SD card emulation (initial implementation by Andrzei Zaborowski).
[qemu/mini2440.git] / cpu-exec.c
blob0eabacd6434b8e40876581605c619513bf9ac512
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
38 int tb_invalidated_flag;
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44 defined(TARGET_ALPHA)
45 /* XXX: unify with i386 target */
46 void cpu_loop_exit(void)
48 longjmp(env->jmp_env, 1);
50 #endif
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52 #define reg_T2
53 #endif
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62 #endif
64 env = env1;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
73 #endif
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
88 spin_lock(&tb_lock);
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
119 ptb1 = &tb->phys_hash_next;
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
147 found:
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163 #if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168 #elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
175 cs_base = 0;
176 pc = env->regs[15];
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182 #else
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
186 #endif
187 cs_base = env->npc;
188 pc = env->pc;
189 #elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194 #elif defined(TARGET_MIPS)
195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196 cs_base = 0;
197 pc = env->PC;
198 #elif defined(TARGET_M68K)
199 flags = env->fpcr & M68K_FPCR_PREC;
200 cs_base = 0;
201 pc = env->pc;
202 #elif defined(TARGET_SH4)
203 flags = env->sr & (SR_MD | SR_RB);
204 cs_base = 0; /* XXXXX */
205 pc = env->pc;
206 #elif defined(TARGET_ALPHA)
207 flags = env->ps;
208 cs_base = 0;
209 pc = env->pc;
210 #else
211 #error unsupported CPU
212 #endif
213 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215 tb->flags != flags, 0)) {
216 tb = tb_find_slow(pc, cs_base, flags);
217 /* Note: we do it here to avoid a gcc bug on Mac OS X when
218 doing it in tb_find_slow */
219 if (tb_invalidated_flag) {
220 /* as some TB could have been invalidated because
221 of memory exceptions while generating the code, we
222 must recompute the hash index here */
223 T0 = 0;
226 return tb;
230 /* main execution loop */
232 int cpu_exec(CPUState *env1)
234 #define DECLARE_HOST_REGS 1
235 #include "hostregs_helper.h"
236 #if defined(TARGET_SPARC)
237 #if defined(reg_REGWPTR)
238 uint32_t *saved_regwptr;
239 #endif
240 #endif
241 #if defined(__sparc__) && !defined(HOST_SOLARIS)
242 int saved_i7;
243 target_ulong tmp_T0;
244 #endif
245 int ret, interrupt_request;
246 void (*gen_func)(void);
247 TranslationBlock *tb;
248 uint8_t *tc_ptr;
250 #if defined(TARGET_I386)
251 /* handle exit of HALTED state */
252 if (env1->hflags & HF_HALTED_MASK) {
253 /* disable halt condition */
254 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255 (env1->eflags & IF_MASK)) {
256 env1->hflags &= ~HF_HALTED_MASK;
257 } else {
258 return EXCP_HALTED;
261 #elif defined(TARGET_PPC)
262 if (env1->halted) {
263 if (env1->msr[MSR_EE] &&
264 (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
265 env1->halted = 0;
266 } else {
267 return EXCP_HALTED;
270 #elif defined(TARGET_SPARC)
271 if (env1->halted) {
272 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273 (env1->psret != 0)) {
274 env1->halted = 0;
275 } else {
276 return EXCP_HALTED;
279 #elif defined(TARGET_ARM)
280 if (env1->halted) {
281 /* An interrupt wakes the CPU even if the I and F CPSR bits are
282 set. */
283 if (env1->interrupt_request
284 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
285 env1->halted = 0;
286 } else {
287 return EXCP_HALTED;
290 #elif defined(TARGET_MIPS)
291 if (env1->halted) {
292 if (env1->interrupt_request &
293 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
294 env1->halted = 0;
295 } else {
296 return EXCP_HALTED;
299 #elif defined(TARGET_ALPHA)
300 if (env1->halted) {
301 if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
302 env1->halted = 0;
303 } else {
304 return EXCP_HALTED;
307 #endif
309 cpu_single_env = env1;
311 /* first we save global registers */
312 #define SAVE_HOST_REGS 1
313 #include "hostregs_helper.h"
314 env = env1;
315 #if defined(__sparc__) && !defined(HOST_SOLARIS)
316 /* we also save i7 because longjmp may not restore it */
317 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
318 #endif
320 #if defined(TARGET_I386)
321 env_to_regs();
322 /* put eflags in CPU temporary format */
323 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 DF = 1 - (2 * ((env->eflags >> 10) & 1));
325 CC_OP = CC_OP_EFLAGS;
326 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327 #elif defined(TARGET_ARM)
328 #elif defined(TARGET_SPARC)
