, buf, len);
1796 void qemu_chr_accept_input(CharDriverState *s)
1798 if (s->chr_accept_input)
1799 s->chr_accept_input(s);
1802 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1804 char buf[4096];
1805 va_list ap;
1806 va_start(ap, fmt);
1807 vsnprintf(buf, sizeof(buf), fmt, ap);
1808 qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1809 va_end(ap);
1812 void qemu_chr_send_event(CharDriverState *s, int event)
1814 if (s->chr_send_event)
1815 s->chr_send_event(s, event);
1818 void qemu_chr_add_handlers(CharDriverState *s,
1819 IOCanRWHandler *fd_can_read,
1820 IOReadHandler *fd_read,
1821 IOEventHandler *fd_event,
1822 void *opaque)
1824 s->chr_can_read = fd_can_read;
1825 s->chr_read = fd_read;
1826 s->chr_event = fd_event;
1827 s->handler_opaque = opaque;
1828 if (s->chr_update_read_handler)
1829 s->chr_update_read_handler(s);
1832 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1834 return len;
1837 static CharDriverState *qemu_chr_open_null(void)
1839 CharDriverState *chr;
1841 chr = qemu_mallocz(sizeof(CharDriverState));
1842 if (!chr)
1843 return NULL;
1844 chr->chr_write = null_chr_write;
1845 return chr;
1848 /* MUX driver for serial I/O splitting */
1849 static int term_timestamps;
1850 static int64_t term_timestamps_start;
1851 #define MAX_MUX 4
1852 #define MUX_BUFFER_SIZE 32 /* Must be a power of 2. */
1853 #define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1854 typedef struct {
1855 IOCanRWHandler *chr_can_read[MAX_MUX];
1856 IOReadHandler *chr_read[MAX_MUX];
1857 IOEventHandler *chr_event[MAX_MUX];
1858 void *ext_opaque[MAX_MUX];
1859 CharDriverState *drv;
1860 unsigned char buffer[MUX_BUFFER_SIZE];
1861 int prod;
1862 int cons;
1863 int mux_cnt;
1864 int term_got_escape;
1865 int max_size;
1866 } MuxDriver;
1869 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1871 MuxDriver *d = chr->opaque;
1872 int ret;
1873 if (!term_timestamps) {
1874 ret = d->drv->chr_write(d->drv, buf, len);
1875 } else {
1876 int i;
1878 ret = 0;
1879 for(i = 0; i < len; i++) {
1880 ret += d->drv->chr_write(d->drv, buf+i, 1);
1881 if (buf[i] == '\n') {
1882 char buf1[64];
1883 int64_t ti;
1884 int secs;
1886 ti = get_clock();
1887 if (term_timestamps_start == -1)
1888 term_timestamps_start = ti;
1889 ti -= term_timestamps_start;
1890 secs = ti / 1000000000;
1891 snprintf(buf1, sizeof(buf1),
1892 "[%02d:%02d:%02d.%03d] ",
1893 secs / 3600,
1894 (secs / 60) % 60,
1895 secs % 60,
1896 (int)((ti / 1000000) % 1000));
1897 d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1901 return ret;
1904 static const char * const mux_help[] = {
1905 "% h print this help\n\r",
1906 "% x exit emulator\n\r",
1907 "% s save disk data back to file (if -snapshot)\n\r",
1908 "% t toggle console timestamps\n\r"
1909 "% b send break (magic sysrq)\n\r",
1910 "% c switch between console and monitor\n\r",
1911 "% % sends %\n\r",
1912 NULL
1915 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1916 static void mux_print_help(CharDriverState *chr)
1918 int i, j;
1919 char ebuf[15] = "Escape-Char";
1920 char cbuf[50] = "\n\r";
1922 if (term_escape_char > 0 && term_escape_char < 26) {
1923 snprintf(cbuf, sizeof(cbuf), "\n\r");
1924 snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1925 } else {
1926 snprintf(cbuf, sizeof(cbuf),
1927 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1928 term_escape_char);
1930 chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1931 for (i = 0; mux_help[i] != NULL; i++) {
1932 for (j=0; mux_help[i][j] != '\0'; j++) {
1933 if (mux_help[i][j] == '%')
1934 chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1935 else
1936 chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1941 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1943 if (d->term_got_escape) {
1944 d->term_got_escape = 0;
1945 if (ch == term_escape_char)
1946 goto send_char;
1947 switch(ch) {
1948 case '?':
1949 case 'h':
1950 mux_print_help(chr);
1951 break;
1952 case 'x':
1954 const char *term = "QEMU: Terminated\n\r";
1955 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1956 exit(0);
1957 break;
1959 case 's':
1961 int i;
1962 for (i = 0; i < nb_drives; i++) {
1963 bdrv_commit(drives_table[i].bdrv);
1966 break;
1967 case 'b':
1968 qemu_chr_event(chr, CHR_EVENT_BREAK);
1969 break;
1970 case 'c':
1971 /* Switch to the next registered device */
1972 chr->focus++;
1973 if (chr->focus >= d->mux_cnt)
1974 chr->focus = 0;
1975 break;
1976 case 't':
1977 term_timestamps = !term_timestamps;
1978 term_timestamps_start = -1;
1979 break;
1981 } else if (ch == term_escape_char) {
1982 d->term_got_escape = 1;
1983 } else {
1984 send_char:
1985 return 1;
1987 return 0;
1990 static void mux_chr_accept_input(CharDriverState *chr)
1992 int m = chr->focus;
1993 MuxDriver *d = chr->opaque;
1995 while (d->prod != d->cons &&
1996 d->chr_can_read[m] &&
1997 d->chr_can_read[m](d->ext_opaque[m])) {
1998 d->chr_read[m](d->ext_opaque[m],
1999 &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
2003 static int mux_chr_can_read(void *opaque)
2005 CharDriverState *chr = opaque;
2006 MuxDriver *d = chr->opaque;
2008 if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2009 return 1;
2010 if (d->chr_can_read[chr->focus])
2011 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2012 return 0;
2015 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2017 CharDriverState *chr = opaque;
2018 MuxDriver *d = chr->opaque;
2019 int m = chr->focus;
2020 int i;
2022 mux_chr_accept_input (opaque);
2024 for(i = 0; i < size; i++)
2025 if (mux_proc_byte(chr, d, buf[i])) {
2026 if (d->prod == d->cons &&
2027 d->chr_can_read[m] &&
2028 d->chr_can_read[m](d->ext_opaque[m]))
2029 d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2030 else
2031 d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2035 static void mux_chr_event(void *opaque, int event)
2037 CharDriverState *chr = opaque;
2038 MuxDriver *d = chr->opaque;
2039 int i;
2041 /* Send the event to all registered listeners */
2042 for (i = 0; i < d->mux_cnt; i++)
2043 if (d->chr_event[i])
2044 d->chr_event[i](d->ext_opaque[i], event);
2047 static void mux_chr_update_read_handler(CharDriverState *chr)
2049 MuxDriver *d = chr->opaque;
2051 if (d->mux_cnt >= MAX_MUX) {
2052 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2053 return;
2055 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2056 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2057 d->chr_read[d->mux_cnt] = chr->chr_read;
2058 d->chr_event[d->mux_cnt] = chr->chr_event;
2059 /* Fix up the real driver with mux routines */
2060 if (d->mux_cnt == 0) {
2061 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2062 mux_chr_event, chr);
2064 chr->focus = d->mux_cnt;
2065 d->mux_cnt++;
2068 static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2070 CharDriverState *chr;
2071 MuxDriver *d;
2073 chr = qemu_mallocz(sizeof(CharDriverState));
2074 if (!chr)
2075 return NULL;
2076 d = qemu_mallocz(sizeof(MuxDriver));
2077 if (!d) {
2078 free(chr);
2079 return NULL;
2082 chr->opaque = d;
2083 d->drv = drv;
2084 chr->focus = -1;
2085 chr->chr_write = mux_chr_write;
2086 chr->chr_update_read_handler = mux_chr_update_read_handler;
2087 chr->chr_accept_input = mux_chr_accept_input;
2088 return chr;
2092 #ifdef _WIN32
2094 static void socket_cleanup(void)
2096 WSACleanup();
2099 static int socket_init(void)
2101 WSADATA Data;
2102 int ret, err;
2104 ret = WSAStartup(MAKEWORD(2,2), &Data);
2105 if (ret != 0) {
2106 err = WSAGetLastError();
2107 fprintf(stderr, "WSAStartup: %d\n", err);
2108 return -1;
2110 atexit(socket_cleanup);
2111 return 0;
2114 static int send_all(int fd, const uint8_t *buf, int len1)
2116 int ret, len;
2118 len = len1;
2119 while (len > 0) {
2120 ret = send(fd, buf, len, 0);
2121 if (ret < 0) {
2122 int errno;
2123 errno = WSAGetLastError();
2124 if (errno != WSAEWOULDBLOCK) {
2125 return -1;
2127 } else if (ret == 0) {
2128 break;
2129 } else {
2130 buf += ret;
2131 len -= ret;
2134 return len1 - len;
2137 #else
2139 static int unix_write(int fd, const uint8_t *buf, int len1)
2141 int ret, len;
2143 len = len1;
2144 while (len > 0) {
2145 ret = write(fd, buf, len);
2146 if (ret < 0) {
2147 if (errno != EINTR && errno != EAGAIN)
2148 return -1;
2149 } else if (ret == 0) {
2150 break;
2151 } else {
2152 buf += ret;
2153 len -= ret;
2156 return len1 - len;
2159 static inline int send_all(int fd, const uint8_t *buf, int len1)
2161 return unix_write(fd, buf, len1);
2163 #endif /* !_WIN32 */
2165 #ifndef _WIN32
2167 typedef struct {
2168 int fd_in, fd_out;
2169 int max_size;
2170 } FDCharDriver;
2172 #define STDIO_MAX_CLIENTS 1
2173 static int stdio_nb_clients = 0;
2175 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2177 FDCharDriver *s = chr->opaque;
2178 return unix_write(s->fd_out, buf, len);
2181 static int fd_chr_read_poll(void *opaque)
2183 CharDriverState *chr = opaque;
2184 FDCharDriver *s = chr->opaque;
2186 s->max_size = qemu_chr_can_read(chr);
2187 return s->max_size;
2190 static void fd_chr_read(void *opaque)
2192 CharDriverState *chr = opaque;
2193 FDCharDriver *s = chr->opaque;
2194 int size, len;
2195 uint8_t buf[1024];
2197 len = sizeof(buf);
2198 if (len > s->max_size)
2199 len = s->max_size;
2200 if (len == 0)
2201 return;
2202 size = read(s->fd_in, buf, len);
2203 if (size == 0) {
2204 /* FD has been closed. Remove it from the active list. */
2205 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2206 return;
2208 if (size > 0) {
2209 qemu_chr_read(chr, buf, size);
2213 static void fd_chr_update_read_handler(CharDriverState *chr)
2215 FDCharDriver *s = chr->opaque;
2217 if (s->fd_in >= 0) {
2218 if (nographic && s->fd_in == 0) {
2219 } else {
2220 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2221 fd_chr_read, NULL, chr);
2226 static void fd_chr_close(struct CharDriverState *chr)
2228 FDCharDriver *s = chr->opaque;
2230 if (s->fd_in >= 0) {
2231 if (nographic && s->fd_in == 0) {
2232 } else {
2233 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2237 qemu_free(s);
2240 /* open a character device to a unix fd */
2241 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2243 CharDriverState *chr;
2244 FDCharDriver *s;
2246 chr = qemu_mallocz(sizeof(CharDriverState));
2247 if (!chr)
2248 return NULL;
2249 s = qemu_mallocz(sizeof(FDCharDriver));
2250 if (!s) {
2251 free(chr);
2252 return NULL;
2254 s->fd_in = fd_in;
2255 s->fd_out = fd_out;
2256 chr->opaque = s;
2257 chr->chr_write = fd_chr_write;
2258 chr->chr_update_read_handler = fd_chr_update_read_handler;
2259 chr->chr_close = fd_chr_close;
2261 qemu_chr_reset(chr);
2263 return chr;
2266 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2268 int fd_out;
2270 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2271 if (fd_out < 0)
2272 return NULL;
2273 return qemu_chr_open_fd(-1, fd_out);
2276 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2278 int fd_in, fd_out;
2279 char filename_in[256], filename_out[256];
2281 snprintf(filename_in, 256, "%s.in", filename);
2282 snprintf(filename_out, 256, "%s.out", filename);
2283 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2284 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2285 if (fd_in < 0 || fd_out < 0) {
2286 if (fd_in >= 0)
2287 close(fd_in);
2288 if (fd_out >= 0)
2289 close(fd_out);
2290 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2291 if (fd_in < 0)
2292 return NULL;
2294 return qemu_chr_open_fd(fd_in, fd_out);
2298 /* for STDIO, we handle the case where several clients use it
2299 (nographic mode) */
2301 #define TERM_FIFO_MAX_SIZE 1
2303 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2304 static int term_fifo_size;
2306 static int stdio_read_poll(void *opaque)
2308 CharDriverState *chr = opaque;
2310 /* try to flush the queue if needed */
2311 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2312 qemu_chr_read(chr, term_fifo, 1);
2313 term_fifo_size = 0;
2315 /* see if we can absorb more chars */
2316 if (term_fifo_size == 0)
2317 return 1;
2318 else
2319 return 0;
2322 static void stdio_read(void *opaque)
2324 int size;
2325 uint8_t buf[1];
2326 CharDriverState *chr = opaque;
2328 size = read(0, buf, 1);
2329 if (size == 0) {
2330 /* stdin has been closed. Remove it from the active list. */
2331 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2332 return;
2334 if (size > 0) {
2335 if (qemu_chr_can_read(chr) > 0) {
2336 qemu_chr_read(chr, buf, 1);
2337 } else if (term_fifo_size == 0) {
2338 term_fifo[term_fifo_size++] = buf[0];
2343 /* init terminal so that we can grab keys */
2344 static struct termios oldtty;
2345 static int old_fd0_flags;
2346 static int term_atexit_done;
2348 static void term_exit(void)
2350 tcsetattr (0, TCSANOW, &oldtty);
2351 fcntl(0, F_SETFL, old_fd0_flags);
2354 static void term_init(void)
2356 struct termios tty;
2358 tcgetattr (0, &tty);
2359 oldtty = tty;
2360 old_fd0_flags = fcntl(0, F_GETFL);
2362 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2363 |INLCR|IGNCR|ICRNL|IXON);
2364 tty.c_oflag |= OPOST;
2365 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2366 /* if graphical mode, we allow Ctrl-C handling */
2367 if (nographic)
2368 tty.c_lflag &= ~ISIG;
2369 tty.c_cflag &= ~(CSIZE|PARENB);
2370 tty.c_cflag |= CS8;
2371 tty.c_cc[VMIN] = 1;
2372 tty.c_cc[VTIME] = 0;
2374 tcsetattr (0, TCSANOW, &tty);
2376 if (!term_atexit_done++)
2377 atexit(term_exit);
2379 fcntl(0, F_SETFL, O_NONBLOCK);
2382 static void qemu_chr_close_stdio(struct CharDriverState *chr)
2384 term_exit();
2385 stdio_nb_clients--;
2386 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2387 fd_chr_close(chr);
2390 static CharDriverState *qemu_chr_open_stdio(void)
2392 CharDriverState *chr;
2394 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2395 return NULL;
2396 chr = qemu_chr_open_fd(0, 1);
2397 chr->chr_close = qemu_chr_close_stdio;
2398 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2399 stdio_nb_clients++;
2400 term_init();
2402 return chr;
2405 #ifdef __sun__
2406 /* Once Solaris has openpty(), this is going to be removed. */
2407 int openpty(int *amaster, int *aslave, char *name,
2408 struct termios *termp, struct winsize *winp)
2410 const char *slave;
2411 int mfd = -1, sfd = -1;
2413 *amaster = *aslave = -1;
2415 mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2416 if (mfd < 0)
2417 goto err;
2419 if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2420 goto err;
2422 if ((slave = ptsname(mfd)) == NULL)
2423 goto err;
2425 if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2426 goto err;
2428 if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2429 (termp != NULL && tcgetattr(sfd, termp) < 0))
2430 goto err;
2432 if (amaster)
2433 *amaster = mfd;
2434 if (aslave)
2435 *aslave = sfd;
2436 if (winp)
2437 ioctl(sfd, TIOCSWINSZ, winp);
2439 return 0;
2441 err:
2442 if (sfd != -1)
2443 close(sfd);
2444 close(mfd);
2445 return -1;
2448 void cfmakeraw (struct termios *termios_p)
2450 termios_p->c_iflag &=
2451 ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2452 termios_p->c_oflag &= ~OPOST;
2453 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2454 termios_p->c_cflag &= ~(CSIZE|PARENB);
2455 termios_p->c_cflag |= CS8;
2457 termios_p->c_cc[VMIN] = 0;
2458 termios_p->c_cc[VTIME] = 0;
2460 #endif
2462 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2463 || defined(__NetBSD__) || defined(__OpenBSD__)
2465 typedef struct {
2466 int fd;
2467 int connected;
2468 int polling;
2469 int read_bytes;
2470 QEMUTimer *timer;
2471 } PtyCharDriver;
2473 static void pty_chr_update_read_handler(CharDriverState *chr);
2474 static void pty_chr_state(CharDriverState *chr, int connected);
2476 static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2478 PtyCharDriver *s = chr->opaque;
2480 if (!s->connected) {
2481 /* guest sends data, check for (re-)connect */
2482 pty_chr_update_read_handler(chr);
2483 return 0;
2485 return unix_write(s->fd, buf, len);
2488 static int pty_chr_read_poll(void *opaque)
2490 CharDriverState *chr = opaque;
2491 PtyCharDriver *s = chr->opaque;
2493 s->read_bytes = qemu_chr_can_read(chr);
2494 return s->read_bytes;
2497 static void pty_chr_read(void *opaque)
2499 CharDriverState *chr = opaque;
2500 PtyCharDriver *s = chr->opaque;
2501 int size, len;
2502 uint8_t buf[1024];
2504 len = sizeof(buf);
2505 if (len > s->read_bytes)
2506 len = s->read_bytes;
2507 if (len == 0)
2508 return;
2509 size = read(s->fd, buf, len);
2510 if ((size == -1 && errno == EIO) ||
2511 (size == 0)) {
2512 pty_chr_state(chr, 0);
2513 return;
2515 if (size > 0) {
2516 pty_chr_state(chr, 1);
2517 qemu_chr_read(chr, buf, size);
2521 static void pty_chr_update_read_handler(CharDriverState *chr)
2523 PtyCharDriver *s = chr->opaque;
2525 qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2526 pty_chr_read, NULL, chr);
2527 s->polling = 1;
2529 * Short timeout here: just need wait long enougth that qemu makes
2530 * it through the poll loop once. When reconnected we want a
2531 * short timeout so we notice it almost instantly. Otherwise
2532 * read() gives us -EIO instantly, making pty_chr_state() reset the
2533 * timeout to the normal (much longer) poll interval before the
2534 * timer triggers.
2536 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2539 static void pty_chr_state(CharDriverState *chr, int connected)
2541 PtyCharDriver *s = chr->opaque;
2543 if (!connected) {
2544 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2545 s->connected = 0;
2546 s->polling = 0;
2547 /* (re-)connect poll interval for idle guests: once per second.
