Fix qemu_malloc.
[qemu/mini2440.git] / target-ppc / op_helper.c
blobd531dd870abbb77892adc0a7943e25c46f1365b0
1 /*
2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include <string.h>
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "helper.h"
25 #include "helper_regs.h"
27 //#define DEBUG_OP
28 //#define DEBUG_EXCEPTIONS
29 //#define DEBUG_SOFTWARE_TLB
31 #ifdef DEBUG_SOFTWARE_TLB
32 # define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
33 #else
34 # define LOG_SWTLB(...) do { } while (0)
35 #endif
38 /*****************************************************************************/
39 /* Exceptions processing helpers */
41 void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
43 #if 0
44 printf("Raise exception %3x code : %d\n", exception, error_code);
45 #endif
46 env->exception_index = exception;
47 env->error_code = error_code;
48 cpu_loop_exit();
51 void helper_raise_exception (uint32_t exception)
53 helper_raise_exception_err(exception, 0);
56 /*****************************************************************************/
57 /* Registers load and stores */
58 target_ulong helper_load_cr (void)
60 return (env->crf[0] << 28) |
61 (env->crf[1] << 24) |
62 (env->crf[2] << 20) |
63 (env->crf[3] << 16) |
64 (env->crf[4] << 12) |
65 (env->crf[5] << 8) |
66 (env->crf[6] << 4) |
67 (env->crf[7] << 0);
70 void helper_store_cr (target_ulong val, uint32_t mask)
72 int i, sh;
74 for (i = 0, sh = 7; i < 8; i++, sh--) {
75 if (mask & (1 << sh))
76 env->crf[i] = (val >> (sh * 4)) & 0xFUL;
80 /*****************************************************************************/
81 /* SPR accesses */
82 void helper_load_dump_spr (uint32_t sprn)
84 qemu_log("Read SPR %d %03x => " ADDRX "\n",
85 sprn, sprn, env->spr[sprn]);
88 void helper_store_dump_spr (uint32_t sprn)
90 qemu_log("Write SPR %d %03x <= " ADDRX "\n",
91 sprn, sprn, env->spr[sprn]);
94 target_ulong helper_load_tbl (void)
96 return cpu_ppc_load_tbl(env);
99 target_ulong helper_load_tbu (void)
101 return cpu_ppc_load_tbu(env);
104 target_ulong helper_load_atbl (void)
106 return cpu_ppc_load_atbl(env);
109 target_ulong helper_load_atbu (void)
111 return cpu_ppc_load_atbu(env);
114 target_ulong helper_load_601_rtcl (void)
116 return cpu_ppc601_load_rtcl(env);
119 target_ulong helper_load_601_rtcu (void)
121 return cpu_ppc601_load_rtcu(env);
124 #if !defined(CONFIG_USER_ONLY)
125 #if defined (TARGET_PPC64)
126 void helper_store_asr (target_ulong val)
128 ppc_store_asr(env, val);
130 #endif
132 void helper_store_sdr1 (target_ulong val)
134 ppc_store_sdr1(env, val);
137 void helper_store_tbl (target_ulong val)
139 cpu_ppc_store_tbl(env, val);
142 void helper_store_tbu (target_ulong val)
144 cpu_ppc_store_tbu(env, val);
147 void helper_store_atbl (target_ulong val)
149 cpu_ppc_store_atbl(env, val);
152 void helper_store_atbu (target_ulong val)
154 cpu_ppc_store_atbu(env, val);
157 void helper_store_601_rtcl (target_ulong val)
159 cpu_ppc601_store_rtcl(env, val);
162 void helper_store_601_rtcu (target_ulong val)
164 cpu_ppc601_store_rtcu(env, val);
167 target_ulong helper_load_decr (void)
169 return cpu_ppc_load_decr(env);
172 void helper_store_decr (target_ulong val)
174 cpu_ppc_store_decr(env, val);
177 void helper_store_hid0_601 (target_ulong val)
179 target_ulong hid0;
181 hid0 = env->spr[SPR_HID0];
182 if ((val ^ hid0) & 0x00000008) {
183 /* Change current endianness */
184 env->hflags &= ~(1 << MSR_LE);
185 env->hflags_nmsr &= ~(1 << MSR_LE);
186 env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
187 env->hflags |= env->hflags_nmsr;
188 qemu_log("%s: set endianness to %c => " ADDRX "\n",
189 __func__, val & 0x8 ? 'l' : 'b', env->hflags);
191 env->spr[SPR_HID0] = (uint32_t)val;
194 void helper_store_403_pbr (uint32_t num, target_ulong value)
196 if (likely(env->pb[num] != value)) {
197 env->pb[num] = value;
198 /* Should be optimized */
199 tlb_flush(env, 1);
203 target_ulong helper_load_40x_pit (void)
205 return load_40x_pit(env);
208 void helper_store_40x_pit (target_ulong val)
210 store_40x_pit(env, val);
213 void helper_store_40x_dbcr0 (target_ulong val)
215 store_40x_dbcr0(env, val);
218 void helper_store_40x_sler (target_ulong val)
220 store_40x_sler(env, val);
223 void helper_store_booke_tcr (target_ulong val)
225 store_booke_tcr(env, val);
228 void helper_store_booke_tsr (target_ulong val)
230 store_booke_tsr(env, val);
233 void helper_store_ibatu (uint32_t nr, target_ulong val)
235 ppc_store_ibatu(env, nr, val);
238 void helper_store_ibatl (uint32_t nr, target_ulong val)
240 ppc_store_ibatl(env, nr, val);
243 void helper_store_dbatu (uint32_t nr, target_ulong val)
245 ppc_store_dbatu(env, nr, val);
248 void helper_store_dbatl (uint32_t nr, target_ulong val)
250 ppc_store_dbatl(env, nr, val);
253 void helper_store_601_batl (uint32_t nr, target_ulong val)
255 ppc_store_ibatl_601(env, nr, val);
258 void helper_store_601_batu (uint32_t nr, target_ulong val)
260 ppc_store_ibatu_601(env, nr, val);
262 #endif
264 /*****************************************************************************/
265 /* Memory load and stores */
267 static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
269 #if defined(TARGET_PPC64)
270 if (!msr_sf)
271 return (uint32_t)(addr + arg);
272 else
273 #endif
274 return addr + arg;
277 void helper_lmw (target_ulong addr, uint32_t reg)
279 for (; reg < 32; reg++) {
280 if (msr_le)
281 env->gpr[reg] = bswap32(ldl(addr));
282 else
283 env->gpr[reg] = ldl(addr);
284 addr = addr_add(addr, 4);
288 void helper_stmw (target_ulong addr, uint32_t reg)
290 for (; reg < 32; reg++) {
291 if (msr_le)
292 stl(addr, bswap32((uint32_t)env->gpr[reg]));
293 else
294 stl(addr, (uint32_t)env->gpr[reg]);
295 addr = addr_add(addr, 4);
299 void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
301 int sh;
302 for (; nb > 3; nb -= 4) {
303 env->gpr[reg] = ldl(addr);
304 reg = (reg + 1) % 32;
305 addr = addr_add(addr, 4);
307 if (unlikely(nb > 0)) {
308 env->gpr[reg] = 0;
309 for (sh = 24; nb > 0; nb--, sh -= 8) {
310 env->gpr[reg] |= ldub(addr) << sh;
311 addr = addr_add(addr, 1);
315 /* PPC32 specification says we must generate an exception if
316 * rA is in the range of registers to be loaded.
317 * In an other hand, IBM says this is valid, but rA won't be loaded.
318 * For now, I'll follow the spec...
320 void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
322 if (likely(xer_bc != 0)) {
323 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
324 (reg < rb && (reg + xer_bc) > rb))) {
325 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
326 POWERPC_EXCP_INVAL |
327 POWERPC_EXCP_INVAL_LSWX);
328 } else {
329 helper_lsw(addr, xer_bc, reg);
334 void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
336 int sh;
337 for (; nb > 3; nb -= 4) {
338 stl(addr, env->gpr[reg]);
339 reg = (reg + 1) % 32;
340 addr = addr_add(addr, 4);
342 if (unlikely(nb > 0)) {
343 for (sh = 24; nb > 0; nb--, sh -= 8) {
344 stb(addr, (env->gpr[reg] >> sh) & 0xFF);
345 addr = addr_add(addr, 1);
350 static void do_dcbz(target_ulong addr, int dcache_line_size)
352 addr &= ~(dcache_line_size - 1);
353 int i;
354 for (i = 0 ; i < dcache_line_size ; i += 4) {
355 stl(addr + i , 0);
357 if (env->reserve == addr)
358 env->reserve = (target_ulong)-1ULL;
361 void helper_dcbz(target_ulong addr)
363 do_dcbz(addr, env->dcache_line_size);
366 void helper_dcbz_970(target_ulong addr)
368 if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
369 do_dcbz(addr, 32);
370 else
371 do_dcbz(addr, env->dcache_line_size);
374 void helper_icbi(target_ulong addr)
376 uint32_t tmp;
378 addr &= ~(env->dcache_line_size - 1);
379 /* Invalidate one cache line :
380 * PowerPC specification says this is to be treated like a load
381 * (not a fetch) by the MMU. To be sure it will be so,
382 * do the load "by hand".