329 #if defined(reg_REGWPTR)
330 saved_regwptr = REGWPTR;
331 #endif
332 #elif defined(TARGET_PPC)
333 #elif defined(TARGET_M68K)
334 env->cc_op = CC_OP_FLAGS;
335 env->cc_dest = env->sr & 0xf;
336 env->cc_x = (env->sr >> 4) & 1;
337 #elif defined(TARGET_MIPS)
338 #elif defined(TARGET_SH4)
339 /* XXXXX */
340 #elif defined(TARGET_ALPHA)
341 env_to_regs();
342 #else
343 #error unsupported target CPU
344 #endif
345 env->exception_index = -1;
347 /* prepare setjmp context for exception handling */
348 for(;;) {
349 if (setjmp(env->jmp_env) == 0) {
350 env->current_tb = NULL;
351 /* if an exception is pending, we execute it here */
352 if (env->exception_index >= 0) {
353 if (env->exception_index >= EXCP_INTERRUPT) {
354 /* exit request from the cpu execution loop */
355 ret = env->exception_index;
356 break;
357 } else if (env->user_mode_only) {
358 /* if user mode only, we simulate a fake exception
359 which will be handled outside the cpu execution
360 loop */
361 #if defined(TARGET_I386)
362 do_interrupt_user(env->exception_index,
363 env->exception_is_int,
364 env->error_code,
365 env->exception_next_eip);
366 #endif
367 ret = env->exception_index;
368 break;
369 } else {
370 #if defined(TARGET_I386)
371 /* simulate a real cpu exception. On i386, it can
372 trigger new exceptions, but we do not handle
373 double or triple faults yet. */
374 do_interrupt(env->exception_index,
375 env->exception_is_int,
376 env->error_code,
377 env->exception_next_eip, 0);
378 /* successfully delivered */
379 env->old_exception = -1;
380 #elif defined(TARGET_PPC)
381 do_interrupt(env);
382 #elif defined(TARGET_MIPS)
383 do_interrupt(env);
384 #elif defined(TARGET_SPARC)
385 do_interrupt(env->exception_index);
386 #elif defined(TARGET_ARM)
387 do_interrupt(env);
388 #elif defined(TARGET_SH4)
389 do_interrupt(env);
390 #elif defined(TARGET_ALPHA)
391 do_interrupt(env);
392 #endif
394 env->exception_index = -1;
396 #ifdef USE_KQEMU
397 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
398 int ret;
399 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
400 ret = kqemu_cpu_exec(env);
401 /* put eflags in CPU temporary format */
402 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
403 DF = 1 - (2 * ((env->eflags >> 10) & 1));
404 CC_OP = CC_OP_EFLAGS;
405 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406 if (ret == 1) {
407 /* exception */
408 longjmp(env->jmp_env, 1);
409 } else if (ret == 2) {
410 /* softmmu execution needed */
411 } else {
412 if (env->interrupt_request != 0) {
413 /* hardware interrupt will be executed just after */
414 } else {
415 /* otherwise, we restart */
416 longjmp(env->jmp_env, 1);
420 #endif
422 T0 = 0; /* force lookup of first TB */
423 for(;;) {
424 #if defined(__sparc__) && !defined(HOST_SOLARIS)
425 /* g1 can be modified by some libc? functions */
426 tmp_T0 = T0;
427 #endif
428 interrupt_request = env->interrupt_request;
429 if (__builtin_expect(interrupt_request, 0)) {
430 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
431 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
432 env->exception_index = EXCP_DEBUG;
433 cpu_loop_exit();
435 #if defined(TARGET_I386)
436 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
437 !(env->hflags & HF_SMM_MASK)) {
438 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
439 do_smm_enter();
440 #if defined(__sparc__) && !defined(HOST_SOLARIS)
441 tmp_T0 = 0;
442 #else
443 T0 = 0;
444 #endif
445 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
446 (env->eflags & IF_MASK) &&
447 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
448 int intno;
449 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
450 intno = cpu_get_pic_interrupt(env);
451 if (loglevel & CPU_LOG_TB_IN_ASM) {
452 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
454 do_interrupt(intno, 0, 0, 0, 1);
455 /* ensure that no TB jump will be modified as
456 the program flow was changed */
457 #if defined(__sparc__) && !defined(HOST_SOLARIS)
458 tmp_T0 = 0;
459 #else
460 T0 = 0;
461 #endif
463 #elif defined(TARGET_PPC)
464 #if 0
465 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
466 cpu_ppc_reset(env);
468 #endif
469 if (interrupt_request & CPU_INTERRUPT_HARD) {
470 if (ppc_hw_interrupt(env) == 1) {
471 /* Some exception was raised */
472 if (env->pending_interrupts == 0)
473 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
474 #if defined(__sparc__) && !defined(HOST_SOLARIS)
475 tmp_T0 = 0;
476 #else
477 T0 = 0;
478 #endif
481 #elif defined(TARGET_MIPS)
482 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
483 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
484 (env->CP0_Status & (1 << CP0St_IE)) &&
485 !(env->CP0_Status & (1 << CP0St_EXL)) &&