2548 * We check more frequently in case the guests sends data to
2549 * the virtual device linked to our pty. */
2550 qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2551 } else {
2552 if (!s->connected)
2553 qemu_chr_reset(chr);
2554 s->connected = 1;
2558 static void pty_chr_timer(void *opaque)
2560 struct CharDriverState *chr = opaque;
2561 PtyCharDriver *s = chr->opaque;
2563 if (s->connected)
2564 return;
2565 if (s->polling) {
2566 /* If we arrive here without polling being cleared due
2567 * read returning -EIO, then we are (re-)connected */
2568 pty_chr_state(chr, 1);
2569 return;
2572 /* Next poll ... */
2573 pty_chr_update_read_handler(chr);
2576 static void pty_chr_close(struct CharDriverState *chr)
2578 PtyCharDriver *s = chr->opaque;
2580 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2581 close(s->fd);
2582 qemu_free(s);
2585 static CharDriverState *qemu_chr_open_pty(void)
2587 CharDriverState *chr;
2588 PtyCharDriver *s;
2589 struct termios tty;
2590 int slave_fd;
2591 #if defined(__OpenBSD__)
2592 char pty_name[PATH_MAX];
2593 #define q_ptsname(x) pty_name
2594 #else
2595 char *pty_name = NULL;
2596 #define q_ptsname(x) ptsname(x)
2597 #endif
2599 chr = qemu_mallocz(sizeof(CharDriverState));
2600 if (!chr)
2601 return NULL;
2602 s = qemu_mallocz(sizeof(PtyCharDriver));
2603 if (!s) {
2604 qemu_free(chr);
2605 return NULL;
2608 if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2609 return NULL;
2612 /* Set raw attributes on the pty. */
2613 cfmakeraw(&tty);
2614 tcsetattr(slave_fd, TCSAFLUSH, &tty);
2615 close(slave_fd);
2617 fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2619 chr->opaque = s;
2620 chr->chr_write = pty_chr_write;
2621 chr->chr_update_read_handler = pty_chr_update_read_handler;
2622 chr->chr_close = pty_chr_close;
2624 s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2626 return chr;
2629 static void tty_serial_init(int fd, int speed,
2630 int parity, int data_bits, int stop_bits)
2632 struct termios tty;
2633 speed_t spd;
2635 #if 0
2636 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2637 speed, parity, data_bits, stop_bits);
2638 #endif
2639 tcgetattr (fd, &tty);
2641 #define MARGIN 1.1
2642 if (speed <= 50 * MARGIN)
2643 spd = B50;
2644 else if (speed <= 75 * MARGIN)
2645 spd = B75;
2646 else if (speed <= 300 * MARGIN)
2647 spd = B300;
2648 else if (speed <= 600 * MARGIN)
2649 spd = B600;
2650 else if (speed <= 1200 * MARGIN)
2651 spd = B1200;
2652 else if (speed <= 2400 * MARGIN)
2653 spd = B2400;
2654 else if (speed <= 4800 * MARGIN)
2655 spd = B4800;
2656 else if (speed <= 9600 * MARGIN)
2657 spd = B9600;
2658 else if (speed <= 19200 * MARGIN)
2659 spd = B19200;
2660 else if (speed <= 38400 * MARGIN)
2661 spd = B38400;
2662 else if (speed <= 57600 * MARGIN)
2663 spd = B57600;
2664 else if (speed <= 115200 * MARGIN)
2665 spd = B115200;
2666 else
2667 spd = B115200;
2669 cfsetispeed(&tty, spd);
2670 cfsetospeed(&tty, spd);
2672 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2673 |INLCR|IGNCR|ICRNL|IXON);
2674 tty.c_oflag |= OPOST;
2675 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2676 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2677 switch(data_bits) {
2678 default:
2679 case 8:
2680 tty.c_cflag |= CS8;
2681 break;
2682 case 7:
2683 tty.c_cflag |= CS7;
2684 break;
2685 case 6:
2686 tty.c_cflag |= CS6;
2687 break;
2688 case 5:
2689 tty.c_cflag |= CS5;
2690 break;
2692 switch(parity) {
2693 default:
2694 case 'N':
2695 break;
2696 case 'E':
2697 tty.c_cflag |= PARENB;
2698 break;
2699 case 'O':
2700 tty.c_cflag |= PARENB | PARODD;
2701 break;
2703 if (stop_bits == 2)
2704 tty.c_cflag |= CSTOPB;
2706 tcsetattr (fd, TCSANOW, &tty);
2709 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2711 FDCharDriver *s = chr->opaque;
2713 switch(cmd) {
2714 case CHR_IOCTL_SERIAL_SET_PARAMS:
2716 QEMUSerialSetParams *ssp = arg;
2717 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2718 ssp->data_bits, ssp->stop_bits);
2720 break;
2721 case CHR_IOCTL_SERIAL_SET_BREAK:
2723 int enable = *(int *)arg;
2724 if (enable)
2725 tcsendbreak(s->fd_in, 1);
2727 break;
2728 case CHR_IOCTL_SERIAL_GET_TIOCM:
2730 int sarg = 0;
2731 int *targ = (int *)arg;
2732 ioctl(s->fd_in, TIOCMGET, &sarg);
2733 *targ = 0;
2734 if (sarg | TIOCM_CTS)
2735 *targ |= CHR_TIOCM_CTS;
2736 if (sarg | TIOCM_CAR)
2737 *targ |= CHR_TIOCM_CAR;
2738 if (sarg | TIOCM_DSR)
2739 *targ |= CHR_TIOCM_DSR;
2740 if (sarg | TIOCM_RI)
2741 *targ |= CHR_TIOCM_RI;
2742 if (sarg | TIOCM_DTR)
2743 *targ |= CHR_TIOCM_DTR;
2744 if (sarg | TIOCM_RTS)
2745 *targ |= CHR_TIOCM_RTS;
2747 break;
2748 case CHR_IOCTL_SERIAL_SET_TIOCM:
2750 int sarg = *(int *)arg;
2751 int targ = 0;
2752 if (sarg | CHR_TIOCM_DTR)
2753 targ |= TIOCM_DTR;
2754 if (sarg | CHR_TIOCM_RTS)
2755 targ |= TIOCM_RTS;
2756 ioctl(s->fd_in, TIOCMSET, &targ);
2758 break;
2759 default:
2760 return -ENOTSUP;
2762 return 0;
2765 static CharDriverState *qemu_chr_open_tty(const char *filename)
2767 CharDriverState *chr;
2768 int fd;
2770 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2771 tty_serial_init(fd, 115200, 'N', 8, 1);
2772 chr = qemu_chr_open_fd(fd, fd);
2773 if (!chr) {
2774 close(fd);
2775 return NULL;
2777 chr->chr_ioctl = tty_serial_ioctl;
2778 qemu_chr_reset(chr);
2779 return chr;
2781 #else /* ! __linux__ && ! __sun__ */
2782 static CharDriverState *qemu_chr_open_pty(void)
2784 return NULL;
2786 #endif /* __linux__ || __sun__ */
2788 #if defined(__linux__)
2789 typedef struct {
2790 int fd;
2791 int mode;
2792 } ParallelCharDriver;
2794 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2796 if (s->mode != mode) {
2797 int m = mode;
2798 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2799 return 0;
2800 s->mode = mode;
2802 return 1;
2805 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2807 ParallelCharDriver *drv = chr->opaque;
2808 int fd = drv->fd;
2809 uint8_t b;
2811 switch(cmd) {
2812 case CHR_IOCTL_PP_READ_DATA:
2813 if (ioctl(fd, PPRDATA, &b) < 0)
2814 return -ENOTSUP;
2815 *(uint8_t *)arg = b;
2816 break;
2817 case CHR_IOCTL_PP_WRITE_DATA:
2818 b = *(uint8_t *)arg;
2819 if (ioctl(fd, PPWDATA, &b) < 0)
2820 return -ENOTSUP;
2821 break;
2822 case CHR_IOCTL_PP_READ_CONTROL:
2823 if (ioctl(fd, PPRCONTROL, &b) < 0)
2824 return -ENOTSUP;
2825 /* Linux gives only the lowest bits, and no way to know data
2826 direction! For better compatibility set the fixed upper
2827 bits. */
2828 *(uint8_t *)arg = b | 0xc0;
2829 break;
2830 case CHR_IOCTL_PP_WRITE_CONTROL:
2831 b = *(uint8_t *)arg;
2832 if (ioctl(fd, PPWCONTROL, &b) < 0)
2833 return -ENOTSUP;
2834 break;
2835 case CHR_IOCTL_PP_READ_STATUS:
2836 if (ioctl(fd, PPRSTATUS, &b) < 0)
2837 return -ENOTSUP;
2838 *(uint8_t *)arg = b;
2839 break;
2840 case CHR_IOCTL_PP_DATA_DIR:
2841 if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2842 return -ENOTSUP;
2843 break;
2844 case CHR_IOCTL_PP_EPP_READ_ADDR:
2845 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2846 struct ParallelIOArg *parg = arg;
2847 int n = read(fd, parg->buffer, parg->count);
2848 if (n != parg->count) {
2849 return -EIO;
2852 break;
2853 case CHR_IOCTL_PP_EPP_READ:
2854 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2855 struct ParallelIOArg *parg = arg;
2856 int n = read(fd, parg->buffer, parg->count);
2857 if (n != parg->count) {
2858 return -EIO;
2861 break;
2862 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2863 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2864 struct ParallelIOArg *parg = arg;
2865 int n = write(fd, parg->buffer, parg->count);
2866 if (n != parg->count) {
2867 return -EIO;
2870 break;
2871 case CHR_IOCTL_PP_EPP_WRITE:
2872 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2873 struct ParallelIOArg *parg = arg;
2874 int n = write(fd, parg->buffer, parg->count);
2875 if (n != parg->count) {
2876 return -EIO;
2879 break;
2880 default:
2881 return -ENOTSUP;
2883 return 0;
2886 static void pp_close(CharDriverState *chr)
2888 ParallelCharDriver *drv = chr->opaque;
2889 int fd = drv->fd;
2891 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2892 ioctl(fd, PPRELEASE);
2893 close(fd);
2894 qemu_free(drv);
2897 static CharDriverState *qemu_chr_open_pp(const char *filename)
2899 CharDriverState *chr;
2900 ParallelCharDriver *drv;
2901 int fd;
2903 TFR(fd = open(filename, O_RDWR));
2904 if (fd < 0)
2905 return NULL;
2907 if (ioctl(fd, PPCLAIM) < 0) {
2908 close(fd);
2909 return NULL;
2912 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2913 if (!drv) {
2914 close(fd);
2915 return NULL;
2917 drv->fd = fd;
2918 drv->mode = IEEE1284_MODE_COMPAT;
2920 chr = qemu_mallocz(sizeof(CharDriverState));
2921 if (!chr) {
2922 qemu_free(drv);
2923 close(fd);
2924 return NULL;
2926 chr->chr_write = null_chr_write;
2927 chr->chr_ioctl = pp_ioctl;
2928 chr->chr_close = pp_close;
2929 chr->opaque = drv;
2931 qemu_chr_reset(chr);
2933 return chr;
2935 #endif /* __linux__ */
2937 #else /* _WIN32 */
2939 typedef struct {
2940 int max_size;
2941 HANDLE hcom, hrecv, hsend;
2942 OVERLAPPED orecv, osend;
2943 BOOL fpipe;
2944 DWORD len;
2945 } WinCharState;
2947 #define NSENDBUF 2048
2948 #define NRECVBUF 2048
2949 #define MAXCONNECT 1
2950 #define NTIMEOUT 5000
2952 static int win_chr_poll(void *opaque);
2953 static int win_chr_pipe_poll(void *opaque);
2955 static void win_chr_close(CharDriverState *chr)
2957 WinCharState *s = chr->opaque;
2959 if (s->hsend) {
2960 CloseHandle(s->hsend);
2961 s->hsend = NULL;
2963 if (s->hrecv) {
2964 CloseHandle(s->hrecv);
2965 s->hrecv = NULL;
2967 if (s->hcom) {
2968 CloseHandle(s->hcom);
2969 s->hcom = NULL;
2971 if (s->fpipe)
2972 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2973 else
2974 qemu_del_polling_cb(win_chr_poll, chr);
2977 static int win_chr_init(CharDriverState *chr, const char *filename)
2979 WinCharState *s = chr->opaque;
2980 COMMCONFIG comcfg;
2981 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2982 COMSTAT comstat;
2983 DWORD size;
2984 DWORD err;
2986 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2987 if (!s->hsend) {
2988 fprintf(stderr, "Failed CreateEvent\n");
2989 goto fail;
2991 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2992 if (!s->hrecv) {
2993 fprintf(stderr, "Failed CreateEvent\n");
2994 goto fail;
2997 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2998 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2999 if (s->hcom == INVALID_HANDLE_VALUE) {
3000 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
3001 s->hcom = NULL;
3002 goto fail;
3005 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3006 fprintf(stderr, "Failed SetupComm\n");
3007 goto fail;
3010 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3011 size = sizeof(COMMCONFIG);
3012 GetDefaultCommConfig(filename, &comcfg, &size);
3013 comcfg.dcb.DCBlength = sizeof(DCB);
3014 CommConfigDialog(filename, NULL, &comcfg);
3016 if (!SetCommState(s->hcom, &comcfg.dcb)) {
3017 fprintf(stderr, "Failed SetCommState\n");
3018 goto fail;
3021 if (!SetCommMask(s->hcom, EV_ERR)) {
3022 fprintf(stderr, "Failed SetCommMask\n");
3023 goto fail;
3026 cto.ReadIntervalTimeout = MAXDWORD;
3027 if (!SetCommTimeouts(s->hcom, &cto)) {
3028 fprintf(stderr, "Failed SetCommTimeouts\n");
3029 goto fail;
3032 if (!ClearCommError(s->hcom, &err, &comstat)) {
3033 fprintf(stderr, "Failed ClearCommError\n");
3034 goto fail;
3036 qemu_add_polling_cb(win_chr_poll, chr);
3037 return 0;
3039 fail:
3040 win_chr_close(chr);
3041 return -1;
3044 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3046 WinCharState *s = chr->opaque;
3047 DWORD len, ret, size, err;
3049 len = len1;
3050 ZeroMemory(&s->osend, sizeof(s->osend));
3051 s->osend.hEvent = s->hsend;
3052 while (len > 0) {
3053 if (s->hsend)
3054 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3055 else
3056 ret = WriteFile(s->hcom, buf, len, &size, NULL);
3057 if (!ret) {
3058 err = GetLastError();
3059 if (err == ERROR_IO_PENDING) {
3060 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3061 if (ret) {
3062 buf += size;
3063 len -= size;
3064 } else {
3065 break;
3067 } else {
3068 break;
3070 } else {
3071 buf += size;
3072 len -= size;
3075 return len1 - len;
3078 static int win_chr_read_poll(CharDriverState *chr)
3080 WinCharState *s = chr->opaque;
3082 s->max_size = qemu_chr_can_read(chr);
3083 return s->max_size;
3086 static void win_chr_readfile(CharDriverState *chr)
3088 WinCharState *s = chr->opaque;
3089 int ret, err;
3090 uint8_t buf[1024];
3091 DWORD size;
3093 ZeroMemory(&s->orecv, sizeof(s->orecv));
3094 s->orecv.hEvent = s->hrecv;
3095 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3096 if (!ret) {
3097 err = GetLastError();
3098 if (err == ERROR_IO_PENDING) {
3099 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3103 if (size > 0) {
3104 qemu_chr_read(chr, buf, size);
3108 static void win_chr_read(CharDriverState *chr)
3110 WinCharState *s = chr->opaque;
3112 if (s->len > s->max_size)
3113 s->len = s->max_size;
3114 if (s->len == 0)
3115 return;
3117 win_chr_readfile(chr);
3120 static int win_chr_poll(void *opaque)
3122 CharDriverState *chr = opaque;
3123 WinCharState *s = chr->opaque;
3124 COMSTAT status;
3125 DWORD comerr;
3127 ClearCommError(s->hcom, &comerr, &status);
3128 if (status.cbInQue > 0) {
3129 s->len = status.cbInQue;
3130 win_chr_read_poll(chr);
3131 win_chr_read(chr);
3132 return 1;
3134 return 0;
3137 static CharDriverState *qemu_chr_open_win(const char *filename)
3139 CharDriverState *chr;
3140 WinCharState *s;
3142 chr = qemu_mallocz(sizeof(CharDriverState));
3143 if (!chr)
3144 return NULL;
3145 s = qemu_mallocz(sizeof(WinCharState));
3146 if (!s) {
3147 free(chr);
3148 return NULL;
3150 chr->opaque = s;
3151 chr->chr_write = win_chr_write;
3152 chr->chr_close = win_chr_close;
3154 if (win_chr_init(chr, filename) < 0) {
3155 free(s);
3156 free(chr);
3157 return NULL;
3159 qemu_chr_reset(chr);
3160 return chr;
3163 static int win_chr_pipe_poll(void *opaque)
3165 CharDriverState *chr = opaque;
3166 WinCharState *s = chr->opaque;
3167 DWORD size;
3169 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3170 if (size > 0) {
3171 s->len = size;
3172 win_chr_read_poll(chr);
3173 win_chr_read(chr);
3174 return 1;
3176 return 0;
3179 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3181 WinCharState *s = chr->opaque;
3182 OVERLAPPED ov;
3183 int ret;
3184 DWORD size;
3185 char openname[256];
3187 s->fpipe = TRUE;
3189 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3190 if (!s->hsend) {
3191 fprintf(stderr, "Failed CreateEvent\n");
3192 goto fail;
3194 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3195 if (!s->hrecv) {
3196 fprintf(stderr, "Failed CreateEvent\n");
3197 goto fail;
3200 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3201 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3202 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3203 PIPE_WAIT,
3204 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3205 if (s->hcom == INVALID_HANDLE_VALUE) {
3206 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3207 s->hcom = NULL;
3208 goto fail;
3211 ZeroMemory(&ov, sizeof(ov));
3212 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3213 ret = ConnectNamedPipe(s->hcom, &ov);
3214 if (ret) {
3215 fprintf(stderr, "Failed ConnectNamedPipe\n");
3216 goto fail;
3219 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3220 if (!ret) {
3221 fprintf(stderr, "Failed GetOverlappedResult\n");
3222 if (ov.hEvent) {
3223 CloseHandle(ov.hEvent);
3224 ov.hEvent = NULL;
3226 goto fail;
3229 if (ov.hEvent) {
3230 CloseHandle(ov.hEvent);
3231 ov.hEvent = NULL;
3233 qemu_add_polling_cb(win_chr_pipe_poll, chr);
3234 return 0;
3236 fail:
3237 win_chr_close(chr);
3238 return -1;
3242 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3244 CharDriverState *chr;
3245 WinCharState *s;
3247 chr = qemu_mallocz(sizeof(CharDriverState));
3248 if (!chr)
3249 return NULL;
3250 s = qemu_mallocz(sizeof(WinCharState));
3251 if (!s) {
3252 free(chr);
3253 return NULL;
3255 chr->opaque = s;
3256 chr->chr_write = win_chr_write;
3257 chr->chr_close = win_chr_close;
3259 if (win_chr_pipe_init(chr, filename) < 0) {
3260 free(s);
3261 free(chr);
3262 return NULL;
3264 qemu_chr_reset(chr);
3265 return chr;
3268 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3270 CharDriverState *chr;
3271 WinCharState *s;
3273 chr = qemu_mallocz(sizeof(CharDriverState));
3274 if (!chr)
3275 return NULL;
3276 s = qemu_mallocz(sizeof(WinCharState));
3277 if (!s) {
3278 free(chr);
3279 return NULL;
3281 s->hcom = fd_out;
3282 chr->opaque = s;
3283 chr->chr_write = win_chr_write;
3284 qemu_chr_reset(chr);
3285 return chr;
3288 static CharDriverState *qemu_chr_open_win_con(const char *filename)
3290 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3293 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3295 HANDLE fd_out;
3297 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3298 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3299 if (fd_out == INVALID_HANDLE_VALUE)
3300 return NULL;
3302 return qemu_chr_open_win_file(fd_out);
3304 #endif /* !_WIN32 */
3306 /***********************************************************/
3307 /* UDP Net console */
3309 typedef struct {
3310 int fd;
3311 struct sockaddr_in daddr;
3312 uint8_t buf[1024];
3313 int bufcnt;
3314 int bufptr;
3315 int max_size;
3316 } NetCharDriver;
3318 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3320 NetCharDriver *s = chr->opaque;
3322 return sendto(s->fd, buf, len, 0,
3323 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3326 static int udp_chr_read_poll(void *opaque)
3328 CharDriverState *chr = opaque;
3329 NetCharDriver *s = chr->opaque;
3331 s->max_size = qemu_chr_can_read(chr);
3333 /* If there were any stray characters in the queue process them
3334 * first
3336 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3337 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3338 s->bufptr++;
3339 s->max_size = qemu_chr_can_read(chr);
3341 return s->max_size;
3344 static void udp_chr_read(void *opaque)
3346 CharDriverState *chr = opaque;
3347 NetCharDriver *s = chr->opaque;
3349 if (s->max_size == 0)
3350 return;
3351 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3352 s->bufptr = s->bufcnt;
3353 if (s->bufcnt <= 0)
3354 return;
3356 s->bufptr = 0;
3357 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3358 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3359 s->bufptr++;
3360 s->max_size = qemu_chr_can_read(chr);
3364 static void udp_chr_update_read_handler(CharDriverState *chr)
3366 NetCharDriver *s = chr->opaque;
3368 if (s->fd >= 0) {
3369 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3370 udp_chr_read, NULL, chr);
3374 int parse_host_port(struct sockaddr_in *saddr, const char *str);
3375 #ifndef _WIN32
3376 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3377 #endif
3378 int parse_host_src_port(struct sockaddr_in *haddr,
3379 struct sockaddr_in *saddr,
3380 const char *str);
3382 static CharDriverState *qemu_chr_open_udp(const char *def)
3384 CharDriverState *chr = NULL;
3385 NetCharDriver *s = NULL;
3386 int fd = -1;
3387 struct sockaddr_in saddr;
3389 chr = qemu_mallocz(sizeof(CharDriverState));
3390 if (!chr)
3391 goto return_err;
3392 s = qemu_mallocz(sizeof(NetCharDriver));
3393 if (!s)
3394 goto return_err;
3396 fd = socket(PF_INET, SOCK_DGRAM, 0);
3397 if (fd < 0) {
3398 perror("socket(PF_INET, SOCK_DGRAM)");
3399 goto return_err;
3402 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3403 printf("Could not parse: %s\n", def);
3404 goto return_err;
3407 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3409 perror("bind");
3410 goto return_err;
3413 s->fd = fd;
3414 s->bufcnt = 0;
3415 s->bufptr = 0;
3416 chr->opaque = s;
3417 chr->chr_write = udp_chr_write;
3418 chr->chr_update_read_handler = udp_chr_update_read_handler;
3419 return chr;
3421 return_err:
3422 if (chr)
3423 free(chr);
3424 if (s)
3425 free(s);
3426 if (fd >= 0)
3427 closesocket(fd);
3428 return NULL;
3431 /***********************************************************/
3432 /* TCP Net console */
3434 typedef struct {
3435 int fd, listen_fd;
3436 int connected;
3437 int max_size;
3438 int do_telnetopt;
3439 int do_nodelay;
3440 int is_unix;
3441 } TCPCharDriver;
3443 static void tcp_chr_accept(void *opaque);
3445 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3447 TCPCharDriver *s = chr->opaque;
3448 if (s->connected) {
3449 return send_all(s->fd, buf, len);
3450 } else {
3451 /* XXX: indicate an error ? */
3452 return len;
3456 static int tcp_chr_read_poll(void *opaque)
3458 CharDriverState *chr = opaque;
3459 TCPCharDriver *s = chr->opaque;
3460 if (!s->connected)
3461 return 0;
3462 s->max_size = qemu_chr_can_read(chr);
3463 return s->max_size;
3466 #define IAC 255
3467 #define IAC_BREAK 243
3468 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3469 TCPCharDriver *s,
3470 uint8_t *buf, int *size)
3472 /* Handle any telnet client's basic IAC options to satisfy char by
3473 * char mode with no echo. All IAC options will be removed from
3474 * the buf and the do_telnetopt variable will be used to track the
3475 * state of the width of the IAC information.
3477 * IAC commands come in sets of 3 bytes with the exception of the
3478 * "IAC BREAK" command and the double IAC.
3481 int i;
3482 int j = 0;
3484 for (i = 0; i < *size; i++) {
3485 if (s->do_telnetopt > 1) {
3486 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3487 /* Double IAC means send an IAC */
3488 if (j != i)
3489 buf[j] = buf[i];
3490 j++;
3491 s->do_telnetopt = 1;
3492 } else {
3493 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3494 /* Handle IAC break commands by sending a serial break */
3495 qemu_chr_event(chr, CHR_EVENT_BREAK);
3496 s->do_telnetopt++;
3498 s->do_telnetopt++;
3500 if (s->do_telnetopt >= 4) {
3501 s->do_telnetopt = 1;
3503 } else {
3504 if ((unsigned char)buf[i] == IAC) {
3505 s->do_telnetopt = 2;
3506 } else {
3507 if (j != i)
3508 buf[j] = buf[i];
3509 j++;
3513 *size = j;
3516 static void tcp_chr_read(void *opaque)
3518 CharDriverState *chr = opaque;
3519 TCPCharDriver *s = chr->opaque;
3520 uint8_t buf[1024];
3521 int len, size;
3523 if (!s->connected || s->max_size <= 0)
3524 return;
3525 len = sizeof(buf);
3526 if (len > s->max_size)
3527 len = s->max_size;
3528 size = recv(s->fd, buf, len, 0);
3529 if (size == 0) {
3530 /* connection closed */
3531 s->connected = 0;
3532 if (s->listen_fd >= 0) {
3533 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3535 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3536 closesocket(s->fd);
3537 s->fd = -1;
3538 } else if (size > 0) {
3539 if (s->do_telnetopt)
3540 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3541 if (size > 0)
3542 qemu_chr_read(chr, buf, size);
3546 static void tcp_chr_connect(void *opaque)
3548 CharDriverState *chr = opaque;
3549 TCPCharDriver *s = chr->opaque;
3551 s->connected = 1;
3552 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3553 tcp_chr_read, NULL, chr);
3554 qemu_chr_reset(chr);
3557 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3558 static void tcp_chr_telnet_init(int fd)
3560 char buf[3];
3561 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3562 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3563 send(fd, (char *)buf, 3, 0);
3564 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3565 send(fd, (char *)buf, 3, 0);
3566 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3567 send(fd, (char *)buf, 3, 0);
3568 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3569 send(fd, (char *)buf, 3, 0);
3572 static void socket_set_nodelay(int fd)
3574 int val = 1;
3575 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3578 static void tcp_chr_accept(void *opaque)
3580 CharDriverState *chr = opaque;
3581 TCPCharDriver *s = chr->opaque;
3582 struct sockaddr_in saddr;
3583 #ifndef _WIN32
3584 struct sockaddr_un uaddr;
3585 #endif
3586 struct sockaddr *addr;
3587 socklen_t len;
3588 int fd;
3590 for(;;) {
3591 #ifndef _WIN32
3592 if (s->is_unix) {
3593 len = sizeof(uaddr);
3594 addr = (struct sockaddr *)&uaddr;
3595 } else
3596 #endif
3598 len = sizeof(saddr);
3599 addr = (struct sockaddr *)&saddr;
3601 fd = accept(s->listen_fd, addr, &len);
3602 if (fd < 0 && errno != EINTR) {
3603 return;
3604 } else if (fd >= 0) {
3605 if (s->do_telnetopt)
3606 tcp_chr_telnet_init(fd);
3607 break;
3610 socket_set_nonblock(fd);
3611 if (s->do_nodelay)
3612 socket_set_nodelay(fd);
3613 s->fd = fd;
3614 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3615 tcp_chr_connect(chr);
3618 static void tcp_chr_close(CharDriverState *chr)
3620 TCPCharDriver *s = chr->opaque;
3621 if (s->fd >= 0)
3622 closesocket(s->fd);
3623 if (s->listen_fd >= 0)
3624 closesocket(s->listen_fd);
3625 qemu_free(s);
3628 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3629 int is_telnet,
3630 int is_unix)
3632 CharDriverState *chr = NULL;
3633 TCPCharDriver *s = NULL;
3634 int fd = -1, ret, err, val;
3635 int is_listen = 0;
3636 int is_waitconnect = 1;
3637 int do_nodelay = 0;
3638 const char *ptr;
3639 struct sockaddr_in saddr;
3640 #ifndef _WIN32
3641 struct sockaddr_un uaddr;
3642 #endif
3643 struct sockaddr *addr;
3644 socklen_t addrlen;
3646 #ifndef _WIN32
3647 if (is_unix) {
3648 addr = (struct sockaddr *)&uaddr;
3649 addrlen = sizeof(uaddr);
3650 if (parse_unix_path(&uaddr, host_str) < 0)
3651 goto fail;
3652 } else
3653 #endif
3655 addr = (struct sockaddr *)&saddr;
3656 addrlen = sizeof(saddr);
3657 if (parse_host_port(&saddr, host_str) < 0)
3658 goto fail;
3661 ptr = host_str;
3662 while((ptr = strchr(ptr,','))) {
3663 ptr++;
3664 if (!strncmp(ptr,"server",6)) {
3665 is_listen = 1;
3666 } else if (!strncmp(ptr,"nowait",6)) {
3667 is_waitconnect = 0;
3668 } else if (!strncmp(ptr,"nodelay",6)) {
3669 do_nodelay = 1;
3670 } else {
3671 printf("Unknown option: %s\n", ptr);
3672 goto fail;
3675 if (!is_listen)
3676 is_waitconnect = 0;
3678 chr = qemu_mallocz(sizeof(CharDriverState));
3679 if (!chr)
3680 goto fail;
3681 s = qemu_mallocz(sizeof(TCPCharDriver));
3682 if (!s)
3683 goto fail;
3685 #ifndef _WIN32
3686 if (is_unix)
3687 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3688 else
3689 #endif
3690 fd = socket(PF_INET, SOCK_STREAM, 0);
3692 if (fd < 0)
3693 goto fail;
3695 if (!is_waitconnect)
3696 socket_set_nonblock(fd);
3698 s->connected = 0;
3699 s->fd = -1;
3700 s->listen_fd = -1;
3701 s->is_unix = is_unix;
3702 s->do_nodelay = do_nodelay && !is_unix;
3704 chr->opaque = s;
3705 chr->chr_write = tcp_chr_write;
3706 chr->chr_close = tcp_chr_close;
3708 if (is_listen) {
3709 /* allow fast reuse */
3710 #ifndef _WIN32
3711 if (is_unix) {
3712 char path[109];
3713 pstrcpy(path, sizeof(path), uaddr.sun_path);
3714 unlink(path);
3715 } else
3716 #endif
3718 val = 1;
3719 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3722 ret = bind(fd, addr, addrlen);
3723 if (ret < 0)
3724 goto fail;
3726 ret = listen(fd, 0);
3727 if (ret < 0)
3728 goto fail;
3730 s->listen_fd = fd;
3731 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3732 if (is_telnet)
3733 s->do_telnetopt = 1;
3734 } else {
3735 for(;;) {
3736 ret = connect(fd, addr, addrlen);
3737 if (ret < 0) {
3738 err = socket_error();
3739 if (err == EINTR || err == EWOULDBLOCK) {
3740 } else if (err == EINPROGRESS) {
3741 break;
3742 #ifdef _WIN32
3743 } else if (err == WSAEALREADY) {
3744 break;
3745 #endif
3746 } else {
3747 goto fail;
3749 } else {
3750 s->connected = 1;
3751 break;
3754 s->fd = fd;
3755 socket_set_nodelay(fd);
3756 if (s->connected)
3757 tcp_chr_connect(chr);
3758 else
3759 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3762 if (is_listen && is_waitconnect) {
3763 printf("QEMU waiting for connection on: %s\n", host_str);
3764 tcp_chr_accept(chr);
3765 socket_set_nonblock(s->listen_fd);
3768 return chr;
3769 fail:
3770 if (fd >= 0)
3771 closesocket(fd);
3772 qemu_free(s);
3773 qemu_free(chr);
3774 return NULL;
3777 CharDriverState *qemu_chr_open(const char *filename)
3779 const char *p;
3781 if (!strcmp(filename, "vc")) {
3782 return text_console_init(&display_state, 0);
3783 } else if (strstart(filename, "vc:", &p)) {
3784 return text_console_init(&display_state, p);
3785 } else if (!strcmp(filename, "null")) {
3786 return qemu_chr_open_null();
3787 } else
3788 if (strstart(filename, "tcp:", &p)) {
3789 return qemu_chr_open_tcp(p, 0, 0);
3790 } else
3791 if (strstart(filename, "telnet:", &p)) {
3792 return qemu_chr_open_tcp(p, 1, 0);
3793 } else
3794 if (strstart(filename, "udp:", &p)) {
3795 return qemu_chr_open_udp(p);
3796 } else
3797 if (strstart(filename, "mon:", &p)) {
3798 CharDriverState *drv = qemu_chr_open(p);
3799 if (drv) {
3800 drv = qemu_chr_open_mux(drv);
3801 monitor_init(drv, !nographic);
3802 return drv;
3804 printf("Unable to open driver: %s\n", p);
3805 return 0;
3806 } else
3807 #ifndef _WIN32
3808 if (strstart(filename, "unix:", &p)) {
3809 return qemu_chr_open_tcp(p, 0, 1);
3810 } else if (strstart(filename, "file:", &p)) {
3811 return qemu_chr_open_file_out(p);
3812 } else if (strstart(filename, "pipe:", &p)) {
3813 return qemu_chr_open_pipe(p);
3814 } else if (!strcmp(filename, "pty")) {
3815 return qemu_chr_open_pty();
3816 } else if (!strcmp(filename, "stdio")) {
3817 return qemu_chr_open_stdio();
3818 } else
3819 #if defined(__linux__)
3820 if (strstart(filename, "/dev/parport", NULL)) {
3821 return qemu_chr_open_pp(filename);
3822 } else
3823 #endif
3824 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3825 || defined(__NetBSD__) || defined(__OpenBSD__)
3826 if (strstart(filename, "/dev/", NULL)) {
3827 return qemu_chr_open_tty(filename);
3828 } else
3829 #endif
3830 #else /* !_WIN32 */
3831 if (strstart(filename, "COM", NULL)) {
3832 return qemu_chr_open_win(filename);
3833 } else
3834 if (strstart(filename, "pipe:", &p)) {
3835 return qemu_chr_open_win_pipe(p);
3836 } else
3837 if (strstart(filename, "con:", NULL)) {
3838 return qemu_chr_open_win_con(filename);
3839 } else
3840 if (strstart(filename, "file:", &p)) {
3841 return qemu_chr_open_win_file_out(p);
3842 } else
3843 #endif
3844 #ifdef CONFIG_BRLAPI
3845 if (!strcmp(filename, "braille")) {
3846 return chr_baum_init();
3847 } else
3848 #endif
3850 return NULL;
3854 void qemu_chr_close(CharDriverState *chr)
3856 if (chr->chr_close)
3857 chr->chr_close(chr);
3858 qemu_free(chr);
3861 /***********************************************************/
3862 /* network device redirectors */
3864 __attribute__ (( unused ))
3865 static void hex_dump(FILE *f, const uint8_t *buf, int size)
3867 int len, i, j, c;
3869 for(i=0;i<size;i+=16) {
3870 len = size - i;
3871 if (len > 16)
3872 len = 16;
3873 fprintf(f, "%08x ", i);
3874 for(j=0;j<16;j++) {
3875 if (j < len)
3876 fprintf(f, " %02x", buf[i+j]);
3877 else
3878 fprintf(f, " ");
3880 fprintf(f, " ");
3881 for(j=0;j<len;j++) {
3882 c = buf[i+j];
3883 if (c < ' ' || c > '~')
3884 c = '.';
3885 fprintf(f, "%c", c);
3887 fprintf(f, "\n");
3891 static int parse_macaddr(uint8_t *macaddr, const char *p)
3893 int i;
3894 char *last_char;
3895 long int offset;
3897 errno = 0;
3898 offset = strtol(p, &last_char, 0);
3899 if (0 == errno && '\0' == *last_char &&
3900 offset >= 0 && offset <= 0xFFFFFF) {
3901 macaddr[3] = (offset & 0xFF0000) >> 16;
3902 macaddr[4] = (offset & 0xFF00) >> 8;
3903 macaddr[5] = offset & 0xFF;
3904 return 0;
3905 } else {
3906 for(i = 0; i < 6; i++) {
3907 macaddr[i] = strtol(p, (char **)&p, 16);
3908 if (i == 5) {
3909 if (*p != '\0')
3910 return -1;
3911 } else {
3912 if (*p != ':' && *p != '-')
3913 return -1;
3914 p++;
3917 return 0;
3920 return -1;
3923 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3925 const char *p, *p1;
3926 int len;
3927 p = *pp;
3928 p1 = strchr(p, sep);
3929 if (!p1)
3930 return -1;
3931 len = p1 - p;
3932 p1++;
3933 if (buf_size > 0) {
3934 if (len > buf_size - 1)
3935 len = buf_size - 1;
3936 memcpy(buf, p, len);
3937 buf[len] = '\0';
3939 *pp = p1;
3940 return 0;
3943 int parse_host_src_port(struct sockaddr_in *haddr,
3944 struct sockaddr_in *saddr,
3945 const char *input_str)
3947 char *str = strdup(input_str);
3948 char *host_str = str;
3949 char *src_str;
3950 const char *src_str2;
3951 char *ptr;
3954 * Chop off any extra arguments at the end of the string which
3955 * would start with a comma, then fill in the src port information
3956 * if it was provided else use the "any address" and "any port".