384 tmp = ldl(addr);
385 tb_invalidate_page_range(addr, addr + env->icache_line_size);
388 // XXX: to be tested
389 target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
391 int i, c, d;
392 d = 24;
393 for (i = 0; i < xer_bc; i++) {
394 c = ldub(addr);
395 addr = addr_add(addr, 1);
396 /* ra (if not 0) and rb are never modified */
397 if (likely(reg != rb && (ra == 0 || reg != ra))) {
398 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
400 if (unlikely(c == xer_cmp))
401 break;
402 if (likely(d != 0)) {
403 d -= 8;
404 } else {
405 d = 24;
406 reg++;
407 reg = reg & 0x1F;
410 return i;
413 /*****************************************************************************/
414 /* Fixed point operations helpers */
415 #if defined(TARGET_PPC64)
417 /* multiply high word */
418 uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
420 uint64_t tl, th;
422 muls64(&tl, &th, arg1, arg2);
423 return th;
426 /* multiply high word unsigned */
427 uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
429 uint64_t tl, th;
431 mulu64(&tl, &th, arg1, arg2);
432 return th;
435 uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
437 int64_t th;
438 uint64_t tl;
440 muls64(&tl, (uint64_t *)&th, arg1, arg2);
441 /* If th != 0 && th != -1, then we had an overflow */
442 if (likely((uint64_t)(th + 1) <= 1)) {
443 env->xer &= ~(1 << XER_OV);
444 } else {
445 env->xer |= (1 << XER_OV) | (1 << XER_SO);
447 return (int64_t)tl;
449 #endif
451 target_ulong helper_cntlzw (target_ulong t)
453 return clz32(t);
456 #if defined(TARGET_PPC64)
457 target_ulong helper_cntlzd (target_ulong t)
459 return clz64(t);
461 #endif
463 /* shift right arithmetic helper */
464 target_ulong helper_sraw (target_ulong value, target_ulong shift)
466 int32_t ret;
468 if (likely(!(shift & 0x20))) {
469 if (likely((uint32_t)shift != 0)) {
470 shift &= 0x1f;
471 ret = (int32_t)value >> shift;
472 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
473 env->xer &= ~(1 << XER_CA);
474 } else {
475 env->xer |= (1 << XER_CA);
477 } else {
478 ret = (int32_t)value;
479 env->xer &= ~(1 << XER_CA);
481 } else {
482 ret = (int32_t)value >> 31;
483 if (ret) {
484 env->xer |= (1 << XER_CA);
485 } else {
486 env->xer &= ~(1 << XER_CA);
489 return (target_long)ret;
492 #if defined(TARGET_PPC64)
493 target_ulong helper_srad (target_ulong value, target_ulong shift)
495 int64_t ret;
497 if (likely(!(shift & 0x40))) {
498 if (likely((uint64_t)shift != 0)) {
499 shift &= 0x3f;
500 ret = (int64_t)value >> shift;
501 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
502 env->xer &= ~(1 << XER_CA);
503 } else {
504 env->xer |= (1 << XER_CA);
506 } else {
507 ret = (int64_t)value;
508 env->xer &= ~(1 << XER_CA);
510 } else {
511 ret = (int64_t)value >> 63;
512 if (ret) {
513 env->xer |= (1 << XER_CA);
514 } else {
515 env->xer &= ~(1 << XER_CA);
518 return ret;
520 #endif
522 target_ulong helper_popcntb (target_ulong val)
524 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
525 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
526 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
527 return val;
530 #if defined(TARGET_PPC64)
531 target_ulong helper_popcntb_64 (target_ulong val)
533 val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
534 val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
535 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL);
536 return val;
538 #endif
540 /*****************************************************************************/
541 /* Floating point operations helpers */
542 uint64_t helper_float32_to_float64(uint32_t arg)
544 CPU_FloatU f;
545 CPU_DoubleU d;
546 f.l = arg;
547 d.d = float32_to_float64(f.f, &env->fp_status);
548 return d.ll;
551 uint32_t helper_float64_to_float32(uint64_t arg)
553 CPU_FloatU f;
554 CPU_DoubleU d;
555 d.ll = arg;
556 f.f = float64_to_float32(d.d, &env->fp_status);
557 return f.l;
560 static always_inline int isden (float64 d)
562 CPU_DoubleU u;
564 u.d = d;
566 return ((u.ll >> 52) & 0x7FF) == 0;
569 uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
571 CPU_DoubleU farg;
572 int isneg;
573 int ret;
574 farg.ll = arg;
575 isneg = float64_is_neg(farg.d);
576 if (unlikely(float64_is_nan(farg.d))) {
577 if (float64_is_signaling_nan(farg.d)) {
578 /* Signaling NaN: flags are undefined */
579 ret = 0x00;
580 } else {
581 /* Quiet NaN */
582 ret = 0x11;
584 } else if (unlikely(float64_is_infinity(farg.d))) {
585 /* +/- infinity */
586 if (isneg)
587 ret = 0x09;
588 else
589 ret = 0x05;
590 } else {
591 if (float64_is_zero(farg.d)) {
592 /* +/- zero */
593 if (isneg)
594 ret = 0x12;
595 else
596 ret = 0x02;
597 } else {
598 if (isden(farg.d)) {
599 /* Denormalized numbers */
600 ret = 0x10;
601 } else {
602 /* Normalized numbers */
603 ret = 0x00;
605 if (isneg) {
606 ret |= 0x08;
607 } else {
608 ret |= 0x04;
612 if (set_fprf) {
613 /* We update FPSCR_FPRF */
614 env->fpscr &= ~(0x1F << FPSCR_FPRF);
615 env->fpscr |= ret << FPSCR_FPRF;
617 /* We just need fpcc to update Rc1 */
618 return ret & 0xF;
621 /* Floating-point invalid operations exception */
622 static always_inline uint64_t fload_invalid_op_excp (int op)
624 uint64_t ret = 0;
625 int ve;
627 ve = fpscr_ve;
628 switch (op) {
629 case POWERPC_EXCP_FP_VXSNAN:
630 env->fpscr |= 1 << FPSCR_VXSNAN;
631 break;
632 case POWERPC_EXCP_FP_VXSOFT:
633 env->fpscr |= 1 << FPSCR_VXSOFT;
634 break;
635 case POWERPC_EXCP_FP_VXISI:
636 /* Magnitude subtraction of infinities */
637 env->fpscr |= 1 << FPSCR_VXISI;
638 goto update_arith;
639 case POWERPC_EXCP_FP_VXIDI:
640 /* Division of infinity by infinity */
641 env->fpscr |= 1 << FPSCR_VXIDI;
642 goto update_arith;
643 case POWERPC_EXCP_FP_VXZDZ:
644 /* Division of zero by zero */
645 env->fpscr |= 1 << FPSCR_VXZDZ;
646 goto update_arith;
647 case POWERPC_EXCP_FP_VXIMZ:
648 /* Multiplication of zero by infinity */
649 env->fpscr |= 1 << FPSCR_VXIMZ;
650 goto update_arith;
651 case POWERPC_EXCP_FP_VXVC:
652 /* Ordered comparison of NaN */
653 env->fpscr |= 1 << FPSCR_VXVC;
654 env->fpscr &= ~(0xF << FPSCR_FPCC);
655 env->fpscr |= 0x11 << FPSCR_FPCC;
656 /* We must update the target FPR before raising the exception */
657 if (ve != 0) {
658 env->exception_index = POWERPC_EXCP_PROGRAM;
659 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
660 /* Update the floating-point enabled exception summary */
661 env->fpscr |= 1 << FPSCR_FEX;
662 /* Exception is differed */
663 ve = 0;
665 break;
666 case POWERPC_EXCP_FP_VXSQRT:
667 /* Square root of a negative number */
668 env->fpscr |= 1 << FPSCR_VXSQRT;
669 update_arith:
670 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
671 if (ve == 0) {
672 /* Set the result to quiet NaN */
673 ret = 0xFFF8000000000000ULL;
674 env->fpscr &= ~(0xF << FPSCR_FPCC);
675 env->fpscr |= 0x11 << FPSCR_FPCC;
677 break;
678 case POWERPC_EXCP_FP_VXCVI:
679 /* Invalid conversion */
680 env->fpscr |= 1 << FPSCR_VXCVI;
681 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
682 if (ve == 0) {
683 /* Set the result to quiet NaN */
684 ret = 0xFFF8000000000000ULL;
685 env->fpscr &= ~(0xF << FPSCR_FPCC);
686 env->fpscr |= 0x11 << FPSCR_FPCC;
688 break;
690 /* Update the floating-point invalid operation summary */
691 env->fpscr |= 1 << FPSCR_VX;
692 /* Update the floating-point exception summary */
693 env->fpscr |= 1 << FPSCR_FX;
694 if (ve != 0) {
695 /* Update the floating-point enabled exception summary */
696 env->fpscr |= 1 << FPSCR_FEX;
697 if (msr_fe0 != 0 || msr_fe1 != 0)
698 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
700 return ret;
703 static always_inline void float_zero_divide_excp (void)
705 env->fpscr |= 1 << FPSCR_ZX;
706 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
707 /* Update the floating-point exception summary */
708 env->fpscr |= 1 << FPSCR_FX;
709 if (fpscr_ze != 0) {
710 /* Update the floating-point enabled exception summary */
711 env->fpscr |= 1 << FPSCR_FEX;
712 if (msr_fe0 != 0 || msr_fe1 != 0) {
713 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
714 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
719 static always_inline void float_overflow_excp (void)
721 env->fpscr |= 1 << FPSCR_OX;
722 /* Update the floating-point exception summary */
723 env->fpscr |= 1 << FPSCR_FX;
724 if (fpscr_oe != 0) {
725 /* XXX: should adjust the result */
726 /* Update the floating-point enabled exception summary */
727 env->fpscr |= 1 << FPSCR_FEX;
728 /* We must update the target FPR before raising the exception */
729 env->exception_index = POWERPC_EXCP_PROGRAM;
730 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
731 } else {
732 env->fpscr |= 1 << FPSCR_XX;
733 env->fpscr |= 1 << FPSCR_FI;
737 static always_inline void float_underflow_excp (void)
739 env->fpscr |= 1 << FPSCR_UX;
740 /* Update the floating-point exception summary */
741 env->fpscr |= 1 << FPSCR_FX;
742 if (fpscr_ue != 0) {
743 /* XXX: should adjust the result */
744 /* Update the floating-point enabled exception summary */
745 env->fpscr |= 1 << FPSCR_FEX;
746 /* We must update the target FPR before raising the exception */
747 env->exception_index = POWERPC_EXCP_PROGRAM;
748 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
752 static always_inline void float_inexact_excp (void)
754 env->fpscr |= 1 << FPSCR_XX;
755 /* Update the floating-point exception summary */
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_xe != 0) {
758 /* Update the floating-point enabled exception summary */
759 env->fpscr |= 1 << FPSCR_FEX;
760 /* We must update the target FPR before raising the exception */
761 env->exception_index = POWERPC_EXCP_PROGRAM;
762 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
766 static always_inline void fpscr_set_rounding_mode (void)
768 int rnd_type;
770 /* Set rounding mode */
771 switch (fpscr_rn) {
772 case 0:
773 /* Best approximation (round to nearest) */
774 rnd_type = float_round_nearest_even;
775 break;
776 case 1:
777 /* Smaller magnitude (round toward zero) */
778 rnd_type = float_round_to_zero;
779 break;
780 case 2:
781 /* Round toward +infinite */
782 rnd_type = float_round_up;
783 break;
784 default:
785 case 3:
786 /* Round toward -infinite */
787 rnd_type = float_round_down;
788 break;
790 set_float_rounding_mode(rnd_type, &env->fp_status);
793 void helper_fpscr_clrbit (uint32_t bit)
795 int prev;
797 prev = (env->fpscr >> bit) & 1;
798 env->fpscr &= ~(1 << bit);
799 if (prev == 1) {
800 switch (bit) {
801 case FPSCR_RN1:
802 case FPSCR_RN:
803 fpscr_set_rounding_mode();
804 break;
805 default:
806 break;
811 void helper_fpscr_setbit (uint32_t bit)
813 int prev;
815 prev = (env->fpscr >> bit) & 1;
816 env->fpscr |= 1 << bit;
817 if (prev == 0) {
818 switch (bit) {
819 case FPSCR_VX:
820 env->fpscr |= 1 << FPSCR_FX;
821 if (fpscr_ve)
822 goto raise_ve;
823 case FPSCR_OX:
824 env->fpscr |= 1 << FPSCR_FX;
825 if (fpscr_oe)
826 goto raise_oe;
827 break;
828 case FPSCR_UX:
829 env->fpscr |= 1 << FPSCR_FX;
830 if (fpscr_ue)
831 goto raise_ue;
832 break;
833 case FPSCR_ZX:
834 env->fpscr |= 1 << FPSCR_FX;
835 if (fpscr_ze)
836 goto raise_ze;
837 break;
838 case FPSCR_XX:
839 env->fpscr |= 1 << FPSCR_FX;
840 if (fpscr_xe)
841 goto raise_xe;
842 break;
843 case FPSCR_VXSNAN:
844 case FPSCR_VXISI:
845 case FPSCR_VXIDI:
846 case FPSCR_VXZDZ:
847 case FPSCR_VXIMZ:
848 case FPSCR_VXVC:
849 case FPSCR_VXSOFT:
850 case FPSCR_VXSQRT:
851 case FPSCR_VXCVI:
852 env->fpscr |= 1 << FPSCR_VX;
853 env->fpscr |= 1 << FPSCR_FX;
854 if (fpscr_ve != 0)
855 goto raise_ve;
856 break;
857 case FPSCR_VE:
858 if (fpscr_vx != 0) {
859 raise_ve:
860 env->error_code = POWERPC_EXCP_FP;
861 if (fpscr_vxsnan)
862 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
863 if (fpscr_vxisi)
864 env->error_code |= POWERPC_EXCP_FP_VXISI;
865 if (fpscr_vxidi)
866 env->error_code |= POWERPC_EXCP_FP_VXIDI;
867 if (fpscr_vxzdz)
868 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
869 if (fpscr_vximz)
870 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
871 if (fpscr_vxvc)
872 env->error_code |= POWERPC_EXCP_FP_VXVC;
873 if (fpscr_vxsoft)
874 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
875 if (fpscr_vxsqrt)
876 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
877 if (fpscr_vxcvi)
878 env->error_code |= POWERPC_EXCP_FP_VXCVI;
879 goto raise_excp;
881 break;
882 case FPSCR_OE:
883 if (fpscr_ox != 0) {
884 raise_oe:
885 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
886 goto raise_excp;
888 break;
889 case FPSCR_UE:
890 if (fpscr_ux != 0) {
891 raise_ue:
892 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
893 goto raise_excp;
895 break;
896 case FPSCR_ZE:
897 if (fpscr_zx != 0) {
898 raise_ze:
899 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
900 goto raise_excp;
902 break;
903 case FPSCR_XE:
904 if (fpscr_xx != 0) {
905 raise_xe:
906 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
907 goto raise_excp;
909 break;
910 case FPSCR_RN1:
911 case FPSCR_RN:
912 fpscr_set_rounding_mode();
913 break;
914 default:
