Kludge to support linux-user on a PPC64
[qemu/mini2440.git] / target-i386 / exec.h
blob8298b429374c7a1507f8974fc56b265c7dd08111
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
30 #include "cpu-defs.h"
32 register struct CPUX86State *env asm(AREG0);
34 extern FILE *logfile;
35 extern int loglevel;
37 #define EAX (env->regs[R_EAX])
38 #define ECX (env->regs[R_ECX])
39 #define EDX (env->regs[R_EDX])
40 #define EBX (env->regs[R_EBX])
41 #define ESP (env->regs[R_ESP])
42 #define EBP (env->regs[R_EBP])
43 #define ESI (env->regs[R_ESI])
44 #define EDI (env->regs[R_EDI])
45 #define EIP (env->eip)
46 #define DF (env->df)
48 #define CC_SRC (env->cc_src)
49 #define CC_DST (env->cc_dst)
50 #define CC_OP (env->cc_op)
52 /* float macros */
53 #define FT0 (env->ft0)
54 #define ST0 (env->fpregs[env->fpstt].d)
55 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
56 #define ST1 ST(1)
58 #include "cpu.h"
59 #include "exec-all.h"
61 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
64 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
65 int is_write, int mmu_idx, int is_softmmu);
66 void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
67 void *retaddr);
68 void __hidden cpu_lock(void);
69 void __hidden cpu_unlock(void);
70 void do_interrupt(int intno, int is_int, int error_code,
71 target_ulong next_eip, int is_hw);
72 void do_interrupt_user(int intno, int is_int, int error_code,
73 target_ulong next_eip);
74 void raise_interrupt(int intno, int is_int, int error_code,
75 int next_eip_addend);
76 void raise_exception_err(int exception_index, int error_code);
77 void raise_exception(int exception_index);
78 void do_smm_enter(void);
79 void __hidden cpu_loop_exit(void);
81 void OPPROTO op_movl_eflags_T0(void);
82 void OPPROTO op_movl_T0_eflags(void);
84 /* n must be a constant to be efficient */
85 static inline target_long lshift(target_long x, int n)
87 if (n >= 0)
88 return x << n;
89 else
90 return x >> (-n);
93 #include "helper.h"
95 static inline void svm_check_intercept(uint32_t type)
97 helper_svm_check_intercept_param(type, 0);
100 #if !defined(CONFIG_USER_ONLY)
102 #include "softmmu_exec.h"
104 #endif /* !defined(CONFIG_USER_ONLY) */
106 #ifdef USE_X86LDOUBLE
107 /* use long double functions */
108 #define floatx_to_int32 floatx80_to_int32
109 #define floatx_to_int64 floatx80_to_int64
110 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
111 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
112 #define int32_to_floatx int32_to_floatx80
113 #define int64_to_floatx int64_to_floatx80
114 #define float32_to_floatx float32_to_floatx80
115 #define float64_to_floatx float64_to_floatx80
116 #define floatx_to_float32 floatx80_to_float32
117 #define floatx_to_float64 floatx80_to_float64
118 #define floatx_abs floatx80_abs
119 #define floatx_chs floatx80_chs
120 #define floatx_round_to_int floatx80_round_to_int
121 #define floatx_compare floatx80_compare
122 #define floatx_compare_quiet floatx80_compare_quiet
123 #define sin sinl
124 #define cos cosl
125 #define sqrt sqrtl
126 #define pow powl
127 #define log logl
128 #define tan tanl
129 #define atan2 atan2l
130 #define floor floorl
131 #define ceil ceill
132 #define ldexp ldexpl
133 #else
134 #define floatx_to_int32 float64_to_int32
135 #define floatx_to_int64 float64_to_int64
136 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
137 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
138 #define int32_to_floatx int32_to_float64
139 #define int64_to_floatx int64_to_float64
140 #define float32_to_floatx float32_to_float64
141 #define float64_to_floatx(x, e) (x)
142 #define floatx_to_float32 float64_to_float32
143 #define floatx_to_float64(x, e) (x)
144 #define floatx_abs float64_abs
145 #define floatx_chs float64_chs
146 #define floatx_round_to_int float64_round_to_int
147 #define floatx_compare float64_compare
148 #define floatx_compare_quiet float64_compare_quiet
149 #endif
151 extern CPU86_LDouble sin(CPU86_LDouble x);
152 extern CPU86_LDouble cos(CPU86_LDouble x);
153 extern CPU86_LDouble sqrt(CPU86_LDouble x);
154 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
155 extern CPU86_LDouble log(CPU86_LDouble x);
156 extern CPU86_LDouble tan(CPU86_LDouble x);
157 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
158 extern CPU86_LDouble floor(CPU86_LDouble x);
159 extern CPU86_LDouble ceil(CPU86_LDouble x);
161 #define RC_MASK 0xc00
162 #define RC_NEAR 0x000
163 #define RC_DOWN 0x400
164 #define RC_UP 0x800
165 #define RC_CHOP 0xc00
167 #define MAXTAN 9223372036854775808.0
169 #ifdef USE_X86LDOUBLE
171 /* only for x86 */
172 typedef union {
173 long double d;
174 struct {
175 unsigned long long lower;
176 unsigned short upper;
177 } l;
178 } CPU86_LDoubleU;
180 /* the following deal with x86 long double-precision numbers */
181 #define MAXEXPD 0x7fff
182 #define EXPBIAS 16383
183 #define EXPD(fp) (fp.l.upper & 0x7fff)
184 #define SIGND(fp) ((fp.l.upper) & 0x8000)
185 #define MANTD(fp) (fp.l.lower)
186 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
188 #else