486 !(env->CP0_Status & (1 << CP0St_ERL)) &&
487 !(env->hflags & MIPS_HFLAG_DM)) {
488 /* Raise it */
489 env->exception_index = EXCP_EXT_INTERRUPT;
490 env->error_code = 0;
491 do_interrupt(env);
492 #if defined(__sparc__) && !defined(HOST_SOLARIS)
493 tmp_T0 = 0;
494 #else
495 T0 = 0;
496 #endif
498 #elif defined(TARGET_SPARC)
499 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
500 (env->psret != 0)) {
501 int pil = env->interrupt_index & 15;
502 int type = env->interrupt_index & 0xf0;
504 if (((type == TT_EXTINT) &&
505 (pil == 15 || pil > env->psrpil)) ||
506 type != TT_EXTINT) {
507 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
508 do_interrupt(env->interrupt_index);
509 env->interrupt_index = 0;
510 #if defined(__sparc__) && !defined(HOST_SOLARIS)
511 tmp_T0 = 0;
512 #else
513 T0 = 0;
514 #endif
516 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
517 //do_interrupt(0, 0, 0, 0, 0);
518 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
519 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
520 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
521 env->halted = 1;
522 env->exception_index = EXCP_HLT;
523 cpu_loop_exit();
525 #elif defined(TARGET_ARM)
526 if (interrupt_request & CPU_INTERRUPT_FIQ
527 && !(env->uncached_cpsr & CPSR_F)) {
528 env->exception_index = EXCP_FIQ;
529 do_interrupt(env);
531 if (interrupt_request & CPU_INTERRUPT_HARD
532 && !(env->uncached_cpsr & CPSR_I)) {
533 env->exception_index = EXCP_IRQ;
534 do_interrupt(env);
536 #elif defined(TARGET_SH4)
537 /* XXXXX */
538 #elif defined(TARGET_ALPHA)
539 if (interrupt_request & CPU_INTERRUPT_HARD) {
540 do_interrupt(env);
542 #endif
543 /* Don't use the cached interupt_request value,
544 do_interrupt may have updated the EXITTB flag. */
545 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
546 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547 /* ensure that no TB jump will be modified as
548 the program flow was changed */
549 #if defined(__sparc__) && !defined(HOST_SOLARIS)
550 tmp_T0 = 0;
551 #else
552 T0 = 0;
553 #endif
555 if (interrupt_request & CPU_INTERRUPT_EXIT) {
556 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
557 env->exception_index = EXCP_INTERRUPT;
558 cpu_loop_exit();
561 #ifdef DEBUG_EXEC
562 if ((loglevel & CPU_LOG_TB_CPU)) {
563 #if defined(TARGET_I386)
564 /* restore flags in standard format */
565 #ifdef reg_EAX
566 env->regs[R_EAX] = EAX;
567 #endif
568 #ifdef reg_EBX
569 env->regs[R_EBX] = EBX;
570 #endif
571 #ifdef reg_ECX
572 env->regs[R_ECX] = ECX;
573 #endif
574 #ifdef reg_EDX
575 env->regs[R_EDX] = EDX;
576 #endif
577 #ifdef reg_ESI
578 env->regs[R_ESI] = ESI;
579 #endif
580 #ifdef reg_EDI
581 env->regs[R_EDI] = EDI;
582 #endif
583 #ifdef reg_EBP
584 env->regs[R_EBP] = EBP;
585 #endif
586 #ifdef reg_ESP
587 env->regs[R_ESP] = ESP;
588 #endif
589 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
590 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
591 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
592 #elif defined(TARGET_ARM)
593 cpu_dump_state(env, logfile, fprintf, 0);
594 #elif defined(TARGET_SPARC)
595 REGWPTR = env->regbase + (env->cwp * 16);
596 env->regwptr = REGWPTR;
597 cpu_dump_state(env, logfile, fprintf, 0);
598 #elif defined(TARGET_PPC)
599 cpu_dump_state(env, logfile, fprintf, 0);
600 #elif defined(TARGET_M68K)
601 cpu_m68k_flush_flags(env, env->cc_op);
602 env->cc_op = CC_OP_FLAGS;
603 env->sr = (env->sr & 0xffe0)
604 | env->cc_dest | (env->cc_x << 4);
605 cpu_dump_state(env, logfile, fprintf, 0);
606 #elif defined(TARGET_MIPS)
607 cpu_dump_state(env, logfile, fprintf, 0);
608 #elif defined(TARGET_SH4)
609 cpu_dump_state(env, logfile, fprintf, 0);
610 #elif defined(TARGET_ALPHA)
611 cpu_dump_state(env, logfile, fprintf, 0);
612 #else
613 #error unsupported target CPU
614 #endif
616 #endif
617 tb = tb_find_fast();
618 #ifdef DEBUG_EXEC
619 if ((loglevel & CPU_LOG_EXEC)) {
620 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
621 (long)tb->tc_ptr, tb->pc,
622 lookup_symbol(tb->pc));
624 #endif
625 #if defined(__sparc__) && !defined(HOST_SOLARIS)
626 T0 = tmp_T0;
627 #endif
628 /* see if we can patch the calling TB. When the TB
629 spans two pages, we cannot safely do a direct
630 jump. */
632 if (T0 != 0 &&
633 #if USE_KQEMU
634 (env->kqemu_enabled != 2) &&
635 #endif
636 tb->page_addr[1] == -1
637 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
638 && (tb->cflags & CF_CODE_COPY) ==
639 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
640 #endif
642 spin_lock(&tb_lock);
643 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
644 #if defined(USE_CODE_COPY)
645 /* propagates the FP use info */