915 break;
916 raise_excp:
917 /* Update the floating-point enabled exception summary */
918 env->fpscr |= 1 << FPSCR_FEX;
919 /* We have to update Rc1 before raising the exception */
920 env->exception_index = POWERPC_EXCP_PROGRAM;
921 break;
926 void helper_store_fpscr (uint64_t arg, uint32_t mask)
929 * We use only the 32 LSB of the incoming fpr
931 uint32_t prev, new;
932 int i;
934 prev = env->fpscr;
935 new = (uint32_t)arg;
936 new &= ~0x60000000;
937 new |= prev & 0x60000000;
938 for (i = 0; i < 8; i++) {
939 if (mask & (1 << i)) {
940 env->fpscr &= ~(0xF << (4 * i));
941 env->fpscr |= new & (0xF << (4 * i));
944 /* Update VX and FEX */
945 if (fpscr_ix != 0)
946 env->fpscr |= 1 << FPSCR_VX;
947 else
948 env->fpscr &= ~(1 << FPSCR_VX);
949 if ((fpscr_ex & fpscr_eex) != 0) {
950 env->fpscr |= 1 << FPSCR_FEX;
951 env->exception_index = POWERPC_EXCP_PROGRAM;
952 /* XXX: we should compute it properly */
953 env->error_code = POWERPC_EXCP_FP;
955 else
956 env->fpscr &= ~(1 << FPSCR_FEX);
957 fpscr_set_rounding_mode();
960 void helper_float_check_status (void)
962 #ifdef CONFIG_SOFTFLOAT
963 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
964 (env->error_code & POWERPC_EXCP_FP)) {
965 /* Differred floating-point exception after target FPR update */
966 if (msr_fe0 != 0 || msr_fe1 != 0)
967 helper_raise_exception_err(env->exception_index, env->error_code);
968 } else {
969 int status = get_float_exception_flags(&env->fp_status);
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp();
972 } else if (status & float_flag_overflow) {
973 float_overflow_excp();
974 } else if (status & float_flag_underflow) {
975 float_underflow_excp();
976 } else if (status & float_flag_inexact) {
977 float_inexact_excp();
980 #else
981 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
982 (env->error_code & POWERPC_EXCP_FP)) {
983 /* Differred floating-point exception after target FPR update */
984 if (msr_fe0 != 0 || msr_fe1 != 0)
985 helper_raise_exception_err(env->exception_index, env->error_code);
987 #endif
990 #ifdef CONFIG_SOFTFLOAT
991 void helper_reset_fpstatus (void)
993 set_float_exception_flags(0, &env->fp_status);
995 #endif
997 /* fadd - fadd. */
998 uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
1000 CPU_DoubleU farg1, farg2;
1002 farg1.ll = arg1;
1003 farg2.ll = arg2;
1004 #if USE_PRECISE_EMULATION
1005 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1006 float64_is_signaling_nan(farg2.d))) {
1007 /* sNaN addition */
1008 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1009 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1010 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1011 /* Magnitude subtraction of infinities */
1012 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1013 } else {
1014 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1016 #else
1017 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1018 #endif
1019 return farg1.ll;
1022 /* fsub - fsub. */
1023 uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1025 CPU_DoubleU farg1, farg2;
1027 farg1.ll = arg1;
1028 farg2.ll = arg2;
1029 #if USE_PRECISE_EMULATION
1031 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1032 float64_is_signaling_nan(farg2.d))) {
1033 /* sNaN subtraction */
1034 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1035 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1036 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1037 /* Magnitude subtraction of infinities */
1038 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1039 } else {
1040 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1043 #else
1044 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1045 #endif
1046 return farg1.ll;
1049 /* fmul - fmul. */
1050 uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1052 CPU_DoubleU farg1, farg2;
1054 farg1.ll = arg1;
1055 farg2.ll = arg2;
1056 #if USE_PRECISE_EMULATION
1057 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1058 float64_is_signaling_nan(farg2.d))) {
1059 /* sNaN multiplication */
1060 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1061 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1062 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1063 /* Multiplication of zero by infinity */
1064 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1065 } else {
1066 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1068 #else
1069 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1070 #endif
1071 return farg1.ll;
1074 /* fdiv - fdiv. */
1075 uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1077 CPU_DoubleU farg1, farg2;
1079 farg1.ll = arg1;
1080 farg2.ll = arg2;
1081 #if USE_PRECISE_EMULATION
1082 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1083 float64_is_signaling_nan(farg2.d))) {
1084 /* sNaN division */
1085 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1086 } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1087 /* Division of infinity by infinity */
1088 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1089 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1090 /* Division of zero by zero */
1091 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1092 } else {
1093 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1095 #else
1096 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1097 #endif
1098 return farg1.ll;
1101 /* fabs */
1102 uint64_t helper_fabs (uint64_t arg)
1104 CPU_DoubleU farg;
1106 farg.ll = arg;
1107 farg.d = float64_abs(farg.d);
1108 return farg.ll;
1111 /* fnabs */
1112 uint64_t helper_fnabs (uint64_t arg)
1114 CPU_DoubleU farg;
1116 farg.ll = arg;
1117 farg.d = float64_abs(farg.d);
1118 farg.d = float64_chs(farg.d);
1119 return farg.ll;
1122 /* fneg */
1123 uint64_t helper_fneg (uint64_t arg)
1125 CPU_DoubleU farg;
1127 farg.ll = arg;
1128 farg.d = float64_chs(farg.d);
1129 return farg.ll;
1132 /* fctiw - fctiw. */
1133 uint64_t helper_fctiw (uint64_t arg)
1135 CPU_DoubleU farg;
1136 farg.ll = arg;
1138 if (unlikely(float64_is_signaling_nan(farg.d))) {
1139 /* sNaN conversion */
1140 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1141 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1142 /* qNan / infinity conversion */
1143 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1144 } else {
1145 farg.ll = float64_to_int32(farg.d, &env->fp_status);
1146 #if USE_PRECISE_EMULATION
1147 /* XXX: higher bits are not supposed to be significant.
1148 * to make tests easier, return the same as a real PowerPC 750
1150 farg.ll |= 0xFFF80000ULL << 32;
1151 #endif
1153 return farg.ll;
1156 /* fctiwz - fctiwz. */
1157 uint64_t helper_fctiwz (uint64_t arg)
1159 CPU_DoubleU farg;
1160 farg.ll = arg;
1162 if (unlikely(float64_is_signaling_nan(farg.d))) {
1163 /* sNaN conversion */
1164 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1165 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1166 /* qNan / infinity conversion */
1167 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1168 } else {
1169 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1170 #if USE_PRECISE_EMULATION
1171 /* XXX: higher bits are not supposed to be significant.
1172 * to make tests easier, return the same as a real PowerPC 750
1174 farg.ll |= 0xFFF80000ULL << 32;
1175 #endif
1177 return farg.ll;
1180 #if defined(TARGET_PPC64)
1181 /* fcfid - fcfid. */
1182 uint64_t helper_fcfid (uint64_t arg)
1184 CPU_DoubleU farg;
1185 farg.d = int64_to_float64(arg, &env->fp_status);
1186 return farg.ll;
1189 /* fctid - fctid. */
1190 uint64_t helper_fctid (uint64_t arg)
1192 CPU_DoubleU farg;
1193 farg.ll = arg;
1195 if (unlikely(float64_is_signaling_nan(farg.d))) {
1196 /* sNaN conversion */
1197 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1198 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1199 /* qNan / infinity conversion */
1200 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1201 } else {
1202 farg.ll = float64_to_int64(farg.d, &env->fp_status);
1204 return farg.ll;
1207 /* fctidz - fctidz. */
1208 uint64_t helper_fctidz (uint64_t arg)
1210 CPU_DoubleU farg;
1211 farg.ll = arg;
1213 if (unlikely(float64_is_signaling_nan(farg.d))) {
1214 /* sNaN conversion */
1215 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1216 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1217 /* qNan / infinity conversion */
1218 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1219 } else {
1220 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1222 return farg.ll;
1225 #endif
1227 static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1229 CPU_DoubleU farg;
1230 farg.ll = arg;
1232 if (unlikely(float64_is_signaling_nan(farg.d))) {
1233 /* sNaN round */
1234 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1235 } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1236 /* qNan / infinity round */
1237 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1238 } else {
1239 set_float_rounding_mode(rounding_mode, &env->fp_status);
1240 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1241 /* Restore rounding mode from FPSCR */
1242 fpscr_set_rounding_mode();
1244 return farg.ll;
1247 uint64_t helper_frin (uint64_t arg)
1249 return do_fri(arg, float_round_nearest_even);
1252 uint64_t helper_friz (uint64_t arg)
1254 return do_fri(arg, float_round_to_zero);
1257 uint64_t helper_frip (uint64_t arg)
1259 return do_fri(arg, float_round_up);
1262 uint64_t helper_frim (uint64_t arg)
1264 return do_fri(arg, float_round_down);
1267 /* fmadd - fmadd. */
1268 uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1270 CPU_DoubleU farg1, farg2, farg3;
1272 farg1.ll = arg1;
1273 farg2.ll = arg2;
1274 farg3.ll = arg3;
1275 #if USE_PRECISE_EMULATION
1276 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1277 float64_is_signaling_nan(farg2.d) ||
1278 float64_is_signaling_nan(farg3.d))) {
1279 /* sNaN operation */
1280 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1281 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1282 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1283 /* Multiplication of zero by infinity */
1284 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1285 } else {
1286 #ifdef FLOAT128
1287 /* This is the way the PowerPC specification defines it */
1288 float128 ft0_128, ft1_128;
1290 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1291 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1292 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1293 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1294 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1295 /* Magnitude subtraction of infinities */
1296 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1297 } else {
1298 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1299 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1300 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1302 #else
1303 /* This is OK on x86 hosts */
1304 farg1.d = (farg1.d * farg2.d) + farg3.d;
1305 #endif
1307 #else
1308 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1309 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1310 #endif
1311 return farg1.ll;
1314 /* fmsub - fmsub. */
1315 uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1317 CPU_DoubleU farg1, farg2, farg3;
1319 farg1.ll = arg1;
1320 farg2.ll = arg2;
1321 farg3.ll = arg3;
1322 #if USE_PRECISE_EMULATION
1323 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1324 float64_is_signaling_nan(farg2.d) ||
1325 float64_is_signaling_nan(farg3.d))) {
1326 /* sNaN operation */
1327 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1328 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1329 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1330 /* Multiplication of zero by infinity */
1331 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1332 } else {
1333 #ifdef FLOAT128
1334 /* This is the way the PowerPC specification defines it */
1335 float128 ft0_128, ft1_128;
1337 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1338 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1339 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1340 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1341 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1342 /* Magnitude subtraction of infinities */
1343 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1344 } else {
1345 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1346 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1347 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1349 #else
1350 /* This is OK on x86 hosts */
1351 farg1.d = (farg1.d * farg2.d) - farg3.d;
1352 #endif
1354 #else
1355 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1356 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1357 #endif
1358 return farg1.ll;
1361 /* fnmadd - fnmadd. */
1362 uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1364 CPU_DoubleU farg1, farg2, farg3;
1366 farg1.ll = arg1;
1367 farg2.ll = arg2;
1368 farg3.ll = arg3;