3958 if ((ptr = strchr(str,',')))
3959 *ptr = '\0';
3961 if ((src_str = strchr(input_str,'@'))) {
3962 *src_str = '\0';
3963 src_str++;
3966 if (parse_host_port(haddr, host_str) < 0)
3967 goto fail;
3969 src_str2 = src_str;
3970 if (!src_str || *src_str == '\0')
3971 src_str2 = ":0";
3973 if (parse_host_port(saddr, src_str2) < 0)
3974 goto fail;
3976 free(str);
3977 return(0);
3979 fail:
3980 free(str);
3981 return -1;
3984 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3986 char buf[512];
3987 struct hostent *he;
3988 const char *p, *r;
3989 int port;
3991 p = str;
3992 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3993 return -1;
3994 saddr->sin_family = AF_INET;
3995 if (buf[0] == '\0') {
3996 saddr->sin_addr.s_addr = 0;
3997 } else {
3998 if (isdigit(buf[0])) {
3999 if (!inet_aton(buf, &saddr->sin_addr))
4000 return -1;
4001 } else {
4002 if ((he = gethostbyname(buf)) == NULL)
4003 return - 1;
4004 saddr->sin_addr = *(struct in_addr *)he->h_addr;
4007 port = strtol(p, (char **)&r, 0);
4008 if (r == p)
4009 return -1;
4010 saddr->sin_port = htons(port);
4011 return 0;
4014 #ifndef _WIN32
4015 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4017 const char *p;
4018 int len;
4020 len = MIN(108, strlen(str));
4021 p = strchr(str, ',');
4022 if (p)
4023 len = MIN(len, p - str);
4025 memset(uaddr, 0, sizeof(*uaddr));
4027 uaddr->sun_family = AF_UNIX;
4028 memcpy(uaddr->sun_path, str, len);
4030 return 0;
4032 #endif
4034 /* find or alloc a new VLAN */
4035 VLANState *qemu_find_vlan(int id)
4037 VLANState **pvlan, *vlan;
4038 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4039 if (vlan->id == id)
4040 return vlan;
4042 vlan = qemu_mallocz(sizeof(VLANState));
4043 if (!vlan)
4044 return NULL;
4045 vlan->id = id;
4046 vlan->next = NULL;
4047 pvlan = &first_vlan;
4048 while (*pvlan != NULL)
4049 pvlan = &(*pvlan)->next;
4050 *pvlan = vlan;
4051 return vlan;
4054 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4055 IOReadHandler *fd_read,
4056 IOCanRWHandler *fd_can_read,
4057 void *opaque)
4059 VLANClientState *vc, **pvc;
4060 vc = qemu_mallocz(sizeof(VLANClientState));
4061 if (!vc)
4062 return NULL;
4063 vc->fd_read = fd_read;
4064 vc->fd_can_read = fd_can_read;
4065 vc->opaque = opaque;
4066 vc->vlan = vlan;
4068 vc->next = NULL;
4069 pvc = &vlan->first_client;
4070 while (*pvc != NULL)
4071 pvc = &(*pvc)->next;
4072 *pvc = vc;
4073 return vc;
4076 void qemu_del_vlan_client(VLANClientState *vc)
4078 VLANClientState **pvc = &vc->vlan->first_client;
4080 while (*pvc != NULL)
4081 if (*pvc == vc) {
4082 *pvc = vc->next;
4083 free(vc);
4084 break;
4085 } else
4086 pvc = &(*pvc)->next;
4089 int qemu_can_send_packet(VLANClientState *vc1)
4091 VLANState *vlan = vc1->vlan;
4092 VLANClientState *vc;
4094 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4095 if (vc != vc1) {
4096 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4097 return 1;
4100 return 0;
4103 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4105 VLANState *vlan = vc1->vlan;
4106 VLANClientState *vc;
4108 #if 0
4109 printf("vlan %d send:\n", vlan->id);
4110 hex_dump(stdout, buf, size);
4111 #endif
4112 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4113 if (vc != vc1) {
4114 vc->fd_read(vc->opaque, buf, size);
4119 #if defined(CONFIG_SLIRP)
4121 /* slirp network adapter */
4123 static int slirp_inited;
4124 static VLANClientState *slirp_vc;
4126 int slirp_can_output(void)
4128 return !slirp_vc || qemu_can_send_packet(slirp_vc);
4131 void slirp_output(const uint8_t *pkt, int pkt_len)
4133 #if 0
4134 printf("slirp output:\n");
4135 hex_dump(stdout, pkt, pkt_len);
4136 #endif
4137 if (!slirp_vc)
4138 return;
4139 qemu_send_packet(slirp_vc, pkt, pkt_len);
4142 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4144 #if 0
4145 printf("slirp input:\n");
4146 hex_dump(stdout, buf, size);
4147 #endif
4148 slirp_input(buf, size);
4151 static int net_slirp_init(VLANState *vlan)
4153 if (!slirp_inited) {
4154 slirp_inited = 1;
4155 slirp_init();
4157 slirp_vc = qemu_new_vlan_client(vlan,
4158 slirp_receive, NULL, NULL);
4159 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4160 return 0;
4163 static void net_slirp_redir(const char *redir_str)
4165 int is_udp;
4166 char buf[256], *r;
4167 const char *p;
4168 struct in_addr guest_addr;
4169 int host_port, guest_port;
4171 if (!slirp_inited) {
4172 slirp_inited = 1;
4173 slirp_init();
4176 p = redir_str;
4177 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4178 goto fail;
4179 if (!strcmp(buf, "tcp")) {
4180 is_udp = 0;
4181 } else if (!strcmp(buf, "udp")) {
4182 is_udp = 1;
4183 } else {
4184 goto fail;
4187 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4188 goto fail;
4189 host_port = strtol(buf, &r, 0);
4190 if (r == buf)
4191 goto fail;
4193 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4194 goto fail;
4195 if (buf[0] == '\0') {
4196 pstrcpy(buf, sizeof(buf), "10.0.2.15");
4198 if (!inet_aton(buf, &guest_addr))
4199 goto fail;
4201 guest_port = strtol(p, &r, 0);
4202 if (r == p)
4203 goto fail;
4205 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4206 fprintf(stderr, "qemu: could not set up redirection\n");
4207 exit(1);
4209 return;
4210 fail:
4211 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4212 exit(1);
4215 #ifndef _WIN32
4217 static char smb_dir[1024];
4219 static void erase_dir(char *dir_name)
4221 DIR *d;
4222 struct dirent *de;
4223 char filename[1024];
4225 /* erase all the files in the directory */
4226 if ((d = opendir(dir_name)) != 0) {
4227 for(;;) {
4228 de = readdir(d);
4229 if (!de)
4230 break;
4231 if (strcmp(de->d_name, ".") != 0 &&
4232 strcmp(de->d_name, "..") != 0) {
4233 snprintf(filename, sizeof(filename), "%s/%s",
4234 smb_dir, de->d_name);
4235 if (unlink(filename) != 0) /* is it a directory? */
4236 erase_dir(filename);
4239 closedir(d);
4240 rmdir(dir_name);
4244 /* automatic user mode samba server configuration */
4245 static void smb_exit(void)
4247 erase_dir(smb_dir);
4250 /* automatic user mode samba server configuration */
4251 static void net_slirp_smb(const char *exported_dir)
4253 char smb_conf[1024];
4254 char smb_cmdline[1024];
4255 FILE *f;
4257 if (!slirp_inited) {
4258 slirp_inited = 1;
4259 slirp_init();
4262 /* XXX: better tmp dir construction */
4263 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4264 if (mkdir(smb_dir, 0700) < 0) {
4265 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4266 exit(1);
4268 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4270 f = fopen(smb_conf, "w");
4271 if (!f) {
4272 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4273 exit(1);
4275 fprintf(f,
4276 "[global]\n"
4277 "private dir=%s\n"
4278 "smb ports=0\n"
4279 "socket address=127.0.0.1\n"
4280 "pid directory=%s\n"
4281 "lock directory=%s\n"
4282 "log file=%s/log.smbd\n"
4283 "smb passwd file=%s/smbpasswd\n"
4284 "security = share\n"
4285 "[qemu]\n"
4286 "path=%s\n"
4287 "read only=no\n"
4288 "guest ok=yes\n",
4289 smb_dir,
4290 smb_dir,
4291 smb_dir,
4292 smb_dir,
4293 smb_dir,
4294 exported_dir
4296 fclose(f);
4297 atexit(smb_exit);
4299 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4300 SMBD_COMMAND, smb_conf);
4302 slirp_add_exec(0, smb_cmdline, 4, 139);
4305 #endif /* !defined(_WIN32) */
4306 void do_info_slirp(void)
4308 slirp_stats();
4311 #endif /* CONFIG_SLIRP */
4313 #if !defined(_WIN32)
4315 typedef struct TAPState {
4316 VLANClientState *vc;
4317 int fd;
4318 char down_script[1024];
4319 } TAPState;
4321 static void tap_receive(void *opaque, const uint8_t *buf, int size)
4323 TAPState *s = opaque;
4324 int ret;
4325 for(;;) {
4326 ret = write(s->fd, buf, size);
4327 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4328 } else {
4329 break;
4334 static void tap_send(void *opaque)
4336 TAPState *s = opaque;
4337 uint8_t buf[4096];
4338 int size;
4340 #ifdef __sun__
4341 struct strbuf sbuf;
4342 int f = 0;
4343 sbuf.maxlen = sizeof(buf);
4344 sbuf.buf = buf;
4345 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4346 #else
4347 size = read(s->fd, buf, sizeof(buf));
4348 #endif
4349 if (size > 0) {
4350 qemu_send_packet(s->vc, buf, size);
4354 /* fd support */
4356 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4358 TAPState *s;
4360 s = qemu_mallocz(sizeof(TAPState));
4361 if (!s)
4362 return NULL;
4363 s->fd = fd;
4364 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4365 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4366 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4367 return s;
4370 #if defined (_BSD) || defined (__FreeBSD_kernel__)
4371 static int tap_open(char *ifname, int ifname_size)
4373 int fd;
4374 char *dev;
4375 struct stat s;
4377 TFR(fd = open("/dev/tap", O_RDWR));
4378 if (fd < 0) {
4379 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4380 return -1;
4383 fstat(fd, &s);
4384 dev = devname(s.st_rdev, S_IFCHR);
4385 pstrcpy(ifname, ifname_size, dev);
4387 fcntl(fd, F_SETFL, O_NONBLOCK);
4388 return fd;
4390 #elif defined(__sun__)
4391 #define TUNNEWPPA (('T'<<16) | 0x0001)
4393 * Allocate TAP device, returns opened fd.
4394 * Stores dev name in the first arg(must be large enough).
4396 int tap_alloc(char *dev, size_t dev_size)
4398 int tap_fd, if_fd, ppa = -1;
4399 static int ip_fd = 0;
4400 char *ptr;
4402 static int arp_fd = 0;
4403 int ip_muxid, arp_muxid;
4404 struct strioctl strioc_if, strioc_ppa;
4405 int link_type = I_PLINK;;
4406 struct lifreq ifr;
4407 char actual_name[32] = "";
4409 memset(&ifr, 0x0, sizeof(ifr));
4411 if( *dev ){
4412 ptr = dev;
4413 while( *ptr && !isdigit((int)*ptr) ) ptr++;
4414 ppa = atoi(ptr);
4417 /* Check if IP device was opened */
4418 if( ip_fd )
4419 close(ip_fd);
4421 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4422 if (ip_fd < 0) {
4423 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4424 return -1;
4427 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4428 if (tap_fd < 0) {
4429 syslog(LOG_ERR, "Can't open /dev/tap");
4430 return -1;
4433 /* Assign a new PPA and get its unit number. */
4434 strioc_ppa.ic_cmd = TUNNEWPPA;
4435 strioc_ppa.ic_timout = 0;
4436 strioc_ppa.ic_len = sizeof(ppa);
4437 strioc_ppa.ic_dp = (char *)&ppa;
4438 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4439 syslog (LOG_ERR, "Can't assign new interface");
4441 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4442 if (if_fd < 0) {
4443 syslog(LOG_ERR, "Can't open /dev/tap (2)");
4444 return -1;
4446 if(ioctl(if_fd, I_PUSH, "ip") < 0){
4447 syslog(LOG_ERR, "Can't push IP module");
4448 return -1;
4451 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4452 syslog(LOG_ERR, "Can't get flags\n");
4454 snprintf (actual_name, 32, "tap%d", ppa);
4455 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4457 ifr.lifr_ppa = ppa;
4458 /* Assign ppa according to the unit number returned by tun device */
4460 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4461 syslog (LOG_ERR, "Can't set PPA %d", ppa);
4462 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4463 syslog (LOG_ERR, "Can't get flags\n");
4464 /* Push arp module to if_fd */
4465 if (ioctl (if_fd, I_PUSH, "arp") < 0)
4466 syslog (LOG_ERR, "Can't push ARP module (2)");
4468 /* Push arp module to ip_fd */
4469 if (ioctl (ip_fd, I_POP, NULL) < 0)
4470 syslog (LOG_ERR, "I_POP failed\n");
4471 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4472 syslog (LOG_ERR, "Can't push ARP module (3)\n");
4473 /* Open arp_fd */
4474 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4475 if (arp_fd < 0)
4476 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4478 /* Set ifname to arp */
4479 strioc_if.ic_cmd = SIOCSLIFNAME;
4480 strioc_if.ic_timout = 0;
4481 strioc_if.ic_len = sizeof(ifr);
4482 strioc_if.ic_dp = (char *)&ifr;
4483 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4484 syslog (LOG_ERR, "Can't set ifname to arp\n");
4487 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4488 syslog(LOG_ERR, "Can't link TAP device to IP");
4489 return -1;
4492 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4493 syslog (LOG_ERR, "Can't link TAP device to ARP");
4495 close (if_fd);
4497 memset(&ifr, 0x0, sizeof(ifr));
4498 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4499 ifr.lifr_ip_muxid = ip_muxid;
4500 ifr.lifr_arp_muxid = arp_muxid;
4502 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4504 ioctl (ip_fd, I_PUNLINK , arp_muxid);
4505 ioctl (ip_fd, I_PUNLINK, ip_muxid);
4506 syslog (LOG_ERR, "Can't set multiplexor id");
4509 snprintf(dev, dev_size, "tap%d", ppa);
4510 return tap_fd;
4513 static int tap_open(char *ifname, int ifname_size)
4515 char dev[10]="";
4516 int fd;
4517 if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4518 fprintf(stderr, "Cannot allocate TAP device\n");
4519 return -1;
4521 pstrcpy(ifname, ifname_size, dev);
4522 fcntl(fd, F_SETFL, O_NONBLOCK);
4523 return fd;
4525 #else
4526 static int tap_open(char *ifname, int ifname_size)
4528 struct ifreq ifr;
4529 int fd, ret;
4531 TFR(fd = open("/dev/net/tun", O_RDWR));
4532 if (fd < 0) {
4533 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4534 return -1;
4536 memset(&ifr, 0, sizeof(ifr));
4537 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4538 if (ifname[0] != '\0')
4539 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4540 else
4541 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4542 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4543 if (ret != 0) {
4544 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4545 close(fd);
4546 return -1;
4548 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4549 fcntl(fd, F_SETFL, O_NONBLOCK);
4550 return fd;
4552 #endif
4554 static int launch_script(const char *setup_script, const char *ifname, int fd)
4556 int pid, status;
4557 char *args[3];
4558 char **parg;
4560 /* try to launch network script */
4561 pid = fork();
4562 if (pid >= 0) {
4563 if (pid == 0) {
4564 int open_max = sysconf (_SC_OPEN_MAX), i;
4565 for (i = 0; i < open_max; i++)
4566 if (i != STDIN_FILENO &&
4567 i != STDOUT_FILENO &&
4568 i != STDERR_FILENO &&
4569 i != fd)
4570 close(i);
4572 parg = args;
4573 *parg++ = (char *)setup_script;
4574 *parg++ = (char *)ifname;
4575 *parg++ = NULL;
4576 execv(setup_script, args);
4577 _exit(1);
4579 while (waitpid(pid, &status, 0) != pid);
4580 if (!WIFEXITED(status) ||
4581 WEXITSTATUS(status) != 0) {
4582 fprintf(stderr, "%s: could not launch network script\n",
4583 setup_script);
4584 return -1;
4587 return 0;
4590 static int net_tap_init(VLANState *vlan, const char *ifname1,
4591 const char *setup_script, const char *down_script)
4593 TAPState *s;
4594 int fd;
4595 char ifname[128];
4597 if (ifname1 != NULL)
4598 pstrcpy(ifname, sizeof(ifname), ifname1);
4599 else
4600 ifname[0] = '\0';
4601 TFR(fd = tap_open(ifname, sizeof(ifname)));
4602 if (fd < 0)
4603 return -1;
4605 if (!setup_script || !strcmp(setup_script, "no"))
4606 setup_script = "";
4607 if (setup_script[0] != '\0') {
4608 if (launch_script(setup_script, ifname, fd))
4609 return -1;
4611 s = net_tap_fd_init(vlan, fd);
4612 if (!s)
4613 return -1;
4614 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4615 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4616 if (down_script && strcmp(down_script, "no"))
4617 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4618 return 0;
4621 #endif /* !_WIN32 */
4623 #if defined(CONFIG_VDE)
4624 typedef struct VDEState {
4625 VLANClientState *vc;
4626 VDECONN *vde;
4627 } VDEState;
4629 static void vde_to_qemu(void *opaque)
4631 VDEState *s = opaque;
4632 uint8_t buf[4096];
4633 int size;
4635 size = vde_recv(s->vde, buf, sizeof(buf), 0);
4636 if (size > 0) {
4637 qemu_send_packet(s->vc, buf, size);
4641 static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4643 VDEState *s = opaque;
4644 int ret;
4645 for(;;) {
4646 ret = vde_send(s->vde, buf, size, 0);
4647 if (ret < 0 && errno == EINTR) {
4648 } else {
4649 break;
4654 static int net_vde_init(VLANState *vlan, const char *sock, int port,
4655 const char *group, int mode)
4657 VDEState *s;
4658 char *init_group = strlen(group) ? (char *)group : NULL;
4659 char *init_sock = strlen(sock) ? (char *)sock : NULL;
4661 struct vde_open_args args = {
4662 .port = port,
4663 .group = init_group,
4664 .mode = mode,
4667 s = qemu_mallocz(sizeof(VDEState));
4668 if (!s)
4669 return -1;
4670 s->vde = vde_open(init_sock, "QEMU", &args);
4671 if (!s->vde){
4672 free(s);
4673 return -1;
4675 s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4676 qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4677 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4678 sock, vde_datafd(s->vde));
4679 return 0;
4681 #endif
4683 /* network connection */
4684 typedef struct NetSocketState {
4685 VLANClientState *vc;
4686 int fd;
4687 int state; /* 0 = getting length, 1 = getting data */
4688 int index;
4689 int packet_len;
4690 uint8_t buf[4096];
4691 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4692 } NetSocketState;
4694 typedef struct NetSocketListenState {
4695 VLANState *vlan;
4696 int fd;
4697 } NetSocketListenState;
4699 /* XXX: we consider we can send the whole packet without blocking */
4700 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4702 NetSocketState *s = opaque;
4703 uint32_t len;
4704 len = htonl(size);
4706 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4707 send_all(s->fd, buf, size);
4710 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4712 NetSocketState *s = opaque;
4713 sendto(s->fd, buf, size, 0,
4714 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4717 static void net_socket_send(void *opaque)
4719 NetSocketState *s = opaque;
4720 int l, size, err;
4721 uint8_t buf1[4096];
4722 const uint8_t *buf;
4724 size = recv(s->fd, buf1, sizeof(buf1), 0);
4725 if (size < 0) {
4726 err = socket_error();
4727 if (err != EWOULDBLOCK)
4728 goto eoc;
4729 } else if (size == 0) {
4730 /* end of connection */
4731 eoc:
4732 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4733 closesocket(s->fd);
4734 return;
4736 buf = buf1;
4737 while (size > 0) {
4738 /* reassemble a packet from the network */
4739 switch(s->state) {
4740 case 0:
4741 l = 4 - s->index;
4742 if (l > size)
4743 l = size;
4744 memcpy(s->buf + s->index, buf, l);
4745 buf += l;
4746 size -= l;
4747 s->index += l;
4748 if (s->index == 4) {
4749 /* got length */
4750 s->packet_len = ntohl(*(uint32_t *)s->buf);
4751 s->index = 0;
4752 s->state = 1;
4754 break;
4755 case 1:
4756 l = s->packet_len - s->index;
4757 if (l > size)
4758 l = size;
4759 memcpy(s->buf + s->index, buf, l);
4760 s->index += l;
4761 buf += l;
4762 size -= l;
4763 if (s->index >= s->packet_len) {
4764 qemu_send_packet(s->vc, s->buf, s->packet_len);
4765 s->index = 0;
4766 s->state = 0;
4768 break;
4773 static void net_socket_send_dgram(void *opaque)
4775 NetSocketState *s = opaque;
4776 int size;
4778 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4779 if (size < 0)
4780 return;
4781 if (size == 0) {
4782 /* end of connection */
4783 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4784 return;
4786 qemu_send_packet(s->vc, s->buf, size);
4789 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4791 struct ip_mreq imr;
4792 int fd;
4793 int val, ret;
4794 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4795 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4796 inet_ntoa(mcastaddr->sin_addr),
4797 (int)ntohl(mcastaddr->sin_addr.s_addr));
4798 return -1;
4801 fd = socket(PF_INET, SOCK_DGRAM, 0);
4802 if (fd < 0) {
4803 perror("socket(PF_INET, SOCK_DGRAM)");
4804 return -1;
4807 val = 1;
4808 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4809 (const char *)&val, sizeof(val));
4810 if (ret < 0) {
4811 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4812 goto fail;
4815 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4816 if (ret < 0) {
4817 perror("bind");
4818 goto fail;
4821 /* Add host to multicast group */
4822 imr.imr_multiaddr = mcastaddr->sin_addr;