646 ((TranslationBlock *)(T0 & ~3))->cflags |=
647 (tb->cflags & CF_FP_USED);
648 #endif
649 spin_unlock(&tb_lock);
652 tc_ptr = tb->tc_ptr;
653 env->current_tb = tb;
654 /* execute the generated code */
655 gen_func = (void *)tc_ptr;
656 #if defined(__sparc__)
657 __asm__ __volatile__("call %0\n\t"
658 "mov %%o7,%%i0"
659 : /* no outputs */
660 : "r" (gen_func)
661 : "i0", "i1", "i2", "i3", "i4", "i5",
662 "o0", "o1", "o2", "o3", "o4", "o5",
663 "l0", "l1", "l2", "l3", "l4", "l5",
664 "l6", "l7");
665 #elif defined(__arm__)
666 asm volatile ("mov pc, %0\n\t"
667 ".global exec_loop\n\t"
668 "exec_loop:\n\t"
669 : /* no outputs */
670 : "r" (gen_func)
671 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
672 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
674 if (!(tb->cflags & CF_CODE_COPY)) {
675 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
676 save_native_fp_state(env);
678 gen_func();
679 } else {
680 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
681 restore_native_fp_state(env);
683 /* we work with native eflags */
684 CC_SRC = cc_table[CC_OP].compute_all();
685 CC_OP = CC_OP_EFLAGS;
686 asm(".globl exec_loop\n"
687 "\n"
688 "debug1:\n"
689 " pushl %%ebp\n"
690 " fs movl %10, %9\n"
691 " fs movl %11, %%eax\n"
692 " andl $0x400, %%eax\n"
693 " fs orl %8, %%eax\n"
694 " pushl %%eax\n"
695 " popf\n"
696 " fs movl %%esp, %12\n"
697 " fs movl %0, %%eax\n"
698 " fs movl %1, %%ecx\n"
699 " fs movl %2, %%edx\n"
700 " fs movl %3, %%ebx\n"
701 " fs movl %4, %%esp\n"
702 " fs movl %5, %%ebp\n"
703 " fs movl %6, %%esi\n"
704 " fs movl %7, %%edi\n"
705 " fs jmp *%9\n"
706 "exec_loop:\n"
707 " fs movl %%esp, %4\n"
708 " fs movl %12, %%esp\n"
709 " fs movl %%eax, %0\n"
710 " fs movl %%ecx, %1\n"
711 " fs movl %%edx, %2\n"
712 " fs movl %%ebx, %3\n"
713 " fs movl %%ebp, %5\n"
714 " fs movl %%esi, %6\n"
715 " fs movl %%edi, %7\n"
716 " pushf\n"
717 " popl %%eax\n"
718 " movl %%eax, %%ecx\n"
719 " andl $0x400, %%ecx\n"
720 " shrl $9, %%ecx\n"
721 " andl $0x8d5, %%eax\n"
722 " fs movl %%eax, %8\n"
723 " movl $1, %%eax\n"
724 " subl %%ecx, %%eax\n"
725 " fs movl %%eax, %11\n"
726 " fs movl %9, %%ebx\n" /* get T0 value */
727 " popl %%ebp\n"
729 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
730 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
731 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
732 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
733 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
734 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
735 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
736 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
737 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
738 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
739 "a" (gen_func),
740 "m" (*(uint8_t *)offsetof(CPUState, df)),
741 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
742 : "%ecx", "%edx"
746 #elif defined(__ia64)
747 struct fptr {
748 void *ip;
749 void *gp;
750 } fp;
752 fp.ip = tc_ptr;
753 fp.gp = code_gen_buffer + 2 * (1 << 20);
754 (*(void (*)(void)) &fp)();
755 #else
756 gen_func();
757 #endif
758 env->current_tb = NULL;
759 /* reset soft MMU for next block (it can currently
760 only be set by a memory fault) */
761 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
762 if (env->hflags & HF_SOFTMMU_MASK) {
763 env->hflags &= ~HF_SOFTMMU_MASK;
764 /* do not allow linking to another block */
765 T0 = 0;
767 #endif
768 #if defined(USE_KQEMU)
769 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
770 if (kqemu_is_ok(env) &&
771 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
772 cpu_loop_exit();
774 #endif
776 } else {
777 env_to_regs();
779 } /* for(;;) */
782 #if defined(TARGET_I386)
783 #if defined(USE_CODE_COPY)
784 if (env->native_fp_regs) {
785 save_native_fp_state(env);
787 #endif
788 /* restore flags in standard format */
789 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
790 #elif defined(TARGET_ARM)
791 /* XXX: Save/restore host fpu exception state?. */
792 #elif defined(TARGET_SPARC)
793 #if defined(reg_REGWPTR)
794 REGWPTR = saved_regwptr;
795 #endif
796 #elif defined(TARGET_PPC)
797 #elif defined(TARGET_M68K)
798 cpu_m68k_flush_flags(env, env->cc_op);
799 env->cc_op = CC_OP_FLAGS;
800 env->sr = (env->sr & 0xffe0)
801 | env->cc_dest | (env->cc_x << 4);
802 #elif defined(TARGET_MIPS)
803 #elif defined(TARGET_SH4)
804 #elif defined(TARGET_ALPHA)
805 /* XXXXX */
806 #else
807 #error unsupported target CPU
808 #endif
810 /* restore global registers */
811 #if defined(__sparc__) && !defined(HOST_SOLARIS)
812 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
813 #endif
814 #include "hostregs_helper.h"