190 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
191 typedef union {
192 double d;
193 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
194 struct {
195 uint32_t lower;
196 int32_t upper;
197 } l;
198 #else
199 struct {
200 int32_t upper;
201 uint32_t lower;
202 } l;
203 #endif
204 #ifndef __arm__
205 int64_t ll;
206 #endif
207 } CPU86_LDoubleU;
209 /* the following deal with IEEE double-precision numbers */
210 #define MAXEXPD 0x7ff
211 #define EXPBIAS 1023
212 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
213 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
214 #ifdef __arm__
215 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
216 #else
217 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
218 #endif
219 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
220 #endif
222 static inline void fpush(void)
224 env->fpstt = (env->fpstt - 1) & 7;
225 env->fptags[env->fpstt] = 0; /* validate stack entry */
228 static inline void fpop(void)
230 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
231 env->fpstt = (env->fpstt + 1) & 7;
234 #ifndef USE_X86LDOUBLE
235 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
237 CPU86_LDoubleU temp;
238 int upper, e;
239 uint64_t ll;
241 /* mantissa */
242 upper = lduw(ptr + 8);
243 /* XXX: handle overflow ? */
244 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
245 e |= (upper >> 4) & 0x800; /* sign */
246 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
247 #ifdef __arm__
248 temp.l.upper = (e << 20) | (ll >> 32);
249 temp.l.lower = ll;
250 #else
251 temp.ll = ll | ((uint64_t)e << 52);
252 #endif
253 return temp.d;
256 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
258 CPU86_LDoubleU temp;
259 int e;
261 temp.d = f;
262 /* mantissa */
263 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
264 /* exponent + sign */
265 e = EXPD(temp) - EXPBIAS + 16383;
266 e |= SIGND(temp) >> 16;
267 stw(ptr + 8, e);
269 #else
271 /* we use memory access macros */
273 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
275 CPU86_LDoubleU temp;
277 temp.l.lower = ldq(ptr);
278 temp.l.upper = lduw(ptr + 8);
279 return temp.d;
282 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
284 CPU86_LDoubleU temp;
286 temp.d = f;
287 stq(ptr, temp.l.lower);
288 stw(ptr + 8, temp.l.upper);
291 #endif /* USE_X86LDOUBLE */
293 #define FPUS_IE (1 << 0)
294 #define FPUS_DE (1 << 1)
295 #define FPUS_ZE (1 << 2)
296 #define FPUS_OE (1 << 3)
297 #define FPUS_UE (1 << 4)
298 #define FPUS_PE (1 << 5)
299 #define FPUS_SF (1 << 6)
300 #define FPUS_SE (1 << 7)
301 #define FPUS_B (1 << 15)
303 #define FPUC_EM 0x3f
305 extern const CPU86_LDouble f15rk[7];
307 void fpu_raise_exception(void);
308 void restore_native_fp_state(CPUState *env);
309 void save_native_fp_state(CPUState *env);
311 extern const uint8_t parity_table[256];
312 extern const uint8_t rclw_table[32];
313 extern const uint8_t rclb_table[32];
315 static inline uint32_t compute_eflags(void)
317 return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
320 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
321 static inline void load_eflags(int eflags, int update_mask)
323 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 DF = 1 - (2 * ((eflags >> 10) & 1));
325 env->eflags = (env->eflags & ~update_mask) |
326 (eflags & update_mask) | 0x2;
329 static inline void env_to_regs(void)
331 #ifdef reg_EAX
332 EAX = env->regs[R_EAX];
333 #endif
334 #ifdef reg_ECX
335 ECX = env->regs[R_ECX];
336 #endif
337 #ifdef reg_EDX
338 EDX = env->regs[R_EDX];
339 #endif
340 #ifdef reg_EBX
341 EBX = env->regs[R_EBX];
342 #endif
343 #ifdef reg_ESP
344 ESP = env->regs[R_ESP];
345 #endif
346 #ifdef reg_EBP
347 EBP = env->regs[R_EBP];
348 #endif
349 #ifdef reg_ESI
350 ESI = env->regs[R_ESI];
351 #endif
352 #ifdef reg_EDI
353 EDI = env->regs[R_EDI];
354 #endif
357 static inline void regs_to_env(void)
359 #ifdef reg_EAX
360 env->regs[R_EAX] = EAX;
361 #endif
362 #ifdef reg_ECX
363 env->regs[R_ECX] = ECX;
364 #endif
365 #ifdef reg_EDX
366 env->regs[R_EDX] = EDX;
367 #endif
368 #ifdef reg_EBX
369 env->regs[R_EBX] = EBX;
370 #endif
371 #ifdef reg_ESP
372 env->regs[R_ESP] = ESP;
373 #endif
374 #ifdef reg_EBP
375 env->regs[R_EBP] = EBP;
376 #endif
377 #ifdef reg_ESI
378 env->regs[R_ESI] = ESI;
379 #endif
380 #ifdef reg_EDI
381 env->regs[R_EDI] = EDI;
382 #endif
385 static inline int cpu_halted(CPUState *env) {
386 /* handle exit of HALTED state */
387 if (!env->halted)
388 return 0;
389 /* disable halt condition */
390 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
391 (env->eflags & IF_MASK)) ||
392 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
393 env->halted = 0;
394 return 0;
396 return EXCP_HALTED;
399 /* load efer and update the corresponding hflags. XXX: do consistency
400 checks with cpuid bits ? */
401 static inline void cpu_load_efer(CPUState *env, uint64_t val)
403 env->efer = val;
404 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
405 if (env->efer & MSR_EFER_LMA)
406 env->hflags |= HF_LMA_MASK;
407 if (env->efer & MSR_EFER_SVME)
408 env->hflags |= HF_SVME_MASK;