4823 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4825 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4826 (const char *)&imr, sizeof(struct ip_mreq));
4827 if (ret < 0) {
4828 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4829 goto fail;
4832 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4833 val = 1;
4834 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4835 (const char *)&val, sizeof(val));
4836 if (ret < 0) {
4837 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4838 goto fail;
4841 socket_set_nonblock(fd);
4842 return fd;
4843 fail:
4844 if (fd >= 0)
4845 closesocket(fd);
4846 return -1;
4849 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4850 int is_connected)
4852 struct sockaddr_in saddr;
4853 int newfd;
4854 socklen_t saddr_len;
4855 NetSocketState *s;
4857 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4858 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4859 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4862 if (is_connected) {
4863 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4864 /* must be bound */
4865 if (saddr.sin_addr.s_addr==0) {
4866 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4867 fd);
4868 return NULL;
4870 /* clone dgram socket */
4871 newfd = net_socket_mcast_create(&saddr);
4872 if (newfd < 0) {
4873 /* error already reported by net_socket_mcast_create() */
4874 close(fd);
4875 return NULL;
4877 /* clone newfd to fd, close newfd */
4878 dup2(newfd, fd);
4879 close(newfd);
4881 } else {
4882 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4883 fd, strerror(errno));
4884 return NULL;
4888 s = qemu_mallocz(sizeof(NetSocketState));
4889 if (!s)
4890 return NULL;
4891 s->fd = fd;
4893 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4894 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4896 /* mcast: save bound address as dst */
4897 if (is_connected) s->dgram_dst=saddr;
4899 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4900 "socket: fd=%d (%s mcast=%s:%d)",
4901 fd, is_connected? "cloned" : "",
4902 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4903 return s;
4906 static void net_socket_connect(void *opaque)
4908 NetSocketState *s = opaque;
4909 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4912 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4913 int is_connected)
4915 NetSocketState *s;
4916 s = qemu_mallocz(sizeof(NetSocketState));
4917 if (!s)
4918 return NULL;
4919 s->fd = fd;
4920 s->vc = qemu_new_vlan_client(vlan,
4921 net_socket_receive, NULL, s);
4922 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4923 "socket: fd=%d", fd);
4924 if (is_connected) {
4925 net_socket_connect(s);
4926 } else {
4927 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4929 return s;
4932 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4933 int is_connected)
4935 int so_type=-1, optlen=sizeof(so_type);
4937 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4938 (socklen_t *)&optlen)< 0) {
4939 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4940 return NULL;
4942 switch(so_type) {
4943 case SOCK_DGRAM:
4944 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4945 case SOCK_STREAM:
4946 return net_socket_fd_init_stream(vlan, fd, is_connected);
4947 default:
4948 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4949 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4950 return net_socket_fd_init_stream(vlan, fd, is_connected);
4952 return NULL;
4955 static void net_socket_accept(void *opaque)
4957 NetSocketListenState *s = opaque;
4958 NetSocketState *s1;
4959 struct sockaddr_in saddr;
4960 socklen_t len;
4961 int fd;
4963 for(;;) {
4964 len = sizeof(saddr);
4965 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4966 if (fd < 0 && errno != EINTR) {
4967 return;
4968 } else if (fd >= 0) {
4969 break;
4972 s1 = net_socket_fd_init(s->vlan, fd, 1);
4973 if (!s1) {
4974 closesocket(fd);
4975 } else {
4976 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4977 "socket: connection from %s:%d",
4978 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4982 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4984 NetSocketListenState *s;
4985 int fd, val, ret;
4986 struct sockaddr_in saddr;
4988 if (parse_host_port(&saddr, host_str) < 0)
4989 return -1;
4991 s = qemu_mallocz(sizeof(NetSocketListenState));
4992 if (!s)
4993 return -1;
4995 fd = socket(PF_INET, SOCK_STREAM, 0);
4996 if (fd < 0) {
4997 perror("socket");
4998 return -1;
5000 socket_set_nonblock(fd);
5002 /* allow fast reuse */
5003 val = 1;
5004 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
5006 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5007 if (ret < 0) {
5008 perror("bind");
5009 return -1;
5011 ret = listen(fd, 0);
5012 if (ret < 0) {
5013 perror("listen");
5014 return -1;
5016 s->vlan = vlan;
5017 s->fd = fd;
5018 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5019 return 0;
5022 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5024 NetSocketState *s;
5025 int fd, connected, ret, err;
5026 struct sockaddr_in saddr;
5028 if (parse_host_port(&saddr, host_str) < 0)
5029 return -1;
5031 fd = socket(PF_INET, SOCK_STREAM, 0);
5032 if (fd < 0) {
5033 perror("socket");
5034 return -1;
5036 socket_set_nonblock(fd);
5038 connected = 0;
5039 for(;;) {
5040 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5041 if (ret < 0) {
5042 err = socket_error();
5043 if (err == EINTR || err == EWOULDBLOCK) {
5044 } else if (err == EINPROGRESS) {
5045 break;
5046 #ifdef _WIN32
5047 } else if (err == WSAEALREADY) {
5048 break;
5049 #endif
5050 } else {
5051 perror("connect");
5052 closesocket(fd);
5053 return -1;
5055 } else {
5056 connected = 1;
5057 break;
5060 s = net_socket_fd_init(vlan, fd, connected);
5061 if (!s)
5062 return -1;
5063 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5064 "socket: connect to %s:%d",
5065 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5066 return 0;
5069 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5071 NetSocketState *s;
5072 int fd;
5073 struct sockaddr_in saddr;
5075 if (parse_host_port(&saddr, host_str) < 0)
5076 return -1;
5079 fd = net_socket_mcast_create(&saddr);
5080 if (fd < 0)
5081 return -1;
5083 s = net_socket_fd_init(vlan, fd, 0);
5084 if (!s)
5085 return -1;
5087 s->dgram_dst = saddr;
5089 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5090 "socket: mcast=%s:%d",
5091 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5092 return 0;
5096 static const char *get_opt_name(char *buf, int buf_size, const char *p)
5098 char *q;
5100 q = buf;
5101 while (*p != '\0' && *p != '=') {
5102 if (q && (q - buf) < buf_size - 1)
5103 *q++ = *p;
5104 p++;
5106 if (q)
5107 *q = '\0';
5109 return p;
5112 static const char *get_opt_value(char *buf, int buf_size, const char *p)
5114 char *q;
5116 q = buf;
5117 while (*p != '\0') {
5118 if (*p == ',') {
5119 if (*(p + 1) != ',')
5120 break;
5121 p++;
5123 if (q && (q - buf) < buf_size - 1)
5124 *q++ = *p;
5125 p++;
5127 if (q)
5128 *q = '\0';
5130 return p;
5133 static int get_param_value(char *buf, int buf_size,
5134 const char *tag, const char *str)
5136 const char *p;
5137 char option[128];
5139 p = str;
5140 for(;;) {
5141 p = get_opt_name(option, sizeof(option), p);
5142 if (*p != '=')
5143 break;
5144 p++;
5145 if (!strcmp(tag, option)) {
5146 (void)get_opt_value(buf, buf_size, p);
5147 return strlen(buf);
5148 } else {
5149 p = get_opt_value(NULL, 0, p);
5151 if (*p != ',')
5152 break;
5153 p++;
5155 return 0;
5158 static int check_params(char *buf, int buf_size,
5159 const char * const *params, const char *str)
5161 const char *p;
5162 int i;
5164 p = str;
5165 for(;;) {
5166 p = get_opt_name(buf, buf_size, p);
5167 if (*p != '=')
5168 return -1;
5169 p++;
5170 for(i = 0; params[i] != NULL; i++)
5171 if (!strcmp(params[i], buf))
5172 break;
5173 if (params[i] == NULL)
5174 return -1;
5175 p = get_opt_value(NULL, 0, p);
5176 if (*p != ',')
5177 break;
5178 p++;
5180 return 0;
5183 static int net_client_init(const char *device, const char *p)
5185 char buf[1024];
5186 int vlan_id, ret;
5187 VLANState *vlan;
5189 vlan_id = 0;
5190 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5191 vlan_id = strtol(buf, NULL, 0);
5193 vlan = qemu_find_vlan(vlan_id);
5194 if (!vlan) {
5195 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5196 return -1;
5198 if (!strcmp(device, "nic")) {
5199 NICInfo *nd;
5200 uint8_t *macaddr;
5202 if (nb_nics >= MAX_NICS) {
5203 fprintf(stderr, "Too Many NICs\n");
5204 return -1;
5206 nd = &nd_table[nb_nics];
5207 macaddr = nd->macaddr;
5208 macaddr[0] = 0x52;
5209 macaddr[1] = 0x54;
5210 macaddr[2] = 0x00;
5211 macaddr[3] = 0x12;
5212 macaddr[4] = 0x34;
5213 macaddr[5] = 0x56 + nb_nics;
5215 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5216 if (parse_macaddr(macaddr, buf) < 0) {
5217 fprintf(stderr, "invalid syntax for ethernet address\n");
5218 return -1;
5221 if (get_param_value(buf, sizeof(buf), "model", p)) {
5222 nd->model = strdup(buf);
5224 nd->vlan = vlan;
5225 nb_nics++;
5226 vlan->nb_guest_devs++;
5227 ret = 0;
5228 } else
5229 if (!strcmp(device, "none")) {
5230 /* does nothing. It is needed to signal that no network cards
5231 are wanted */
5232 ret = 0;
5233 } else
5234 #ifdef CONFIG_SLIRP
5235 if (!strcmp(device, "user")) {
5236 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5237 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5239 vlan->nb_host_devs++;
5240 ret = net_slirp_init(vlan);
5241 } else
5242 #endif
5243 #ifdef _WIN32
5244 if (!strcmp(device, "tap")) {
5245 char ifname[64];
5246 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5247 fprintf(stderr, "tap: no interface name\n");
5248 return -1;
5250 vlan->nb_host_devs++;
5251 ret = tap_win32_init(vlan, ifname);
5252 } else
5253 #else
5254 if (!strcmp(device, "tap")) {
5255 char ifname[64];
5256 char setup_script[1024], down_script[1024];
5257 int fd;
5258 vlan->nb_host_devs++;
5259 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5260 fd = strtol(buf, NULL, 0);
5261 fcntl(fd, F_SETFL, O_NONBLOCK);
5262 ret = -1;
5263 if (net_tap_fd_init(vlan, fd))
5264 ret = 0;
5265 } else {
5266 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5267 ifname[0] = '\0';
5269 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5270 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5272 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5273 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5275 ret = net_tap_init(vlan, ifname, setup_script, down_script);
5277 } else
5278 #endif
5279 if (!strcmp(device, "socket")) {
5280 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5281 int fd;
5282 fd = strtol(buf, NULL, 0);
5283 ret = -1;
5284 if (net_socket_fd_init(vlan, fd, 1))
5285 ret = 0;
5286 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5287 ret = net_socket_listen_init(vlan, buf);
5288 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5289 ret = net_socket_connect_init(vlan, buf);
5290 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5291 ret = net_socket_mcast_init(vlan, buf);
5292 } else {
5293 fprintf(stderr, "Unknown socket options: %s\n", p);
5294 return -1;
5296 vlan->nb_host_devs++;
5297 } else
5298 #ifdef CONFIG_VDE
5299 if (!strcmp(device, "vde")) {
5300 char vde_sock[1024], vde_group[512];
5301 int vde_port, vde_mode;
5302 vlan->nb_host_devs++;
5303 if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5304 vde_sock[0] = '\0';
5306 if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5307 vde_port = strtol(buf, NULL, 10);
5308 } else {
5309 vde_port = 0;
5311 if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5312 vde_group[0] = '\0';
5314 if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5315 vde_mode = strtol(buf, NULL, 8);
5316 } else {
5317 vde_mode = 0700;
5319 ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5320 } else
5321 #endif
5323 fprintf(stderr, "Unknown network device: %s\n", device);
5324 return -1;
5326 if (ret < 0) {
5327 fprintf(stderr, "Could not initialize device '%s'\n", device);
5330 return ret;
5333 static int net_client_parse(const char *str)
5335 const char *p;
5336 char *q;
5337 char device[64];
5339 p = str;
5340 q = device;
5341 while (*p != '\0' && *p != ',') {
5342 if ((q - device) < sizeof(device) - 1)
5343 *q++ = *p;
5344 p++;
5346 *q = '\0';
5347 if (*p == ',')
5348 p++;
5350 return net_client_init(device, p);
5353 void do_info_network(void)
5355 VLANState *vlan;
5356 VLANClientState *vc;
5358 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5359 term_printf("VLAN %d devices:\n", vlan->id);
5360 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5361 term_printf(" %s\n", vc->info_str);
5365 /***********************************************************/
5366 /* Bluetooth support */
5367 static int nb_hcis;
5368 static int cur_hci;
5369 static struct HCIInfo *hci_table[MAX_NICS];
5370 static struct bt_vlan_s {
5371 struct bt_scatternet_s net;
5372 int id;
5373 struct bt_vlan_s *next;
5374 } *first_bt_vlan;
5376 /* find or alloc a new bluetooth "VLAN" */
5377 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
5379 struct bt_vlan_s **pvlan, *vlan;
5380 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
5381 if (vlan->id == id)
5382 return &vlan->net;
5384 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
5385 vlan->id = id;
5386 pvlan = &first_bt_vlan;
5387 while (*pvlan != NULL)
5388 pvlan = &(*pvlan)->next;
5389 *pvlan = vlan;
5390 return &vlan->net;
5393 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
5397 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
5399 return -ENOTSUP;
5402 static struct HCIInfo null_hci = {
5403 .cmd_send = null_hci_send,
5404 .sco_send = null_hci_send,
5405 .acl_send = null_hci_send,
5406 .bdaddr_set = null_hci_addr_set,
5409 struct HCIInfo *qemu_next_hci(void)
5411 if (cur_hci == nb_hcis)
5412 return &null_hci;
5414 return hci_table[cur_hci++];
5417 /***********************************************************/
5418 /* QEMU Block devices */
5420 #define HD_ALIAS "index=%d,media=disk"
5421 #ifdef TARGET_PPC
5422 #define CDROM_ALIAS "index=1,media=cdrom"
5423 #else
5424 #define CDROM_ALIAS "index=2,media=cdrom"
5425 #endif
5426 #define FD_ALIAS "index=%d,if=floppy"
5427 #define PFLASH_ALIAS "if=pflash"
5428 #define MTD_ALIAS "if=mtd"
5429 #define SD_ALIAS "index=0,if=sd"
5431 static int drive_add(const char *file, const char *fmt, ...)
5433 va_list ap;
5435 if (nb_drives_opt >= MAX_DRIVES) {
5436 fprintf(stderr, "qemu: too many drives\n");
5437 exit(1);
5440 drives_opt[nb_drives_opt].file = file;
5441 va_start(ap, fmt);
5442 vsnprintf(drives_opt[nb_drives_opt].opt,
5443 sizeof(drives_opt[0].opt), fmt, ap);
5444 va_end(ap);
5446 return nb_drives_opt++;
5449 int drive_get_index(BlockInterfaceType type, int bus, int unit)
5451 int index;
5453 /* seek interface, bus and unit */
5455 for (index = 0; index < nb_drives; index++)
5456 if (drives_table[index].type == type &&
5457 drives_table[index].bus == bus &&
5458 drives_table[index].unit == unit)
5459 return index;
5461 return -1;
5464 int drive_get_max_bus(BlockInterfaceType type)
5466 int max_bus;
5467 int index;
5469 max_bus = -1;
5470 for (index = 0; index < nb_drives; index++) {
5471 if(drives_table[index].type == type &&
5472 drives_table[index].bus > max_bus)
5473 max_bus = drives_table[index].bus;
5475 return max_bus;
5478 static void bdrv_format_print(void *opaque, const char *name)
5480 fprintf(stderr, " %s", name);
5483 static int drive_init(struct drive_opt *arg, int snapshot,
5484 QEMUMachine *machine)
5486 char buf[128];
5487 char file[1024];
5488 char devname[128];
5489 const char *mediastr = "";
5490 BlockInterfaceType type;
5491 enum { MEDIA_DISK, MEDIA_CDROM } media;
5492 int bus_id, unit_id;
5493 int cyls, heads, secs, translation;
5494 BlockDriverState *bdrv;
5495 BlockDriver *drv = NULL;
5496 int max_devs;
5497 int index;
5498 int cache;
5499 int bdrv_flags;
5500 char *str = arg->opt;
5501 static const char * const params[] = { "bus", "unit", "if", "index",
5502 "cyls", "heads", "secs", "trans",
5503 "media", "snapshot", "file",
5504 "cache", "format", NULL };
5506 if (check_params(buf, sizeof(buf), params, str) < 0) {
5507 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5508 buf, str);
5509 return -1;
5512 file[0] = 0;
5513 cyls = heads = secs = 0;
5514 bus_id = 0;
5515 unit_id = -1;
5516 translation = BIOS_ATA_TRANSLATION_AUTO;
5517 index = -1;
5518 cache = 1;
5520 if (machine->use_scsi) {
5521 type = IF_SCSI;
5522 max_devs = MAX_SCSI_DEVS;
5523 pstrcpy(devname, sizeof(devname), "scsi");
5524 } else {
5525 type = IF_IDE;
5526 max_devs = MAX_IDE_DEVS;
5527 pstrcpy(devname, sizeof(devname), "ide");
5529 media = MEDIA_DISK;
5531 /* extract parameters */
5533 if (get_param_value(buf, sizeof(buf), "bus", str)) {
5534 bus_id = strtol(buf, NULL, 0);
5535 if (bus_id < 0) {
5536 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5537 return -1;
5541 if (get_param_value(buf, sizeof(buf), "unit", str)) {
5542 unit_id = strtol(buf, NULL, 0);
5543 if (unit_id < 0) {
5544 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5545 return -1;
5549 if (get_param_value(buf, sizeof(buf), "if", str)) {
5550 pstrcpy(devname, sizeof(devname), buf);
5551 if (!strcmp(buf, "ide")) {
5552 type = IF_IDE;
5553 max_devs = MAX_IDE_DEVS;
5554 } else if (!strcmp(buf, "scsi")) {
5555 type = IF_SCSI;
5556 max_devs = MAX_SCSI_DEVS;
5557 } else if (!strcmp(buf, "floppy")) {
5558 type = IF_FLOPPY;
5559 max_devs = 0;
5560 } else if (!strcmp(buf, "pflash")) {
5561 type = IF_PFLASH;
5562 max_devs = 0;
5563 } else if (!strcmp(buf, "mtd")) {
5564 type = IF_MTD;
5565 max_devs = 0;
5566 } else if (!strcmp(buf, "sd")) {
5567 type = IF_SD;
5568 max_devs = 0;
5569 } else {
5570 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5571 return -1;
5575 if (get_param_value(buf, sizeof(buf), "index", str)) {
5576 index = strtol(buf, NULL, 0);
5577 if (index < 0) {
5578 fprintf(stderr, "qemu: '%s' invalid index\n", str);
5579 return -1;
5583 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5584 cyls = strtol(buf, NULL, 0);
5587 if (get_param_value(buf, sizeof(buf), "heads", str)) {
5588 heads = strtol(buf, NULL, 0);
5591 if (get_param_value(buf, sizeof(buf), "secs", str)) {
5592 secs = strtol(buf, NULL, 0);
5595 if (cyls || heads || secs) {
5596 if (cyls < 1 || cyls > 16383) {
5597 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5598 return -1;
5600 if (heads < 1 || heads > 16) {
5601 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5602 return -1;
5604 if (secs < 1 || secs > 63) {
5605 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5606 return -1;
5610 if (get_param_value(buf, sizeof(buf), "trans", str)) {
5611 if (!cyls) {
5612 fprintf(stderr,
5613 "qemu: '%s' trans must be used with cyls,heads and secs\n",
5614 str);
5615 return -1;
5617 if (!strcmp(buf, "none"))
5618 translation = BIOS_ATA_TRANSLATION_NONE;
5619 else if (!strcmp(buf, "lba"))
5620 translation = BIOS_ATA_TRANSLATION_LBA;
5621 else if (!strcmp(buf, "auto"))
5622 translation = BIOS_ATA_TRANSLATION_AUTO;
5623 else {
5624 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5625 return -1;
5629 if (get_param_value(buf, sizeof(buf), "media", str)) {
5630 if (!strcmp(buf, "disk")) {
5631 media = MEDIA_DISK;
5632 } else if (!strcmp(buf, "cdrom")) {
5633 if (cyls || secs || heads) {
5634 fprintf(stderr,
5635 "qemu: '%s' invalid physical CHS format\n", str);
5636 return -1;
5638 media = MEDIA_CDROM;
5639 } else {
5640 fprintf(stderr, "qemu: '%s' invalid media\n", str);
5641 return -1;
5645 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5646 if (!strcmp(buf, "on"))
5647 snapshot = 1;
5648 else if (!strcmp(buf, "off"))
5649 snapshot = 0;
5650 else {
5651 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5652 return -1;
5656 if (get_param_value(buf, sizeof(buf), "cache", str)) {
5657 if (!strcmp(buf, "off"))
5658 cache = 0;
5659 else if (!strcmp(buf, "on"))
5660 cache = 1;
5661 else {
5662 fprintf(stderr, "qemu: invalid cache option\n");
5663 return -1;
5667 if (get_param_value(buf, sizeof(buf), "format", str)) {
5668 if (strcmp(buf, "?") == 0) {
