Preliminary AIX support
[qemu/mini2440.git] / hw / etraxfs_dma.c
blob2e5de50cf638f7bcebaf061e3a5261b68345fcaf
1 /*
2 * QEMU ETRAX DMA Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdio.h>
25 #include <sys/time.h>
26 #include "hw.h"
27 #include "qemu-common.h"
28 #include "sysemu.h"
30 #include "etraxfs_dma.h"
32 #define D(x)
34 #define RW_DATA 0x0
35 #define RW_SAVED_DATA 0x58
36 #define RW_SAVED_DATA_BUF 0x5c
37 #define RW_GROUP 0x60
38 #define RW_GROUP_DOWN 0x7c
39 #define RW_CMD 0x80
40 #define RW_CFG 0x84
41 #define RW_STAT 0x88
42 #define RW_INTR_MASK 0x8c
43 #define RW_ACK_INTR 0x90
44 #define R_INTR 0x94
45 #define R_MASKED_INTR 0x98
46 #define RW_STREAM_CMD 0x9c
48 #define DMA_REG_MAX 0x100
50 /* descriptors */
52 // ------------------------------------------------------------ dma_descr_group
53 typedef struct dma_descr_group {
54 struct dma_descr_group *next;
55 unsigned eol : 1;
56 unsigned tol : 1;
57 unsigned bol : 1;
58 unsigned : 1;
59 unsigned intr : 1;
60 unsigned : 2;
61 unsigned en : 1;
62 unsigned : 7;
63 unsigned dis : 1;
64 unsigned md : 16;
65 struct dma_descr_group *up;
66 union {
67 struct dma_descr_context *context;
68 struct dma_descr_group *group;
69 } down;
70 } dma_descr_group;
72 // ---------------------------------------------------------- dma_descr_context
73 typedef struct dma_descr_context {
74 struct dma_descr_context *next;
75 unsigned eol : 1;
76 unsigned : 3;
77 unsigned intr : 1;
78 unsigned : 1;
79 unsigned store_mode : 1;
80 unsigned en : 1;
81 unsigned : 7;
82 unsigned dis : 1;
83 unsigned md0 : 16;
84 unsigned md1;
85 unsigned md2;
86 unsigned md3;
87 unsigned md4;
88 struct dma_descr_data *saved_data;
89 char *saved_data_buf;
90 } dma_descr_context;
92 // ------------------------------------------------------------- dma_descr_data
93 typedef struct dma_descr_data {
94 struct dma_descr_data *next;
95 char *buf;
96 unsigned eol : 1;
97 unsigned : 2;
98 unsigned out_eop : 1;
99 unsigned intr : 1;
100 unsigned wait : 1;
101 unsigned : 2;
102 unsigned : 3;
103 unsigned in_eop : 1;
104 unsigned : 4;
105 unsigned md : 16;
106 char *after;
107 } dma_descr_data;
109 /* Constants */
110 enum {
111 regk_dma_ack_pkt = 0x00000100,
112 regk_dma_anytime = 0x00000001,
113 regk_dma_array = 0x00000008,
114 regk_dma_burst = 0x00000020,
115 regk_dma_client = 0x00000002,
116 regk_dma_copy_next = 0x00000010,
117 regk_dma_copy_up = 0x00000020,
118 regk_dma_data_at_eol = 0x00000001,
119 regk_dma_dis_c = 0x00000010,
120 regk_dma_dis_g = 0x00000020,
121 regk_dma_idle = 0x00000001,
122 regk_dma_intern = 0x00000004,
123 regk_dma_load_c = 0x00000200,
124 regk_dma_load_c_n = 0x00000280,
125 regk_dma_load_c_next = 0x00000240,
126 regk_dma_load_d = 0x00000140,
127 regk_dma_load_g = 0x00000300,
128 regk_dma_load_g_down = 0x000003c0,
129 regk_dma_load_g_next = 0x00000340,
130 regk_dma_load_g_up = 0x00000380,
131 regk_dma_next_en = 0x00000010,
132 regk_dma_next_pkt = 0x00000010,
133 regk_dma_no = 0x00000000,
134 regk_dma_only_at_wait = 0x00000000,
135 regk_dma_restore = 0x00000020,
136 regk_dma_rst = 0x00000001,
137 regk_dma_running = 0x00000004,
138 regk_dma_rw_cfg_default = 0x00000000,
139 regk_dma_rw_cmd_default = 0x00000000,
140 regk_dma_rw_intr_mask_default = 0x00000000,
141 regk_dma_rw_stat_default = 0x00000101,
142 regk_dma_rw_stream_cmd_default = 0x00000000,
143 regk_dma_save_down = 0x00000020,
144 regk_dma_save_up = 0x00000020,
145 regk_dma_set_reg = 0x00000050,
146 regk_dma_set_w_size1 = 0x00000190,
147 regk_dma_set_w_size2 = 0x000001a0,
148 regk_dma_set_w_size4 = 0x000001c0,
149 regk_dma_stopped = 0x00000002,
150 regk_dma_store_c = 0x00000002,
151 regk_dma_store_descr = 0x00000000,
152 regk_dma_store_g = 0x00000004,
153 regk_dma_store_md = 0x00000001,
154 regk_dma_sw = 0x00000008,
155 regk_dma_update_down = 0x00000020,
156 regk_dma_yes = 0x00000001