1370 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1371 float64_is_signaling_nan(farg2.d) ||
1372 float64_is_signaling_nan(farg3.d))) {
1373 /* sNaN operation */
1374 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1375 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1376 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1377 /* Multiplication of zero by infinity */
1378 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1379 } else {
1380 #if USE_PRECISE_EMULATION
1381 #ifdef FLOAT128
1382 /* This is the way the PowerPC specification defines it */
1383 float128 ft0_128, ft1_128;
1385 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1386 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1387 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1388 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1389 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1390 /* Magnitude subtraction of infinities */
1391 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1392 } else {
1393 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1394 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1395 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1397 #else
1398 /* This is OK on x86 hosts */
1399 farg1.d = (farg1.d * farg2.d) + farg3.d;
1400 #endif
1401 #else
1402 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1403 farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1404 #endif
1405 if (likely(!float64_is_nan(farg1.d)))
1406 farg1.d = float64_chs(farg1.d);
1408 return farg1.ll;
1411 /* fnmsub - fnmsub. */
1412 uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1414 CPU_DoubleU farg1, farg2, farg3;
1416 farg1.ll = arg1;
1417 farg2.ll = arg2;
1418 farg3.ll = arg3;
1420 if (unlikely(float64_is_signaling_nan(farg1.d) ||
1421 float64_is_signaling_nan(farg2.d) ||
1422 float64_is_signaling_nan(farg3.d))) {
1423 /* sNaN operation */
1424 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1425 } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1426 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1427 /* Multiplication of zero by infinity */
1428 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1429 } else {
1430 #if USE_PRECISE_EMULATION
1431 #ifdef FLOAT128
1432 /* This is the way the PowerPC specification defines it */
1433 float128 ft0_128, ft1_128;
1435 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1436 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1437 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1438 if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1439 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1440 /* Magnitude subtraction of infinities */
1441 farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1442 } else {
1443 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1444 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1445 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1447 #else
1448 /* This is OK on x86 hosts */
1449 farg1.d = (farg1.d * farg2.d) - farg3.d;
1450 #endif
1451 #else
1452 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1453 farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1454 #endif
1455 if (likely(!float64_is_nan(farg1.d)))
1456 farg1.d = float64_chs(farg1.d);
1458 return farg1.ll;
1461 /* frsp - frsp. */
1462 uint64_t helper_frsp (uint64_t arg)
1464 CPU_DoubleU farg;
1465 float32 f32;
1466 farg.ll = arg;
1468 #if USE_PRECISE_EMULATION
1469 if (unlikely(float64_is_signaling_nan(farg.d))) {
1470 /* sNaN square root */
1471 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1472 } else {
1473 f32 = float64_to_float32(farg.d, &env->fp_status);
1474 farg.d = float32_to_float64(f32, &env->fp_status);
1476 #else
1477 f32 = float64_to_float32(farg.d, &env->fp_status);
1478 farg.d = float32_to_float64(f32, &env->fp_status);
1479 #endif
1480 return farg.ll;
1483 /* fsqrt - fsqrt. */
1484 uint64_t helper_fsqrt (uint64_t arg)
1486 CPU_DoubleU farg;
1487 farg.ll = arg;
1489 if (unlikely(float64_is_signaling_nan(farg.d))) {
1490 /* sNaN square root */
1491 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1492 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1493 /* Square root of a negative nonzero number */
1494 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1495 } else {
1496 farg.d = float64_sqrt(farg.d, &env->fp_status);
1498 return farg.ll;
1501 /* fre - fre. */
1502 uint64_t helper_fre (uint64_t arg)
1504 CPU_DoubleU fone, farg;
1505 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1506 farg.ll = arg;
1508 if (unlikely(float64_is_signaling_nan(farg.d))) {
1509 /* sNaN reciprocal */
1510 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1511 } else {
1512 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1514 return farg.d;
1517 /* fres - fres. */
1518 uint64_t helper_fres (uint64_t arg)
1520 CPU_DoubleU fone, farg;
1521 float32 f32;
1522 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1523 farg.ll = arg;
1525 if (unlikely(float64_is_signaling_nan(farg.d))) {
1526 /* sNaN reciprocal */
1527 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1528 } else {
1529 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1530 f32 = float64_to_float32(farg.d, &env->fp_status);
1531 farg.d = float32_to_float64(f32, &env->fp_status);
1533 return farg.ll;
1536 /* frsqrte - frsqrte. */
1537 uint64_t helper_frsqrte (uint64_t arg)
1539 CPU_DoubleU fone, farg;
1540 float32 f32;
1541 fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1542 farg.ll = arg;
1544 if (unlikely(float64_is_signaling_nan(farg.d))) {
1545 /* sNaN reciprocal square root */
1546 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1547 } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1548 /* Reciprocal square root of a negative nonzero number */
1549 farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1550 } else {
1551 farg.d = float64_sqrt(farg.d, &env->fp_status);
1552 farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1553 f32 = float64_to_float32(farg.d, &env->fp_status);
1554 farg.d = float32_to_float64(f32, &env->fp_status);
1556 return farg.ll;
1559 /* fsel - fsel. */
1560 uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1562 CPU_DoubleU farg1;
1564 farg1.ll = arg1;
1566 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1567 return arg2;
1568 else
1569 return arg3;
1572 void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1574 CPU_DoubleU farg1, farg2;
1575 uint32_t ret = 0;
1576 farg1.ll = arg1;
1577 farg2.ll = arg2;
1579 if (unlikely(float64_is_nan(farg1.d) ||
1580 float64_is_nan(farg2.d))) {
1581 ret = 0x01UL;
1582 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1583 ret = 0x08UL;
1584 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1585 ret = 0x04UL;
1586 } else {
1587 ret = 0x02UL;
1590 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1591 env->fpscr |= ret << FPSCR_FPRF;
1592 env->crf[crfD] = ret;
1593 if (unlikely(ret == 0x01UL
1594 && (float64_is_signaling_nan(farg1.d) ||
1595 float64_is_signaling_nan(farg2.d)))) {
1596 /* sNaN comparison */
1597 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1601 void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1603 CPU_DoubleU farg1, farg2;
1604 uint32_t ret = 0;
1605 farg1.ll = arg1;
1606 farg2.ll = arg2;
1608 if (unlikely(float64_is_nan(farg1.d) ||
1609 float64_is_nan(farg2.d))) {
1610 ret = 0x01UL;
1611 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1612 ret = 0x08UL;
1613 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1614 ret = 0x04UL;
1615 } else {
1616 ret = 0x02UL;
1619 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1620 env->fpscr |= ret << FPSCR_FPRF;
1621 env->crf[crfD] = ret;
1622 if (unlikely (ret == 0x01UL)) {
1623 if (float64_is_signaling_nan(farg1.d) ||
1624 float64_is_signaling_nan(farg2.d)) {
1625 /* sNaN comparison */
1626 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1627 POWERPC_EXCP_FP_VXVC);
1628 } else {
1629 /* qNaN comparison */
1630 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1635 #if !defined (CONFIG_USER_ONLY)
1636 void helper_store_msr (target_ulong val)
1638 val = hreg_store_msr(env, val, 0);
1639 if (val != 0) {
1640 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1641 helper_raise_exception(val);
1645 static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1646 target_ulong msrm, int keep_msrh)
1648 #if defined(TARGET_PPC64)
1649 if (msr & (1ULL << MSR_SF)) {
1650 nip = (uint64_t)nip;
1651 msr &= (uint64_t)msrm;
1652 } else {
1653 nip = (uint32_t)nip;
1654 msr = (uint32_t)(msr & msrm);
1655 if (keep_msrh)
1656 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1658 #else
1659 nip = (uint32_t)nip;
1660 msr &= (uint32_t)msrm;
1661 #endif
1662 /* XXX: beware: this is false if VLE is supported */
1663 env->nip = nip & ~((target_ulong)0x00000003);
1664 hreg_store_msr(env, msr, 1);
1665 #if defined (DEBUG_OP)
1666 cpu_dump_rfi(env->nip, env->msr);
1667 #endif
1668 /* No need to raise an exception here,
1669 * as rfi is always the last insn of a TB
1671 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1674 void helper_rfi (void)
1676 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1677 ~((target_ulong)0xFFFF0000), 1);
1680 #if defined(TARGET_PPC64)
1681 void helper_rfid (void)
1683 do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1684 ~((target_ulong)0xFFFF0000), 0);
1687 void helper_hrfid (void)
1689 do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1690 ~((target_ulong)0xFFFF0000), 0);
1692 #endif
1693 #endif
1695 void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1697 if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1698 ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1699 ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1700 ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1701 ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1702 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1706 #if defined(TARGET_PPC64)
1707 void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1709 if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1710 ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1711 ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1712 ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1713 ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1714 helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1716 #endif
1718 /*****************************************************************************/
1719 /* PowerPC 601 specific instructions (POWER bridge) */
1721 target_ulong helper_clcs (uint32_t arg)
1723 switch (arg) {
1724 case 0x0CUL:
1725 /* Instruction cache line size */
1726 return env->icache_line_size;
1727 break;
1728 case 0x0DUL:
1729 /* Data cache line size */
1730 return env->dcache_line_size;
1731 break;
1732 case 0x0EUL:
1733 /* Minimum cache line size */
1734 return (env->icache_line_size < env->dcache_line_size) ?
1735 env->icache_line_size : env->dcache_line_size;
1736 break;
1737 case 0x0FUL:
1738 /* Maximum cache line size */
1739 return (env->icache_line_size > env->dcache_line_size) ?
1740 env->icache_line_size : env->dcache_line_size;
1741 break;
1742 default:
1743 /* Undefined */
1744 return 0;
1745 break;
1749 target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1751 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1753 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1754 (int32_t)arg2 == 0) {
1755 env->spr[SPR_MQ] = 0;
1756 return INT32_MIN;
1757 } else {
1758 env->spr[SPR_MQ] = tmp % arg2;
1759 return tmp / (int32_t)arg2;
1763 target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1765 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1767 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1768 (int32_t)arg2 == 0) {
1769 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1770 env->spr[SPR_MQ] = 0;
1771 return INT32_MIN;
1772 } else {
1773 env->spr[SPR_MQ] = tmp % arg2;
1774 tmp /= (int32_t)arg2;
1775 if ((int32_t)tmp != tmp) {
1776 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1777 } else {
1778 env->xer &= ~(1 << XER_OV);
1780 return tmp;
1784 target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1786 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1787 (int32_t)arg2 == 0) {
1788 env->spr[SPR_MQ] = 0;
1789 return INT32_MIN;
1790 } else {
1791 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1792 return (int32_t)arg1 / (int32_t)arg2;
1796 target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1798 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1799 (int32_t)arg2 == 0) {
1800 env->xer |= (1 << XER_OV) | (1 << XER_SO);
1801 env->spr[SPR_MQ] = 0;
1802 return INT32_MIN;
1803 } else {
1804 env->xer &= ~(1 << XER_OV);
1805 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1806 return (int32_t)arg1 / (int32_t)arg2;
1810 #if !defined (CONFIG_USER_ONLY)
1811 target_ulong helper_rac (target_ulong addr)
1813 mmu_ctx_t ctx;
1814 int nb_BATs;
1815 target_ulong ret = 0;
1817 /* We don't have to generate many instances of this instruction,