5669 fprintf(stderr, "qemu: Supported formats:");
5670 bdrv_iterate_format(bdrv_format_print, NULL);
5671 fprintf(stderr, "\n");
5672 return -1;
5674 drv = bdrv_find_format(buf);
5675 if (!drv) {
5676 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5677 return -1;
5681 if (arg->file == NULL)
5682 get_param_value(file, sizeof(file), "file", str);
5683 else
5684 pstrcpy(file, sizeof(file), arg->file);
5686 /* compute bus and unit according index */
5688 if (index != -1) {
5689 if (bus_id != 0 || unit_id != -1) {
5690 fprintf(stderr,
5691 "qemu: '%s' index cannot be used with bus and unit\n", str);
5692 return -1;
5694 if (max_devs == 0)
5696 unit_id = index;
5697 bus_id = 0;
5698 } else {
5699 unit_id = index % max_devs;
5700 bus_id = index / max_devs;
5704 /* if user doesn't specify a unit_id,
5705 * try to find the first free
5708 if (unit_id == -1) {
5709 unit_id = 0;
5710 while (drive_get_index(type, bus_id, unit_id) != -1) {
5711 unit_id++;
5712 if (max_devs && unit_id >= max_devs) {
5713 unit_id -= max_devs;
5714 bus_id++;
5719 /* check unit id */
5721 if (max_devs && unit_id >= max_devs) {
5722 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5723 str, unit_id, max_devs - 1);
5724 return -1;
5728 * ignore multiple definitions
5731 if (drive_get_index(type, bus_id, unit_id) != -1)
5732 return 0;
5734 /* init */
5736 if (type == IF_IDE || type == IF_SCSI)
5737 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5738 if (max_devs)
5739 snprintf(buf, sizeof(buf), "%s%i%s%i",
5740 devname, bus_id, mediastr, unit_id);
5741 else
5742 snprintf(buf, sizeof(buf), "%s%s%i",
5743 devname, mediastr, unit_id);
5744 bdrv = bdrv_new(buf);
5745 drives_table[nb_drives].bdrv = bdrv;
5746 drives_table[nb_drives].type = type;
5747 drives_table[nb_drives].bus = bus_id;
5748 drives_table[nb_drives].unit = unit_id;
5749 nb_drives++;
5751 switch(type) {
5752 case IF_IDE:
5753 case IF_SCSI:
5754 switch(media) {
5755 case MEDIA_DISK:
5756 if (cyls != 0) {
5757 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5758 bdrv_set_translation_hint(bdrv, translation);
5760 break;
5761 case MEDIA_CDROM:
5762 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5763 break;
5765 break;
5766 case IF_SD:
5767 /* FIXME: This isn't really a floppy, but it's a reasonable
5768 approximation. */
5769 case IF_FLOPPY:
5770 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5771 break;
5772 case IF_PFLASH:
5773 case IF_MTD:
5774 break;
5776 if (!file[0])
5777 return 0;
5778 bdrv_flags = 0;
5779 if (snapshot)
5780 bdrv_flags |= BDRV_O_SNAPSHOT;
5781 if (!cache)
5782 bdrv_flags |= BDRV_O_DIRECT;
5783 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5784 fprintf(stderr, "qemu: could not open disk image %s\n",
5785 file);
5786 return -1;
5788 return 0;
5791 /***********************************************************/
5792 /* USB devices */
5794 static USBPort *used_usb_ports;
5795 static USBPort *free_usb_ports;
5797 /* ??? Maybe change this to register a hub to keep track of the topology. */
5798 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5799 usb_attachfn attach)
5801 port->opaque = opaque;
5802 port->index = index;
5803 port->attach = attach;
5804 port->next = free_usb_ports;
5805 free_usb_ports = port;
5808 int usb_device_add_dev(USBDevice *dev)
5810 USBPort *port;
5812 /* Find a USB port to add the device to. */
5813 port = free_usb_ports;
5814 if (!port->next) {
5815 USBDevice *hub;
5817 /* Create a new hub and chain it on. */
5818 free_usb_ports = NULL;
5819 port->next = used_usb_ports;
5820 used_usb_ports = port;
5822 hub = usb_hub_init(VM_USB_HUB_SIZE);
5823 usb_attach(port, hub);
5824 port = free_usb_ports;
5827 free_usb_ports = port->next;
5828 port->next = used_usb_ports;
5829 used_usb_ports = port;
5830 usb_attach(port, dev);
5831 return 0;
5834 static int usb_device_add(const char *devname)
5836 const char *p;
5837 USBDevice *dev;
5839 if (!free_usb_ports)
5840 return -1;
5842 if (strstart(devname, "host:", &p)) {
5843 dev = usb_host_device_open(p);
5844 } else if (!strcmp(devname, "mouse")) {
5845 dev = usb_mouse_init();
5846 } else if (!strcmp(devname, "tablet")) {
5847 dev = usb_tablet_init();
5848 } else if (!strcmp(devname, "keyboard")) {
5849 dev = usb_keyboard_init();
5850 } else if (strstart(devname, "disk:", &p)) {
5851 dev = usb_msd_init(p);
5852 } else if (!strcmp(devname, "wacom-tablet")) {
5853 dev = usb_wacom_init();
5854 } else if (strstart(devname, "serial:", &p)) {
5855 dev = usb_serial_init(p);
5856 #ifdef CONFIG_BRLAPI
5857 } else if (!strcmp(devname, "braille")) {
5858 dev = usb_baum_init();
5859 #endif
5860 } else if (strstart(devname, "net:", &p)) {
5861 int nic = nb_nics;
5863 if (net_client_init("nic", p) < 0)
5864 return -1;
5865 nd_table[nic].model = "usb";
5866 dev = usb_net_init(&nd_table[nic]);
5867 } else {
5868 return -1;
5870 if (!dev)
5871 return -1;
5873 return usb_device_add_dev(dev);
5876 int usb_device_del_addr(int bus_num, int addr)
5878 USBPort *port;
5879 USBPort **lastp;
5880 USBDevice *dev;
5882 if (!used_usb_ports)
5883 return -1;
5885 if (bus_num != 0)
5886 return -1;
5888 lastp = &used_usb_ports;
5889 port = used_usb_ports;
5890 while (port && port->dev->addr != addr) {
5891 lastp = &port->next;
5892 port = port->next;
5895 if (!port)
5896 return -1;
5898 dev = port->dev;
5899 *lastp = port->next;
5900 usb_attach(port, NULL);
5901 dev->handle_destroy(dev);
5902 port->next = free_usb_ports;
5903 free_usb_ports = port;
5904 return 0;
5907 static int usb_device_del(const char *devname)
5909 int bus_num, addr;
5910 const char *p;
5912 if (strstart(devname, "host:", &p))
5913 return usb_host_device_close(p);
5915 if (!used_usb_ports)
5916 return -1;
5918 p = strchr(devname, '.');
5919 if (!p)
5920 return -1;
5921 bus_num = strtoul(devname, NULL, 0);
5922 addr = strtoul(p + 1, NULL, 0);
5924 return usb_device_del_addr(bus_num, addr);
5927 void do_usb_add(const char *devname)
5929 usb_device_add(devname);
5932 void do_usb_del(const char *devname)
5934 usb_device_del(devname);
5937 void usb_info(void)
5939 USBDevice *dev;
5940 USBPort *port;
5941 const char *speed_str;
5943 if (!usb_enabled) {
5944 term_printf("USB support not enabled\n");
5945 return;
5948 for (port = used_usb_ports; port; port = port->next) {
5949 dev = port->dev;
5950 if (!dev)
5951 continue;
5952 switch(dev->speed) {
5953 case USB_SPEED_LOW:
5954 speed_str = "1.5";
5955 break;
5956 case USB_SPEED_FULL:
5957 speed_str = "12";
5958 break;
5959 case USB_SPEED_HIGH:
5960 speed_str = "480";
5961 break;
5962 default:
5963 speed_str = "?";
5964 break;
5966 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
5967 0, dev->addr, speed_str, dev->devname);
5971 /***********************************************************/
5972 /* PCMCIA/Cardbus */
5974 static struct pcmcia_socket_entry_s {
5975 struct pcmcia_socket_s *socket;
5976 struct pcmcia_socket_entry_s *next;
5977 } *pcmcia_sockets = 0;
5979 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5981 struct pcmcia_socket_entry_s *entry;
5983 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5984 entry->socket = socket;
5985 entry->next = pcmcia_sockets;
5986 pcmcia_sockets = entry;
5989 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5991 struct pcmcia_socket_entry_s *entry, **ptr;
5993 ptr = &pcmcia_sockets;
5994 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5995 if (entry->socket == socket) {
5996 *ptr = entry->next;
5997 qemu_free(entry);
6001 void pcmcia_info(void)
6003 struct pcmcia_socket_entry_s *iter;
6004 if (!pcmcia_sockets)
6005 term_printf("No PCMCIA sockets\n");
6007 for (iter = pcmcia_sockets; iter; iter = iter->next)
6008 term_printf("%s: %s\n", iter->socket->slot_string,
6009 iter->socket->attached ? iter->socket->card_string :
6010 "Empty");
6013 /***********************************************************/
6014 /* dumb display */
6016 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
6020 static void dumb_resize(DisplayState *ds, int w, int h)
6024 static void dumb_refresh(DisplayState *ds)
6026 #if defined(CONFIG_SDL)
6027 vga_hw_update();
6028 #endif
6031 static void dumb_display_init(DisplayState *ds)
6033 ds->data = NULL;
6034 ds->linesize = 0;
6035 ds->depth = 0;
6036 ds->dpy_update = dumb_update;
6037 ds->dpy_resize = dumb_resize;
6038 ds->dpy_refresh = dumb_refresh;
6039 ds->gui_timer_interval = 500;
6040 ds->idle = 1;
6043 /***********************************************************/
6044 /* I/O handling */
6046 #define MAX_IO_HANDLERS 64
6048 typedef struct IOHandlerRecord {
6049 int fd;
6050 IOCanRWHandler *fd_read_poll;
6051 IOHandler *fd_read;
6052 IOHandler *fd_write;
6053 int deleted;
6054 void *opaque;
6055 /* temporary data */
6056 struct pollfd *ufd;
6057 struct IOHandlerRecord *next;
6058 } IOHandlerRecord;
6060 static IOHandlerRecord *first_io_handler;
6062 /* XXX: fd_read_poll should be suppressed, but an API change is
6063 necessary in the character devices to suppress fd_can_read(). */
6064 int qemu_set_fd_handler2(int fd,
6065 IOCanRWHandler *fd_read_poll,
6066 IOHandler *fd_read,
6067 IOHandler *fd_write,
6068 void *opaque)
6070 IOHandlerRecord **pioh, *ioh;
6072 if (!fd_read && !fd_write) {
6073 pioh = &first_io_handler;
6074 for(;;) {
6075 ioh = *pioh;
6076 if (ioh == NULL)
6077 break;
6078 if (ioh->fd == fd) {
6079 ioh->deleted = 1;
6080 break;
6082 pioh = &ioh->next;
6084 } else {
6085 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6086 if (ioh->fd == fd)
6087 goto found;
6089 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6090 if (!ioh)
6091 return -1;
6092 ioh->next = first_io_handler;
6093 first_io_handler = ioh;
6094 found:
6095 ioh->fd = fd;
6096 ioh->fd_read_poll = fd_read_poll;
6097 ioh->fd_read = fd_read;
6098 ioh->fd_write = fd_write;
6099 ioh->opaque = opaque;
6100 ioh->deleted = 0;
6102 return 0;
6105 int qemu_set_fd_handler(int fd,
6106 IOHandler *fd_read,
6107 IOHandler *fd_write,
6108 void *opaque)
6110 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6113 /***********************************************************/
6114 /* Polling handling */
6116 typedef struct PollingEntry {
6117 PollingFunc *func;
6118 void *opaque;
6119 struct PollingEntry *next;
6120 } PollingEntry;
6122 static PollingEntry *first_polling_entry;
6124 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6126 PollingEntry **ppe, *pe;
6127 pe = qemu_mallocz(sizeof(PollingEntry));
6128 if (!pe)
6129 return -1;
6130 pe->func = func;
6131 pe->opaque = opaque;
6132 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6133 *ppe = pe;
6134 return 0;
6137 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6139 PollingEntry **ppe, *pe;
6140 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6141 pe = *ppe;
6142 if (pe->func == func && pe->opaque == opaque) {
6143 *ppe = pe->next;
6144 qemu_free(pe);
6145 break;
6150 #ifdef _WIN32
6151 /***********************************************************/
6152 /* Wait objects support */
6153 typedef struct WaitObjects {
6154 int num;
6155 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6156 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6157 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6158 } WaitObjects;
6160 static WaitObjects wait_objects = {0};
6162 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6164 WaitObjects *w = &wait_objects;
6166 if (w->num >= MAXIMUM_WAIT_OBJECTS)
6167 return -1;
6168 w->events[w->num] = handle;
6169 w->func[w->num] = func;
6170 w->opaque[w->num] = opaque;
6171 w->num++;
6172 return 0;
6175 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6177 int i, found;
6178 WaitObjects *w = &wait_objects;
6180 found = 0;
6181 for (i = 0; i < w->num; i++) {
6182 if (w->events[i] == handle)
6183 found = 1;
6184 if (found) {
6185 w->events[i] = w->events[i + 1];
6186 w->func[i] = w->func[i + 1];
6187 w->opaque[i] = w->opaque[i + 1];
6190 if (found)
6191 w->num--;
6193 #endif
6195 /***********************************************************/
6196 /* savevm/loadvm support */
6198 #define IO_BUF_SIZE 32768
6200 struct QEMUFile {
6201 QEMUFilePutBufferFunc *put_buffer;
6202 QEMUFileGetBufferFunc *get_buffer;
6203 QEMUFileCloseFunc *close;
6204 QEMUFileRateLimit *rate_limit;
6205 void *opaque;
6207 int64_t buf_offset; /* start of buffer when writing, end of buffer
6208 when reading */
6209 int buf_index;
6210 int buf_size; /* 0 when writing */
6211 uint8_t buf[IO_BUF_SIZE];
6214 typedef struct QEMUFileFD
6216 int fd;
6217 QEMUFile *file;
6218 } QEMUFileFD;
6220 static void fd_put_notify(void *opaque)
6222 QEMUFileFD *s = opaque;
6224 /* Remove writable callback and do a put notify */
6225 qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
6226 qemu_file_put_notify(s->file);
6229 static void fd_put_buffer(void *opaque, const uint8_t *buf,
6230 int64_t pos, int size)
6232 QEMUFileFD *s = opaque;
6233 ssize_t len;
6235 do {
6236 len = write(s->fd, buf, size);
6237 } while (len == -1 && errno == EINTR);
6239 if (len == -1)
6240 len = -errno;
6242 /* When the fd becomes writable again, register a callback to do
6243 * a put notify */
6244 if (len == -EAGAIN)
6245 qemu_set_fd_handler2(s->fd, NULL, NULL, fd_put_notify, s);
6248 static int fd_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6250 QEMUFileFD *s = opaque;
6251 ssize_t len;
6253 do {
6254 len = read(s->fd, buf, size);
6255 } while (len == -1 && errno == EINTR);
6257 if (len == -1)
6258 len = -errno;
6260 return len;
6263 static int fd_close(void *opaque)
6265 QEMUFileFD *s = opaque;
6266 qemu_free(s);
6267 return 0;
6270 QEMUFile *qemu_fopen_fd(int fd)
6272 QEMUFileFD *s = qemu_mallocz(sizeof(QEMUFileFD));
6274 if (s == NULL)
6275 return NULL;
6277 s->fd = fd;
6278 s->file = qemu_fopen_ops(s, fd_put_buffer, fd_get_buffer, fd_close, NULL);
6279 return s->file;
6282 typedef struct QEMUFileStdio
6284 FILE *outfile;
6285 } QEMUFileStdio;
6287 static void file_put_buffer(void *opaque, const uint8_t *buf,
6288 int64_t pos, int size)
6290 QEMUFileStdio *s = opaque;
6291 fseek(s->outfile, pos, SEEK_SET);
6292 fwrite(buf, 1, size, s->outfile);
6295 static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6297 QEMUFileStdio *s = opaque;
6298 fseek(s->outfile, pos, SEEK_SET);
6299 return fread(buf, 1, size, s->outfile);
6302 static int file_close(void *opaque)
6304 QEMUFileStdio *s = opaque;
6305 fclose(s->outfile);
6306 qemu_free(s);
6307 return 0;
6310 QEMUFile *qemu_fopen(const char *filename, const char *mode)
6312 QEMUFileStdio *s;
6314 s = qemu_mallocz(sizeof(QEMUFileStdio));
6315 if (!s)
6316 return NULL;
6318 s->outfile = fopen(filename, mode);
6319 if (!s->outfile)
6320 goto fail;
6322 if (!strcmp(mode, "wb"))
6323 return qemu_fopen_ops(s, file_put_buffer, NULL, file_close, NULL);
6324 else if (!strcmp(mode, "rb"))
6325 return qemu_fopen_ops(s, NULL, file_get_buffer, file_close, NULL);
6327 fail:
6328 if (s->outfile)
6329 fclose(s->outfile);
6330 qemu_free(s);
6331 return NULL;
6334 typedef struct QEMUFileBdrv
6336 BlockDriverState *bs;
6337 int64_t base_offset;
6338 } QEMUFileBdrv;
6340 static void bdrv_put_buffer(void *opaque, const uint8_t *buf,
6341 int64_t pos, int size)
6343 QEMUFileBdrv *s = opaque;
6344 bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6347 static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6349 QEMUFileBdrv *s = opaque;
6350 return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6353 static int bdrv_fclose(void *opaque)
6355 QEMUFileBdrv *s = opaque;
6356 qemu_free(s);
6357 return 0;
6360 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6362 QEMUFileBdrv *s;
6364 s = qemu_mallocz(sizeof(QEMUFileBdrv));
6365 if (!s)
6366 return NULL;
6368 s->bs = bs;
6369 s->base_offset = offset;
6371 if (is_writable)
6372 return qemu_fopen_ops(s, bdrv_put_buffer, NULL, bdrv_fclose, NULL);
6374 return qemu_fopen_ops(s, NULL, bdrv_get_buffer, bdrv_fclose, NULL);
6377 QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6378 QEMUFileGetBufferFunc *get_buffer,
6379 QEMUFileCloseFunc *close,
6380 QEMUFileRateLimit *rate_limit)
6382 QEMUFile *f;
6384 f = qemu_mallocz(sizeof(QEMUFile));
6385 if (!f)
6386 return NULL;
6388 f->opaque = opaque;
6389 f->put_buffer = put_buffer;
6390 f->get_buffer = get_buffer;
6391 f->close = close;
6392 f->rate_limit = rate_limit;
6394 return f;
6397 void qemu_fflush(QEMUFile *f)
6399 if (!f->put_buffer)
6400 return;
6402 if (f->buf_index > 0) {
6403 f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6404 f->buf_offset += f->buf_index;
6405 f->buf_index = 0;
6409 static void qemu_fill_buffer(QEMUFile *f)
6411 int len;
6413 if (!f->get_buffer)
6414 return;
6416 len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6417 if (len < 0)
6418 len = 0;
6420 f->buf_index = 0;
6421 f->buf_size = len;
6422 f->buf_offset += len;
6425 int qemu_fclose(QEMUFile *f)
6427 int ret = 0;
6428 qemu_fflush(f);
6429 if (f->close)
6430 ret = f->close(f->opaque);
6431 qemu_free(f);
6432 return ret;
6435 void qemu_file_put_notify(QEMUFile *f)
6437 f->put_buffer(f->opaque, NULL, 0, 0);
6440 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6442 int l;
6443 while (size > 0) {
6444 l = IO_BUF_SIZE - f->buf_index;
6445 if (l > size)
6446 l = size;
6447 memcpy(f->buf + f->buf_index, buf, l);
6448 f->buf_index += l;
6449 buf += l;
6450 size -= l;
6451 if (f->buf_index >= IO_BUF_SIZE)
6452 qemu_fflush(f);
6456 void qemu_put_byte(QEMUFile *f, int v)
6458 f->buf[f->buf_index++] = v;
6459 if (f->buf_index >= IO_BUF_SIZE)
6460 qemu_fflush(f);
6463 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6465 int size, l;
6467 size = size1;
6468 while (size > 0) {
6469 l = f->buf_size - f->buf_index;
6470 if (l == 0) {
6471 qemu_fill_buffer(f);
6472 l = f->buf_size - f->buf_index;
6473 if (l == 0)
6474 break;
6476 if (l > size)
6477 l = size;
6478 memcpy(buf, f->buf + f->buf_index, l);
6479 f->buf_index += l;
6480 buf += l;
6481 size -= l;
6483 return size1 - size;
6486 int qemu_get_byte(QEMUFile *f)
6488 if (f->buf_index >= f->buf_size) {
6489 qemu_fill_buffer(f);
6490 if (f->buf_index >= f->buf_size)
6491 return 0;
6493 return f->buf[f->buf_index++];
6496 int64_t qemu_ftell(QEMUFile *f)
6498 return f->buf_offset - f->buf_size + f->buf_index;
6501 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6503 if (whence == SEEK_SET) {
6504 /* nothing to do */
6505 } else if (whence == SEEK_CUR) {
6506 pos += qemu_ftell(f);
6507 } else {
6508 /* SEEK_END not supported */
6509 return -1;
6511 if (f->put_buffer) {
6512 qemu_fflush(f);
6513 f->buf_offset = pos;
6514 } else {
6515 f->buf_offset = pos;
6516 f->buf_index = 0;
6517 f->buf_size = 0;
6519 return pos;
6522 int qemu_file_rate_limit(QEMUFile *f)
6524 if (f->rate_limit)
6525 return f->rate_limit(f->opaque);
6527 return 0;
6530 void qemu_put_be16(QEMUFile *f, unsigned int v)
6532 qemu_put_byte(f, v >> 8);
6533 qemu_put_byte(f, v);
6536 void qemu_put_be32(QEMUFile *f, unsigned int v)
6538 qemu_put_byte(f, v >> 24);
6539 qemu_put_byte(f, v >> 16);
6540 qemu_put_byte(f, v >> 8);
6541 qemu_put_byte(f, v);
6544 void qemu_put_be64(QEMUFile *f, uint64_t v)
6546 qemu_put_be32(f, v >> 32);
6547 qemu_put_be32(f, v);
6550 unsigned int qemu_get_be16(QEMUFile *f)
6552 unsigned int v;
6553 v = qemu_get_byte(f) << 8;
6554 v |= qemu_get_byte(f);
6555 return v;
6558 unsigned int qemu_get_be32(QEMUFile *f)
6560 unsigned int v;
6561 v = qemu_get_byte(f) << 24;
6562 v |= qemu_get_byte(f) << 16;
6563 v |= qemu_get_byte(f) << 8;
6564 v |= qemu_get_byte(f);
6565 return v;
6568 uint64_t qemu_get_be64(QEMUFile *f)
6570 uint64_t v;
6571 v = (uint64_t)qemu_get_be32(f) << 32;
6572 v |= qemu_get_be32(f);
6573 return v;
6576 typedef struct SaveStateEntry {
6577 char idstr[256];
6578 int instance_id;
6579 int version_id;
6580 SaveStateHandler *save_state;
6581 LoadStateHandler *load_state;
6582 void *opaque;
6583 struct SaveStateEntry *next;
6584 } SaveStateEntry;
6586 static SaveStateEntry *first_se;
6588 /* TODO: Individual devices generally have very little idea about the rest
6589 of the system, so instance_id should be removed/replaced.
