Clarify -soundhw documentation as to avoid hda confusion
[qemu/mini2440.git] / target-i386 / exec.h
blob36631665ed7f6387dcd9013c2c28af0ab4298e92
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
30 #include "cpu-defs.h"
32 register struct CPUX86State *env asm(AREG0);
34 #include "qemu-log.h"
36 #define EAX (env->regs[R_EAX])
37 #define ECX (env->regs[R_ECX])
38 #define EDX (env->regs[R_EDX])
39 #define EBX (env->regs[R_EBX])
40 #define ESP (env->regs[R_ESP])
41 #define EBP (env->regs[R_EBP])
42 #define ESI (env->regs[R_ESI])
43 #define EDI (env->regs[R_EDI])
44 #define EIP (env->eip)
45 #define DF (env->df)
47 #define CC_SRC (env->cc_src)
48 #define CC_DST (env->cc_dst)
49 #define CC_OP (env->cc_op)
51 /* float macros */
52 #define FT0 (env->ft0)
53 #define ST0 (env->fpregs[env->fpstt].d)
54 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
55 #define ST1 ST(1)
57 #include "cpu.h"
58 #include "exec-all.h"
60 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
63 int is_write, int mmu_idx, int is_softmmu);
64 void __hidden cpu_lock(void);
65 void __hidden cpu_unlock(void);
66 void do_interrupt(int intno, int is_int, int error_code,
67 target_ulong next_eip, int is_hw);
68 void do_interrupt_user(int intno, int is_int, int error_code,
69 target_ulong next_eip);
70 void raise_interrupt(int intno, int is_int, int error_code,
71 int next_eip_addend);
72 void raise_exception_err(int exception_index, int error_code);
73 void raise_exception(int exception_index);
74 void do_smm_enter(void);
76 /* n must be a constant to be efficient */
77 static inline target_long lshift(target_long x, int n)
79 if (n >= 0)
80 return x << n;
81 else
82 return x >> (-n);
85 #include "helper.h"
87 static inline void svm_check_intercept(uint32_t type)
89 helper_svm_check_intercept_param(type, 0);
92 #if !defined(CONFIG_USER_ONLY)
94 #include "softmmu_exec.h"
96 #endif /* !defined(CONFIG_USER_ONLY) */
98 #ifdef USE_X86LDOUBLE
99 /* use long double functions */
100 #define floatx_to_int32 floatx80_to_int32
101 #define floatx_to_int64 floatx80_to_int64
102 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
103 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
104 #define int32_to_floatx int32_to_floatx80
105 #define int64_to_floatx int64_to_floatx80
106 #define float32_to_floatx float32_to_floatx80
107 #define float64_to_floatx float64_to_floatx80
108 #define floatx_to_float32 floatx80_to_float32
109 #define floatx_to_float64 floatx80_to_float64
110 #define floatx_abs floatx80_abs
111 #define floatx_chs floatx80_chs
112 #define floatx_round_to_int floatx80_round_to_int
113 #define floatx_compare floatx80_compare
114 #define floatx_compare_quiet floatx80_compare_quiet
115 #else
116 #define floatx_to_int32 float64_to_int32
117 #define floatx_to_int64 float64_to_int64
118 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
119 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
120 #define int32_to_floatx int32_to_float64
121 #define int64_to_floatx int64_to_float64
122 #define float32_to_floatx float32_to_float64
123 #define float64_to_floatx(x, e) (x)
124 #define floatx_to_float32 float64_to_float32
125 #define floatx_to_float64(x, e) (x)
126 #define floatx_abs float64_abs
127 #define floatx_chs float64_chs
128 #define floatx_round_to_int float64_round_to_int
129 #define floatx_compare float64_compare
130 #define floatx_compare_quiet float64_compare_quiet
131 #endif
133 #define RC_MASK 0xc00
134 #define RC_NEAR 0x000
135 #define RC_DOWN 0x400
136 #define RC_UP 0x800
137 #define RC_CHOP 0xc00
139 #define MAXTAN 9223372036854775808.0
141 #ifdef USE_X86LDOUBLE
143 /* only for x86 */
144 typedef union {
145 long double d;
146 struct {
147 unsigned long long lower;
148 unsigned short upper;
149 } l;
150 } CPU86_LDoubleU;
152 /* the following deal with x86 long double-precision numbers */
153 #define MAXEXPD 0x7fff
154 #define EXPBIAS 16383
155 #define EXPD(fp) (fp.l.upper & 0x7fff)
156 #define SIGND(fp) ((fp.l.upper) & 0x8000)
157 #define MANTD(fp) (fp.l.lower)
158 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
160 #else
162 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
163 typedef union {
164 double d;
165 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
166 struct {
167 uint32_t lower;
168 int32_t upper;
169 } l;
170 #else
171 struct {
172 int32_t upper;
173 uint32_t lower;
174 } l;
175 #endif
176 #ifndef __arm__
177 int64_t ll;
178 #endif
179 } CPU86_LDoubleU;
181 /* the following deal with IEEE double-precision numbers */
182 #define MAXEXPD 0x7ff
183 #define EXPBIAS 1023