159 enum dma_ch_state
161 RST = 1,
162 STOPPED = 2,
163 RUNNING = 4
166 struct fs_dma_channel
168 int regmap;
169 qemu_irq *irq;
170 struct etraxfs_dma_client *client;
173 /* Internal status. */
174 int stream_cmd_src;
175 enum dma_ch_state state;
177 unsigned int input : 1;
178 unsigned int eol : 1;
180 struct dma_descr_group current_g;
181 struct dma_descr_context current_c;
182 struct dma_descr_data current_d;
184 /* Controll registers. */
185 uint32_t regs[DMA_REG_MAX];
188 struct fs_dma_ctrl
190 CPUState *env;
191 target_phys_addr_t base;
193 int nr_channels;
194 struct fs_dma_channel *channels;
196 QEMUBH *bh;
199 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
201 return ctrl->channels[c].regs[reg];
204 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
206 return channel_reg(ctrl, c, RW_CFG) & 2;
209 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
211 return (channel_reg(ctrl, c, RW_CFG) & 1)
212 && ctrl->channels[c].client;
215 static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
217 /* Every channel has a 0x2000 ctrl register map. */
218 return (addr - base) >> 13;
221 #ifdef USE_THIS_DEAD_CODE
222 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
224 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
226 /* Load and decode. FIXME: handle endianness. */
227 cpu_physical_memory_read (addr,
228 (void *) &ctrl->channels[c].current_g,
229 sizeof ctrl->channels[c].current_g);
232 static void dump_c(int ch, struct dma_descr_context *c)
234 printf("%s ch=%d\n", __func__, ch);
235 printf("next=%p\n", c->next);
236 printf("saved_data=%p\n", c->saved_data);
237 printf("saved_data_buf=%p\n", c->saved_data_buf);
238 printf("eol=%x\n", (uint32_t) c->eol);
241 static void dump_d(int ch, struct dma_descr_data *d)
243 printf("%s ch=%d\n", __func__, ch);
244 printf("next=%p\n", d->next);
245 printf("buf=%p\n", d->buf);
246 printf("after=%p\n", d->after);
247 printf("intr=%x\n", (uint32_t) d->intr);
248 printf("out_eop=%x\n", (uint32_t) d->out_eop);
249 printf("in_eop=%x\n", (uint32_t) d->in_eop);
250 printf("eol=%x\n", (uint32_t) d->eol);
252 #endif
254 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
256 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
258 /* Load and decode. FIXME: handle endianness. */
259 cpu_physical_memory_read (addr,
260 (void *) &ctrl->channels[c].current_c,
261 sizeof ctrl->channels[c].current_c);
263 D(dump_c(c, &ctrl->channels[c].current_c));
264 /* I guess this should update the current pos. */
265 ctrl->channels[c].regs[RW_SAVED_DATA] =
266 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
267 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
268 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
271 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
273 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
275 /* Load and decode. FIXME: handle endianness. */
276 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
277 cpu_physical_memory_read (addr,
278 (void *) &ctrl->channels[c].current_d,
279 sizeof ctrl->channels[c].current_d);
281 D(dump_d(c, &ctrl->channels[c].current_d));
282 ctrl->channels[c].regs[RW_DATA] = addr;
285 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
287 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
289 /* Encode and store. FIXME: handle endianness. */
290 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
291 D(dump_d(c, &ctrl->channels[c].current_d));
292 cpu_physical_memory_write (addr,
293 (void *) &ctrl->channels[c].current_c,
294 sizeof ctrl->channels[c].current_c);
297 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
299 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
301 /* Encode and store. FIXME: handle endianness. */
302 D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
303 cpu_physical_memory_write (addr,
304 (void *) &ctrl->channels[c].current_d,