6590 Meanwhile pass -1 as instance_id if you do not already have a clearly
6591 distinguishing id for all instances of your device class. */
6592 int register_savevm(const char *idstr,
6593 int instance_id,
6594 int version_id,
6595 SaveStateHandler *save_state,
6596 LoadStateHandler *load_state,
6597 void *opaque)
6599 SaveStateEntry *se, **pse;
6601 se = qemu_malloc(sizeof(SaveStateEntry));
6602 if (!se)
6603 return -1;
6604 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6605 se->instance_id = (instance_id == -1) ? 0 : instance_id;
6606 se->version_id = version_id;
6607 se->save_state = save_state;
6608 se->load_state = load_state;
6609 se->opaque = opaque;
6610 se->next = NULL;
6612 /* add at the end of list */
6613 pse = &first_se;
6614 while (*pse != NULL) {
6615 if (instance_id == -1
6616 && strcmp(se->idstr, (*pse)->idstr) == 0
6617 && se->instance_id <= (*pse)->instance_id)
6618 se->instance_id = (*pse)->instance_id + 1;
6619 pse = &(*pse)->next;
6621 *pse = se;
6622 return 0;
6625 #define QEMU_VM_FILE_MAGIC 0x5145564d
6626 #define QEMU_VM_FILE_VERSION 0x00000002
6628 static int qemu_savevm_state(QEMUFile *f)
6630 SaveStateEntry *se;
6631 int len, ret;
6632 int64_t cur_pos, len_pos, total_len_pos;
6634 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6635 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6636 total_len_pos = qemu_ftell(f);
6637 qemu_put_be64(f, 0); /* total size */
6639 for(se = first_se; se != NULL; se = se->next) {
6640 if (se->save_state == NULL)
6641 /* this one has a loader only, for backwards compatibility */
6642 continue;
6644 /* ID string */
6645 len = strlen(se->idstr);
6646 qemu_put_byte(f, len);
6647 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6649 qemu_put_be32(f, se->instance_id);
6650 qemu_put_be32(f, se->version_id);
6652 /* record size: filled later */
6653 len_pos = qemu_ftell(f);
6654 qemu_put_be32(f, 0);
6655 se->save_state(f, se->opaque);
6657 /* fill record size */
6658 cur_pos = qemu_ftell(f);
6659 len = cur_pos - len_pos - 4;
6660 qemu_fseek(f, len_pos, SEEK_SET);
6661 qemu_put_be32(f, len);
6662 qemu_fseek(f, cur_pos, SEEK_SET);
6664 cur_pos = qemu_ftell(f);
6665 qemu_fseek(f, total_len_pos, SEEK_SET);
6666 qemu_put_be64(f, cur_pos - total_len_pos - 8);
6667 qemu_fseek(f, cur_pos, SEEK_SET);
6669 ret = 0;
6670 return ret;
6673 static SaveStateEntry *find_se(const char *idstr, int instance_id)
6675 SaveStateEntry *se;
6677 for(se = first_se; se != NULL; se = se->next) {
6678 if (!strcmp(se->idstr, idstr) &&
6679 instance_id == se->instance_id)
6680 return se;
6682 return NULL;
6685 static int qemu_loadvm_state(QEMUFile *f)
6687 SaveStateEntry *se;
6688 int len, ret, instance_id, record_len, version_id;
6689 int64_t total_len, end_pos, cur_pos;
6690 unsigned int v;
6691 char idstr[256];
6693 v = qemu_get_be32(f);
6694 if (v != QEMU_VM_FILE_MAGIC)
6695 goto fail;
6696 v = qemu_get_be32(f);
6697 if (v != QEMU_VM_FILE_VERSION) {
6698 fail:
6699 ret = -1;
6700 goto the_end;
6702 total_len = qemu_get_be64(f);
6703 end_pos = total_len + qemu_ftell(f);
6704 for(;;) {
6705 if (qemu_ftell(f) >= end_pos)
6706 break;
6707 len = qemu_get_byte(f);
6708 qemu_get_buffer(f, (uint8_t *)idstr, len);
6709 idstr[len] = '\0';
6710 instance_id = qemu_get_be32(f);
6711 version_id = qemu_get_be32(f);
6712 record_len = qemu_get_be32(f);
6713 #if 0
6714 printf("idstr=%s instance=0x%x version=%d len=%d\n",
6715 idstr, instance_id, version_id, record_len);
6716 #endif
6717 cur_pos = qemu_ftell(f);
6718 se = find_se(idstr, instance_id);
6719 if (!se) {
6720 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6721 instance_id, idstr);
6722 } else {
6723 ret = se->load_state(f, se->opaque, version_id);
6724 if (ret < 0) {
6725 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6726 instance_id, idstr);
6729 /* always seek to exact end of record */
6730 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6732 ret = 0;
6733 the_end:
6734 return ret;
6737 /* device can contain snapshots */
6738 static int bdrv_can_snapshot(BlockDriverState *bs)
6740 return (bs &&
6741 !bdrv_is_removable(bs) &&
6742 !bdrv_is_read_only(bs));
6745 /* device must be snapshots in order to have a reliable snapshot */
6746 static int bdrv_has_snapshot(BlockDriverState *bs)
6748 return (bs &&
6749 !bdrv_is_removable(bs) &&
6750 !bdrv_is_read_only(bs));
6753 static BlockDriverState *get_bs_snapshots(void)
6755 BlockDriverState *bs;
6756 int i;
6758 if (bs_snapshots)
6759 return bs_snapshots;
6760 for(i = 0; i <= nb_drives; i++) {
6761 bs = drives_table[i].bdrv;
6762 if (bdrv_can_snapshot(bs))
6763 goto ok;
6765 return NULL;
6767 bs_snapshots = bs;
6768 return bs;
6771 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6772 const char *name)
6774 QEMUSnapshotInfo *sn_tab, *sn;
6775 int nb_sns, i, ret;
6777 ret = -ENOENT;
6778 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6779 if (nb_sns < 0)
6780 return ret;
6781 for(i = 0; i < nb_sns; i++) {
6782 sn = &sn_tab[i];
6783 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6784 *sn_info = *sn;
6785 ret = 0;
6786 break;
6789 qemu_free(sn_tab);
6790 return ret;
6793 void do_savevm(const char *name)
6795 BlockDriverState *bs, *bs1;
6796 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6797 int must_delete, ret, i;
6798 BlockDriverInfo bdi1, *bdi = &bdi1;
6799 QEMUFile *f;
6800 int saved_vm_running;
6801 #ifdef _WIN32
6802 struct _timeb tb;
6803 #else
6804 struct timeval tv;
6805 #endif
6807 bs = get_bs_snapshots();
6808 if (!bs) {
6809 term_printf("No block device can accept snapshots\n");
6810 return;
6813 /* ??? Should this occur after vm_stop? */
6814 qemu_aio_flush();
6816 saved_vm_running = vm_running;
6817 vm_stop(0);
6819 must_delete = 0;
6820 if (name) {
6821 ret = bdrv_snapshot_find(bs, old_sn, name);
6822 if (ret >= 0) {
6823 must_delete = 1;
6826 memset(sn, 0, sizeof(*sn));
6827 if (must_delete) {
6828 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6829 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6830 } else {
6831 if (name)
6832 pstrcpy(sn->name, sizeof(sn->name), name);
6835 /* fill auxiliary fields */
6836 #ifdef _WIN32
6837 _ftime(&tb);
6838 sn->date_sec = tb.time;
6839 sn->date_nsec = tb.millitm * 1000000;
6840 #else
6841 gettimeofday(&tv, NULL);
6842 sn->date_sec = tv.tv_sec;
6843 sn->date_nsec = tv.tv_usec * 1000;
6844 #endif
6845 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6847 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6848 term_printf("Device %s does not support VM state snapshots\n",
6849 bdrv_get_device_name(bs));
6850 goto the_end;
6853 /* save the VM state */
6854 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6855 if (!f) {
6856 term_printf("Could not open VM state file\n");
6857 goto the_end;
6859 ret = qemu_savevm_state(f);
6860 sn->vm_state_size = qemu_ftell(f);
6861 qemu_fclose(f);
6862 if (ret < 0) {
6863 term_printf("Error %d while writing VM\n", ret);
6864 goto the_end;
6867 /* create the snapshots */
6869 for(i = 0; i < nb_drives; i++) {
6870 bs1 = drives_table[i].bdrv;
6871 if (bdrv_has_snapshot(bs1)) {
6872 if (must_delete) {
6873 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6874 if (ret < 0) {
6875 term_printf("Error while deleting snapshot on '%s'\n",
6876 bdrv_get_device_name(bs1));
6879 ret = bdrv_snapshot_create(bs1, sn);
6880 if (ret < 0) {
6881 term_printf("Error while creating snapshot on '%s'\n",
6882 bdrv_get_device_name(bs1));
6887 the_end:
6888 if (saved_vm_running)
6889 vm_start();
6892 void do_loadvm(const char *name)
6894 BlockDriverState *bs, *bs1;
6895 BlockDriverInfo bdi1, *bdi = &bdi1;
6896 QEMUFile *f;
6897 int i, ret;
6898 int saved_vm_running;
6900 bs = get_bs_snapshots();
6901 if (!bs) {
6902 term_printf("No block device supports snapshots\n");
6903 return;
6906 /* Flush all IO requests so they don't interfere with the new state. */
6907 qemu_aio_flush();
6909 saved_vm_running = vm_running;
6910 vm_stop(0);
6912 for(i = 0; i <= nb_drives; i++) {
6913 bs1 = drives_table[i].bdrv;
6914 if (bdrv_has_snapshot(bs1)) {
6915 ret = bdrv_snapshot_goto(bs1, name);
6916 if (ret < 0) {
6917 if (bs != bs1)
6918 term_printf("Warning: ");
6919 switch(ret) {
6920 case -ENOTSUP:
6921 term_printf("Snapshots not supported on device '%s'\n",
6922 bdrv_get_device_name(bs1));
6923 break;
6924 case -ENOENT:
6925 term_printf("Could not find snapshot '%s' on device '%s'\n",
6926 name, bdrv_get_device_name(bs1));
6927 break;
6928 default:
6929 term_printf("Error %d while activating snapshot on '%s'\n",
6930 ret, bdrv_get_device_name(bs1));
6931 break;
6933 /* fatal on snapshot block device */
6934 if (bs == bs1)
6935 goto the_end;
6940 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6941 term_printf("Device %s does not support VM state snapshots\n",
6942 bdrv_get_device_name(bs));
6943 return;
6946 /* restore the VM state */
6947 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6948 if (!f) {
6949 term_printf("Could not open VM state file\n");
6950 goto the_end;
6952 ret = qemu_loadvm_state(f);
6953 qemu_fclose(f);
6954 if (ret < 0) {
6955 term_printf("Error %d while loading VM state\n", ret);
6957 the_end:
6958 if (saved_vm_running)
6959 vm_start();
6962 void do_delvm(const char *name)
6964 BlockDriverState *bs, *bs1;
6965 int i, ret;
6967 bs = get_bs_snapshots();
6968 if (!bs) {
6969 term_printf("No block device supports snapshots\n");
6970 return;
6973 for(i = 0; i <= nb_drives; i++) {
6974 bs1 = drives_table[i].bdrv;
6975 if (bdrv_has_snapshot(bs1)) {
6976 ret = bdrv_snapshot_delete(bs1, name);
6977 if (ret < 0) {
6978 if (ret == -ENOTSUP)
6979 term_printf("Snapshots not supported on device '%s'\n",
6980 bdrv_get_device_name(bs1));
6981 else
6982 term_printf("Error %d while deleting snapshot on '%s'\n",
6983 ret, bdrv_get_device_name(bs1));
6989 void do_info_snapshots(void)
6991 BlockDriverState *bs, *bs1;
6992 QEMUSnapshotInfo *sn_tab, *sn;
6993 int nb_sns, i;
6994 char buf[256];
6996 bs = get_bs_snapshots();
6997 if (!bs) {
6998 term_printf("No available block device supports snapshots\n");
6999 return;
7001 term_printf("Snapshot devices:");
7002 for(i = 0; i <= nb_drives; i++) {
7003 bs1 = drives_table[i].bdrv;
7004 if (bdrv_has_snapshot(bs1)) {
7005 if (bs == bs1)
7006 term_printf(" %s", bdrv_get_device_name(bs1));
7009 term_printf("\n");
7011 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7012 if (nb_sns < 0) {
7013 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
7014 return;
7016 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
7017 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
7018 for(i = 0; i < nb_sns; i++) {
7019 sn = &sn_tab[i];
7020 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
7022 qemu_free(sn_tab);
7025 /***********************************************************/
7026 /* ram save/restore */
7028 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
7030 int v;
7032 v = qemu_get_byte(f);
7033 switch(v) {
7034 case 0:
7035 if (qemu_get_buffer(f, buf, len) != len)
7036 return -EIO;
7037 break;
7038 case 1:
7039 v = qemu_get_byte(f);
7040 memset(buf, v, len);
7041 break;
7042 default:
7043 return -EINVAL;
7045 return 0;
7048 static int ram_load_v1(QEMUFile *f, void *opaque)
7050 int ret;
7051 ram_addr_t i;
7053 if (qemu_get_be32(f) != phys_ram_size)
7054 return -EINVAL;
7055 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
7056 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
7057 if (ret)
7058 return ret;
7060 return 0;
7063 #define BDRV_HASH_BLOCK_SIZE 1024
7064 #define IOBUF_SIZE 4096
7065 #define RAM_CBLOCK_MAGIC 0xfabe
7067 typedef struct RamCompressState {
7068 z_stream zstream;
7069 QEMUFile *f;
7070 uint8_t buf[IOBUF_SIZE];
7071 } RamCompressState;
7073 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
7075 int ret;
7076 memset(s, 0, sizeof(*s));
7077 s->f = f;
7078 ret = deflateInit2(&s->zstream, 1,
7079 Z_DEFLATED, 15,
7080 9, Z_DEFAULT_STRATEGY);
7081 if (ret != Z_OK)
7082 return -1;
7083 s->zstream.avail_out = IOBUF_SIZE;
7084 s->zstream.next_out = s->buf;
7085 return 0;
7088 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
7090 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
7091 qemu_put_be16(s->f, len);
7092 qemu_put_buffer(s->f, buf, len);
7095 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
7097 int ret;
7099 s->zstream.avail_in = len;
7100 s->zstream.next_in = (uint8_t *)buf;
7101 while (s->zstream.avail_in > 0) {
7102 ret = deflate(&s->zstream, Z_NO_FLUSH);
7103 if (ret != Z_OK)
7104 return -1;
7105 if (s->zstream.avail_out == 0) {
7106 ram_put_cblock(s, s->buf, IOBUF_SIZE);
7107 s->zstream.avail_out = IOBUF_SIZE;
7108 s->zstream.next_out = s->buf;
7111 return 0;
7114 static void ram_compress_close(RamCompressState *s)
7116 int len, ret;
7118 /* compress last bytes */
7119 for(;;) {
7120 ret = deflate(&s->zstream, Z_FINISH);
7121 if (ret == Z_OK || ret == Z_STREAM_END) {
7122 len = IOBUF_SIZE - s->zstream.avail_out;
7123 if (len > 0) {
7124 ram_put_cblock(s, s->buf, len);
7126 s->zstream.avail_out = IOBUF_SIZE;
7127 s->zstream.next_out = s->buf;
7128 if (ret == Z_STREAM_END)
7129 break;
7130 } else {
7131 goto fail;
7134 fail:
7135 deflateEnd(&s->zstream);
7138 typedef struct RamDecompressState {
7139 z_stream zstream;
7140 QEMUFile *f;
7141 uint8_t buf[IOBUF_SIZE];
7142 } RamDecompressState;
7144 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
7146 int ret;
7147 memset(s, 0, sizeof(*s));
7148 s->f = f;
7149 ret = inflateInit(&s->zstream);
7150 if (ret != Z_OK)
7151 return -1;
7152 return 0;
7155 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7157 int ret, clen;
7159 s->zstream.avail_out = len;
7160 s->zstream.next_out = buf;
7161 while (s->zstream.avail_out > 0) {
7162 if (s->zstream.avail_in == 0) {
7163 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7164 return -1;
7165 clen = qemu_get_be16(s->f);
7166 if (clen > IOBUF_SIZE)
7167 return -1;
7168 qemu_get_buffer(s->f, s->buf, clen);
7169 s->zstream.avail_in = clen;
7170 s->zstream.next_in = s->buf;
7172 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7173 if (ret != Z_OK && ret != Z_STREAM_END) {
7174 return -1;
7177 return 0;
7180 static void ram_decompress_close(RamDecompressState *s)
7182 inflateEnd(&s->zstream);
7185 static void ram_save(QEMUFile *f, void *opaque)
7187 ram_addr_t i;
7188 RamCompressState s1, *s = &s1;
7189 uint8_t buf[10];
7191 qemu_put_be32(f, phys_ram_size);
7192 if (ram_compress_open(s, f) < 0)
7193 return;
7194 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7195 #if 0
7196 if (tight_savevm_enabled) {
7197 int64_t sector_num;
7198 int j;
7200 /* find if the memory block is available on a virtual
7201 block device */
7202 sector_num = -1;
7203 for(j = 0; j < nb_drives; j++) {
7204 sector_num = bdrv_hash_find(drives_table[j].bdrv,
7205 phys_ram_base + i,
7206 BDRV_HASH_BLOCK_SIZE);
7207 if (sector_num >= 0)
7208 break;
7210 if (j == nb_drives)
7211 goto normal_compress;
7212 buf[0] = 1;
7213 buf[1] = j;
7214 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7215 ram_compress_buf(s, buf, 10);
7216 } else
7217 #endif
7219 // normal_compress:
7220 buf[0] = 0;
7221 ram_compress_buf(s, buf, 1);
7222 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7225 ram_compress_close(s);
7228 static int ram_load(QEMUFile *f, void *opaque, int version_id)
7230 RamDecompressState s1, *s = &s1;
7231 uint8_t buf[10];
7232 ram_addr_t i;
7234 if (version_id == 1)
7235 return ram_load_v1(f, opaque);
7236 if (version_id != 2)
7237 return -EINVAL;
7238 if (qemu_get_be32(f) != phys_ram_size)
7239 return -EINVAL;
7240 if (ram_decompress_open(s, f) < 0)
7241 return -EINVAL;
7242 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7243 if (ram_decompress_buf(s, buf, 1) < 0) {
7244 fprintf(stderr, "Error while reading ram block header\n");
7245 goto error;
7247 if (buf[0] == 0) {
7248 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7249 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7250 goto error;
7252 } else
7253 #if 0
7254 if (buf[0] == 1) {
7255 int bs_index;
7256 int64_t sector_num;
7258 ram_decompress_buf(s, buf + 1, 9);
7259 bs_index = buf[1];
7260 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7261 if (bs_index >= nb_drives) {
7262 fprintf(stderr, "Invalid block device index %d\n", bs_index);
7263 goto error;
7265 if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7266 phys_ram_base + i,
7267 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7268 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7269 bs_index, sector_num);
7270 goto error;
7272 } else
7273 #endif
7275 error:
7276 printf("Error block header\n");
7277 return -EINVAL;
7280 ram_decompress_close(s);
7281 return 0;
7284 /***********************************************************/
7285 /* bottom halves (can be seen as timers which expire ASAP) */
7287 struct QEMUBH {
7288 QEMUBHFunc *cb;
7289 void *opaque;
7290 int scheduled;
7291 QEMUBH *next;
7294 static QEMUBH *first_bh = NULL;
7296 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7298 QEMUBH *bh;
7299 bh = qemu_mallocz(sizeof(QEMUBH));
7300 if (!bh)
7301 return NULL;
7302 bh->cb = cb;
7303 bh->opaque = opaque;
7304 return bh;
7307 int qemu_bh_poll(void)
7309 QEMUBH *bh, **pbh;
7310 int ret;
7312 ret = 0;
7313 for(;;) {
7314 pbh = &first_bh;
7315 bh = *pbh;
7316 if (!bh)
7317 break;
7318 ret = 1;
7319 *pbh = bh->next;
7320 bh->scheduled = 0;
7321 bh->cb(bh->opaque);
7323 return ret;
7326 void qemu_bh_schedule(QEMUBH *bh)
7328 CPUState *env = cpu_single_env;
7329 if (bh->scheduled)
7330 return;
7331 bh->scheduled = 1;
7332 bh->next = first_bh;
7333 first_bh = bh;
7335 /* stop the currently executing CPU to execute the BH ASAP */
7336 if (env) {
7337 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7341 void qemu_bh_cancel(QEMUBH *bh)
7343 QEMUBH **pbh;
7344 if (bh->scheduled) {
7345 pbh = &first_bh;
7346 while (*pbh != bh)
7347 pbh = &(*pbh)->next;
7348 *pbh = bh->next;
7349 bh->scheduled = 0;
7353 void qemu_bh_delete(QEMUBH *bh)
7355 qemu_bh_cancel(bh);
7356 qemu_free(bh);
7359 /***********************************************************/
7360 /* machine registration */
7362 QEMUMachine *first_machine = NULL;
7364 int qemu_register_machine(QEMUMachine *m)
7366 QEMUMachine **pm;
7367 pm = &first_machine;
7368 while (*pm != NULL)
7369 pm = &(*pm)->next;
7370 m->next = NULL;
7371 *pm = m;
7372 return 0;
7375 static QEMUMachine *find_machine(const char *name)
7377 QEMUMachine *m;
7379 for(m = first_machine; m != NULL; m = m->next) {
7380 if (!strcmp(m->name, name))
7381 return m;
7383 return NULL;
7386 /***********************************************************/
7387 /* main execution loop */
7389 static void gui_update(void *opaque)
7391 DisplayState *ds = opaque;
7392 ds->dpy_refresh(ds);
7393 qemu_mod_timer(ds->gui_timer,
7394 (ds->gui_timer_interval ?
7395 ds->gui_timer_interval :
7396 GUI_REFRESH_INTERVAL)
7397 + qemu_get_clock(rt_clock));
7400 struct vm_change_state_entry {
7401 VMChangeStateHandler *cb;
7402 void *opaque;
7403 LIST_ENTRY (vm_change_state_entry) entries;
7406 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7408 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7409 void *opaque)
7411 VMChangeStateEntry *e;
7413 e = qemu_mallocz(sizeof (*e));
7414 if (!e)
7415 return NULL;
7417 e->cb = cb;
7418 e->opaque = opaque;
7419 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7420 return e;
7423 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7425 LIST_REMOVE (e, entries);
7426 qemu_free (e);
7429 static void vm_state_notify(int running)
7431 VMChangeStateEntry *e;
7433 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7434 e->cb(e->opaque, running);
7438 /* XXX: support several handlers */
7439 static VMStopHandler *vm_stop_cb;
7440 static void *vm_stop_opaque;
7442 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7444 vm_stop_cb = cb;
7445 vm_stop_opaque = opaque;
7446 return 0;
7449 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7451 vm_stop_cb = NULL;
7454 void vm_start(void)
7456 if (!vm_running) {
7457 cpu_enable_ticks();
7458 vm_running = 1;
7459 vm_state_notify(1);
7460 qemu_rearm_alarm_timer(alarm_timer);
7464 void vm_stop(int reason)
7466 if (vm_running) {
7467 cpu_disable_ticks();
7468 vm_running = 0;
7469 if (reason != 0) {
7470 if (vm_stop_cb) {
7471 vm_stop_cb(vm_stop_opaque, reason);
7474 vm_state_notify(0);
7478 /* reset/shutdown handler */
7480 typedef struct QEMUResetEntry {
7481 QEMUResetHandler *func;
7482 void *opaque;
7483 struct QEMUResetEntry *next;
7484 } QEMUResetEntry;
7486 static QEMUResetEntry *first_reset_entry;
7487 static int reset_requested;
7488 static int shutdown_requested;
7489 static int powerdown_requested;
7491 int qemu_shutdown_requested(void)
7493 int r = shutdown_requested;
7494 shutdown_requested = 0;
7495 return r;
7498 int qemu_reset_requested(void)
7500 int r = reset_requested;
7501 reset_requested = 0;
7502 return r;
7505 int qemu_powerdown_requested(void)
7507 int r = powerdown_requested;
7508 powerdown_requested = 0;
7509 return r;
7512 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7514 QEMUResetEntry **pre, *re;
7516 pre = &first_reset_entry;
7517 while (*pre != NULL)
7518 pre = &(*pre)->next;
7519 re = qemu_mallocz(sizeof(QEMUResetEntry));
7520 re->func = func;
7521 re->opaque = opaque;
7522 re->next = NULL;
7523 *pre = re;
7526 void qemu_system_reset(void)
7528 QEMUResetEntry *re;
7530 /* reset all devices */
7531 for(re = first_reset_entry; re != NULL; re = re->next) {
7532 re->func(re->opaque);
7536 void qemu_system_reset_request(void)
7538 if (no_reboot) {
7539 shutdown_requested = 1;
7540 } else {
7541 reset_requested = 1;
7543 if (cpu_single_env)
7544 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7547 void qemu_system_shutdown_request(void)
7549 shutdown_requested = 1;
7550 if (cpu_single_env)
7551 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7554 void qemu_system_powerdown_request(void)
7556 powerdown_requested = 1;
7557 if (cpu_single_env)
7558 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7561 void main_loop_wait(int timeout)
7563 IOHandlerRecord *ioh;
7564 fd_set rfds, wfds, xfds;
7565 int ret, nfds;
7566 #ifdef _WIN32
7567 int ret2, i;
7568 #endif
7569 struct timeval tv;
7570 PollingEntry *pe;
7573 /* XXX: need to suppress polling by better using win32 events */
7574 ret = 0;
7575 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7576 ret |= pe->func(pe->opaque);
7578 #ifdef _WIN32
7579 if (ret == 0) {
7580 int err;
7581 WaitObjects *w = &wait_objects;
7583 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7584 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7585 if (w->func[ret - WAIT_OBJECT_0])
7586 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7588 /* Check for additional signaled events */
7589 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7591 /* Check if event is signaled */
7592 ret2 = WaitForSingleObject(w->events[i], 0);
7593 if(ret2 == WAIT_OBJECT_0) {
7594 if (w->func[i])
7595 w->func[i](w->opaque[i]);
7596 } else if (ret2 == WAIT_TIMEOUT) {
7597 } else {
7598 err = GetLastError();
7599 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7602 } else if (ret == WAIT_TIMEOUT) {
7603 } else {
7604 err = GetLastError();
7605 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7608 #endif
7609 /* poll any events */
7610 /* XXX: separate device handlers from system ones */
7611 nfds = -1;
7612 FD_ZERO(&rfds);
7613 FD_ZERO(&wfds);
7614 FD_ZERO(&xfds);
7615 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7616 if (ioh->deleted)
7617 continue;
7618 if (ioh->fd_read &&
7619 (!ioh->fd_read_poll ||
7620 ioh->fd_read_poll(ioh->opaque) != 0)) {
7621 FD_SET(ioh->fd, &rfds);
7622 if (ioh->fd > nfds)
7623 nfds = ioh->fd;
7625 if (ioh->fd_write) {
7626 FD_SET(ioh->fd, &wfds);
7627 if (ioh->fd > nfds)
7628 nfds = ioh->fd;
7632 tv.tv_sec = 0;
7633 #ifdef _WIN32
7634 tv.tv_usec = 0;
7635 #else
7636 tv.tv_usec = timeout * 1000;
7637 #endif
7638 #if defined(CONFIG_SLIRP)
7639 if (slirp_inited) {
7640 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7642 #endif
7643 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7644 if (ret > 0) {
7645 IOHandlerRecord **pioh;
7647 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7648 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7649 ioh->fd_read(ioh->opaque);
7651 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7652 ioh->fd_write(ioh->opaque);
7656 /* remove deleted IO handlers */
7657 pioh = &first_io_handler;
7658 while (*pioh) {
7659 ioh = *pioh;
7660 if (ioh->deleted) {
7661 *pioh = ioh->next;
7662 qemu_free(ioh);
7663 } else
7664 pioh = &ioh->next;
7667 #if defined(CONFIG_SLIRP)
7668 if (slirp_inited) {
7669 if (ret < 0) {
7670 FD_ZERO(&rfds);
7671 FD_ZERO(&wfds);
7672 FD_ZERO(&xfds);
7674 slirp_select_poll(&rfds, &wfds, &xfds);
7676 #endif
7678 if (vm_running) {
7679 if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7680 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7681 qemu_get_clock(vm_clock));
7682 /* run dma transfers, if any */
7683 DMA_run();
7686 /* real time timers */
7687 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7688 qemu_get_clock(rt_clock));
7690 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7691 alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7692 qemu_rearm_alarm_timer(alarm_timer);
7695 /* Check bottom-halves last in case any of the earlier events triggered
7696 them. */
7697 qemu_bh_poll();
7701 static int main_loop(void)
7703 int ret, timeout;
7704 #ifdef CONFIG_PROFILER
7705 int64_t ti;
7706 #endif
7707 CPUState *env;
7709 cur_cpu = first_cpu;
7710 next_cpu = cur_cpu->next_cpu ?: first_cpu;
7711 for(;;) {
7712 if (vm_running) {
7714 for(;;) {
7715 /* get next cpu */
7716 env = next_cpu;
7717 #ifdef CONFIG_PROFILER
7718 ti = profile_getclock();
7719 #endif
7720 if (use_icount) {
7721 int64_t count;
7722 int decr;
7723 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
7724 env->icount_decr.u16.low = 0;
7725 env->icount_extra = 0;
7726 count = qemu_next_deadline();
7727 count = (count + (1 << icount_time_shift) - 1)
7728 >> icount_time_shift;
7729 qemu_icount += count;
7730 decr = (count > 0xffff) ? 0xffff : count;
7731 count -= decr;
7732 env->icount_decr.u16.low = decr;
7733 env->icount_extra = count;
7735 ret = cpu_exec(env);
7736 #ifdef CONFIG_PROFILER
7737 qemu_time += profile_getclock() - ti;
7738 #endif
7739 if (use_icount) {
7740 /* Fold pending instructions back into the
7741 instruction counter, and clear the interrupt flag. */
7742 qemu_icount -= (env->icount_decr.u16.low
7743 + env->icount_extra);
7744 env->icount_decr.u32 = 0;
7745 env->icount_extra = 0;
7747 next_cpu = env->next_cpu ?: first_cpu;
7748 if (event_pending && likely(ret != EXCP_DEBUG)) {
7749 ret = EXCP_INTERRUPT;
7750 event_pending = 0;
7751 break;
7753 if (ret == EXCP_HLT) {
7754 /* Give the next CPU a chance to run. */
7755 cur_cpu = env;
7756 continue;
7758 if (ret != EXCP_HALTED)
7759 break;
7760 /* all CPUs are halted ? */
7761 if (env == cur_cpu)
7762 break;
7764 cur_cpu = env;
7766 if (shutdown_requested) {
7767 ret = EXCP_INTERRUPT;
7768 if (no_shutdown) {
7769 vm_stop(0);
7770 no_shutdown = 0;
7772 else
7773 break;
7775 if (reset_requested) {
7776 reset_requested = 0;
7777 qemu_system_reset();
7778 ret = EXCP_INTERRUPT;
7780 if (powerdown_requested) {
7781 powerdown_requested = 0;
7782 qemu_system_powerdown();
7783 ret = EXCP_INTERRUPT;
7785 if (unlikely(ret == EXCP_DEBUG)) {
7786 vm_stop(EXCP_DEBUG);
7788 /* If all cpus are halted then wait until the next IRQ */
7789 /* XXX: use timeout computed from timers */
7790 if (ret == EXCP_HALTED) {
7791 if (use_icount) {
7792 int64_t add;
7793 int64_t delta;
7794 /* Advance virtual time to the next event. */
7795 if (use_icount == 1) {
7796 /* When not using an adaptive execution frequency
7797 we tend to get badly out of sync with real time,
7798 so just delay for a reasonable amount of time. */
7799 delta = 0;
7800 } else {
7801 delta = cpu_get_icount() - cpu_get_clock();
7803 if (delta > 0) {
7804 /* If virtual time is ahead of real time then just
7805 wait for IO. */
7806 timeout = (delta / 1000000) + 1;
7807 } else {
7808 /* Wait for either IO to occur or the next
7809 timer event. */
7810 add = qemu_next_deadline();
7811 /* We advance the timer before checking for IO.