1818 * as rac is supervisor only.
1820 /* XXX: FIX THIS: Pretend we have no BAT */
1821 nb_BATs = env->nb_BATs;
1822 env->nb_BATs = 0;
1823 if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1824 ret = ctx.raddr;
1825 env->nb_BATs = nb_BATs;
1826 return ret;
1829 void helper_rfsvc (void)
1831 do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1833 #endif
1835 /*****************************************************************************/
1836 /* 602 specific instructions */
1837 /* mfrom is the most crazy instruction ever seen, imho ! */
1838 /* Real implementation uses a ROM table. Do the same */
1839 /* Extremly decomposed:
1840 * -arg / 256
1841 * return 256 * log10(10 + 1.0) + 0.5
1843 #if !defined (CONFIG_USER_ONLY)
1844 target_ulong helper_602_mfrom (target_ulong arg)
1846 if (likely(arg < 602)) {
1847 #include "mfrom_table.c"
1848 return mfrom_ROM_table[arg];
1849 } else {
1850 return 0;
1853 #endif
1855 /*****************************************************************************/
1856 /* Embedded PowerPC specific helpers */
1858 /* XXX: to be improved to check access rights when in user-mode */
1859 target_ulong helper_load_dcr (target_ulong dcrn)
1861 target_ulong val = 0;
1863 if (unlikely(env->dcr_env == NULL)) {
1864 qemu_log("No DCR environment\n");
1865 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1866 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1867 } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1868 qemu_log("DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1869 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1870 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1872 return val;
1875 void helper_store_dcr (target_ulong dcrn, target_ulong val)
1877 if (unlikely(env->dcr_env == NULL)) {
1878 qemu_log("No DCR environment\n");
1879 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1880 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1881 } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1882 qemu_log("DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1883 helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1884 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1888 #if !defined(CONFIG_USER_ONLY)
1889 void helper_40x_rfci (void)
1891 do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1892 ~((target_ulong)0xFFFF0000), 0);
1895 void helper_rfci (void)
1897 do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1898 ~((target_ulong)0x3FFF0000), 0);
1901 void helper_rfdi (void)
1903 do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1904 ~((target_ulong)0x3FFF0000), 0);
1907 void helper_rfmci (void)
1909 do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1910 ~((target_ulong)0x3FFF0000), 0);
1912 #endif
1914 /* 440 specific */
1915 target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1917 target_ulong mask;
1918 int i;
1920 i = 1;
1921 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1922 if ((high & mask) == 0) {
1923 if (update_Rc) {
1924 env->crf[0] = 0x4;
1926 goto done;
1928 i++;
1930 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1931 if ((low & mask) == 0) {
1932 if (update_Rc) {
1933 env->crf[0] = 0x8;
1935 goto done;
1937 i++;
1939 if (update_Rc) {
1940 env->crf[0] = 0x2;
1942 done:
1943 env->xer = (env->xer & ~0x7F) | i;
1944 if (update_Rc) {
1945 env->crf[0] |= xer_so;
1947 return i;
1950 /*****************************************************************************/
1951 /* Altivec extension helpers */
1952 #if defined(WORDS_BIGENDIAN)
1953 #define HI_IDX 0
1954 #define LO_IDX 1
1955 #else
1956 #define HI_IDX 1
1957 #define LO_IDX 0
1958 #endif
1960 #if defined(WORDS_BIGENDIAN)
1961 #define VECTOR_FOR_INORDER_I(index, element) \
1962 for (index = 0; index < ARRAY_SIZE(r->element); index++)
1963 #else
1964 #define VECTOR_FOR_INORDER_I(index, element) \
1965 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1966 #endif
1968 /* Saturating arithmetic helpers. */
1969 #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1970 static always_inline to_type cvt##from##to (from_type x, int *sat) \
1972 to_type r; \
1973 if (use_min && x < min) { \
1974 r = min; \
1975 *sat = 1; \
1976 } else if (use_max && x > max) { \
1977 r = max; \
1978 *sat = 1; \
1979 } else { \
1980 r = x; \
1982 return r; \
1984 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
1985 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
1986 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
1987 SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
1988 SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
1989 SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
1990 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
1991 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
1992 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
1993 #undef SATCVT
1995 #define LVE(name, access, swap, element) \
1996 void helper_##name (ppc_avr_t *r, target_ulong addr) \
1998 size_t n_elems = ARRAY_SIZE(r->element); \
1999 int adjust = HI_IDX*(n_elems-1); \
2000 int sh = sizeof(r->element[0]) >> 1; \
2001 int index = (addr & 0xf) >> sh; \
2002 if(msr_le) { \
2003 r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2004 } else { \
2005 r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2008 #define I(x) (x)
2009 LVE(lvebx, ldub, I, u8)
2010 LVE(lvehx, lduw, bswap16, u16)
2011 LVE(lvewx, ldl, bswap32, u32)
2012 #undef I
2013 #undef LVE
2015 void helper_lvsl (ppc_avr_t *r, target_ulong sh)
2017 int i, j = (sh & 0xf);
2019 VECTOR_FOR_INORDER_I (i, u8) {
2020 r->u8[i] = j++;
2024 void helper_lvsr (ppc_avr_t *r, target_ulong sh)
2026 int i, j = 0x10 - (sh & 0xf);
2028 VECTOR_FOR_INORDER_I (i, u8) {
2029 r->u8[i] = j++;
2033 #define STVE(name, access, swap, element) \
2034 void helper_##name (ppc_avr_t *r, target_ulong addr) \
2036 size_t n_elems = ARRAY_SIZE(r->element); \
2037 int adjust = HI_IDX*(n_elems-1); \
2038 int sh = sizeof(r->element[0]) >> 1; \
2039 int index = (addr & 0xf) >> sh; \
2040 if(msr_le) { \
2041 access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2042 } else { \
2043 access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2046 #define I(x) (x)
2047 STVE(stvebx, stb, I, u8)
2048 STVE(stvehx, stw, bswap16, u16)
2049 STVE(stvewx, stl, bswap32, u32)
2050 #undef I
2051 #undef LVE
2053 void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2055 int i;
2056 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2057 r->u32[i] = ~a->u32[i] < b->u32[i];
2061 #define VARITH_DO(name, op, element) \
2062 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2064 int i; \
2065 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2066 r->element[i] = a->element[i] op b->element[i]; \
2069 #define VARITH(suffix, element) \
2070 VARITH_DO(add##suffix, +, element) \
2071 VARITH_DO(sub##suffix, -, element)
2072 VARITH(ubm, u8)
2073 VARITH(uhm, u16)
2074 VARITH(uwm, u32)
2075 #undef VARITH_DO
2076 #undef VARITH
2078 #define VARITHSAT_CASE(type, op, cvt, element) \
2080 type result = (type)a->element[i] op (type)b->element[i]; \
2081 r->element[i] = cvt(result, &sat); \
2084 #define VARITHSAT_DO(name, op, optype, cvt, element) \
2085 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2087 int sat = 0; \
2088 int i; \
2089 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2090 switch (sizeof(r->element[0])) { \
2091 case 1: VARITHSAT_CASE(optype, op, cvt, element); break; \
2092 case 2: VARITHSAT_CASE(optype, op, cvt, element); break; \
2093 case 4: VARITHSAT_CASE(optype, op, cvt, element); break; \
2096 if (sat) { \
2097 env->vscr |= (1 << VSCR_SAT); \
2100 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
2101 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
2102 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
2103 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
2104 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
2105 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
2106 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
2107 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
2108 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
2109 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
2110 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
2111 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
2112 #undef VARITHSAT_CASE
2113 #undef VARITHSAT_DO
2114 #undef VARITHSAT_SIGNED
2115 #undef VARITHSAT_UNSIGNED
2117 #define VAVG_DO(name, element, etype) \
2118 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2120 int i; \
2121 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2122 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
2123 r->element[i] = x >> 1; \
2127 #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2128 VAVG_DO(avgs##type, signed_element, signed_type) \
2129 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2130 VAVG(b, s8, int16_t, u8, uint16_t)
2131 VAVG(h, s16, int32_t, u16, uint32_t)
2132 VAVG(w, s32, int64_t, u32, uint64_t)
2133 #undef VAVG_DO
2134 #undef VAVG
2136 #define VCMP_DO(suffix, compare, element, record) \
2137 void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2139 uint32_t ones = (uint32_t)-1; \
2140 uint32_t all = ones; \
2141 uint32_t none = 0; \
2142 int i; \
2143 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2144 uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2145 switch (sizeof (a->element[0])) { \
2146 case 4: r->u32[i] = result; break; \
2147 case 2: r->u16[i] = result; break; \
2148 case 1: r->u8[i] = result; break; \
2150 all &= result; \
2151 none |= result; \
2153 if (record) { \
2154 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
2157 #define VCMP(suffix, compare, element) \
2158 VCMP_DO(suffix, compare, element, 0) \
2159 VCMP_DO(suffix##_dot, compare, element, 1)
2160 VCMP(equb, ==, u8)
2161 VCMP(equh, ==, u16)
2162 VCMP(equw, ==, u32)
2163 VCMP(gtub, >, u8)
2164 VCMP(gtuh, >, u16)
2165 VCMP(gtuw, >, u32)
2166 VCMP(gtsb, >, s8)
2167 VCMP(gtsh, >, s16)
2168 VCMP(gtsw, >, s32)
2169 #undef VCMP_DO
2170 #undef VCMP
2172 void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2174 int sat = 0;
2175 int i;
2177 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2178 int32_t prod = a->s16[i] * b->s16[i];
2179 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2180 r->s16[i] = cvtswsh (t, &sat);
2183 if (sat) {
2184 env->vscr |= (1 << VSCR_SAT);
2188 void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2190 int sat = 0;
2191 int i;
2193 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2194 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
2195 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2196 r->s16[i] = cvtswsh (t, &sat);
2199 if (sat) {
2200 env->vscr |= (1 << VSCR_SAT);
2204 #define VMINMAX_DO(name, compare, element) \
2205 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2207 int i; \
2208 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2209 if (a->element[i] compare b->element[i]) { \
2210 r->element[i] = b->element[i]; \
2211 } else { \
2212 r->element[i] = a->element[i]; \
2216 #define VMINMAX(suffix, element) \
2217 VMINMAX_DO(min##suffix, >, element) \
2218 VMINMAX_DO(max##suffix, <, element)
2219 VMINMAX(sb, s8)
2220 VMINMAX(sh, s16)
2221 VMINMAX(sw, s32)
2222 VMINMAX(ub, u8)
2223 VMINMAX(uh, u16)
2224 VMINMAX(uw, u32)
2225 #undef VMINMAX_DO
2226 #undef VMINMAX
2228 void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2230 int i;
2231 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2232 int32_t prod = a->s16[i] * b->s16[i];
2233 r->s16[i] = (int16_t) (prod + c->s16[i]);
2237 #define VMRG_DO(name, element, highp) \
2238 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2240 ppc_avr_t result; \
2241 int i; \
2242 size_t n_elems = ARRAY_SIZE(r->element); \
2243 for (i = 0; i < n_elems/2; i++) { \
2244 if (highp) { \
2245 result.element[i*2+HI_IDX] = a->element[i]; \
2246 result.element[i*2+LO_IDX] = b->element[i]; \
2247 } else { \
2248 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2249 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2252 *r = result; \
2254 #if defined(WORDS_BIGENDIAN)
2255 #define MRGHI 0
2256 #define MRGLO 1
2257 #else
2258 #define MRGHI 1
2259 #define MRGLO 0
2260 #endif
2261 #define VMRG(suffix, element) \
2262 VMRG_DO(mrgl##suffix, element, MRGHI) \
2263 VMRG_DO(mrgh##suffix, element, MRGLO)
2264 VMRG(b, u8)
2265 VMRG(h, u16)
2266 VMRG(w, u32)
2267 #undef VMRG_DO
2268 #undef VMRG
2269 #undef MRGHI
2270 #undef MRGLO
2272 void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2274 int32_t prod[16];
2275 int i;
2277 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
2278 prod[i] = (int32_t)a->s8[i] * b->u8[i];
2281 VECTOR_FOR_INORDER_I(i, s32) {
2282 r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2286 void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2288 int32_t prod[8];
2289 int i;
2291 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2292 prod[i] = a->s16[i] * b->s16[i];
