[ARM] Add 'support' for arm920t
[qemu/mini2440.git] / target-i386 / kvm.c
blob86745b1350ce389683cfecb56d7388f4c8d155fc
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
26 //#define DEBUG_KVM
28 #ifdef DEBUG_KVM
29 #define dprintf(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31 #else
32 #define dprintf(fmt, ...) \
33 do { } while (0)
34 #endif
36 int kvm_arch_init_vcpu(CPUState *env)
38 struct {
39 struct kvm_cpuid2 cpuid;
40 struct kvm_cpuid_entry2 entries[100];
41 } __attribute__((packed)) cpuid_data;
42 uint32_t limit, i, j, cpuid_i;
43 uint32_t eax, ebx, ecx, edx;
45 cpuid_i = 0;
47 cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx);
48 limit = eax;
50 for (i = 0; i <= limit; i++) {
51 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
53 switch (i) {
54 case 2: {
55 /* Keep reading function 2 till all the input is received */
56 int times;
58 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
59 times = eax & 0xff;
61 c->function = i;
62 c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
63 c->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
64 c->eax = eax;
65 c->ebx = ebx;
66 c->ecx = ecx;
67 c->edx = edx;
69 for (j = 1; j < times; ++j) {
70 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
71 c->function = i;
72 c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
73 c->eax = eax;
74 c->ebx = ebx;
75 c->ecx = ecx;
76 c->edx = edx;
77 c = &cpuid_data.entries[++cpuid_i];
79 break;
81 case 4:
82 case 0xb:
83 case 0xd:
84 for (j = 0; ; j++) {
85 cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx);
86 c->function = i;
87 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
88 c->index = j;
89 c->eax = eax;
90 c->ebx = ebx;
91 c->ecx = ecx;
92 c->edx = edx;
93 c = &cpuid_data.entries[++cpuid_i];
95 if (i == 4 && eax == 0)
96 break;
97 if (i == 0xb && !(ecx & 0xff00))
98 break;
99 if (i == 0xd && eax == 0)
100 break;
102 break;
103 default:
104 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
105 c->function = i;
106 c->eax = eax;
107 c->ebx = ebx;
108 c->ecx = ecx;
109 c->edx = edx;
110 break;
113 cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
114 limit = eax;
116 for (i = 0x80000000; i <= limit; i++) {
117 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
119 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
120 c->function = i;
121 c->eax = eax;
122 c->ebx = ebx;
123 c->ecx = ecx;
124 c->edx = edx;
127 cpuid_data.cpuid.nent = cpuid_i;
129 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
132 static int kvm_has_msr_star(CPUState *env)
134 static int has_msr_star;
135 int ret;
137 /* first time */
138 if (has_msr_star == 0) {
139 struct kvm_msr_list msr_list, *kvm_msr_list;
141 has_msr_star = -1;
143 /* Obtain MSR list from KVM. These are the MSRs that we must
144 * save/restore */
145 msr_list.nmsrs = 0;
146 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
147 if (ret < 0)
148 return 0;
150 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
151 msr_list.nmsrs * sizeof(msr_list.indices[0]));
153 kvm_msr_list->nmsrs = msr_list.nmsrs;
154 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
155 if (ret >= 0) {
156 int i;
158 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
159 if (kvm_msr_list->indices[i] == MSR_STAR) {
160 has_msr_star = 1;
161 break;
166 free(kvm_msr_list);
169 if (has_msr_star == 1)
170 return 1;
171 return 0;
174 int kvm_arch_init(KVMState *s, int smp_cpus)
176 int ret;
178 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
179 * directly. In order to use vm86 mode, a TSS is needed. Since this
180 * must be part of guest physical memory, we need to allocate it. Older
181 * versions of KVM just assumed that it would be at the end of physical
182 * memory but that doesn't work with more than 4GB of memory. We simply
183 * refuse to work with those older versions of KVM. */
184 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
185 if (ret <= 0) {
186 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
187 return ret;
190 /* this address is 3 pages before the bios, and the bios should present
191 * as unavaible memory. FIXME, need to ensure the e820 map deals with
192 * this?