7812 Limit the amount we advance so that early IO
7813 activity won't get the guest too far ahead. */
7814 if (add > 10000000)
7815 add = 10000000;
7816 delta += add;
7817 add = (add + (1 << icount_time_shift) - 1)
7818 >> icount_time_shift;
7819 qemu_icount += add;
7820 timeout = delta / 1000000;
7821 if (timeout < 0)
7822 timeout = 0;
7824 } else {
7825 timeout = 10;
7827 } else {
7828 timeout = 0;
7830 } else {
7831 if (shutdown_requested) {
7832 ret = EXCP_INTERRUPT;
7833 break;
7835 timeout = 10;
7837 #ifdef CONFIG_PROFILER
7838 ti = profile_getclock();
7839 #endif
7840 main_loop_wait(timeout);
7841 #ifdef CONFIG_PROFILER
7842 dev_time += profile_getclock() - ti;
7843 #endif
7845 cpu_disable_ticks();
7846 return ret;
7849 static void help(int exitcode)
7851 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7852 "usage: %s [options] [disk_image]\n"
7853 "\n"
7854 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7855 "\n"
7856 "Standard options:\n"
7857 "-M machine select emulated machine (-M ? for list)\n"
7858 "-cpu cpu select CPU (-cpu ? for list)\n"
7859 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
7860 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
7861 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
7862 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7863 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
7864 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
7865 " [,cache=on|off][,format=f]\n"
7866 " use 'file' as a drive image\n"
7867 "-mtdblock file use 'file' as on-board Flash memory image\n"
7868 "-sd file use 'file' as SecureDigital card image\n"
7869 "-pflash file use 'file' as a parallel flash image\n"
7870 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7871 "-snapshot write to temporary files instead of disk image files\n"
7872 #ifdef CONFIG_SDL
7873 "-no-frame open SDL window without a frame and window decorations\n"
7874 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7875 "-no-quit disable SDL window close capability\n"
7876 #endif
7877 #ifdef TARGET_I386
7878 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7879 #endif
7880 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7881 "-smp n set the number of CPUs to 'n' [default=1]\n"
7882 "-nographic disable graphical output and redirect serial I/Os to console\n"
7883 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7884 #ifndef _WIN32
7885 "-k language use keyboard layout (for example \"fr\" for French)\n"
7886 #endif
7887 #ifdef HAS_AUDIO
7888 "-audio-help print list of audio drivers and their options\n"
7889 "-soundhw c1,... enable audio support\n"
7890 " and only specified sound cards (comma separated list)\n"
7891 " use -soundhw ? to get the list of supported cards\n"
7892 " use -soundhw all to enable all of them\n"
7893 #endif
7894 "-vga [std|cirrus|vmware]\n"
7895 " select video card type\n"
7896 "-localtime set the real time clock to local time [default=utc]\n"
7897 "-full-screen start in full screen\n"
7898 #ifdef TARGET_I386
7899 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7900 #endif
7901 "-usb enable the USB driver (will be the default soon)\n"
7902 "-usbdevice name add the host or guest USB device 'name'\n"
7903 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7904 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7905 #endif
7906 "-name string set the name of the guest\n"
7907 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
7908 "\n"
7909 "Network options:\n"
7910 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7911 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7912 #ifdef CONFIG_SLIRP
7913 "-net user[,vlan=n][,hostname=host]\n"
7914 " connect the user mode network stack to VLAN 'n' and send\n"
7915 " hostname 'host' to DHCP clients\n"
7916 #endif
7917 #ifdef _WIN32
7918 "-net tap[,vlan=n],ifname=name\n"
7919 " connect the host TAP network interface to VLAN 'n'\n"
7920 #else
7921 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7922 " connect the host TAP network interface to VLAN 'n' and use the\n"
7923 " network scripts 'file' (default=%s)\n"
7924 " and 'dfile' (default=%s);\n"
7925 " use '[down]script=no' to disable script execution;\n"
7926 " use 'fd=h' to connect to an already opened TAP interface\n"
7927 #endif
7928 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7929 " connect the vlan 'n' to another VLAN using a socket connection\n"
7930 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7931 " connect the vlan 'n' to multicast maddr and port\n"
7932 #ifdef CONFIG_VDE
7933 "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
7934 " connect the vlan 'n' to port 'n' of a vde switch running\n"
7935 " on host and listening for incoming connections on 'socketpath'.\n"
7936 " Use group 'groupname' and mode 'octalmode' to change default\n"
7937 " ownership and permissions for communication port.\n"
7938 #endif
7939 "-net none use it alone to have zero network devices; if no -net option\n"
7940 " is provided, the default is '-net nic -net user'\n"
7941 "\n"
7942 #ifdef CONFIG_SLIRP
7943 "-tftp dir allow tftp access to files in dir [-net user]\n"
7944 "-bootp file advertise file in BOOTP replies\n"
7945 #ifndef _WIN32
7946 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7947 #endif
7948 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7949 " redirect TCP or UDP connections from host to guest [-net user]\n"
7950 #endif
7951 "\n"
7952 "Linux boot specific:\n"
7953 "-kernel bzImage use 'bzImage' as kernel image\n"
7954 "-append cmdline use 'cmdline' as kernel command line\n"
7955 "-initrd file use 'file' as initial ram disk\n"
7956 "\n"
7957 "Debug/Expert options:\n"
7958 "-monitor dev redirect the monitor to char device 'dev'\n"
7959 "-serial dev redirect the serial port to char device 'dev'\n"
7960 "-parallel dev redirect the parallel port to char device 'dev'\n"
7961 "-pidfile file Write PID to 'file'\n"
7962 "-S freeze CPU at startup (use 'c' to start execution)\n"
7963 "-s wait gdb connection to port\n"
7964 "-p port set gdb connection port [default=%s]\n"
7965 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7966 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7967 " translation (t=none or lba) (usually qemu can guess them)\n"
7968 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7969 #ifdef USE_KQEMU
7970 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7971 "-no-kqemu disable KQEMU kernel module usage\n"
7972 #endif
7973 #ifdef TARGET_I386
7974 "-no-acpi disable ACPI\n"
7975 #endif
7976 #ifdef CONFIG_CURSES
7977 "-curses use a curses/ncurses interface instead of SDL\n"
7978 #endif
7979 "-no-reboot exit instead of rebooting\n"
7980 "-no-shutdown stop before shutdown\n"
7981 "-loadvm [tag|id] start right away with a saved state (loadvm in monitor)\n"
7982 "-vnc display start a VNC server on display\n"
7983 #ifndef _WIN32
7984 "-daemonize daemonize QEMU after initializing\n"
7985 #endif
7986 "-option-rom rom load a file, rom, into the option ROM space\n"
7987 #ifdef TARGET_SPARC
7988 "-prom-env variable=value set OpenBIOS nvram variables\n"
7989 #endif
7990 "-clock force the use of the given methods for timer alarm.\n"
7991 " To see what timers are available use -clock ?\n"
7992 "-startdate select initial date of the clock\n"
7993 "-icount [N|auto]\n"
7994 " Enable virtual instruction counter with 2^N clock ticks per instruction\n"
7995 "\n"
7996 "During emulation, the following keys are useful:\n"
7997 "ctrl-alt-f toggle full screen\n"
7998 "ctrl-alt-n switch to virtual console 'n'\n"
7999 "ctrl-alt toggle mouse and keyboard grab\n"
8000 "\n"
8001 "When using -nographic, press 'ctrl-a h' to get some help.\n"
8003 "qemu",
8004 DEFAULT_RAM_SIZE,
8005 #ifndef _WIN32
8006 DEFAULT_NETWORK_SCRIPT,
8007 DEFAULT_NETWORK_DOWN_SCRIPT,
8008 #endif
8009 DEFAULT_GDBSTUB_PORT,
8010 "/tmp/qemu.log");
8011 exit(exitcode);
8014 #define HAS_ARG 0x0001
8016 enum {
8017 QEMU_OPTION_h,
8019 QEMU_OPTION_M,
8020 QEMU_OPTION_cpu,
8021 QEMU_OPTION_fda,
8022 QEMU_OPTION_fdb,
8023 QEMU_OPTION_hda,
8024 QEMU_OPTION_hdb,
8025 QEMU_OPTION_hdc,
8026 QEMU_OPTION_hdd,
8027 QEMU_OPTION_drive,
8028 QEMU_OPTION_cdrom,
8029 QEMU_OPTION_mtdblock,
8030 QEMU_OPTION_sd,
8031 QEMU_OPTION_pflash,
8032 QEMU_OPTION_boot,
8033 QEMU_OPTION_snapshot,
8034 #ifdef TARGET_I386
8035 QEMU_OPTION_no_fd_bootchk,
8036 #endif
8037 QEMU_OPTION_m,
8038 QEMU_OPTION_nographic,
8039 QEMU_OPTION_portrait,
8040 #ifdef HAS_AUDIO
8041 QEMU_OPTION_audio_help,
8042 QEMU_OPTION_soundhw,
8043 #endif
8045 QEMU_OPTION_net,
8046 QEMU_OPTION_tftp,
8047 QEMU_OPTION_bootp,
8048 QEMU_OPTION_smb,
8049 QEMU_OPTION_redir,
8051 QEMU_OPTION_kernel,
8052 QEMU_OPTION_append,
8053 QEMU_OPTION_initrd,
8055 QEMU_OPTION_S,
8056 QEMU_OPTION_s,
8057 QEMU_OPTION_p,
8058 QEMU_OPTION_d,
8059 QEMU_OPTION_hdachs,
8060 QEMU_OPTION_L,
8061 QEMU_OPTION_bios,
8062 QEMU_OPTION_k,
8063 QEMU_OPTION_localtime,
8064 QEMU_OPTION_g,
8065 QEMU_OPTION_vga,
8066 QEMU_OPTION_echr,
8067 QEMU_OPTION_monitor,
8068 QEMU_OPTION_serial,
8069 QEMU_OPTION_parallel,
8070 QEMU_OPTION_loadvm,
8071 QEMU_OPTION_full_screen,
8072 QEMU_OPTION_no_frame,
8073 QEMU_OPTION_alt_grab,
8074 QEMU_OPTION_no_quit,
8075 QEMU_OPTION_pidfile,
8076 QEMU_OPTION_no_kqemu,
8077 QEMU_OPTION_kernel_kqemu,
8078 QEMU_OPTION_win2k_hack,
8079 QEMU_OPTION_usb,
8080 QEMU_OPTION_usbdevice,
8081 QEMU_OPTION_smp,
8082 QEMU_OPTION_vnc,
8083 QEMU_OPTION_no_acpi,
8084 QEMU_OPTION_curses,
8085 QEMU_OPTION_no_reboot,
8086 QEMU_OPTION_no_shutdown,
8087 QEMU_OPTION_show_cursor,
8088 QEMU_OPTION_daemonize,
8089 QEMU_OPTION_option_rom,
8090 QEMU_OPTION_semihosting,
8091 QEMU_OPTION_name,
8092 QEMU_OPTION_prom_env,
8093 QEMU_OPTION_old_param,
8094 QEMU_OPTION_clock,
8095 QEMU_OPTION_startdate,
8096 QEMU_OPTION_tb_size,
8097 QEMU_OPTION_icount,
8098 QEMU_OPTION_uuid,
8101 typedef struct QEMUOption {
8102 const char *name;
8103 int flags;
8104 int index;
8105 } QEMUOption;
8107 static const QEMUOption qemu_options[] = {
8108 { "h", 0, QEMU_OPTION_h },
8109 { "help", 0, QEMU_OPTION_h },
8111 { "M", HAS_ARG, QEMU_OPTION_M },
8112 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
8113 { "fda", HAS_ARG, QEMU_OPTION_fda },
8114 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
8115 { "hda", HAS_ARG, QEMU_OPTION_hda },
8116 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
8117 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
8118 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
8119 { "drive", HAS_ARG, QEMU_OPTION_drive },
8120 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
8121 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
8122 { "sd", HAS_ARG, QEMU_OPTION_sd },
8123 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
8124 { "boot", HAS_ARG, QEMU_OPTION_boot },
8125 { "snapshot", 0, QEMU_OPTION_snapshot },
8126 #ifdef TARGET_I386
8127 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
8128 #endif
8129 { "m", HAS_ARG, QEMU_OPTION_m },
8130 { "nographic", 0, QEMU_OPTION_nographic },
8131 { "portrait", 0, QEMU_OPTION_portrait },
8132 { "k", HAS_ARG, QEMU_OPTION_k },
8133 #ifdef HAS_AUDIO
8134 { "audio-help", 0, QEMU_OPTION_audio_help },
8135 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
8136 #endif
8138 { "net", HAS_ARG, QEMU_OPTION_net},
8139 #ifdef CONFIG_SLIRP
8140 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
8141 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
8142 #ifndef _WIN32
8143 { "smb", HAS_ARG, QEMU_OPTION_smb },
8144 #endif
8145 { "redir", HAS_ARG, QEMU_OPTION_redir },
8146 #endif
8148 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
8149 { "append", HAS_ARG, QEMU_OPTION_append },
8150 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
8152 { "S", 0, QEMU_OPTION_S },
8153 { "s", 0, QEMU_OPTION_s },
8154 { "p", HAS_ARG, QEMU_OPTION_p },
8155 { "d", HAS_ARG, QEMU_OPTION_d },
8156 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
8157 { "L", HAS_ARG, QEMU_OPTION_L },
8158 { "bios", HAS_ARG, QEMU_OPTION_bios },
8159 #ifdef USE_KQEMU
8160 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
8161 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
8162 #endif
8163 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
8164 { "g", 1, QEMU_OPTION_g },
8165 #endif
8166 { "localtime", 0, QEMU_OPTION_localtime },
8167 { "vga", HAS_ARG, QEMU_OPTION_vga },
8168 { "echr", HAS_ARG, QEMU_OPTION_echr },
8169 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
8170 { "serial", HAS_ARG, QEMU_OPTION_serial },
8171 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
8172 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
8173 { "full-screen", 0, QEMU_OPTION_full_screen },
8174 #ifdef CONFIG_SDL
8175 { "no-frame", 0, QEMU_OPTION_no_frame },
8176 { "alt-grab", 0, QEMU_OPTION_alt_grab },
8177 { "no-quit", 0, QEMU_OPTION_no_quit },
8178 #endif
8179 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8180 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8181 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8182 { "smp", HAS_ARG, QEMU_OPTION_smp },
8183 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8184 #ifdef CONFIG_CURSES
8185 { "curses", 0, QEMU_OPTION_curses },
8186 #endif
8187 { "uuid", HAS_ARG, QEMU_OPTION_uuid },
8189 /* temporary options */
8190 { "usb", 0, QEMU_OPTION_usb },
8191 { "no-acpi", 0, QEMU_OPTION_no_acpi },
8192 { "no-reboot", 0, QEMU_OPTION_no_reboot },
8193 { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8194 { "show-cursor", 0, QEMU_OPTION_show_cursor },
8195 { "daemonize", 0, QEMU_OPTION_daemonize },
8196 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8197 #if defined(TARGET_ARM) || defined(TARGET_M68K)
8198 { "semihosting", 0, QEMU_OPTION_semihosting },
8199 #endif
8200 { "name", HAS_ARG, QEMU_OPTION_name },
8201 #if defined(TARGET_SPARC)
8202 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8203 #endif
8204 #if defined(TARGET_ARM)
8205 { "old-param", 0, QEMU_OPTION_old_param },
8206 #endif
8207 { "clock", HAS_ARG, QEMU_OPTION_clock },
8208 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8209 { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8210 { "icount", HAS_ARG, QEMU_OPTION_icount },
8211 { NULL },
8214 /* password input */
8216 int qemu_key_check(BlockDriverState *bs, const char *name)
8218 char password[256];
8219 int i;
8221 if (!bdrv_is_encrypted(bs))
8222 return 0;
8224 term_printf("%s is encrypted.\n", name);
8225 for(i = 0; i < 3; i++) {
8226 monitor_readline("Password: ", 1, password, sizeof(password));
8227 if (bdrv_set_key(bs, password) == 0)
8228 return 0;
8229 term_printf("invalid password\n");
8231 return -EPERM;
8234 static BlockDriverState *get_bdrv(int index)
8236 if (index > nb_drives)
8237 return NULL;
8238 return drives_table[index].bdrv;
8241 static void read_passwords(void)
8243 BlockDriverState *bs;
8244 int i;
8246 for(i = 0; i < 6; i++) {
8247 bs = get_bdrv(i);
8248 if (bs)
8249 qemu_key_check(bs, bdrv_get_device_name(bs));
8253 #ifdef HAS_AUDIO
8254 struct soundhw soundhw[] = {
8255 #ifdef HAS_AUDIO_CHOICE
8256 #if defined(TARGET_I386) || defined(TARGET_MIPS)
8258 "pcspk",
8259 "PC speaker",
8262 { .init_isa = pcspk_audio_init }
8264 #endif
8266 "sb16",
8267 "Creative Sound Blaster 16",
8270 { .init_isa = SB16_init }
8273 #ifdef CONFIG_CS4231A
8275 "cs4231a",
8276 "CS4231A",
8279 { .init_isa = cs4231a_init }
8281 #endif
8283 #ifdef CONFIG_ADLIB
8285 "adlib",
8286 #ifdef HAS_YMF262
8287 "Yamaha YMF262 (OPL3)",
8288 #else
8289 "Yamaha YM3812 (OPL2)",
8290 #endif
8293 { .init_isa = Adlib_init }
8295 #endif
8297 #ifdef CONFIG_GUS
8299 "gus",
8300 "Gravis Ultrasound GF1",
8303 { .init_isa = GUS_init }
8305 #endif
8307 #ifdef CONFIG_AC97
8309 "ac97",
8310 "Intel 82801AA AC97 Audio",
8313 { .init_pci = ac97_init }
8315 #endif
8318 "es1370",
8319 "ENSONIQ AudioPCI ES1370",
8322 { .init_pci = es1370_init }
8324 #endif
8326 { NULL, NULL, 0, 0, { NULL } }
8329 static void select_soundhw (const char *optarg)
8331 struct soundhw *c;
8333 if (*optarg == '?') {
8334 show_valid_cards:
8336 printf ("Valid sound card names (comma separated):\n");
8337 for (c = soundhw; c->name; ++c) {
8338 printf ("%-11s %s\n", c->name, c->descr);
8340 printf ("\n-soundhw all will enable all of the above\n");
8341 exit (*optarg != '?');
8343 else {
8344 size_t l;
8345 const char *p;
8346 char *e;
8347 int bad_card = 0;
8349 if (!strcmp (optarg, "all")) {
8350 for (c = soundhw; c->name; ++c) {
8351 c->enabled = 1;
8353 return;
8356 p = optarg;
8357 while (*p) {
8358 e = strchr (p, ',');
8359 l = !e ? strlen (p) : (size_t) (e - p);
8361 for (c = soundhw; c->name; ++c) {
8362 if (!strncmp (c->name, p, l)) {
8363 c->enabled = 1;
8364 break;
8368 if (!c->name) {
8369 if (l > 80) {
8370 fprintf (stderr,
8371 "Unknown sound card name (too big to show)\n");
8373 else {
8374 fprintf (stderr, "Unknown sound card name `%.*s'\n",
8375 (int) l, p);
8377 bad_card = 1;
8379 p += l + (e != NULL);
8382 if (bad_card)
8383 goto show_valid_cards;
8386 #endif
8388 static void select_vgahw (const char *p)
8390 const char *opts;
8392 if (strstart(p, "std", &opts)) {
8393 cirrus_vga_enabled = 0;
8394 vmsvga_enabled = 0;
8395 } else if (strstart(p, "cirrus", &opts)) {
8396 cirrus_vga_enabled = 1;
8397 vmsvga_enabled = 0;
8398 } else if (strstart(p, "vmware", &opts)) {
8399 cirrus_vga_enabled = 0;
8400 vmsvga_enabled = 1;
8401 } else {
8402 invalid_vga:
8403 fprintf(stderr, "Unknown vga type: %s\n", p);
8404 exit(1);
8406 while (*opts) {
8407 const char *nextopt;
8409 if (strstart(opts, ",retrace=", &nextopt)) {
8410 opts = nextopt;
8411 if (strstart(opts, "dumb", &nextopt))
8412 vga_retrace_method = VGA_RETRACE_DUMB;
8413 else if (strstart(opts, "precise", &nextopt))
8414 vga_retrace_method = VGA_RETRACE_PRECISE;
8415 else goto invalid_vga;
8416 } else goto invalid_vga;
8417 opts = nextopt;
8421 #ifdef _WIN32
8422 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8424 exit(STATUS_CONTROL_C_EXIT);
8425 return TRUE;
8427 #endif
8429 static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8431 int ret;
8433 if(strlen(str) != 36)
8434 return -1;
8436 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8437 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8438 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8440 if(ret != 16)
8441 return -1;
8443 return 0;
8446 #define MAX_NET_CLIENTS 32
8448 #ifndef _WIN32
8450 static void termsig_handler(int signal)
8452 qemu_system_shutdown_request();
8455 static void termsig_setup(void)
8457 struct sigaction act;
8459 memset(&act, 0, sizeof(act));
8460 act.sa_handler = termsig_handler;
8461 sigaction(SIGINT, &act, NULL);
8462 sigaction(SIGHUP, &act, NULL);
8463 sigaction(SIGTERM, &act, NULL);
8466 #endif
8468 int main(int argc, char **argv)
8470 #ifdef CONFIG_GDBSTUB
8471 int use_gdbstub;
8472 const char *gdbstub_port;
8473 #endif
8474 uint32_t boot_devices_bitmap = 0;
8475 int i;
8476 int snapshot, linux_boot, net_boot;
8477 const char *initrd_filename;
8478 const char *kernel_filename, *kernel_cmdline;
8479 const char *boot_devices = "";
8480 DisplayState *ds = &display_state;
8481 int cyls, heads, secs, translation;
8482 const char *net_clients[MAX_NET_CLIENTS];
8483 int nb_net_clients;
8484 int hda_index;
8485 int optind;
8486 const char *r, *optarg;
8487 CharDriverState *monitor_hd;
8488 const char *monitor_device;
8489 const char *serial_devices[MAX_SERIAL_PORTS];
8490 int serial_device_index;
8491 const char *parallel_devices[MAX_PARALLEL_PORTS];
8492 int parallel_device_index;
8493 const char *loadvm = NULL;
8494 QEMUMachine *machine;
8495 const char *cpu_model;
8496 const char *usb_devices[MAX_USB_CMDLINE];
8497 int usb_devices_index;
8498 int fds[2];
8499 int tb_size;
8500 const char *pid_file = NULL;
8501 VLANState *vlan;
8503 LIST_INIT (&vm_change_state_head);
8504 #ifndef _WIN32
8506 struct sigaction act;
8507 sigfillset(&act.sa_mask);
8508 act.sa_flags = 0;
8509 act.sa_handler = SIG_IGN;
8510 sigaction(SIGPIPE, &act, NULL);
8512 #else
8513 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8514 /* Note: cpu_interrupt() is currently not SMP safe, so we force
8515 QEMU to run on a single CPU */
8517 HANDLE h;
8518 DWORD mask, smask;
8519 int i;
8520 h = GetCurrentProcess();
8521 if (GetProcessAffinityMask(h, &mask, &smask)) {
8522 for(i = 0; i < 32; i++) {
8523 if (mask & (1 << i))
8524 break;
8526 if (i != 32) {
8527 mask = 1 << i;
8528 SetProcessAffinityMask(h, mask);
8532 #endif
8534 register_machines();
8535 machine = first_machine;
8536 cpu_model = NULL;
8537 initrd_filename = NULL;
8538 ram_size = 0;
8539 vga_ram_size = VGA_RAM_SIZE;
8540 #ifdef CONFIG_GDBSTUB
8541 use_gdbstub = 0;
8542 gdbstub_port = DEFAULT_GDBSTUB_PORT;
8543 #endif
8544 snapshot = 0;
8545 nographic = 0;
8546 curses = 0;
8547 kernel_filename = NULL;
8548 kernel_cmdline = "";
8549 cyls = heads = secs = 0;
8550 translation = BIOS_ATA_TRANSLATION_AUTO;
8551 monitor_device = "vc";
8553 serial_devices[0] = "vc:80Cx24C";
8554 for(i = 1; i < MAX_SERIAL_PORTS; i++)
8555 serial_devices[i] = NULL;
8556 serial_device_index = 0;
8558 parallel_devices[0] = "vc:640x480";
8559 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8560 parallel_devices[i] = NULL;
8561 parallel_device_index = 0;
8563 usb_devices_index = 0;
8565 nb_net_clients = 0;
8566 nb_drives = 0;
8567 nb_drives_opt = 0;
8568 hda_index = -1;
8570 nb_nics = 0;
8572 tb_size = 0;
8574 optind = 1;
8575 for(;;) {
8576 if (optind >= argc)
8577 break;
8578 r = argv[optind];
8579 if (r[0] != '-') {
8580 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8581 } else {
8582 const QEMUOption *popt;
8584 optind++;
8585 /* Treat --foo the same as -foo. */
8586 if (r[1] == '-')
8587 r++;
8588 popt = qemu_options;
8589 for(;;) {
8590 if (!popt->name) {
8591 fprintf(stderr, "%s: invalid option -- '%s'\n",
8592 argv[0], r);
8593 exit(1);
8595 if (!strcmp(popt->name, r + 1))
8596 break;
8597 popt++;
8599 if (popt->flags & HAS_ARG) {
8600 if (optind >= argc) {
8601 fprintf(stderr, "%s: option '%s' requires an argument\n",
8602 argv[0], r);
8603 exit(1);
8605 optarg = argv[optind++];
8606 } else {
8607 optarg = NULL;
8610 switch(popt->index) {
8611 case QEMU_OPTION_M:
8612 machine = find_machine(optarg);
8613 if (!machine) {
8614 QEMUMachine *m;
8615 printf("Supported machines are:\n");
8616 for(m = first_machine; m != NULL; m = m->next) {
8617 printf("%-10s %s%s\n",
8618 m->name, m->desc,
8619 m == first_machine ? " (default)" : "");
8621 exit(*optarg != '?');
8623 break;
8624 case QEMU_OPTION_cpu:
8625 /* hw initialization will check this */
8626 if (*optarg == '?') {
8627 /* XXX: implement xxx_cpu_list for targets that still miss it */
8628 #if defined(cpu_list)
8629 cpu_list(stdout, &fprintf);
8630 #endif
8631 exit(0);
8632 } else {
8633 cpu_model = optarg;
8635 break;
8636 case QEMU_OPTION_initrd:
8637 initrd_filename = optarg;
8638 break;
8639 case QEMU_OPTION_hda:
8640 if (cyls == 0)
8641 hda_index = drive_add(optarg, HD_ALIAS, 0);
8642 else
8643 hda_index = drive_add(optarg, HD_ALIAS
8644 ",cyls=%d,heads=%d,secs=%d%s",
8645 0, cyls, heads, secs,
8646 translation == BIOS_ATA_TRANSLATION_LBA ?