2295 VECTOR_FOR_INORDER_I(i, s32) {
2296 r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
2300 void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2302 int32_t prod[8];
2303 int i;
2304 int sat = 0;
2306 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2307 prod[i] = (int32_t)a->s16[i] * b->s16[i];
2310 VECTOR_FOR_INORDER_I (i, s32) {
2311 int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
2312 r->u32[i] = cvtsdsw(t, &sat);
2315 if (sat) {
2316 env->vscr |= (1 << VSCR_SAT);
2320 void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2322 uint16_t prod[16];
2323 int i;
2325 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2326 prod[i] = a->u8[i] * b->u8[i];
2329 VECTOR_FOR_INORDER_I(i, u32) {
2330 r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2334 void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2336 uint32_t prod[8];
2337 int i;
2339 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2340 prod[i] = a->u16[i] * b->u16[i];
2343 VECTOR_FOR_INORDER_I(i, u32) {
2344 r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
2348 void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2350 uint32_t prod[8];
2351 int i;
2352 int sat = 0;
2354 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2355 prod[i] = a->u16[i] * b->u16[i];
2358 VECTOR_FOR_INORDER_I (i, s32) {
2359 uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
2360 r->u32[i] = cvtuduw(t, &sat);
2363 if (sat) {
2364 env->vscr |= (1 << VSCR_SAT);
2368 #define VMUL_DO(name, mul_element, prod_element, evenp) \
2369 void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2371 int i; \
2372 VECTOR_FOR_INORDER_I(i, prod_element) { \
2373 if (evenp) { \
2374 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2375 } else { \
2376 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2380 #define VMUL(suffix, mul_element, prod_element) \
2381 VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2382 VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2383 VMUL(sb, s8, s16)
2384 VMUL(sh, s16, s32)
2385 VMUL(ub, u8, u16)
2386 VMUL(uh, u16, u32)
2387 #undef VMUL_DO
2388 #undef VMUL
2390 void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2392 ppc_avr_t result;
2393 int i;
2394 VECTOR_FOR_INORDER_I (i, u8) {
2395 int s = c->u8[i] & 0x1f;
2396 #if defined(WORDS_BIGENDIAN)
2397 int index = s & 0xf;
2398 #else
2399 int index = 15 - (s & 0xf);
2400 #endif
2401 if (s & 0x10) {
2402 result.u8[i] = b->u8[index];
2403 } else {
2404 result.u8[i] = a->u8[index];
2407 *r = result;
2410 #if defined(WORDS_BIGENDIAN)
2411 #define PKBIG 1
2412 #else
2413 #define PKBIG 0
2414 #endif
2415 void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2417 int i, j;
2418 ppc_avr_t result;
2419 #if defined(WORDS_BIGENDIAN)
2420 const ppc_avr_t *x[2] = { a, b };
2421 #else
2422 const ppc_avr_t *x[2] = { b, a };
2423 #endif
2425 VECTOR_FOR_INORDER_I (i, u64) {
2426 VECTOR_FOR_INORDER_I (j, u32){
2427 uint32_t e = x[i]->u32[j];
2428 result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
2429 ((e >> 6) & 0x3e0) |
2430 ((e >> 3) & 0x1f));
2433 *r = result;
2436 #define VPK(suffix, from, to, cvt, dosat) \
2437 void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2439 int i; \
2440 int sat = 0; \
2441 ppc_avr_t result; \
2442 ppc_avr_t *a0 = PKBIG ? a : b; \
2443 ppc_avr_t *a1 = PKBIG ? b : a; \
2444 VECTOR_FOR_INORDER_I (i, from) { \
2445 result.to[i] = cvt(a0->from[i], &sat); \
2446 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
2448 *r = result; \
2449 if (dosat && sat) { \
2450 env->vscr |= (1 << VSCR_SAT); \
2453 #define I(x, y) (x)
2454 VPK(shss, s16, s8, cvtshsb, 1)
2455 VPK(shus, s16, u8, cvtshub, 1)
2456 VPK(swss, s32, s16, cvtswsh, 1)
2457 VPK(swus, s32, u16, cvtswuh, 1)
2458 VPK(uhus, u16, u8, cvtuhub, 1)
2459 VPK(uwus, u32, u16, cvtuwuh, 1)
2460 VPK(uhum, u16, u8, I, 0)
2461 VPK(uwum, u32, u16, I, 0)
2462 #undef I
2463 #undef VPK
2464 #undef PKBIG
2466 #define VROTATE(suffix, element) \
2467 void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2469 int i; \
2470 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2471 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2472 unsigned int shift = b->element[i] & mask; \
2473 r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2476 VROTATE(b, u8)
2477 VROTATE(h, u16)
2478 VROTATE(w, u32)
2479 #undef VROTATE
2481 void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2483 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
2484 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
2487 #if defined(WORDS_BIGENDIAN)
2488 #define LEFT 0
2489 #define RIGHT 1
2490 #else
2491 #define LEFT 1
2492 #define RIGHT 0
2493 #endif
2494 /* The specification says that the results are undefined if all of the
2495 * shift counts are not identical. We check to make sure that they are
2496 * to conform to what real hardware appears to do. */
2497 #define VSHIFT(suffix, leftp) \
2498 void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2500 int shift = b->u8[LO_IDX*0x15] & 0x7; \
2501 int doit = 1; \
2502 int i; \
2503 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
2504 doit = doit && ((b->u8[i] & 0x7) == shift); \
2506 if (doit) { \
2507 if (shift == 0) { \
2508 *r = *a; \
2509 } else if (leftp) { \
2510 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
2511 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
2512 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
2513 } else { \
2514 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
2515 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
2516 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
2520 VSHIFT(l, LEFT)
2521 VSHIFT(r, RIGHT)
2522 #undef VSHIFT
2523 #undef LEFT
2524 #undef RIGHT
2526 #define VSL(suffix, element) \
2527 void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2529 int i; \
2530 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2531 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2532 unsigned int shift = b->element[i] & mask; \
2533 r->element[i] = a->element[i] << shift; \
2536 VSL(b, u8)
2537 VSL(h, u16)
2538 VSL(w, u32)
2539 #undef VSL
2541 void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
2543 int sh = shift & 0xf;
2544 int i;
2545 ppc_avr_t result;
2547 #if defined(WORDS_BIGENDIAN)
2548 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2549 int index = sh + i;
2550 if (index > 0xf) {
2551 result.u8[i] = b->u8[index-0x10];
2552 } else {
2553 result.u8[i] = a->u8[index];
2556 #else
2557 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2558 int index = (16 - sh) + i;
2559 if (index > 0xf) {
2560 result.u8[i] = a->u8[index-0x10];
2561 } else {
2562 result.u8[i] = b->u8[index];
2565 #endif
2566 *r = result;
2569 void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2571 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2573 #if defined (WORDS_BIGENDIAN)
2574 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2575 memset (&r->u8[16-sh], 0, sh);
2576 #else
2577 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2578 memset (&r->u8[0], 0, sh);
2579 #endif
2582 /* Experimental testing shows that hardware masks the immediate. */
2583 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2584 #if defined(WORDS_BIGENDIAN)
2585 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2586 #else
2587 #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2588 #endif
2589 #define VSPLT(suffix, element) \
2590 void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2592 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
2593 int i; \
2594 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2595 r->element[i] = s; \
2598 VSPLT(b, u8)
2599 VSPLT(h, u16)
2600 VSPLT(w, u32)
2601 #undef VSPLT
2602 #undef SPLAT_ELEMENT
2603 #undef _SPLAT_MASKED
2605 #define VSPLTI(suffix, element, splat_type) \
2606 void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat) \
2608 splat_type x = (int8_t)(splat << 3) >> 3; \
2609 int i; \
2610 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2611 r->element[i] = x; \
2614 VSPLTI(b, s8, int8_t)
2615 VSPLTI(h, s16, int16_t)
2616 VSPLTI(w, s32, int32_t)
2617 #undef VSPLTI
2619 #define VSR(suffix, element) \
2620 void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2622 int i; \
2623 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
2624 unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2625 unsigned int shift = b->element[i] & mask; \
2626 r->element[i] = a->element[i] >> shift; \
2629 VSR(ab, s8)
2630 VSR(ah, s16)
2631 VSR(aw, s32)
2632 VSR(b, u8)
2633 VSR(h, u16)
2634 VSR(w, u32)
2635 #undef VSR
2637 void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2639 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2641 #if defined (WORDS_BIGENDIAN)
2642 memmove (&r->u8[sh], &a->u8[0], 16-sh);
2643 memset (&r->u8[0], 0, sh);
2644 #else
2645 memmove (&r->u8[0], &a->u8[sh], 16-sh);
2646 memset (&r->u8[16-sh], 0, sh);
2647 #endif
2650 void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2652 int i;
2653 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2654 r->u32[i] = a->u32[i] >= b->u32[i];
2658 void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2660 int64_t t;
2661 int i, upper;
2662 ppc_avr_t result;
2663 int sat = 0;
2665 #if defined(WORDS_BIGENDIAN)
2666 upper = ARRAY_SIZE(r->s32)-1;
2667 #else
2668 upper = 0;
2669 #endif
2670 t = (int64_t)b->s32[upper];
2671 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2672 t += a->s32[i];
2673 result.s32[i] = 0;
2675 result.s32[upper] = cvtsdsw(t, &sat);
2676 *r = result;
2678 if (sat) {
2679 env->vscr |= (1 << VSCR_SAT);
2683 void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2685 int i, j, upper;
2686 ppc_avr_t result;
2687 int sat = 0;
2689 #if defined(WORDS_BIGENDIAN)
2690 upper = 1;
2691 #else
2692 upper = 0;
2693 #endif
2694 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2695 int64_t t = (int64_t)b->s32[upper+i*2];
2696 result.u64[i] = 0;
2697 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2698 t += a->s32[2*i+j];
2700 result.s32[upper+i*2] = cvtsdsw(t, &sat);
2703 *r = result;
2704 if (sat) {
2705 env->vscr |= (1 << VSCR_SAT);
2709 void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2711 int i, j;
2712 int sat = 0;
2714 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2715 int64_t t = (int64_t)b->s32[i];
2716 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2717 t += a->s8[4*i+j];
2719 r->s32[i] = cvtsdsw(t, &sat);
2722 if (sat) {
2723 env->vscr |= (1 << VSCR_SAT);
2727 void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2729 int sat = 0;
2730 int i;
2732 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2733 int64_t t = (int64_t)b->s32[i];
2734 t += a->s16[2*i] + a->s16[2*i+1];
2735 r->s32[i] = cvtsdsw(t, &sat);
2738 if (sat) {
2739 env->vscr |= (1 << VSCR_SAT);
2743 void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2745 int i, j;
2746 int sat = 0;
2748 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2749 uint64_t t = (uint64_t)b->u32[i];
2750 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2751 t += a->u8[4*i+j];
2753 r->u32[i] = cvtuduw(t, &sat);
2756 if (sat) {
2757 env->vscr |= (1 << VSCR_SAT);
2761 #if defined(WORDS_BIGENDIAN)
2762 #define UPKHI 1
2763 #define UPKLO 0
2764 #else
2765 #define UPKHI 0
2766 #define UPKLO 1
2767 #endif
2768 #define VUPKPX(suffix, hi) \
2769 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2771 int i; \
2772 ppc_avr_t result; \
2773 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
2774 uint16_t e = b->u16[hi ? i : i+4]; \
2775 uint8_t a = (e >> 15) ? 0xff : 0; \
2776 uint8_t r = (e >> 10) & 0x1f; \
2777 uint8_t g = (e >> 5) & 0x1f; \
2778 uint8_t b = e & 0x1f; \
2779 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
2781 *r = result; \
2783 VUPKPX(lpx, UPKLO)
2784 VUPKPX(hpx, UPKHI)
2785 #undef VUPKPX
2787 #define VUPK(suffix, unpacked, packee, hi) \
2788 void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b) \
2790 int i; \
2791 ppc_avr_t result; \
2792 if (hi) { \
2793 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
2794 result.unpacked[i] = b->packee[i]; \
2796 } else { \
2797 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
2798 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2801 *r = result; \
2803 VUPK(hsb, s16, s8, UPKHI)
2804 VUPK(hsh, s32, s16, UPKHI)
2805 VUPK(lsb, s16, s8, UPKLO)
2806 VUPK(lsh, s32, s16, UPKLO)
2807 #undef VUPK
2808 #undef UPKHI
2809 #undef UPKLO
2811 #undef VECTOR_FOR_INORDER_I
2812 #undef HI_IDX
2813 #undef LO_IDX
2815 /*****************************************************************************/
2816 /* SPE extension helpers */
2817 /* Use a table to make this quicker */
2818 static uint8_t hbrev[16] = {
2819 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2820 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2823 static always_inline uint8_t byte_reverse (uint8_t val)
2825 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2828 static always_inline uint32_t word_reverse (uint32_t val)