816 /* fail safe : never use cpu_single_env outside cpu_exec() */
817 cpu_single_env = NULL;
818 return ret;
821 /* must only be called from the generated code as an exception can be
822 generated */
823 void tb_invalidate_page_range(target_ulong start, target_ulong end)
825 /* XXX: cannot enable it yet because it yields to MMU exception
826 where NIP != read address on PowerPC */
827 #if 0
828 target_ulong phys_addr;
829 phys_addr = get_phys_addr_code(env, start);
830 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
831 #endif
834 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
836 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
838 CPUX86State *saved_env;
840 saved_env = env;
841 env = s;
842 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
843 selector &= 0xffff;
844 cpu_x86_load_seg_cache(env, seg_reg, selector,
845 (selector << 4), 0xffff, 0);
846 } else {
847 load_seg(seg_reg, selector);
849 env = saved_env;
852 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
854 CPUX86State *saved_env;
856 saved_env = env;
857 env = s;
859 helper_fsave((target_ulong)ptr, data32);
861 env = saved_env;
864 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
866 CPUX86State *saved_env;
868 saved_env = env;
869 env = s;
871 helper_frstor((target_ulong)ptr, data32);
873 env = saved_env;
876 #endif /* TARGET_I386 */
878 #if !defined(CONFIG_SOFTMMU)
880 #if defined(TARGET_I386)
882 /* 'pc' is the host PC at which the exception was raised. 'address' is
883 the effective address of the memory exception. 'is_write' is 1 if a
884 write caused the exception and otherwise 0'. 'old_set' is the
885 signal set which should be restored */
886 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
887 int is_write, sigset_t *old_set,
888 void *puc)
890 TranslationBlock *tb;
891 int ret;
893 if (cpu_single_env)
894 env = cpu_single_env; /* XXX: find a correct solution for multithread */
895 #if defined(DEBUG_SIGNAL)
896 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
897 pc, address, is_write, *(unsigned long *)old_set);
898 #endif
899 /* XXX: locking issue */
900 if (is_write && page_unprotect(h2g(address), pc, puc)) {
901 return 1;
904 /* see if it is an MMU fault */
905 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
906 ((env->hflags & HF_CPL_MASK) == 3), 0);
907 if (ret < 0)
908 return 0; /* not an MMU fault */
909 if (ret == 0)
910 return 1; /* the MMU fault was handled without causing real CPU fault */
911 /* now we have a real cpu fault */
912 tb = tb_find_pc(pc);
913 if (tb) {
914 /* the PC is inside the translated code. It means that we have
915 a virtual CPU fault */
916 cpu_restore_state(tb, env, pc, puc);
918 if (ret == 1) {
919 #if 0
920 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
921 env->eip, env->cr[2], env->error_code);
922 #endif
923 /* we restore the process signal mask as the sigreturn should
924 do it (XXX: use sigsetjmp) */
925 sigprocmask(SIG_SETMASK, old_set, NULL);
926 raise_exception_err(env->exception_index, env->error_code);
927 } else {
928 /* activate soft MMU for this block */
929 env->hflags |= HF_SOFTMMU_MASK;
930 cpu_resume_from_signal(env, puc);
932 /* never comes here */
933 return 1;
936 #elif defined(TARGET_ARM)
937 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
938 int is_write, sigset_t *old_set,
939 void *puc)
941 TranslationBlock *tb;
942 int ret;
944 if (cpu_single_env)
945 env = cpu_single_env; /* XXX: find a correct solution for multithread */
946 #if defined(DEBUG_SIGNAL)
947 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
948 pc, address, is_write, *(unsigned long *)old_set);
949 #endif
950 /* XXX: locking issue */
951 if (is_write && page_unprotect(h2g(address), pc, puc)) {
952 return 1;
954 /* see if it is an MMU fault */
955 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
956 if (ret < 0)
957 return 0; /* not an MMU fault */
958 if (ret == 0)
959 return 1; /* the MMU fault was handled without causing real CPU fault */
960 /* now we have a real cpu fault */
961 tb = tb_find_pc(pc);
962 if (tb) {
963 /* the PC is inside the translated code. It means that we have
964 a virtual CPU fault */
965 cpu_restore_state(tb, env, pc, puc);
967 /* we restore the process signal mask as the sigreturn should
968 do it (XXX: use sigsetjmp) */
969 sigprocmask(SIG_SETMASK, old_set, NULL);
970 cpu_loop_exit();
972 #elif defined(TARGET_SPARC)
973 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
974 int is_write, sigset_t *old_set,
975 void *puc)
977 TranslationBlock *tb;
978 int ret;
980 if (cpu_single_env)
981 env = cpu_single_env; /* XXX: find a correct solution for multithread */
982 #if defined(DEBUG_SIGNAL)
983 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