194 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
197 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
199 lhs->selector = rhs->selector;
200 lhs->base = rhs->base;
201 lhs->limit = rhs->limit;
202 lhs->type = 3;
203 lhs->present = 1;
204 lhs->dpl = 3;
205 lhs->db = 0;
206 lhs->s = 1;
207 lhs->l = 0;
208 lhs->g = 0;
209 lhs->avl = 0;
210 lhs->unusable = 0;
213 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
215 unsigned flags = rhs->flags;
216 lhs->selector = rhs->selector;
217 lhs->base = rhs->base;
218 lhs->limit = rhs->limit;
219 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
220 lhs->present = (flags & DESC_P_MASK) != 0;
221 lhs->dpl = rhs->selector & 3;
222 lhs->db = (flags >> DESC_B_SHIFT) & 1;
223 lhs->s = (flags & DESC_S_MASK) != 0;
224 lhs->l = (flags >> DESC_L_SHIFT) & 1;
225 lhs->g = (flags & DESC_G_MASK) != 0;
226 lhs->avl = (flags & DESC_AVL_MASK) != 0;
227 lhs->unusable = 0;
230 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
232 lhs->selector = rhs->selector;
233 lhs->base = rhs->base;
234 lhs->limit = rhs->limit;
235 lhs->flags =
236 (rhs->type << DESC_TYPE_SHIFT)
237 | (rhs->present * DESC_P_MASK)
238 | (rhs->dpl << DESC_DPL_SHIFT)
239 | (rhs->db << DESC_B_SHIFT)
240 | (rhs->s * DESC_S_MASK)
241 | (rhs->l << DESC_L_SHIFT)
242 | (rhs->g * DESC_G_MASK)
243 | (rhs->avl * DESC_AVL_MASK);
246 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
248 if (set)
249 *kvm_reg = *qemu_reg;
250 else
251 *qemu_reg = *kvm_reg;
254 static int kvm_getput_regs(CPUState *env, int set)
256 struct kvm_regs regs;
257 int ret = 0;
259 if (!set) {
260 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
261 if (ret < 0)
262 return ret;
265 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
266 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
267 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
268 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
269 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
270 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
271 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
272 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
273 #ifdef TARGET_X86_64
274 kvm_getput_reg(&regs.r8, &env->regs[8], set);
275 kvm_getput_reg(&regs.r9, &env->regs[9], set);
276 kvm_getput_reg(&regs.r10, &env->regs[10], set);
277 kvm_getput_reg(&regs.r11, &env->regs[11], set);
278 kvm_getput_reg(&regs.r12, &env->regs[12], set);
279 kvm_getput_reg(&regs.r13, &env->regs[13], set);
280 kvm_getput_reg(&regs.r14, &env->regs[14], set);
281 kvm_getput_reg(&regs.r15, &env->regs[15], set);
282 #endif
284 kvm_getput_reg(&regs.rflags, &env->eflags, set);
285 kvm_getput_reg(&regs.rip, &env->eip, set);
287 if (set)
288 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
290 return ret;
293 static int kvm_put_fpu(CPUState *env)
295 struct kvm_fpu fpu;
296 int i;
298 memset(&fpu, 0, sizeof fpu);
299 fpu.fsw = env->fpus & ~(7 << 11);
300 fpu.fsw |= (env->fpstt & 7) << 11;
301 fpu.fcw = env->fpuc;
302 for (i = 0; i < 8; ++i)
303 fpu.ftwx |= (!env->fptags[i]) << i;
304 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
305 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
306 fpu.mxcsr = env->mxcsr;
308 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
311 static int kvm_put_sregs(CPUState *env)
313 struct kvm_sregs sregs;
315 memcpy(sregs.interrupt_bitmap,
316 env->interrupt_bitmap,
317 sizeof(sregs.interrupt_bitmap));
319 if ((env->eflags & VM_MASK)) {
320 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
321 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
322 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
323 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
324 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
325 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
326 } else {
327 set_seg(&sregs.cs, &env->segs[R_CS]);
328 set_seg(&sregs.ds, &env->segs[R_DS]);
329 set_seg(&sregs.es, &env->segs[R_ES]);
330 set_seg(&sregs.fs, &env->segs[R_FS]);
331 set_seg(&sregs.gs, &env->segs[R_GS]);
332 set_seg(&sregs.ss, &env->segs[R_SS]);
334 if (env->cr[0] & CR0_PE_MASK) {
335 /* force ss cpl to cs cpl */
336 sregs.ss.selector = (sregs.ss.selector & ~3) |