2830 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2831 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2834 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2835 target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2837 uint32_t a, b, d, mask;
2839 mask = UINT32_MAX >> (32 - MASKBITS);
2840 a = arg1 & mask;
2841 b = arg2 & mask;
2842 d = word_reverse(1 + word_reverse(a | ~b));
2843 return (arg1 & ~mask) | (d & b);
2846 uint32_t helper_cntlsw32 (uint32_t val)
2848 if (val & 0x80000000)
2849 return clz32(~val);
2850 else
2851 return clz32(val);
2854 uint32_t helper_cntlzw32 (uint32_t val)
2856 return clz32(val);
2859 /* Single-precision floating-point conversions */
2860 static always_inline uint32_t efscfsi (uint32_t val)
2862 CPU_FloatU u;
2864 u.f = int32_to_float32(val, &env->spe_status);
2866 return u.l;
2869 static always_inline uint32_t efscfui (uint32_t val)
2871 CPU_FloatU u;
2873 u.f = uint32_to_float32(val, &env->spe_status);
2875 return u.l;
2878 static always_inline int32_t efsctsi (uint32_t val)
2880 CPU_FloatU u;
2882 u.l = val;
2883 /* NaN are not treated the same way IEEE 754 does */
2884 if (unlikely(float32_is_nan(u.f)))
2885 return 0;
2887 return float32_to_int32(u.f, &env->spe_status);
2890 static always_inline uint32_t efsctui (uint32_t val)
2892 CPU_FloatU u;
2894 u.l = val;
2895 /* NaN are not treated the same way IEEE 754 does */
2896 if (unlikely(float32_is_nan(u.f)))
2897 return 0;
2899 return float32_to_uint32(u.f, &env->spe_status);
2902 static always_inline uint32_t efsctsiz (uint32_t val)
2904 CPU_FloatU u;
2906 u.l = val;
2907 /* NaN are not treated the same way IEEE 754 does */
2908 if (unlikely(float32_is_nan(u.f)))
2909 return 0;
2911 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2914 static always_inline uint32_t efsctuiz (uint32_t val)
2916 CPU_FloatU u;
2918 u.l = val;
2919 /* NaN are not treated the same way IEEE 754 does */
2920 if (unlikely(float32_is_nan(u.f)))
2921 return 0;
2923 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2926 static always_inline uint32_t efscfsf (uint32_t val)
2928 CPU_FloatU u;
2929 float32 tmp;
2931 u.f = int32_to_float32(val, &env->spe_status);
2932 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2933 u.f = float32_div(u.f, tmp, &env->spe_status);
2935 return u.l;
2938 static always_inline uint32_t efscfuf (uint32_t val)
2940 CPU_FloatU u;
2941 float32 tmp;
2943 u.f = uint32_to_float32(val, &env->spe_status);
2944 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2945 u.f = float32_div(u.f, tmp, &env->spe_status);
2947 return u.l;
2950 static always_inline uint32_t efsctsf (uint32_t val)
2952 CPU_FloatU u;
2953 float32 tmp;
2955 u.l = val;
2956 /* NaN are not treated the same way IEEE 754 does */
2957 if (unlikely(float32_is_nan(u.f)))
2958 return 0;
2959 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2960 u.f = float32_mul(u.f, tmp, &env->spe_status);
2962 return float32_to_int32(u.f, &env->spe_status);
2965 static always_inline uint32_t efsctuf (uint32_t val)
2967 CPU_FloatU u;
2968 float32 tmp;
2970 u.l = val;
2971 /* NaN are not treated the same way IEEE 754 does */
2972 if (unlikely(float32_is_nan(u.f)))
2973 return 0;
2974 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2975 u.f = float32_mul(u.f, tmp, &env->spe_status);
2977 return float32_to_uint32(u.f, &env->spe_status);
2980 #define HELPER_SPE_SINGLE_CONV(name) \
2981 uint32_t helper_e##name (uint32_t val) \
2983 return e##name(val); \
2985 /* efscfsi */
2986 HELPER_SPE_SINGLE_CONV(fscfsi);
2987 /* efscfui */
2988 HELPER_SPE_SINGLE_CONV(fscfui);
2989 /* efscfuf */
2990 HELPER_SPE_SINGLE_CONV(fscfuf);
2991 /* efscfsf */
2992 HELPER_SPE_SINGLE_CONV(fscfsf);
2993 /* efsctsi */
2994 HELPER_SPE_SINGLE_CONV(fsctsi);
2995 /* efsctui */
2996 HELPER_SPE_SINGLE_CONV(fsctui);
2997 /* efsctsiz */
2998 HELPER_SPE_SINGLE_CONV(fsctsiz);
2999 /* efsctuiz */
3000 HELPER_SPE_SINGLE_CONV(fsctuiz);
3001 /* efsctsf */
3002 HELPER_SPE_SINGLE_CONV(fsctsf);
3003 /* efsctuf */
3004 HELPER_SPE_SINGLE_CONV(fsctuf);
3006 #define HELPER_SPE_VECTOR_CONV(name) \
3007 uint64_t helper_ev##name (uint64_t val) \
3009 return ((uint64_t)e##name(val >> 32) << 32) | \
3010 (uint64_t)e##name(val); \
3012 /* evfscfsi */
3013 HELPER_SPE_VECTOR_CONV(fscfsi);
3014 /* evfscfui */
3015 HELPER_SPE_VECTOR_CONV(fscfui);
3016 /* evfscfuf */
3017 HELPER_SPE_VECTOR_CONV(fscfuf);
3018 /* evfscfsf */
3019 HELPER_SPE_VECTOR_CONV(fscfsf);
3020 /* evfsctsi */
3021 HELPER_SPE_VECTOR_CONV(fsctsi);
3022 /* evfsctui */
3023 HELPER_SPE_VECTOR_CONV(fsctui);
3024 /* evfsctsiz */
3025 HELPER_SPE_VECTOR_CONV(fsctsiz);
3026 /* evfsctuiz */
3027 HELPER_SPE_VECTOR_CONV(fsctuiz);
3028 /* evfsctsf */
3029 HELPER_SPE_VECTOR_CONV(fsctsf);
3030 /* evfsctuf */
3031 HELPER_SPE_VECTOR_CONV(fsctuf);
3033 /* Single-precision floating-point arithmetic */
3034 static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
3036 CPU_FloatU u1, u2;
3037 u1.l = op1;
3038 u2.l = op2;
3039 u1.f = float32_add(u1.f, u2.f, &env->spe_status);
3040 return u1.l;
3043 static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
3045 CPU_FloatU u1, u2;
3046 u1.l = op1;
3047 u2.l = op2;
3048 u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
3049 return u1.l;
3052 static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
3054 CPU_FloatU u1, u2;
3055 u1.l = op1;
3056 u2.l = op2;
3057 u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
3058 return u1.l;
3061 static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
3063 CPU_FloatU u1, u2;
3064 u1.l = op1;
3065 u2.l = op2;
3066 u1.f = float32_div(u1.f, u2.f, &env->spe_status);
3067 return u1.l;
3070 #define HELPER_SPE_SINGLE_ARITH(name) \
3071 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3073 return e##name(op1, op2); \
3075 /* efsadd */
3076 HELPER_SPE_SINGLE_ARITH(fsadd);
3077 /* efssub */
3078 HELPER_SPE_SINGLE_ARITH(fssub);
3079 /* efsmul */
3080 HELPER_SPE_SINGLE_ARITH(fsmul);
3081 /* efsdiv */
3082 HELPER_SPE_SINGLE_ARITH(fsdiv);
3084 #define HELPER_SPE_VECTOR_ARITH(name) \
3085 uint64_t helper_ev##name (uint64_t op1, uint64_t op2) \
3087 return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) | \
3088 (uint64_t)e##name(op1, op2); \
3090 /* evfsadd */
3091 HELPER_SPE_VECTOR_ARITH(fsadd);
3092 /* evfssub */
3093 HELPER_SPE_VECTOR_ARITH(fssub);
3094 /* evfsmul */
3095 HELPER_SPE_VECTOR_ARITH(fsmul);
3096 /* evfsdiv */
3097 HELPER_SPE_VECTOR_ARITH(fsdiv);
3099 /* Single-precision floating-point comparisons */
3100 static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
3102 CPU_FloatU u1, u2;
3103 u1.l = op1;
3104 u2.l = op2;
3105 return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
3108 static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
3110 CPU_FloatU u1, u2;
3111 u1.l = op1;
3112 u2.l = op2;
3113 return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
3116 static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
3118 CPU_FloatU u1, u2;
3119 u1.l = op1;
3120 u2.l = op2;
3121 return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
3124 static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
3126 /* XXX: TODO: test special values (NaN, infinites, ...) */
3127 return efststlt(op1, op2);
3130 static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
3132 /* XXX: TODO: test special values (NaN, infinites, ...) */
3133 return efststgt(op1, op2);
3136 static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
3138 /* XXX: TODO: test special values (NaN, infinites, ...) */
3139 return efststeq(op1, op2);
3142 #define HELPER_SINGLE_SPE_CMP(name) \
3143 uint32_t helper_e##name (uint32_t op1, uint32_t op2) \
3145 return e##name(op1, op2) << 2; \
3147 /* efststlt */
3148 HELPER_SINGLE_SPE_CMP(fststlt);
3149 /* efststgt */
3150 HELPER_SINGLE_SPE_CMP(fststgt);
3151 /* efststeq */
3152 HELPER_SINGLE_SPE_CMP(fststeq);
3153 /* efscmplt */
3154 HELPER_SINGLE_SPE_CMP(fscmplt);
3155 /* efscmpgt */
3156 HELPER_SINGLE_SPE_CMP(fscmpgt);
3157 /* efscmpeq */
3158 HELPER_SINGLE_SPE_CMP(fscmpeq);
3160 static always_inline uint32_t evcmp_merge (int t0, int t1)
3162 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
3165 #define HELPER_VECTOR_SPE_CMP(name) \
3166 uint32_t helper_ev##name (uint64_t op1, uint64_t op2) \
3168 return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2)); \
3170 /* evfststlt */
3171 HELPER_VECTOR_SPE_CMP(fststlt);
3172 /* evfststgt */
3173 HELPER_VECTOR_SPE_CMP(fststgt);
3174 /* evfststeq */
3175 HELPER_VECTOR_SPE_CMP(fststeq);
3176 /* evfscmplt */
3177 HELPER_VECTOR_SPE_CMP(fscmplt);
3178 /* evfscmpgt */
3179 HELPER_VECTOR_SPE_CMP(fscmpgt);
3180 /* evfscmpeq */
3181 HELPER_VECTOR_SPE_CMP(fscmpeq);
3183 /* Double-precision floating-point conversion */
3184 uint64_t helper_efdcfsi (uint32_t val)
3186 CPU_DoubleU u;
3188 u.d = int32_to_float64(val, &env->spe_status);
3190 return u.ll;
3193 uint64_t helper_efdcfsid (uint64_t val)
3195 CPU_DoubleU u;
3197 u.d = int64_to_float64(val, &env->spe_status);
3199 return u.ll;
3202 uint64_t helper_efdcfui (uint32_t val)
3204 CPU_DoubleU u;
3206 u.d = uint32_to_float64(val, &env->spe_status);
3208 return u.ll;
3211 uint64_t helper_efdcfuid (uint64_t val)
3213 CPU_DoubleU u;
3215 u.d = uint64_to_float64(val, &env->spe_status);
3217 return u.ll;
3220 uint32_t helper_efdctsi (uint64_t val)
3222 CPU_DoubleU u;
3224 u.ll = val;
3225 /* NaN are not treated the same way IEEE 754 does */
3226 if (unlikely(float64_is_nan(u.d)))
3227 return 0;
3229 return float64_to_int32(u.d, &env->spe_status);
3232 uint32_t helper_efdctui (uint64_t val)
3234 CPU_DoubleU u;
3236 u.ll = val;
3237 /* NaN are not treated the same way IEEE 754 does */
3238 if (unlikely(float64_is_nan(u.d)))
3239 return 0;
3241 return float64_to_uint32(u.d, &env->spe_status);
3244 uint32_t helper_efdctsiz (uint64_t val)
3246 CPU_DoubleU u;
3248 u.ll = val;
3249 /* NaN are not treated the same way IEEE 754 does */
3250 if (unlikely(float64_is_nan(u.d)))
3251 return 0;
3253 return float64_to_int32_round_to_zero(u.d, &env->spe_status);
3256 uint64_t helper_efdctsidz (uint64_t val)
3258 CPU_DoubleU u;
3260 u.ll = val;
3261 /* NaN are not treated the same way IEEE 754 does */
3262 if (unlikely(float64_is_nan(u.d)))
3263 return 0;
3265 return float64_to_int64_round_to_zero(u.d, &env->spe_status);
3268 uint32_t helper_efdctuiz (uint64_t val)
3270 CPU_DoubleU u;
3272 u.ll = val;
3273 /* NaN are not treated the same way IEEE 754 does */
3274 if (unlikely(float64_is_nan(u.d)))
3275 return 0;
3277 return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
3280 uint64_t helper_efdctuidz (uint64_t val)
3282 CPU_DoubleU u;
3284 u.ll = val;
3285 /* NaN are not treated the same way IEEE 754 does */
3286 if (unlikely(float64_is_nan(u.d)))
3287 return 0;
3289 return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
3292 uint64_t helper_efdcfsf (uint32_t val)
3294 CPU_DoubleU u;
3295 float64 tmp;
3297 u.d = int32_to_float64(val, &env->spe_status);
3298 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
3299 u.d = float64_div(u.d, tmp, &env->spe_status);
3301 return u.ll;
3304 uint64_t helper_efdcfuf (uint32_t val)
3306 CPU_DoubleU u;
3307 float64 tmp;
3309 u.d = uint32_to_float64(val, &env->spe_status);
3310 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
3311 u.d = float64_div(u.d, tmp, &env->spe_status);
3313 return u.ll;
3316 uint32_t helper_efdctsf (uint64_t val)
3318 CPU_DoubleU u;
3319 float64 tmp;
3321 u.ll = val;
3322 /* NaN are not treated the same way IEEE 754 does */
3323 if (unlikely(float64_is_nan(u.d)))
3324 return 0;
3325 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
3326 u.d = float64_mul(u.d, tmp, &env->spe_status);
3328 return float64_to_int32(u.d, &env->spe_status);
3331 uint32_t helper_efdctuf (uint64_t val)
3333 CPU_DoubleU u;
3334 float64 tmp;
3336 u.ll = val;
3337 /* NaN are not treated the same way IEEE 754 does */
3338 if (unlikely(float64_is_nan(u.d)))
3339 return 0;
3340 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
3341 u.d = float64_mul(u.d, tmp, &env->spe_status);
3343 return float64_to_uint32(u.d, &env->spe_status);
3346 uint32_t helper_efscfd (uint64_t val)
3348 CPU_DoubleU u1;
3349 CPU_FloatU u2;
3351 u1.ll = val;
3352 u2.f = float64_to_float32(u1.d, &env->spe_status);
3354 return u2.l;
3357 uint64_t helper_efdcfs (uint32_t val)
3359 CPU_DoubleU u2;
3360 CPU_FloatU u1;
3362 u1.l = val;
3363 u2.d = float32_to_float64(u1.f, &env->spe_status);
3365 return u2.ll;
3368 /* Double precision fixed-point arithmetic */
3369 uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
3371 CPU_DoubleU u1, u2;
3372 u1.ll = op1;
3373 u2.ll = op2;
3374 u1.d = float64_add(u1.d, u2.d, &env->spe_status);
3375 return u1.ll;
3378 uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
3380 CPU_DoubleU u1, u2;
3381 u1.ll = op1;
3382 u2.ll = op2;
3383 u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
3384 return u1.ll;
3387 uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