984 pc, address, is_write, *(unsigned long *)old_set);
985 #endif
986 /* XXX: locking issue */
987 if (is_write && page_unprotect(h2g(address), pc, puc)) {
988 return 1;
990 /* see if it is an MMU fault */
991 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
992 if (ret < 0)
993 return 0; /* not an MMU fault */
994 if (ret == 0)
995 return 1; /* the MMU fault was handled without causing real CPU fault */
996 /* now we have a real cpu fault */
997 tb = tb_find_pc(pc);
998 if (tb) {
999 /* the PC is inside the translated code. It means that we have
1000 a virtual CPU fault */
1001 cpu_restore_state(tb, env, pc, puc);
1003 /* we restore the process signal mask as the sigreturn should
1004 do it (XXX: use sigsetjmp) */
1005 sigprocmask(SIG_SETMASK, old_set, NULL);
1006 cpu_loop_exit();
1008 #elif defined (TARGET_PPC)
1009 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1010 int is_write, sigset_t *old_set,
1011 void *puc)
1013 TranslationBlock *tb;
1014 int ret;
1016 if (cpu_single_env)
1017 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1018 #if defined(DEBUG_SIGNAL)
1019 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1020 pc, address, is_write, *(unsigned long *)old_set);
1021 #endif
1022 /* XXX: locking issue */
1023 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1024 return 1;
1027 /* see if it is an MMU fault */
1028 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1029 if (ret < 0)
1030 return 0; /* not an MMU fault */
1031 if (ret == 0)
1032 return 1; /* the MMU fault was handled without causing real CPU fault */
1034 /* now we have a real cpu fault */
1035 tb = tb_find_pc(pc);
1036 if (tb) {
1037 /* the PC is inside the translated code. It means that we have
1038 a virtual CPU fault */
1039 cpu_restore_state(tb, env, pc, puc);
1041 if (ret == 1) {
1042 #if 0
1043 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1044 env->nip, env->error_code, tb);
1045 #endif
1046 /* we restore the process signal mask as the sigreturn should
1047 do it (XXX: use sigsetjmp) */
1048 sigprocmask(SIG_SETMASK, old_set, NULL);
1049 do_raise_exception_err(env->exception_index, env->error_code);
1050 } else {
1051 /* activate soft MMU for this block */
1052 cpu_resume_from_signal(env, puc);
1054 /* never comes here */
1055 return 1;
1058 #elif defined(TARGET_M68K)
1059 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1060 int is_write, sigset_t *old_set,
1061 void *puc)
1063 TranslationBlock *tb;
1064 int ret;
1066 if (cpu_single_env)
1067 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1068 #if defined(DEBUG_SIGNAL)
1069 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1070 pc, address, is_write, *(unsigned long *)old_set);
1071 #endif
1072 /* XXX: locking issue */
1073 if (is_write && page_unprotect(address, pc, puc)) {
1074 return 1;
1076 /* see if it is an MMU fault */
1077 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1078 if (ret < 0)
1079 return 0; /* not an MMU fault */
1080 if (ret == 0)
1081 return 1; /* the MMU fault was handled without causing real CPU fault */
1082 /* now we have a real cpu fault */
1083 tb = tb_find_pc(pc);
1084 if (tb) {
1085 /* the PC is inside the translated code. It means that we have
1086 a virtual CPU fault */
1087 cpu_restore_state(tb, env, pc, puc);
1089 /* we restore the process signal mask as the sigreturn should
1090 do it (XXX: use sigsetjmp) */
1091 sigprocmask(SIG_SETMASK, old_set, NULL);
1092 cpu_loop_exit();
1093 /* never comes here */
1094 return 1;
1097 #elif defined (TARGET_MIPS)
1098 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1099 int is_write, sigset_t *old_set,
1100 void *puc)
1102 TranslationBlock *tb;
1103 int ret;
1105 if (cpu_single_env)
1106 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1107 #if defined(DEBUG_SIGNAL)
1108 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1109 pc, address, is_write, *(unsigned long *)old_set);
1110 #endif
1111 /* XXX: locking issue */
1112 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1113 return 1;
1116 /* see if it is an MMU fault */
1117 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1118 if (ret < 0)
1119 return 0; /* not an MMU fault */
1120 if (ret == 0)
1121 return 1; /* the MMU fault was handled without causing real CPU fault */
1123 /* now we have a real cpu fault */
1124 tb = tb_find_pc(pc);
1125 if (tb) {
1126 /* the PC is inside the translated code. It means that we have
1127 a virtual CPU fault */
1128 cpu_restore_state(tb, env, pc, puc);
1130 if (ret == 1) {
1131 #if 0
1132 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1133 env->nip, env->error_code, tb);
1134 #endif
1135 /* we restore the process signal mask as the sigreturn should