337 (sregs.cs.selector & 3);
338 sregs.ss.dpl = sregs.ss.selector & 3;
342 set_seg(&sregs.tr, &env->tr);
343 set_seg(&sregs.ldt, &env->ldt);
345 sregs.idt.limit = env->idt.limit;
346 sregs.idt.base = env->idt.base;
347 sregs.gdt.limit = env->gdt.limit;
348 sregs.gdt.base = env->gdt.base;
350 sregs.cr0 = env->cr[0];
351 sregs.cr2 = env->cr[2];
352 sregs.cr3 = env->cr[3];
353 sregs.cr4 = env->cr[4];
355 sregs.cr8 = cpu_get_apic_tpr(env);
356 sregs.apic_base = cpu_get_apic_base(env);
358 sregs.efer = env->efer;
360 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
363 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
364 uint32_t index, uint64_t value)
366 entry->index = index;
367 entry->data = value;
370 static int kvm_put_msrs(CPUState *env)
372 struct {
373 struct kvm_msrs info;
374 struct kvm_msr_entry entries[100];
375 } msr_data;
376 struct kvm_msr_entry *msrs = msr_data.entries;
377 int n = 0;
379 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
380 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
381 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
382 if (kvm_has_msr_star(env))
383 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
384 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
385 #ifdef TARGET_X86_64
386 /* FIXME if lm capable */
387 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
388 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
389 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
390 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
391 #endif
392 msr_data.info.nmsrs = n;
394 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
399 static int kvm_get_fpu(CPUState *env)
401 struct kvm_fpu fpu;
402 int i, ret;
404 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
405 if (ret < 0)
406 return ret;
408 env->fpstt = (fpu.fsw >> 11) & 7;
409 env->fpus = fpu.fsw;
410 env->fpuc = fpu.fcw;
411 for (i = 0; i < 8; ++i)
412 env->fptags[i] = !((fpu.ftwx >> i) & 1);
413 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
414 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
415 env->mxcsr = fpu.mxcsr;
417 return 0;
420 static int kvm_get_sregs(CPUState *env)
422 struct kvm_sregs sregs;
423 uint32_t hflags;
424 int ret;
426 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
427 if (ret < 0)
428 return ret;
430 memcpy(env->interrupt_bitmap,
431 sregs.interrupt_bitmap,
432 sizeof(sregs.interrupt_bitmap));
434 get_seg(&env->segs[R_CS], &sregs.cs);
435 get_seg(&env->segs[R_DS], &sregs.ds);
436 get_seg(&env->segs[R_ES], &sregs.es);
437 get_seg(&env->segs[R_FS], &sregs.fs);
438 get_seg(&env->segs[R_GS], &sregs.gs);
439 get_seg(&env->segs[R_SS], &sregs.ss);
441 get_seg(&env->tr, &sregs.tr);
442 get_seg(&env->ldt, &sregs.ldt);
444 env->idt.limit = sregs.idt.limit;
445 env->idt.base = sregs.idt.base;
446 env->gdt.limit = sregs.gdt.limit;
447 env->gdt.base = sregs.gdt.base;
449 env->cr[0] = sregs.cr0;
450 env->cr[2] = sregs.cr2;
451 env->cr[3] = sregs.cr3;
452 env->cr[4] = sregs.cr4;
454 cpu_set_apic_base(env, sregs.apic_base);
456 env->efer = sregs.efer;
457 //cpu_set_apic_tpr(env, sregs.cr8);
459 #define HFLAG_COPY_MASK ~( \
460 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
461 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
462 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
463 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
467 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
468 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
469 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
470 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
471 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
472 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
473 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
475 if (env->efer & MSR_EFER_LMA) {
476 hflags |= HF_LMA_MASK;
479 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
480 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
481 } else {
482 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
483 (DESC_B_SHIFT - HF_CS32_SHIFT);
484 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
485 (DESC_B_SHIFT - HF_SS32_SHIFT);
486 if (!(env->cr[0] & CR0_PE_MASK) ||
487 (env->eflags & VM_MASK) ||