305 sizeof ctrl->channels[c].current_d);
308 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
310 /* FIXME: */
313 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
315 if (ctrl->channels[c].client)
317 ctrl->channels[c].eol = 0;
318 ctrl->channels[c].state = RUNNING;
319 } else
320 printf("WARNING: starting DMA ch %d with no client\n", c);
322 qemu_bh_schedule_idle(ctrl->bh);
325 static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
327 if (!channel_en(ctrl, c)
328 || channel_stopped(ctrl, c)
329 || ctrl->channels[c].state != RUNNING
330 /* Only reload the current data descriptor if it has eol set. */
331 || !ctrl->channels[c].current_d.eol) {
332 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
333 c, ctrl->channels[c].state,
334 channel_stopped(ctrl, c),
335 channel_en(ctrl,c),
336 ctrl->channels[c].eol));
337 D(dump_d(c, &ctrl->channels[c].current_d));
338 return;
341 /* Reload the current descriptor. */
342 channel_load_d(ctrl, c);
344 /* If the current descriptor cleared the eol flag and we had already
345 reached eol state, do the continue. */
346 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
347 D(printf("continue %d ok %p\n", c,
348 ctrl->channels[c].current_d.next));
349 ctrl->channels[c].regs[RW_SAVED_DATA] =
350 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
351 channel_load_d(ctrl, c);
352 channel_start(ctrl, c);
354 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
355 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
358 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
360 unsigned int cmd = v & ((1 << 10) - 1);
362 D(printf("%s ch=%d cmd=%x\n",
363 __func__, c, cmd));
364 if (cmd & regk_dma_load_d) {
365 channel_load_d(ctrl, c);
366 if (cmd & regk_dma_burst)
367 channel_start(ctrl, c);
370 if (cmd & regk_dma_load_c) {
371 channel_load_c(ctrl, c);
372 channel_start(ctrl, c);
376 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
378 D(printf("%s %d\n", __func__, c));
379 ctrl->channels[c].regs[R_INTR] &=
380 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
382 ctrl->channels[c].regs[R_MASKED_INTR] =
383 ctrl->channels[c].regs[R_INTR]
384 & ctrl->channels[c].regs[RW_INTR_MASK];
386 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
388 ctrl->channels[c].regs[R_MASKED_INTR]));
390 if (ctrl->channels[c].regs[R_MASKED_INTR])
391 qemu_irq_raise(ctrl->channels[c].irq[0]);
392 else
393 qemu_irq_lower(ctrl->channels[c].irq[0]);
396 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
398 uint32_t len;
399 uint32_t saved_data_buf;
400 unsigned char buf[2 * 1024];
402 if (ctrl->channels[c].eol)
403 return 0;
405 do {
406 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
408 D(printf("ch=%d buf=%x after=%x saved_data_buf=%x\n",
410 (uint32_t)ctrl->channels[c].current_d.buf,
411 (uint32_t)ctrl->channels[c].current_d.after,
412 saved_data_buf));
414 len = (uint32_t)(unsigned long)
415 ctrl->channels[c].current_d.after;
416 len -= saved_data_buf;
418 if (len > sizeof buf)
419 len = sizeof buf;
420 cpu_physical_memory_read (saved_data_buf, buf, len);
422 D(printf("channel %d pushes %x %u bytes\n", c,
423 saved_data_buf, len));
425 if (ctrl->channels[c].client->client.push)
426 ctrl->channels[c].client->client.push(
427 ctrl->channels[c].client->client.opaque,
428 buf, len);
429 else
430 printf("WARNING: DMA ch%d dataloss,"
431 " no attached client.\n", c);
433 saved_data_buf += len;
435 if (saved_data_buf == (uint32_t)(unsigned long)
436 ctrl->channels[c].current_d.after) {
437 /* Done. Step to next. */
438 if (ctrl->channels[c].current_d.out_eop) {
439 /* TODO: signal eop to the client. */
440 D(printf("signal eop\n"));
442 if (ctrl->channels[c].current_d.intr) {
443 /* TODO: signal eop to the client. */
444 /* data intr. */
445 D(printf("signal intr\n"));
446 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
