Avoid (some) ppc cross-compilation problems
[qemu/mini2440.git] / hw / slavio_misc.c
blob6a30f0ca39b9ff46e07f5c8d6d4ee62f5cabaea9
1 /*
2 * QEMU Sparc SLAVIO aux io port emulation
4 * Copyright (c) 2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "sysemu.h"
28 /* debug misc */
29 //#define DEBUG_MISC
32 * This is the auxio port, chip control and system control part of
33 * chip STP2001 (Slave I/O), also produced as NCR89C105. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
36 * This also includes the PMC CPU idle controller.
39 #ifdef DEBUG_MISC
40 #define MISC_DPRINTF(fmt, args...) \
41 do { printf("MISC: " fmt , ##args); } while (0)
42 #else
43 #define MISC_DPRINTF(fmt, args...)
44 #endif
46 typedef struct MiscState {
47 qemu_irq irq;
48 uint8_t config;
49 uint8_t aux1, aux2;
50 uint8_t diag, mctrl;
51 uint32_t sysctrl;
52 uint16_t leds;
53 CPUState *env;
54 qemu_irq fdc_tc;
55 } MiscState;
57 #define MISC_SIZE 1
58 #define SYSCTRL_MAXADDR 3
59 #define SYSCTRL_SIZE (SYSCTRL_MAXADDR + 1)
60 #define LED_MAXADDR 1
61 #define LED_SIZE (LED_MAXADDR + 1)
63 #define MISC_MASK 0x0fff0000
64 #define MISC_LEDS 0x01600000
65 #define MISC_CFG 0x01800000
66 #define MISC_DIAG 0x01a00000
67 #define MISC_MDM 0x01b00000
68 #define MISC_SYS 0x01f00000
70 #define AUX1_TC 0x02
72 #define AUX2_PWROFF 0x01
73 #define AUX2_PWRINTCLR 0x02
74 #define AUX2_PWRFAIL 0x20
76 #define CFG_PWRINTEN 0x08
78 #define SYS_RESET 0x01
79 #define SYS_RESETSTAT 0x02
81 static void slavio_misc_update_irq(void *opaque)
83 MiscState *s = opaque;
85 if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
86 MISC_DPRINTF("Raise IRQ\n");
87 qemu_irq_raise(s->irq);
88 } else {
89 MISC_DPRINTF("Lower IRQ\n");
90 qemu_irq_lower(s->irq);
94 static void slavio_misc_reset(void *opaque)
96 MiscState *s = opaque;
98 // Diagnostic and system control registers not cleared in reset
99 s->config = s->aux1 = s->aux2 = s->mctrl = 0;
102 void slavio_set_power_fail(void *opaque, int power_failing)
104 MiscState *s = opaque;
106 MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
107 if (power_failing && (s->config & CFG_PWRINTEN)) {
108 s->aux2 |= AUX2_PWRFAIL;
109 } else {
110 s->aux2 &= ~AUX2_PWRFAIL;
112 slavio_misc_update_irq(s);
115 static void slavio_misc_mem_writeb(void *opaque, target_phys_addr_t addr,
116 uint32_t val)
118 MiscState *s = opaque;
120 switch (addr & MISC_MASK) {
121 case MISC_CFG:
122 MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
123 s->config = val & 0xff;
124 slavio_misc_update_irq(s);
125 break;
126 case MISC_DIAG:
127 MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
128 s->diag = val & 0xff;
129 break;
130 case MISC_MDM:
131 MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
132 s->mctrl = val & 0xff;
133 break;
134 default:
135 break;
139 static uint32_t slavio_misc_mem_readb(void *opaque, target_phys_addr_t addr)
141 MiscState *s = opaque;
142 uint32_t ret = 0;
144 switch (addr & MISC_MASK) {
145 case MISC_CFG:
146 ret = s->config;
147 MISC_DPRINTF("Read config %2.2x\n", ret);
148 break;
149 case MISC_DIAG:
150 ret = s->diag;
151 MISC_DPRINTF("Read diag %2.2x\n", ret);
152 break;
153 case MISC_MDM:
154 ret = s->mctrl;
155 MISC_DPRINTF("Read modem control %2.2x\n", ret);
156 break;
157 default:
158 break;
160 return ret;
163 static CPUReadMemoryFunc *slavio_misc_mem_read[3] = {
164 slavio_misc_mem_readb,
165 NULL,
166 NULL,
169 static CPUWriteMemoryFunc *slavio_misc_mem_write[3] = {