8647 ",trans=lba" :
8648 translation == BIOS_ATA_TRANSLATION_NONE ?
8649 ",trans=none" : "");
8650 break;
8651 case QEMU_OPTION_hdb:
8652 case QEMU_OPTION_hdc:
8653 case QEMU_OPTION_hdd:
8654 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8655 break;
8656 case QEMU_OPTION_drive:
8657 drive_add(NULL, "%s", optarg);
8658 break;
8659 case QEMU_OPTION_mtdblock:
8660 drive_add(optarg, MTD_ALIAS);
8661 break;
8662 case QEMU_OPTION_sd:
8663 drive_add(optarg, SD_ALIAS);
8664 break;
8665 case QEMU_OPTION_pflash:
8666 drive_add(optarg, PFLASH_ALIAS);
8667 break;
8668 case QEMU_OPTION_snapshot:
8669 snapshot = 1;
8670 break;
8671 case QEMU_OPTION_hdachs:
8673 const char *p;
8674 p = optarg;
8675 cyls = strtol(p, (char **)&p, 0);
8676 if (cyls < 1 || cyls > 16383)
8677 goto chs_fail;
8678 if (*p != ',')
8679 goto chs_fail;
8680 p++;
8681 heads = strtol(p, (char **)&p, 0);
8682 if (heads < 1 || heads > 16)
8683 goto chs_fail;
8684 if (*p != ',')
8685 goto chs_fail;
8686 p++;
8687 secs = strtol(p, (char **)&p, 0);
8688 if (secs < 1 || secs > 63)
8689 goto chs_fail;
8690 if (*p == ',') {
8691 p++;
8692 if (!strcmp(p, "none"))
8693 translation = BIOS_ATA_TRANSLATION_NONE;
8694 else if (!strcmp(p, "lba"))
8695 translation = BIOS_ATA_TRANSLATION_LBA;
8696 else if (!strcmp(p, "auto"))
8697 translation = BIOS_ATA_TRANSLATION_AUTO;
8698 else
8699 goto chs_fail;
8700 } else if (*p != '\0') {
8701 chs_fail:
8702 fprintf(stderr, "qemu: invalid physical CHS format\n");
8703 exit(1);
8705 if (hda_index != -1)
8706 snprintf(drives_opt[hda_index].opt,
8707 sizeof(drives_opt[hda_index].opt),
8708 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8709 0, cyls, heads, secs,
8710 translation == BIOS_ATA_TRANSLATION_LBA ?
8711 ",trans=lba" :
8712 translation == BIOS_ATA_TRANSLATION_NONE ?
8713 ",trans=none" : "");
8715 break;
8716 case QEMU_OPTION_nographic:
8717 nographic = 1;
8718 break;
8719 #ifdef CONFIG_CURSES
8720 case QEMU_OPTION_curses:
8721 curses = 1;
8722 break;
8723 #endif
8724 case QEMU_OPTION_portrait:
8725 graphic_rotate = 1;
8726 break;
8727 case QEMU_OPTION_kernel:
8728 kernel_filename = optarg;
8729 break;
8730 case QEMU_OPTION_append:
8731 kernel_cmdline = optarg;
8732 break;
8733 case QEMU_OPTION_cdrom:
8734 drive_add(optarg, CDROM_ALIAS);
8735 break;
8736 case QEMU_OPTION_boot:
8737 boot_devices = optarg;
8738 /* We just do some generic consistency checks */
8740 /* Could easily be extended to 64 devices if needed */
8741 const char *p;
8743 boot_devices_bitmap = 0;
8744 for (p = boot_devices; *p != '\0'; p++) {
8745 /* Allowed boot devices are:
8746 * a b : floppy disk drives
8747 * c ... f : IDE disk drives
8748 * g ... m : machine implementation dependant drives
8749 * n ... p : network devices
8750 * It's up to each machine implementation to check
8751 * if the given boot devices match the actual hardware
8752 * implementation and firmware features.
8754 if (*p < 'a' || *p > 'q') {
8755 fprintf(stderr, "Invalid boot device '%c'\n", *p);
8756 exit(1);
8758 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8759 fprintf(stderr,
8760 "Boot device '%c' was given twice\n",*p);
8761 exit(1);
8763 boot_devices_bitmap |= 1 << (*p - 'a');
8766 break;
8767 case QEMU_OPTION_fda:
8768 case QEMU_OPTION_fdb:
8769 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8770 break;
8771 #ifdef TARGET_I386
8772 case QEMU_OPTION_no_fd_bootchk:
8773 fd_bootchk = 0;
8774 break;
8775 #endif
8776 case QEMU_OPTION_net:
8777 if (nb_net_clients >= MAX_NET_CLIENTS) {
8778 fprintf(stderr, "qemu: too many network clients\n");
8779 exit(1);
8781 net_clients[nb_net_clients] = optarg;
8782 nb_net_clients++;
8783 break;
8784 #ifdef CONFIG_SLIRP
8785 case QEMU_OPTION_tftp:
8786 tftp_prefix = optarg;
8787 break;
8788 case QEMU_OPTION_bootp:
8789 bootp_filename = optarg;
8790 break;
8791 #ifndef _WIN32
8792 case QEMU_OPTION_smb:
8793 net_slirp_smb(optarg);
8794 break;
8795 #endif
8796 case QEMU_OPTION_redir:
8797 net_slirp_redir(optarg);
8798 break;
8799 #endif
8800 #ifdef HAS_AUDIO
8801 case QEMU_OPTION_audio_help:
8802 AUD_help ();
8803 exit (0);
8804 break;
8805 case QEMU_OPTION_soundhw:
8806 select_soundhw (optarg);
8807 break;
8808 #endif
8809 case QEMU_OPTION_h:
8810 help(0);
8811 break;
8812 case QEMU_OPTION_m: {
8813 uint64_t value;
8814 char *ptr;
8816 value = strtoul(optarg, &ptr, 10);
8817 switch (*ptr) {
8818 case 0: case 'M': case 'm':
8819 value <<= 20;
8820 break;
8821 case 'G': case 'g':
8822 value <<= 30;
8823 break;
8824 default:
8825 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8826 exit(1);
8829 /* On 32-bit hosts, QEMU is limited by virtual address space */
8830 if (value > (2047 << 20)
8831 #ifndef USE_KQEMU
8832 && HOST_LONG_BITS == 32
8833 #endif
8835 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8836 exit(1);
8838 if (value != (uint64_t)(ram_addr_t)value) {
8839 fprintf(stderr, "qemu: ram size too large\n");
8840 exit(1);
8842 ram_size = value;
8843 break;
8845 case QEMU_OPTION_d:
8847 int mask;
8848 const CPULogItem *item;
8850 mask = cpu_str_to_log_mask(optarg);
8851 if (!mask) {
8852 printf("Log items (comma separated):\n");
8853 for(item = cpu_log_items; item->mask != 0; item++) {
8854 printf("%-10s %s\n", item->name, item->help);
8856 exit(1);
8858 cpu_set_log(mask);
8860 break;
8861 #ifdef CONFIG_GDBSTUB
8862 case QEMU_OPTION_s:
8863 use_gdbstub = 1;
8864 break;
8865 case QEMU_OPTION_p:
8866 gdbstub_port = optarg;
8867 break;
8868 #endif
8869 case QEMU_OPTION_L:
8870 bios_dir = optarg;
8871 break;
8872 case QEMU_OPTION_bios:
8873 bios_name = optarg;
8874 break;
8875 case QEMU_OPTION_S:
8876 autostart = 0;
8877 break;
8878 case QEMU_OPTION_k:
8879 keyboard_layout = optarg;
8880 break;
8881 case QEMU_OPTION_localtime:
8882 rtc_utc = 0;
8883 break;
8884 case QEMU_OPTION_vga:
8885 select_vgahw (optarg);
8886 break;
8887 case QEMU_OPTION_g:
8889 const char *p;
8890 int w, h, depth;
8891 p = optarg;
8892 w = strtol(p, (char **)&p, 10);
8893 if (w <= 0) {
8894 graphic_error:
8895 fprintf(stderr, "qemu: invalid resolution or depth\n");
8896 exit(1);
8898 if (*p != 'x')
8899 goto graphic_error;
8900 p++;
8901 h = strtol(p, (char **)&p, 10);
8902 if (h <= 0)
8903 goto graphic_error;
8904 if (*p == 'x') {
8905 p++;
8906 depth = strtol(p, (char **)&p, 10);
8907 if (depth != 8 && depth != 15 && depth != 16 &&
8908 depth != 24 && depth != 32)
8909 goto graphic_error;
8910 } else if (*p == '\0') {
8911 depth = graphic_depth;
8912 } else {
8913 goto graphic_error;
8916 graphic_width = w;
8917 graphic_height = h;
8918 graphic_depth = depth;
8920 break;
8921 case QEMU_OPTION_echr:
8923 char *r;
8924 term_escape_char = strtol(optarg, &r, 0);
8925 if (r == optarg)
8926 printf("Bad argument to echr\n");
8927 break;
8929 case QEMU_OPTION_monitor:
8930 monitor_device = optarg;
8931 break;
8932 case QEMU_OPTION_serial:
8933 if (serial_device_index >= MAX_SERIAL_PORTS) {
8934 fprintf(stderr, "qemu: too many serial ports\n");
8935 exit(1);
8937 serial_devices[serial_device_index] = optarg;
8938 serial_device_index++;
8939 break;
8940 case QEMU_OPTION_parallel:
8941 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8942 fprintf(stderr, "qemu: too many parallel ports\n");
8943 exit(1);
8945 parallel_devices[parallel_device_index] = optarg;
8946 parallel_device_index++;
8947 break;
8948 case QEMU_OPTION_loadvm:
8949 loadvm = optarg;
8950 break;
8951 case QEMU_OPTION_full_screen:
8952 full_screen = 1;
8953 break;
8954 #ifdef CONFIG_SDL
8955 case QEMU_OPTION_no_frame:
8956 no_frame = 1;
8957 break;
8958 case QEMU_OPTION_alt_grab:
8959 alt_grab = 1;
8960 break;
8961 case QEMU_OPTION_no_quit:
8962 no_quit = 1;
8963 break;
8964 #endif
8965 case QEMU_OPTION_pidfile:
8966 pid_file = optarg;
8967 break;
8968 #ifdef TARGET_I386
8969 case QEMU_OPTION_win2k_hack:
8970 win2k_install_hack = 1;
8971 break;
8972 #endif
8973 #ifdef USE_KQEMU
8974 case QEMU_OPTION_no_kqemu:
8975 kqemu_allowed = 0;
8976 break;
8977 case QEMU_OPTION_kernel_kqemu:
8978 kqemu_allowed = 2;
8979 break;
8980 #endif
8981 case QEMU_OPTION_usb:
8982 usb_enabled = 1;
8983 break;
8984 case QEMU_OPTION_usbdevice:
8985 usb_enabled = 1;
8986 if (usb_devices_index >= MAX_USB_CMDLINE) {
8987 fprintf(stderr, "Too many USB devices\n");
8988 exit(1);
8990 usb_devices[usb_devices_index] = optarg;
8991 usb_devices_index++;
8992 break;
8993 case QEMU_OPTION_smp:
8994 smp_cpus = atoi(optarg);
8995 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8996 fprintf(stderr, "Invalid number of CPUs\n");
8997 exit(1);
8999 break;
9000 case QEMU_OPTION_vnc:
9001 vnc_display = optarg;
9002 break;
9003 case QEMU_OPTION_no_acpi:
9004 acpi_enabled = 0;
9005 break;
9006 case QEMU_OPTION_no_reboot:
9007 no_reboot = 1;
9008 break;
9009 case QEMU_OPTION_no_shutdown:
9010 no_shutdown = 1;
9011 break;
9012 case QEMU_OPTION_show_cursor:
9013 cursor_hide = 0;
9014 break;
9015 case QEMU_OPTION_uuid:
9016 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
9017 fprintf(stderr, "Fail to parse UUID string."
9018 " Wrong format.\n");
9019 exit(1);
9021 break;
9022 case QEMU_OPTION_daemonize:
9023 daemonize = 1;
9024 break;
9025 case QEMU_OPTION_option_rom:
9026 if (nb_option_roms >= MAX_OPTION_ROMS) {
9027 fprintf(stderr, "Too many option ROMs\n");
9028 exit(1);
9030 option_rom[nb_option_roms] = optarg;
9031 nb_option_roms++;
9032 break;
9033 case QEMU_OPTION_semihosting:
9034 semihosting_enabled = 1;
9035 break;
9036 case QEMU_OPTION_name:
9037 qemu_name = optarg;
9038 break;
9039 #ifdef TARGET_SPARC
9040 case QEMU_OPTION_prom_env:
9041 if (nb_prom_envs >= MAX_PROM_ENVS) {
9042 fprintf(stderr, "Too many prom variables\n");
9043 exit(1);
9045 prom_envs[nb_prom_envs] = optarg;
9046 nb_prom_envs++;
9047 break;
9048 #endif
9049 #ifdef TARGET_ARM
9050 case QEMU_OPTION_old_param:
9051 old_param = 1;
9052 break;
9053 #endif
9054 case QEMU_OPTION_clock:
9055 configure_alarms(optarg);
9056 break;
9057 case QEMU_OPTION_startdate:
9059 struct tm tm;
9060 time_t rtc_start_date;
9061 if (!strcmp(optarg, "now")) {
9062 rtc_date_offset = -1;
9063 } else {
9064 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
9065 &tm.tm_year,
9066 &tm.tm_mon,
9067 &tm.tm_mday,
9068 &tm.tm_hour,
9069 &tm.tm_min,
9070 &tm.tm_sec) == 6) {
9071 /* OK */
9072 } else if (sscanf(optarg, "%d-%d-%d",
9073 &tm.tm_year,
9074 &tm.tm_mon,
9075 &tm.tm_mday) == 3) {
9076 tm.tm_hour = 0;
9077 tm.tm_min = 0;
9078 tm.tm_sec = 0;
9079 } else {
9080 goto date_fail;
9082 tm.tm_year -= 1900;
9083 tm.tm_mon--;
9084 rtc_start_date = mktimegm(&tm);
9085 if (rtc_start_date == -1) {
9086 date_fail:
9087 fprintf(stderr, "Invalid date format. Valid format are:\n"
9088 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
9089 exit(1);
9091 rtc_date_offset = time(NULL) - rtc_start_date;
9094 break;
9095 case QEMU_OPTION_tb_size:
9096 tb_size = strtol(optarg, NULL, 0);
9097 if (tb_size < 0)
9098 tb_size = 0;
9099 break;
9100 case QEMU_OPTION_icount:
9101 use_icount = 1;
9102 if (strcmp(optarg, "auto") == 0) {
9103 icount_time_shift = -1;
9104 } else {
9105 icount_time_shift = strtol(optarg, NULL, 0);
9107 break;
9112 if (nographic) {
9113 if (serial_device_index == 0)
9114 serial_devices[0] = "stdio";
9115 if (parallel_device_index == 0)
9116 parallel_devices[0] = "null";
9117 if (strncmp(monitor_device, "vc", 2) == 0)
9118 monitor_device = "stdio";
9121 #ifndef _WIN32
9122 if (daemonize) {
9123 pid_t pid;
9125 if (pipe(fds) == -1)
9126 exit(1);
9128 pid = fork();
9129 if (pid > 0) {
9130 uint8_t status;
9131 ssize_t len;
9133 close(fds[1]);
9135 again:
9136 len = read(fds[0], &status, 1);
9137 if (len == -1 && (errno == EINTR))
9138 goto again;
9140 if (len != 1)
9141 exit(1);
9142 else if (status == 1) {
9143 fprintf(stderr, "Could not acquire pidfile\n");
9144 exit(1);
9145 } else
9146 exit(0);
9147 } else if (pid < 0)
9148 exit(1);
9150 setsid();
9152 pid = fork();
9153 if (pid > 0)
9154 exit(0);
9155 else if (pid < 0)
9156 exit(1);
9158 umask(027);
9160 signal(SIGTSTP, SIG_IGN);
9161 signal(SIGTTOU, SIG_IGN);
9162 signal(SIGTTIN, SIG_IGN);
9164 #endif
9166 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9167 if (daemonize) {
9168 uint8_t status = 1;
9169 write(fds[1], &status, 1);
9170 } else
9171 fprintf(stderr, "Could not acquire pid file\n");
9172 exit(1);
9175 #ifdef USE_KQEMU
9176 if (smp_cpus > 1)
9177 kqemu_allowed = 0;
9178 #endif
9179 linux_boot = (kernel_filename != NULL);
9180 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9182 if (!linux_boot && net_boot == 0 &&
9183 !machine->nodisk_ok && nb_drives_opt == 0)
9184 help(1);
9186 if (!linux_boot && *kernel_cmdline != '\0') {
9187 fprintf(stderr, "-append only allowed with -kernel option\n");
9188 exit(1);
9191 if (!linux_boot && initrd_filename != NULL) {
9192 fprintf(stderr, "-initrd only allowed with -kernel option\n");
9193 exit(1);
9196 /* boot to floppy or the default cd if no hard disk defined yet */
9197 if (!boot_devices[0]) {
9198 boot_devices = "cad";
9200 setvbuf(stdout, NULL, _IOLBF, 0);
9202 init_timers();
9203 init_timer_alarm();
9204 if (use_icount && icount_time_shift < 0) {
9205 use_icount = 2;
9206 /* 125MIPS seems a reasonable initial guess at the guest speed.
9207 It will be corrected fairly quickly anyway. */
9208 icount_time_shift = 3;
9209 init_icount_adjust();
9212 #ifdef _WIN32
9213 socket_init();
9214 #endif
9216 /* init network clients */
9217 if (nb_net_clients == 0) {
9218 /* if no clients, we use a default config */
9219 net_clients[nb_net_clients++] = "nic";
9220 #ifdef CONFIG_SLIRP
9221 net_clients[nb_net_clients++] = "user";
9222 #endif
9225 for(i = 0;i < nb_net_clients; i++) {
9226 if (net_client_parse(net_clients[i]) < 0)
9227 exit(1);
9229 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9230 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9231 continue;
9232 if (vlan->nb_guest_devs == 0)
9233 fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9234 if (vlan->nb_host_devs == 0)
9235 fprintf(stderr,
9236 "Warning: vlan %d is not connected to host network\n",
9237 vlan->id);
9240 #ifdef TARGET_I386
9241 /* XXX: this should be moved in the PC machine instantiation code */
9242 if (net_boot != 0) {
9243 int netroms = 0;
9244 for (i = 0; i < nb_nics && i < 4; i++) {
9245 const char *model = nd_table[i].model;
9246 char buf[1024];
9247 if (net_boot & (1 << i)) {
9248 if (model == NULL)
9249 model = "ne2k_pci";
9250 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9251 if (get_image_size(buf) > 0) {
9252 if (nb_option_roms >= MAX_OPTION_ROMS) {
9253 fprintf(stderr, "Too many option ROMs\n");
9254 exit(1);
9256 option_rom[nb_option_roms] = strdup(buf);
9257 nb_option_roms++;
9258 netroms++;
9262 if (netroms == 0) {
9263 fprintf(stderr, "No valid PXE rom found for network device\n");
9264 exit(1);
9267 #endif
9269 /* init the memory */
9270 phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9272 if (machine->ram_require & RAMSIZE_FIXED) {
9273 if (ram_size > 0) {
9274 if (ram_size < phys_ram_size) {
9275 fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9276 machine->name, (unsigned long long) phys_ram_size);
9277 exit(-1);
9280 phys_ram_size = ram_size;
9281 } else
9282 ram_size = phys_ram_size;
9283 } else {
9284 if (ram_size == 0)
9285 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9287 phys_ram_size += ram_size;
9290 phys_ram_base = qemu_vmalloc(phys_ram_size);
9291 if (!phys_ram_base) {
9292 fprintf(stderr, "Could not allocate physical memory\n");
9293 exit(1);
9296 /* init the dynamic translator */
9297 cpu_exec_init_all(tb_size * 1024 * 1024);
9299 bdrv_init();
9301 /* we always create the cdrom drive, even if no disk is there */
9303 if (nb_drives_opt < MAX_DRIVES)
9304 drive_add(NULL, CDROM_ALIAS);
9306 /* we always create at least one floppy */
9308 if (nb_drives_opt < MAX_DRIVES)
9309 drive_add(NULL, FD_ALIAS, 0);
9311 /* we always create one sd slot, even if no card is in it */
9313 if (nb_drives_opt < MAX_DRIVES)
9314 drive_add(NULL, SD_ALIAS);
9316 /* open the virtual block devices */
9318 for(i = 0; i < nb_drives_opt; i++)
9319 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9320 exit(1);
9322 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9323 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9325 /* terminal init */
9326 memset(&display_state, 0, sizeof(display_state));
9327 if (nographic) {
9328 if (curses) {
9329 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9330 exit(1);
9332 /* nearly nothing to do */
9333 dumb_display_init(ds);
9334 } else if (vnc_display != NULL) {
9335 vnc_display_init(ds);
9336 if (vnc_display_open(ds, vnc_display) < 0)
9337 exit(1);
9338 } else
9339 #if defined(CONFIG_CURSES)
9340 if (curses) {
9341 curses_display_init(ds, full_screen);
9342 } else
9343 #endif
9345 #if defined(CONFIG_SDL)
9346 sdl_display_init(ds, full_screen, no_frame);
9347 #elif defined(CONFIG_COCOA)
9348 cocoa_display_init(ds, full_screen);
9349 #else
9350 dumb_display_init(ds);
9351 #endif
9354 #ifndef _WIN32
9355 /* must be after terminal init, SDL library changes signal handlers */
9356 termsig_setup();
9357 #endif
9359 /* Maintain compatibility with multiple stdio monitors */
9360 if (!strcmp(monitor_device,"stdio")) {
9361 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9362 const char *devname = serial_devices[i];
9363 if (devname && !strcmp(devname,"mon:stdio")) {
9364 monitor_device = NULL;
9365 break;
9366 } else if (devname && !strcmp(devname,"stdio")) {
9367 monitor_device = NULL;
9368 serial_devices[i] = "mon:stdio";
9369 break;
9373 if (monitor_device) {
9374 monitor_hd = qemu_chr_open(monitor_device);
9375 if (!monitor_hd) {
9376 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9377 exit(1);
9379 monitor_init(monitor_hd, !nographic);
9382 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9383 const char *devname = serial_devices[i];
9384 if (devname && strcmp(devname, "none")) {
9385 serial_hds[i] = qemu_chr_open(devname);
9386 if (!serial_hds[i]) {
9387 fprintf(stderr, "qemu: could not open serial device '%s'\n",
9388 devname);
9389 exit(1);
9391 if (strstart(devname, "vc", 0))
9392 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9396 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9397 const char *devname = parallel_devices[i];
9398 if (devname && strcmp(devname, "none")) {
9399 parallel_hds[i] = qemu_chr_open(devname);
9400 if (!parallel_hds[i]) {
9401 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9402 devname);
9403 exit(1);
9405 if (strstart(devname, "vc", 0))
9406 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9410 machine->init(ram_size, vga_ram_size, boot_devices, ds,
9411 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9413 /* init USB devices */
9414 if (usb_enabled) {
9415 for(i = 0; i < usb_devices_index; i++) {
9416 if (usb_device_add(usb_devices[i]) < 0) {
9417 fprintf(stderr, "Warning: could not add USB device %s\n",
9418 usb_devices[i]);
9423 if (display_state.dpy_refresh) {
9424 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9425 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9428 #ifdef CONFIG_GDBSTUB
9429 if (use_gdbstub) {
9430 /* XXX: use standard host:port notation and modify options
9431 accordingly. */
9432 if (gdbserver_start(gdbstub_port) < 0) {
9433 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9434 gdbstub_port);
9435 exit(1);
9438 #endif
9440 if (loadvm)
9441 do_loadvm(loadvm);
9444 /* XXX: simplify init */
9445 read_passwords();
9446 if (autostart) {
9447 vm_start();
9451 if (daemonize) {
9452 uint8_t status = 0;
9453 ssize_t len;
9454 int fd;
9456 again1:
9457 len = write(fds[1], &status, 1);
9458 if (len == -1 && (errno == EINTR))
9459 goto again1;
9461 if (len != 1)
9462 exit(1);
9464 chdir("/");
9465 TFR(fd = open("/dev/null", O_RDWR));
9466 if (fd == -1)
9467 exit(1);
9469 dup2(fd, 0);
9470 dup2(fd, 1);
9471 dup2(fd, 2);
9473 close(fd);
9476 main_loop();
9477 quit_timers();
9479 #if !defined(_WIN32)
9480 /* close network clients */
9481 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9482 VLANClientState *vc;
9484 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9485 if (vc->fd_read == tap_receive) {
9486 char ifname[64];
9487 TAPState *s = vc->opaque;
9489 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9490 s->down_script[0])
9491 launch_script(s->down_script, ifname, s->fd);
9493 #if defined(CONFIG_VDE)
9494 if (vc->fd_read == vde_from_qemu) {
9495 VDEState *s = vc->opaque;
9496 vde_close(s->vde);
9498 #endif
9501 #endif
9502 return 0;