447 channel_update_irq(ctrl, c);
449 if (ctrl->channels[c].current_d.eol) {
450 D(printf("channel %d EOL\n", c));
451 ctrl->channels[c].eol = 1;
453 /* Mark the context as disabled. */
454 ctrl->channels[c].current_c.dis = 1;
455 channel_store_c(ctrl, c);
457 channel_stop(ctrl, c);
458 } else {
459 ctrl->channels[c].regs[RW_SAVED_DATA] =
460 (uint32_t)(unsigned long)ctrl->
461 channels[c].current_d.next;
462 /* Load new descriptor. */
463 channel_load_d(ctrl, c);
464 saved_data_buf = (uint32_t)(unsigned long)
465 ctrl->channels[c].current_d.buf;
468 channel_store_d(ctrl, c);
469 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
470 saved_data_buf;
471 D(dump_d(c, &ctrl->channels[c].current_d));
473 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
474 } while (!ctrl->channels[c].eol);
475 return 1;
478 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
479 unsigned char *buf, int buflen, int eop)
481 uint32_t len;
482 uint32_t saved_data_buf;
484 if (ctrl->channels[c].eol == 1)
485 return 0;
487 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
488 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
489 len -= saved_data_buf;
491 if (len > buflen)
492 len = buflen;
494 cpu_physical_memory_write (saved_data_buf, buf, len);
495 saved_data_buf += len;
497 if (saved_data_buf ==
498 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
499 || eop) {
500 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
502 D(printf("in dscr end len=%d\n",
503 ctrl->channels[c].current_d.after
504 - ctrl->channels[c].current_d.buf));
505 ctrl->channels[c].current_d.after =
506 (void *)(unsigned long) saved_data_buf;
508 /* Done. Step to next. */
509 if (ctrl->channels[c].current_d.intr) {
510 /* TODO: signal eop to the client. */
511 /* data intr. */
512 ctrl->channels[c].regs[R_INTR] |= 3;
514 if (eop) {
515 ctrl->channels[c].current_d.in_eop = 1;
516 ctrl->channels[c].regs[R_INTR] |= 8;
518 if (r_intr != ctrl->channels[c].regs[R_INTR])
519 channel_update_irq(ctrl, c);
521 channel_store_d(ctrl, c);
522 D(dump_d(c, &ctrl->channels[c].current_d));
524 if (ctrl->channels[c].current_d.eol) {
525 D(printf("channel %d EOL\n", c));
526 ctrl->channels[c].eol = 1;
528 /* Mark the context as disabled. */
529 ctrl->channels[c].current_c.dis = 1;
530 channel_store_c(ctrl, c);
532 channel_stop(ctrl, c);
533 } else {
534 ctrl->channels[c].regs[RW_SAVED_DATA] =
535 (uint32_t)(unsigned long)ctrl->
536 channels[c].current_d.next;
537 /* Load new descriptor. */
538 channel_load_d(ctrl, c);
539 saved_data_buf = (uint32_t)(unsigned long)
540 ctrl->channels[c].current_d.buf;
544 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
545 return len;
548 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
550 if (ctrl->channels[c].client->client.pull) {
551 ctrl->channels[c].client->client.pull(
552 ctrl->channels[c].client->client.opaque);
553 return 1;
554 } else
555 return 0;
558 static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
560 struct fs_dma_ctrl *ctrl = opaque;
561 CPUState *env = ctrl->env;
562 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
563 addr);
564 return 0;
567 static uint32_t
568 dma_readl (void *opaque, target_phys_addr_t addr)
570 struct fs_dma_ctrl *ctrl = opaque;
571 int c;
572 uint32_t r = 0;
574 /* Make addr relative to this instances base. */
575 c = fs_channel(ctrl->base, addr);
576 addr &= 0x1fff;
577 switch (addr)
579 case RW_STAT:
580 r = ctrl->channels[c].state & 7;
581 r |= ctrl->channels[c].eol << 5;
582 r |= ctrl->channels[c].stream_cmd_src << 8;
583 break;
585 default:
586 r = ctrl->channels[c].regs[addr];
587 D(printf ("%s c=%d addr=%x\n",
588 __func__, c, addr));
589 break;
591 return r;
594 static void
595 dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
597 struct fs_dma_ctrl *ctrl = opaque;
598 CPUState *env = ctrl->env;