1136 do it (XXX: use sigsetjmp) */
1137 sigprocmask(SIG_SETMASK, old_set, NULL);
1138 do_raise_exception_err(env->exception_index, env->error_code);
1139 } else {
1140 /* activate soft MMU for this block */
1141 cpu_resume_from_signal(env, puc);
1143 /* never comes here */
1144 return 1;
1147 #elif defined (TARGET_SH4)
1148 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1149 int is_write, sigset_t *old_set,
1150 void *puc)
1152 TranslationBlock *tb;
1153 int ret;
1155 if (cpu_single_env)
1156 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1157 #if defined(DEBUG_SIGNAL)
1158 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1159 pc, address, is_write, *(unsigned long *)old_set);
1160 #endif
1161 /* XXX: locking issue */
1162 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1163 return 1;
1166 /* see if it is an MMU fault */
1167 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1168 if (ret < 0)
1169 return 0; /* not an MMU fault */
1170 if (ret == 0)
1171 return 1; /* the MMU fault was handled without causing real CPU fault */
1173 /* now we have a real cpu fault */
1174 tb = tb_find_pc(pc);
1175 if (tb) {
1176 /* the PC is inside the translated code. It means that we have
1177 a virtual CPU fault */
1178 cpu_restore_state(tb, env, pc, puc);
1180 #if 0
1181 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1182 env->nip, env->error_code, tb);
1183 #endif
1184 /* we restore the process signal mask as the sigreturn should
1185 do it (XXX: use sigsetjmp) */
1186 sigprocmask(SIG_SETMASK, old_set, NULL);
1187 cpu_loop_exit();
1188 /* never comes here */
1189 return 1;
1192 #elif defined (TARGET_ALPHA)
1193 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1194 int is_write, sigset_t *old_set,
1195 void *puc)
1197 TranslationBlock *tb;
1198 int ret;
1200 if (cpu_single_env)
1201 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1202 #if defined(DEBUG_SIGNAL)
1203 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1204 pc, address, is_write, *(unsigned long *)old_set);
1205 #endif
1206 /* XXX: locking issue */
1207 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1208 return 1;
1211 /* see if it is an MMU fault */
1212 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1213 if (ret < 0)
1214 return 0; /* not an MMU fault */
1215 if (ret == 0)
1216 return 1; /* the MMU fault was handled without causing real CPU fault */
1218 /* now we have a real cpu fault */
1219 tb = tb_find_pc(pc);
1220 if (tb) {
1221 /* the PC is inside the translated code. It means that we have
1222 a virtual CPU fault */
1223 cpu_restore_state(tb, env, pc, puc);
1225 #if 0
1226 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1227 env->nip, env->error_code, tb);
1228 #endif
1229 /* we restore the process signal mask as the sigreturn should
1230 do it (XXX: use sigsetjmp) */
1231 sigprocmask(SIG_SETMASK, old_set, NULL);
1232 cpu_loop_exit();
1233 /* never comes here */
1234 return 1;
1236 #else
1237 #error unsupported target CPU
1238 #endif
1240 #if defined(__i386__)
1242 #if defined(__APPLE__)
1243 # include <sys/ucontext.h>
1245 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1246 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1247 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1248 #else
1249 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1250 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1251 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1252 #endif
1254 #if defined(USE_CODE_COPY)
1255 static void cpu_send_trap(unsigned long pc, int trap,
1256 struct ucontext *uc)
1258 TranslationBlock *tb;
1260 if (cpu_single_env)
1261 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1262 /* now we have a real cpu fault */
1263 tb = tb_find_pc(pc);
1264 if (tb) {
1265 /* the PC is inside the translated code. It means that we have
1266 a virtual CPU fault */
1267 cpu_restore_state(tb, env, pc, uc);
1269 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1270 raise_exception_err(trap, env->error_code);
1272 #endif
1274 int cpu_signal_handler(int host_signum, void *pinfo,
1275 void *puc)
1277 siginfo_t *info = pinfo;
1278 struct ucontext *uc = puc;
1279 unsigned long pc;
1280 int trapno;
1282 #ifndef REG_EIP
1283 /* for glibc 2.1 */
1284 #define REG_EIP EIP
1285 #define REG_ERR ERR
1286 #define REG_TRAPNO TRAPNO
1287 #endif
1288 pc = EIP_sig(uc);
1289 trapno = TRAP_sig(uc);
1290 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1291 if (trapno == 0x00 || trapno == 0x05) {
1292 /* send division by zero or bound exception */
1293 cpu_send_trap(pc, trapno, uc);
1294 return 1;
1295 } else
1296 #endif
1297 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1298 trapno == 0xe ?