3389 CPU_DoubleU u1, u2;
3390 u1.ll = op1;
3391 u2.ll = op2;
3392 u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
3393 return u1.ll;
3396 uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
3398 CPU_DoubleU u1, u2;
3399 u1.ll = op1;
3400 u2.ll = op2;
3401 u1.d = float64_div(u1.d, u2.d, &env->spe_status);
3402 return u1.ll;
3405 /* Double precision floating point helpers */
3406 uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
3408 CPU_DoubleU u1, u2;
3409 u1.ll = op1;
3410 u2.ll = op2;
3411 return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
3414 uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
3416 CPU_DoubleU u1, u2;
3417 u1.ll = op1;
3418 u2.ll = op2;
3419 return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
3422 uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
3424 CPU_DoubleU u1, u2;
3425 u1.ll = op1;
3426 u2.ll = op2;
3427 return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
3430 uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
3432 /* XXX: TODO: test special values (NaN, infinites, ...) */
3433 return helper_efdtstlt(op1, op2);
3436 uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
3438 /* XXX: TODO: test special values (NaN, infinites, ...) */
3439 return helper_efdtstgt(op1, op2);
3442 uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
3444 /* XXX: TODO: test special values (NaN, infinites, ...) */
3445 return helper_efdtsteq(op1, op2);
3448 /*****************************************************************************/
3449 /* Softmmu support */
3450 #if !defined (CONFIG_USER_ONLY)
3452 #define MMUSUFFIX _mmu
3454 #define SHIFT 0
3455 #include "softmmu_template.h"
3457 #define SHIFT 1
3458 #include "softmmu_template.h"
3460 #define SHIFT 2
3461 #include "softmmu_template.h"
3463 #define SHIFT 3
3464 #include "softmmu_template.h"
3466 /* try to fill the TLB and return an exception if error. If retaddr is
3467 NULL, it means that the function was called in C code (i.e. not
3468 from generated code or from helper.c) */
3469 /* XXX: fix it to restore all registers */
3470 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3472 TranslationBlock *tb;
3473 CPUState *saved_env;
3474 unsigned long pc;
3475 int ret;
3477 /* XXX: hack to restore env in all cases, even if not called from
3478 generated code */
3479 saved_env = env;
3480 env = cpu_single_env;
3481 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3482 if (unlikely(ret != 0)) {
3483 if (likely(retaddr)) {
3484 /* now we have a real cpu fault */
3485 pc = (unsigned long)retaddr;
3486 tb = tb_find_pc(pc);
3487 if (likely(tb)) {
3488 /* the PC is inside the translated code. It means that we have
3489 a virtual CPU fault */
3490 cpu_restore_state(tb, env, pc, NULL);
3493 helper_raise_exception_err(env->exception_index, env->error_code);
3495 env = saved_env;
3498 /* Segment registers load and store */
3499 target_ulong helper_load_sr (target_ulong sr_num)
3501 return env->sr[sr_num];
3504 void helper_store_sr (target_ulong sr_num, target_ulong val)
3506 ppc_store_sr(env, sr_num, val);
3509 /* SLB management */
3510 #if defined(TARGET_PPC64)
3511 target_ulong helper_load_slb (target_ulong slb_nr)
3513 return ppc_load_slb(env, slb_nr);
3516 void helper_store_slb (target_ulong slb_nr, target_ulong rs)
3518 ppc_store_slb(env, slb_nr, rs);
3521 void helper_slbia (void)
3523 ppc_slb_invalidate_all(env);
3526 void helper_slbie (target_ulong addr)
3528 ppc_slb_invalidate_one(env, addr);
3531 #endif /* defined(TARGET_PPC64) */
3533 /* TLB management */
3534 void helper_tlbia (void)
3536 ppc_tlb_invalidate_all(env);
3539 void helper_tlbie (target_ulong addr)
3541 ppc_tlb_invalidate_one(env, addr);
3544 /* Software driven TLBs management */
3545 /* PowerPC 602/603 software TLB load instructions helpers */
3546 static void do_6xx_tlb (target_ulong new_EPN, int is_code)
3548 target_ulong RPN, CMP, EPN;
3549 int way;
3551 RPN = env->spr[SPR_RPA];
3552 if (is_code) {
3553 CMP = env->spr[SPR_ICMP];
3554 EPN = env->spr[SPR_IMISS];
3555 } else {
3556 CMP = env->spr[SPR_DCMP];
3557 EPN = env->spr[SPR_DMISS];
3559 way = (env->spr[SPR_SRR1] >> 17) & 1;
3560 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3561 " PTE1 " ADDRX " way %d\n",
3562 __func__, new_EPN, EPN, CMP, RPN, way);
3563 /* Store this TLB */
3564 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3565 way, is_code, CMP, RPN);
3568 void helper_6xx_tlbd (target_ulong EPN)
3570 do_6xx_tlb(EPN, 0);
3573 void helper_6xx_tlbi (target_ulong EPN)
3575 do_6xx_tlb(EPN, 1);
3578 /* PowerPC 74xx software TLB load instructions helpers */
3579 static void do_74xx_tlb (target_ulong new_EPN, int is_code)
3581 target_ulong RPN, CMP, EPN;
3582 int way;
3584 RPN = env->spr[SPR_PTELO];
3585 CMP = env->spr[SPR_PTEHI];
3586 EPN = env->spr[SPR_TLBMISS] & ~0x3;
3587 way = env->spr[SPR_TLBMISS] & 0x3;
3588 LOG_SWTLB("%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3589 " PTE1 " ADDRX " way %d\n",
3590 __func__, new_EPN, EPN, CMP, RPN, way);
3591 /* Store this TLB */
3592 ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3593 way, is_code, CMP, RPN);
3596 void helper_74xx_tlbd (target_ulong EPN)
3598 do_74xx_tlb(EPN, 0);
3601 void helper_74xx_tlbi (target_ulong EPN)
3603 do_74xx_tlb(EPN, 1);
3606 static always_inline target_ulong booke_tlb_to_page_size (int size)
3608 return 1024 << (2 * size);
3611 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
3613 int size;
3615 switch (page_size) {
3616 case 0x00000400UL:
3617 size = 0x0;
3618 break;
3619 case 0x00001000UL:
3620 size = 0x1;
3621 break;
3622 case 0x00004000UL:
3623 size = 0x2;
3624 break;
3625 case 0x00010000UL:
3626 size = 0x3;
3627 break;
3628 case 0x00040000UL:
3629 size = 0x4;
3630 break;
3631 case 0x00100000UL:
3632 size = 0x5;
3633 break;
3634 case 0x00400000UL:
3635 size = 0x6;
3636 break;
3637 case 0x01000000UL:
3638 size = 0x7;
3639 break;
3640 case 0x04000000UL:
3641 size = 0x8;
3642 break;
3643 case 0x10000000UL:
3644 size = 0x9;
3645 break;
3646 case 0x40000000UL:
3647 size = 0xA;
3648 break;
3649 #if defined (TARGET_PPC64)
3650 case 0x000100000000ULL:
3651 size = 0xB;
3652 break;
3653 case 0x000400000000ULL:
3654 size = 0xC;
3655 break;
3656 case 0x001000000000ULL:
3657 size = 0xD;
3658 break;
3659 case 0x004000000000ULL:
3660 size = 0xE;
3661 break;
3662 case 0x010000000000ULL:
3663 size = 0xF;
3664 break;
3665 #endif
3666 default:
3667 size = -1;
3668 break;
3671 return size;
3674 /* Helpers for 4xx TLB management */
3675 target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3677 ppcemb_tlb_t *tlb;
3678 target_ulong ret;
3679 int size;
3681 entry &= 0x3F;
3682 tlb = &env->tlb[entry].tlbe;
3683 ret = tlb->EPN;
3684 if (tlb->prot & PAGE_VALID)
3685 ret |= 0x400;
3686 size = booke_page_size_to_tlb(tlb->size);
3687 if (size < 0 || size > 0x7)
3688 size = 1;
3689 ret |= size << 7;
3690 env->spr[SPR_40x_PID] = tlb->PID;
3691 return ret;
3694 target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3696 ppcemb_tlb_t *tlb;
3697 target_ulong ret;
3699 entry &= 0x3F;
3700 tlb = &env->tlb[entry].tlbe;
3701 ret = tlb->RPN;
3702 if (tlb->prot & PAGE_EXEC)
3703 ret |= 0x200;
3704 if (tlb->prot & PAGE_WRITE)
3705 ret |= 0x100;
3706 return ret;
3709 void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3711 ppcemb_tlb_t *tlb;
3712 target_ulong page, end;
3714 LOG_SWTLB("%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3715 entry &= 0x3F;
3716 tlb = &env->tlb[entry].tlbe;
3717 /* Invalidate previous TLB (if it's valid) */
3718 if (tlb->prot & PAGE_VALID) {
3719 end = tlb->EPN + tlb->size;
3720 LOG_SWTLB("%s: invalidate old TLB %d start " ADDRX
3721 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3722 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3723 tlb_flush_page(env, page);
3725 tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3726 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3727 * If this ever occurs, one should use the ppcemb target instead
3728 * of the ppc or ppc64 one
3730 if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3731 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3732 "are not supported (%d)\n",
3733 tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3735 tlb->EPN = val & ~(tlb->size - 1);
3736 if (val & 0x40)
3737 tlb->prot |= PAGE_VALID;
3738 else
3739 tlb->prot &= ~PAGE_VALID;
3740 if (val & 0x20) {
3741 /* XXX: TO BE FIXED */
3742 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3744 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3745 tlb->attr = val & 0xFF;
3746 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3747 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3748 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3749 tlb->prot & PAGE_READ ? 'r' : '-',
3750 tlb->prot & PAGE_WRITE ? 'w' : '-',
3751 tlb->prot & PAGE_EXEC ? 'x' : '-',
3752 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3753 /* Invalidate new TLB (if valid) */
3754 if (tlb->prot & PAGE_VALID) {
3755 end = tlb->EPN + tlb->size;
3756 LOG_SWTLB("%s: invalidate TLB %d start " ADDRX
3757 " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3758 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3759 tlb_flush_page(env, page);
3763 void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3765 ppcemb_tlb_t *tlb;
3767 LOG_SWTLB("%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3768 entry &= 0x3F;
3769 tlb = &env->tlb[entry].tlbe;
3770 tlb->RPN = val & 0xFFFFFC00;
3771 tlb->prot = PAGE_READ;
3772 if (val & 0x200)
3773 tlb->prot |= PAGE_EXEC;
3774 if (val & 0x100)
3775 tlb->prot |= PAGE_WRITE;
3776 LOG_SWTLB("%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3777 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3778 (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3779 tlb->prot & PAGE_READ ? 'r' : '-',
3780 tlb->prot & PAGE_WRITE ? 'w' : '-',
3781 tlb->prot & PAGE_EXEC ? 'x' : '-',
3782 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3785 target_ulong helper_4xx_tlbsx (target_ulong address)
3787 return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3790 /* PowerPC 440 TLB management */
3791 void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3793 ppcemb_tlb_t *tlb;
3794 target_ulong EPN, RPN, size;
3795 int do_flush_tlbs;
3797 LOG_SWTLB("%s word %d entry %d value " ADDRX "\n",
3798 __func__, word, (int)entry, value);
3799 do_flush_tlbs = 0;
3800 entry &= 0x3F;
3801 tlb = &env->tlb[entry].tlbe;
3802 switch (word) {
3803 default:
3804 /* Just here to please gcc */
3805 case 0:
3806 EPN = value & 0xFFFFFC00;
3807 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3808 do_flush_tlbs = 1;
3809 tlb->EPN = EPN;
3810 size = booke_tlb_to_page_size((value >> 4) & 0xF);
3811 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3812 do_flush_tlbs = 1;
3813 tlb->size = size;
3814 tlb->attr &= ~0x1;
3815 tlb->attr |= (value >> 8) & 1;
3816 if (value & 0x200) {
3817 tlb->prot |= PAGE_VALID;
3818 } else {
3819 if (tlb->prot & PAGE_VALID) {
3820 tlb->prot &= ~PAGE_VALID;
3821 do_flush_tlbs = 1;
3824 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3825 if (do_flush_tlbs)
3826 tlb_flush(env, 1);
3827 break;
3828 case 1:
3829 RPN = value & 0xFFFFFC0F;
3830 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3831 tlb_flush(env, 1);
3832 tlb->RPN = RPN;
3833 break;
3834 case 2:
3835 tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3836 tlb->prot = tlb->prot & PAGE_VALID;
3837 if (value & 0x1)
3838 tlb->prot |= PAGE_READ << 4;
3839 if (value & 0x2)
3840 tlb->prot |= PAGE_WRITE << 4;
3841 if (value & 0x4)
3842 tlb->prot |= PAGE_EXEC << 4;
3843 if (value & 0x8)
3844 tlb->prot |= PAGE_READ;
3845 if (value & 0x10)
3846 tlb->prot |= PAGE_WRITE;
3847 if (value & 0x20)
3848 tlb->prot |= PAGE_EXEC;
3849 break;
3853 target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3855 ppcemb_tlb_t *tlb;
3856 target_ulong ret;
3857 int size;
3859 entry &= 0x3F;
3860 tlb = &env->tlb[entry].tlbe;
3861 switch (word) {
3862 default:
3863 /* Just here to please gcc */
3864 case 0:
3865 ret = tlb->EPN;
3866 size = booke_page_size_to_tlb(tlb->size);
3867 if (size < 0 || size > 0xF)
3868 size = 1;
3869 ret |= size << 4;
3870 if (tlb->attr & 0x1)
3871 ret |= 0x100;
3872 if (tlb->prot & PAGE_VALID)
3873 ret |= 0x200;
3874 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3875 env->spr[SPR_440_MMUCR] |= tlb->PID;
3876 break;
3877 case 1:
3878 ret = tlb->RPN;
3879 break;
3880 case 2:
3881 ret = tlb->attr & ~0x1;
3882 if (tlb->prot & (PAGE_READ << 4))
3883 ret |= 0x1;
3884 if (tlb->prot & (PAGE_WRITE << 4))
3885 ret |= 0x2;
3886 if (tlb->prot & (PAGE_EXEC << 4))
3887 ret |= 0x4;
3888 if (tlb->prot & PAGE_READ)
3889 ret |= 0x8;
3890 if (tlb->prot & PAGE_WRITE)
3891 ret |= 0x10;
3892 if (tlb->prot & PAGE_EXEC)
3893 ret |= 0x20;
3894 break;
3896 return ret;
3899 target_ulong helper_440_tlbsx (target_ulong address)
3901 return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3904 #endif /* !CONFIG_USER_ONLY */