599 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
600 addr);
603 static void
604 dma_update_state(struct fs_dma_ctrl *ctrl, int c)
606 if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
607 if (ctrl->channels[c].regs[RW_CFG] & 2)
608 ctrl->channels[c].state = STOPPED;
609 if (!(ctrl->channels[c].regs[RW_CFG] & 1))
610 ctrl->channels[c].state = RST;
614 static void
615 dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
617 struct fs_dma_ctrl *ctrl = opaque;
618 int c;
620 /* Make addr relative to this instances base. */
621 c = fs_channel(ctrl->base, addr);
622 addr &= 0x1fff;
623 switch (addr)
625 case RW_DATA:
626 ctrl->channels[c].regs[addr] = value;
627 break;
629 case RW_CFG:
630 ctrl->channels[c].regs[addr] = value;
631 dma_update_state(ctrl, c);
632 break;
633 case RW_CMD:
634 /* continue. */
635 if (value & ~1)
636 printf("Invalid store to ch=%d RW_CMD %x\n",
637 c, value);
638 ctrl->channels[c].regs[addr] = value;
639 channel_continue(ctrl, c);
640 break;
642 case RW_SAVED_DATA:
643 case RW_SAVED_DATA_BUF:
644 case RW_GROUP:
645 case RW_GROUP_DOWN:
646 ctrl->channels[c].regs[addr] = value;
647 break;
649 case RW_ACK_INTR:
650 case RW_INTR_MASK:
651 ctrl->channels[c].regs[addr] = value;
652 channel_update_irq(ctrl, c);
653 if (addr == RW_ACK_INTR)
654 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
655 break;
657 case RW_STREAM_CMD:
658 if (value & ~1023)
659 printf("Invalid store to ch=%d "
660 "RW_STREAMCMD %x\n",
661 c, value);
662 ctrl->channels[c].regs[addr] = value;
663 D(printf("stream_cmd ch=%d\n", c));
664 channel_stream_cmd(ctrl, c, value);
665 break;
667 default:
668 D(printf ("%s c=%d %x %x\n", __func__, c, addr));
669 break;
673 static CPUReadMemoryFunc *dma_read[] = {
674 &dma_rinvalid,
675 &dma_rinvalid,
676 &dma_readl,
679 static CPUWriteMemoryFunc *dma_write[] = {
680 &dma_winvalid,
681 &dma_winvalid,
682 &dma_writel,
685 static int etraxfs_dmac_run(void *opaque)
687 struct fs_dma_ctrl *ctrl = opaque;
688 int i;
689 int p = 0;
691 for (i = 0;
692 i < ctrl->nr_channels;
693 i++)
695 if (ctrl->channels[i].state == RUNNING)
697 if (ctrl->channels[i].input) {
698 p += channel_in_run(ctrl, i);
699 } else {
700 p += channel_out_run(ctrl, i);
704 return p;
707 int etraxfs_dmac_input(struct etraxfs_dma_client *client,
708 void *buf, int len, int eop)
710 return channel_in_process(client->ctrl, client->channel,
711 buf, len, eop);
714 /* Connect an IRQ line with a channel. */
715 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
717 struct fs_dma_ctrl *ctrl = opaque;
718 ctrl->channels[c].irq = line;
719 ctrl->channels[c].input = input;
722 void etraxfs_dmac_connect_client(void *opaque, int c,
723 struct etraxfs_dma_client *cl)
725 struct fs_dma_ctrl *ctrl = opaque;
726 cl->ctrl = ctrl;
727 cl->channel = c;
728 ctrl->channels[c].client = cl;
732 static void DMA_run(void *opaque)
734 struct fs_dma_ctrl *etraxfs_dmac = opaque;
735 int p = 1;
737 if (vm_running)
738 p = etraxfs_dmac_run(etraxfs_dmac);
740 if (p)
741 qemu_bh_schedule_idle(etraxfs_dmac->bh);
744 void *etraxfs_dmac_init(CPUState *env,
745 target_phys_addr_t base, int nr_channels)
747 struct fs_dma_ctrl *ctrl = NULL;
748 int i;
750 ctrl = qemu_mallocz(sizeof *ctrl);
751 if (!ctrl)
752 return NULL;
754 ctrl->bh = qemu_bh_new(DMA_run, ctrl);
756 ctrl->base = base;
757 ctrl->env = env;
758 ctrl->nr_channels = nr_channels;
759 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
760 if (!ctrl->channels)
761 goto err;
763 for (i = 0; i < nr_channels; i++)
765 ctrl->channels[i].regmap = cpu_register_io_memory(0,
766 dma_read,
767 dma_write,
768 ctrl);
769 cpu_register_physical_memory (base + i * 0x2000,
770 sizeof ctrl->channels[i].regs,
771 ctrl->channels[i].regmap);
774 return ctrl;
775 err:
776 qemu_free(ctrl->channels);
777 qemu_free(ctrl);
778 return NULL;