1299 (ERROR_sig(uc) >> 1) & 1 : 0,
1300 &uc->uc_sigmask, puc);
1303 #elif defined(__x86_64__)
1305 int cpu_signal_handler(int host_signum, void *pinfo,
1306 void *puc)
1308 siginfo_t *info = pinfo;
1309 struct ucontext *uc = puc;
1310 unsigned long pc;
1312 pc = uc->uc_mcontext.gregs[REG_RIP];
1313 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1314 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1315 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1316 &uc->uc_sigmask, puc);
1319 #elif defined(__powerpc__)
1321 /***********************************************************************
1322 * signal context platform-specific definitions
1323 * From Wine
1325 #ifdef linux
1326 /* All Registers access - only for local access */
1327 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1328 /* Gpr Registers access */
1329 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1330 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1331 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1332 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1333 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1334 # define LR_sig(context) REG_sig(link, context) /* Link register */
1335 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1336 /* Float Registers access */
1337 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1338 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1339 /* Exception Registers access */
1340 # define DAR_sig(context) REG_sig(dar, context)
1341 # define DSISR_sig(context) REG_sig(dsisr, context)
1342 # define TRAP_sig(context) REG_sig(trap, context)
1343 #endif /* linux */
1345 #ifdef __APPLE__
1346 # include <sys/ucontext.h>
1347 typedef struct ucontext SIGCONTEXT;
1348 /* All Registers access - only for local access */
1349 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1350 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1351 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1352 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1353 /* Gpr Registers access */
1354 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1355 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1356 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1357 # define CTR_sig(context) REG_sig(ctr, context)
1358 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1359 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1360 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1361 /* Float Registers access */
1362 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1363 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1364 /* Exception Registers access */
1365 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1366 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1367 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1368 #endif /* __APPLE__ */
1370 int cpu_signal_handler(int host_signum, void *pinfo,
1371 void *puc)
1373 siginfo_t *info = pinfo;
1374 struct ucontext *uc = puc;
1375 unsigned long pc;
1376 int is_write;
1378 pc = IAR_sig(uc);
1379 is_write = 0;
1380 #if 0
1381 /* ppc 4xx case */
1382 if (DSISR_sig(uc) & 0x00800000)
1383 is_write = 1;
1384 #else
1385 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1386 is_write = 1;
1387 #endif
1388 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1389 is_write, &uc->uc_sigmask, puc);
1392 #elif defined(__alpha__)
1394 int cpu_signal_handler(int host_signum, void *pinfo,
1395 void *puc)
1397 siginfo_t *info = pinfo;
1398 struct ucontext *uc = puc;
1399 uint32_t *pc = uc->uc_mcontext.sc_pc;
1400 uint32_t insn = *pc;
1401 int is_write = 0;
1403 /* XXX: need kernel patch to get write flag faster */
1404 switch (insn >> 26) {
1405 case 0x0d: // stw
1406 case 0x0e: // stb
1407 case 0x0f: // stq_u
1408 case 0x24: // stf
1409 case 0x25: // stg
1410 case 0x26: // sts
1411 case 0x27: // stt
1412 case 0x2c: // stl
1413 case 0x2d: // stq
1414 case 0x2e: // stl_c
1415 case 0x2f: // stq_c
1416 is_write = 1;
1419 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1420 is_write, &uc->uc_sigmask, puc);
1422 #elif defined(__sparc__)
1424 int cpu_signal_handler(int host_signum, void *pinfo,
1425 void *puc)
1427 siginfo_t *info = pinfo;
1428 uint32_t *regs = (uint32_t *)(info + 1);
1429 void *sigmask = (regs + 20);
1430 unsigned long pc;
1431 int is_write;
1432 uint32_t insn;
1434 /* XXX: is there a standard glibc define ? */
1435 pc = regs[1];
1436 /* XXX: need kernel patch to get write flag faster */
1437 is_write = 0;
1438 insn = *(uint32_t *)pc;
1439 if ((insn >> 30) == 3) {
1440 switch((insn >> 19) & 0x3f) {
1441 case 0x05: // stb
1442 case 0x06: // sth
1443 case 0x04: // st
1444 case 0x07: // std
1445 case 0x24: // stf
1446 case 0x27: // stdf
1447 case 0x25: // stfsr
1448 is_write = 1;
1449 break;
1452 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1453 is_write, sigmask, NULL);
1456 #elif defined(__arm__)
1458 int cpu_signal_handler(int host_signum, void *pinfo,
1459 void *puc)
1461 siginfo_t *info = pinfo;
1462 struct ucontext *uc = puc;
1463 unsigned long pc;
1464 int is_write;
1466 pc = uc->uc_mcontext.gregs[R15];
1467 /* XXX: compute is_write */
1468 is_write = 0;
1469 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1470 is_write,
1471 &uc->uc_sigmask, puc);
1474 #elif defined(__mc68000)
1476 int cpu_signal_handler(int host_signum, void *pinfo,
1477 void *puc)
1479 siginfo_t *info = pinfo;
1480 struct ucontext *uc = puc;
1481 unsigned long pc;
1482 int is_write;
1484 pc = uc->uc_mcontext.gregs[16];
1485 /* XXX: compute is_write */
1486 is_write = 0;
1487 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1488 is_write,
1489 &uc->uc_sigmask, puc);
1492 #elif defined(__ia64)
1494 #ifndef __ISR_VALID
1495 /* This ought to be in <bits/siginfo.h>... */
1496 # define __ISR_VALID 1
1497 #endif
1499 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1501 siginfo_t *info = pinfo;
1502 struct ucontext *uc = puc;
1503 unsigned long ip;
1504 int is_write = 0;
1506 ip = uc->uc_mcontext.sc_ip;
1507 switch (host_signum) {
1508 case SIGILL:
1509 case SIGFPE:
1510 case SIGSEGV:
1511 case SIGBUS:
1512 case SIGTRAP:
1513 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1514 /* ISR.W (write-access) is bit 33: */
1515 is_write = (info->si_isr >> 33) & 1;
1516 break;
1518 default:
1519 break;
1521 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1522 is_write,
1523 &uc->uc_sigmask, puc);
1526 #elif defined(__s390__)
1528 int cpu_signal_handler(int host_signum, void *pinfo,
1529 void *puc)
1531 siginfo_t *info = pinfo;
1532 struct ucontext *uc = puc;
1533 unsigned long pc;
1534 int is_write;
1536 pc = uc->uc_mcontext.psw.addr;
1537 /* XXX: compute is_write */
1538 is_write = 0;
1539 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1540 is_write,
1541 &uc->uc_sigmask, puc);
1544 #else
1546 #error host CPU specific signal handler needed
1548 #endif
1550 #endif /* !defined(CONFIG_SOFTMMU) */