170 slavio_misc_mem_writeb,
171 NULL,
172 NULL,
175 static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
176 uint32_t val)
178 MiscState *s = opaque;
180 MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
181 if (val & AUX1_TC) {
182 // Send a pulse to floppy terminal count line
183 if (s->fdc_tc) {
184 qemu_irq_raise(s->fdc_tc);
185 qemu_irq_lower(s->fdc_tc);
187 val &= ~AUX1_TC;
189 s->aux1 = val & 0xff;
192 static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
194 MiscState *s = opaque;
195 uint32_t ret = 0;
197 ret = s->aux1;
198 MISC_DPRINTF("Read aux1 %2.2x\n", ret);
200 return ret;
203 static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = {
204 slavio_aux1_mem_readb,
205 NULL,
206 NULL,
209 static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = {
210 slavio_aux1_mem_writeb,
211 NULL,
212 NULL,
215 static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
216 uint32_t val)
218 MiscState *s = opaque;
220 val &= AUX2_PWRINTCLR | AUX2_PWROFF;
221 MISC_DPRINTF("Write aux2 %2.2x\n", val);
222 val |= s->aux2 & AUX2_PWRFAIL;
223 if (val & AUX2_PWRINTCLR) // Clear Power Fail int
224 val &= AUX2_PWROFF;
225 s->aux2 = val;
226 if (val & AUX2_PWROFF)
227 qemu_system_shutdown_request();
228 slavio_misc_update_irq(s);
231 static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
233 MiscState *s = opaque;
234 uint32_t ret = 0;
236 ret = s->aux2;
237 MISC_DPRINTF("Read aux2 %2.2x\n", ret);
239 return ret;
242 static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = {
243 slavio_aux2_mem_readb,
244 NULL,
245 NULL,
248 static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = {
249 slavio_aux2_mem_writeb,
250 NULL,
251 NULL,
254 static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
256 MiscState *s = opaque;
258 MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
259 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
262 static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
264 uint32_t ret = 0;
266 MISC_DPRINTF("Read power management %2.2x\n", ret);
267 return ret;
270 static CPUReadMemoryFunc *apc_mem_read[3] = {
271 apc_mem_readb,
272 NULL,
273 NULL,
276 static CPUWriteMemoryFunc *apc_mem_write[3] = {
277 apc_mem_writeb,
278 NULL,
279 NULL,
282 static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
284 MiscState *s = opaque;
285 uint32_t ret = 0, saddr;
287 saddr = addr & SYSCTRL_MAXADDR;
288 switch (saddr) {
289 case 0:
290 ret = s->sysctrl;
291 break;
292 default:
293 break;
295 MISC_DPRINTF("Read system control reg 0x" TARGET_FMT_plx " = %x\n", addr,
296 ret);
297 return ret;
300 static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
301 uint32_t val)
303 MiscState *s = opaque;
304 uint32_t saddr;
306 saddr = addr & SYSCTRL_MAXADDR;
307 MISC_DPRINTF("Write system control reg 0x" TARGET_FMT_plx " = %x\n", addr,
308 val);
309 switch (saddr) {
310 case 0:
311 if (val & SYS_RESET) {
312 s->sysctrl = SYS_RESETSTAT;
313 qemu_system_reset_request();
315 break;
316 default:
317 break;
321 static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
322 NULL,
323 NULL,
324 slavio_sysctrl_mem_readl,
327 static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
328 NULL,
329 NULL,
330 slavio_sysctrl_mem_writel,
333 static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
335 MiscState *s = opaque;
336 uint32_t ret = 0, saddr;
338 saddr = addr & LED_MAXADDR;
339 switch (saddr) {
340 case 0:
341 ret = s->leds;
342 break;
343 default:
344 break;
346 MISC_DPRINTF("Read diagnostic LED reg 0x" TARGET_FMT_plx " = %x\n", addr,
347 ret);
348 return ret;
351 static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
352 uint32_t val)
354 MiscState *s = opaque;
355 uint32_t saddr;
357 saddr = addr & LED_MAXADDR;
358 MISC_DPRINTF("Write diagnostic LED reg 0x" TARGET_FMT_plx " = %x\n", addr,
359 val);
360 switch (saddr) {
361 case 0:
362 s->leds = val;
363 break;
364 default:
365 break;
369 static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
370 NULL,
371 slavio_led_mem_readw,
372 NULL,
375 static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
376 NULL,
377 slavio_led_mem_writew,
378 NULL,
381 static void slavio_misc_save(QEMUFile *f, void *opaque)
383 MiscState *s = opaque;
384 uint32_t tmp = 0;
385 uint8_t tmp8;
387 qemu_put_be32s(f, &tmp); /* ignored, was IRQ. */
388 qemu_put_8s(f, &s->config);
389 qemu_put_8s(f, &s->aux1);
390 qemu_put_8s(f, &s->aux2);
391 qemu_put_8s(f, &s->diag);
392 qemu_put_8s(f, &s->mctrl);
393 tmp8 = s->sysctrl & 0xff;
394 qemu_put_8s(f, &tmp8);
397 static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
399 MiscState *s = opaque;
400 uint32_t tmp;
401 uint8_t tmp8;
403 if (version_id != 1)
404 return -EINVAL;
406 qemu_get_be32s(f, &tmp);
407 qemu_get_8s(f, &s->config);
408 qemu_get_8s(f, &s->aux1);
409 qemu_get_8s(f, &s->aux2);
410 qemu_get_8s(f, &s->diag);
411 qemu_get_8s(f, &s->mctrl);
412 qemu_get_8s(f, &tmp8);
413 s->sysctrl = (uint32_t)tmp8;
414 return 0;
417 void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
418 target_phys_addr_t aux1_base,
419 target_phys_addr_t aux2_base, qemu_irq irq,
420 CPUState *env, qemu_irq **fdc_tc)
422 int io;
423 MiscState *s;
425 s = qemu_mallocz(sizeof(MiscState));
426 if (!s)
427 return NULL;
429 if (base) {
430 /* 8 bit registers */
431 io = cpu_register_io_memory(0, slavio_misc_mem_read,
432 slavio_misc_mem_write, s);
433 // Slavio control
434 cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io);
435 // Diagnostics
436 cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io);
437 // Modem control
438 cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io);
440 /* 16 bit registers */
441 io = cpu_register_io_memory(0, slavio_led_mem_read,
442 slavio_led_mem_write, s);
443 /* ss600mp diag LEDs */
444 cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io);
446 /* 32 bit registers */
447 io = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
448 slavio_sysctrl_mem_write, s);
449 // System control
450 cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io);
453 // AUX 1 (Misc System Functions)
454 if (aux1_base) {
455 io = cpu_register_io_memory(0, slavio_aux1_mem_read,
456 slavio_aux1_mem_write, s);
457 cpu_register_physical_memory(aux1_base, MISC_SIZE, io);
460 // AUX 2 (Software Powerdown Control)
461 if (aux2_base) {
462 io = cpu_register_io_memory(0, slavio_aux2_mem_read,
463 slavio_aux2_mem_write, s);
464 cpu_register_physical_memory(aux2_base, MISC_SIZE, io);
467 // Power management (APC) XXX: not a Slavio device
468 if (power_base) {
469 io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s);
470 cpu_register_physical_memory(power_base, MISC_SIZE, io);
473 s->irq = irq;
474 s->env = env;
475 *fdc_tc = &s->fdc_tc;
477 register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
479 qemu_register_reset(slavio_misc_reset, s);
480 slavio_misc_reset(s);
482 return s;