488 !(hflags & HF_CS32_MASK)) {
489 hflags |= HF_ADDSEG_MASK;
490 } else {
491 hflags |= ((env->segs[R_DS].base |
492 env->segs[R_ES].base |
493 env->segs[R_SS].base) != 0) <<
494 HF_ADDSEG_SHIFT;
497 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
499 return 0;
502 static int kvm_get_msrs(CPUState *env)
504 struct {
505 struct kvm_msrs info;
506 struct kvm_msr_entry entries[100];
507 } msr_data;
508 struct kvm_msr_entry *msrs = msr_data.entries;
509 int ret, i, n;
511 n = 0;
512 msrs[n++].index = MSR_IA32_SYSENTER_CS;
513 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
514 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
515 if (kvm_has_msr_star(env))
516 msrs[n++].index = MSR_STAR;
517 msrs[n++].index = MSR_IA32_TSC;
518 #ifdef TARGET_X86_64
519 /* FIXME lm_capable_kernel */
520 msrs[n++].index = MSR_CSTAR;
521 msrs[n++].index = MSR_KERNELGSBASE;
522 msrs[n++].index = MSR_FMASK;
523 msrs[n++].index = MSR_LSTAR;
524 #endif
525 msr_data.info.nmsrs = n;
526 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
527 if (ret < 0)
528 return ret;
530 for (i = 0; i < ret; i++) {
531 switch (msrs[i].index) {
532 case MSR_IA32_SYSENTER_CS:
533 env->sysenter_cs = msrs[i].data;
534 break;
535 case MSR_IA32_SYSENTER_ESP:
536 env->sysenter_esp = msrs[i].data;
537 break;
538 case MSR_IA32_SYSENTER_EIP:
539 env->sysenter_eip = msrs[i].data;
540 break;
541 case MSR_STAR:
542 env->star = msrs[i].data;
543 break;
544 #ifdef TARGET_X86_64
545 case MSR_CSTAR:
546 env->cstar = msrs[i].data;
547 break;
548 case MSR_KERNELGSBASE:
549 env->kernelgsbase = msrs[i].data;
550 break;
551 case MSR_FMASK:
552 env->fmask = msrs[i].data;
553 break;
554 case MSR_LSTAR:
555 env->lstar = msrs[i].data;
556 break;
557 #endif
558 case MSR_IA32_TSC:
559 env->tsc = msrs[i].data;
560 break;
564 return 0;
567 int kvm_arch_put_registers(CPUState *env)
569 int ret;
571 ret = kvm_getput_regs(env, 1);
572 if (ret < 0)
573 return ret;
575 ret = kvm_put_fpu(env);
576 if (ret < 0)
577 return ret;
579 ret = kvm_put_sregs(env);
580 if (ret < 0)
581 return ret;
583 ret = kvm_put_msrs(env);
584 if (ret < 0)
585 return ret;
587 return 0;
590 int kvm_arch_get_registers(CPUState *env)
592 int ret;
594 ret = kvm_getput_regs(env, 0);
595 if (ret < 0)
596 return ret;
598 ret = kvm_get_fpu(env);
599 if (ret < 0)
600 return ret;
602 ret = kvm_get_sregs(env);
603 if (ret < 0)
604 return ret;
606 ret = kvm_get_msrs(env);
607 if (ret < 0)
608 return ret;
610 return 0;
613 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
615 /* Try to inject an interrupt if the guest can accept it */
616 if (run->ready_for_interrupt_injection &&
617 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
618 (env->eflags & IF_MASK)) {
619 int irq;
621 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
622 irq = cpu_get_pic_interrupt(env);
623 if (irq >= 0) {
624 struct kvm_interrupt intr;
625 intr.irq = irq;
626 /* FIXME: errors */
627 dprintf("injected interrupt %d\n", irq);
628 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
632 /* If we have an interrupt but the guest is not ready to receive an
633 * interrupt, request an interrupt window exit. This will
634 * cause a return to userspace as soon as the guest is ready to
635 * receive interrupts. */
636 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
637 run->request_interrupt_window = 1;
638 else
639 run->request_interrupt_window = 0;
641 dprintf("setting tpr\n");
642 run->cr8 = cpu_get_apic_tpr(env);
644 return 0;
647 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
649 if (run->if_flag)
650 env->eflags |= IF_MASK;
651 else
652 env->eflags &= ~IF_MASK;
654 cpu_set_apic_tpr(env, run->cr8);
655 cpu_set_apic_base(env, run->apic_base);
657 return 0;
660 static int kvm_handle_halt(CPUState *env)
662 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
663 (env->eflags & IF_MASK)) &&
664 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
665 env->halted = 1;
666 env->exception_index = EXCP_HLT;
667 return 0;
670 return 1;
673 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
675 int ret = 0;
677 switch (run->exit_reason) {
678 case KVM_EXIT_HLT:
679 dprintf("handle_hlt\n");
680 ret = kvm_handle_halt(env);
681 break;
684 return ret;