184 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
185 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
186 #ifdef __arm__
187 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
188 #else
189 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
190 #endif
191 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
192 #endif
194 static inline void fpush(void)
196 env->fpstt = (env->fpstt - 1) & 7;
197 env->fptags[env->fpstt] = 0; /* validate stack entry */
200 static inline void fpop(void)
202 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
203 env->fpstt = (env->fpstt + 1) & 7;
206 #ifndef USE_X86LDOUBLE
207 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
209 CPU86_LDoubleU temp;
210 int upper, e;
211 uint64_t ll;
213 /* mantissa */
214 upper = lduw(ptr + 8);
215 /* XXX: handle overflow ? */
216 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
217 e |= (upper >> 4) & 0x800; /* sign */
218 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
219 #ifdef __arm__
220 temp.l.upper = (e << 20) | (ll >> 32);
221 temp.l.lower = ll;
222 #else
223 temp.ll = ll | ((uint64_t)e << 52);
224 #endif
225 return temp.d;
228 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
230 CPU86_LDoubleU temp;
231 int e;
233 temp.d = f;
234 /* mantissa */
235 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
236 /* exponent + sign */
237 e = EXPD(temp) - EXPBIAS + 16383;
238 e |= SIGND(temp) >> 16;
239 stw(ptr + 8, e);
241 #else
243 /* we use memory access macros */
245 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
247 CPU86_LDoubleU temp;
249 temp.l.lower = ldq(ptr);
250 temp.l.upper = lduw(ptr + 8);
251 return temp.d;
254 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
256 CPU86_LDoubleU temp;
258 temp.d = f;
259 stq(ptr, temp.l.lower);
260 stw(ptr + 8, temp.l.upper);
263 #endif /* USE_X86LDOUBLE */
265 #define FPUS_IE (1 << 0)
266 #define FPUS_DE (1 << 1)
267 #define FPUS_ZE (1 << 2)
268 #define FPUS_OE (1 << 3)
269 #define FPUS_UE (1 << 4)
270 #define FPUS_PE (1 << 5)
271 #define FPUS_SF (1 << 6)
272 #define FPUS_SE (1 << 7)
273 #define FPUS_B (1 << 15)
275 #define FPUC_EM 0x3f
277 extern const CPU86_LDouble f15rk[7];
279 void fpu_raise_exception(void);
280 void restore_native_fp_state(CPUState *env);
281 void save_native_fp_state(CPUState *env);
283 extern const uint8_t parity_table[256];
284 extern const uint8_t rclw_table[32];
285 extern const uint8_t rclb_table[32];
287 static inline uint32_t compute_eflags(void)
289 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
292 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
293 static inline void load_eflags(int eflags, int update_mask)
295 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
296 DF = 1 - (2 * ((eflags >> 10) & 1));
297 env->eflags = (env->eflags & ~update_mask) |
298 (eflags & update_mask) | 0x2;
301 static inline void env_to_regs(void)
303 #ifdef reg_EAX
304 EAX = env->regs[R_EAX];
305 #endif
306 #ifdef reg_ECX
307 ECX = env->regs[R_ECX];
308 #endif
309 #ifdef reg_EDX
310 EDX = env->regs[R_EDX];
311 #endif
312 #ifdef reg_EBX
313 EBX = env->regs[R_EBX];
314 #endif
315 #ifdef reg_ESP
316 ESP = env->regs[R_ESP];
317 #endif
318 #ifdef reg_EBP
319 EBP = env->regs[R_EBP];
320 #endif
321 #ifdef reg_ESI
322 ESI = env->regs[R_ESI];
323 #endif
324 #ifdef reg_EDI
325 EDI = env->regs[R_EDI];
326 #endif
329 static inline void regs_to_env(void)
331 #ifdef reg_EAX
332 env->regs[R_EAX] = EAX;
333 #endif
334 #ifdef reg_ECX
335 env->regs[R_ECX] = ECX;
336 #endif
337 #ifdef reg_EDX
338 env->regs[R_EDX] = EDX;
339 #endif
340 #ifdef reg_EBX
341 env->regs[R_EBX] = EBX;
342 #endif
343 #ifdef reg_ESP
344 env->regs[R_ESP] = ESP;
345 #endif
346 #ifdef reg_EBP
347 env->regs[R_EBP] = EBP;
348 #endif
349 #ifdef reg_ESI
350 env->regs[R_ESI] = ESI;
351 #endif
352 #ifdef reg_EDI
353 env->regs[R_EDI] = EDI;
354 #endif
357 static inline int cpu_halted(CPUState *env) {
358 /* handle exit of HALTED state */
359 if (!env->halted)
360 return 0;
361 /* disable halt condition */
362 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
363 (env->eflags & IF_MASK)) ||
364 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
365 env->halted = 0;
366 return 0;
368 return EXCP_HALTED;
371 /* load efer and update the corresponding hflags. XXX: do consistency
372 checks with cpuid bits ? */
373 static inline void cpu_load_efer(CPUState *env, uint64_t val)
375 env->efer = val;
376 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
377 if (env->efer & MSR_EFER_LMA)
378 env->hflags |= HF_LMA_MASK;
379 if (env->efer & MSR_EFER_SVME)
380 env->hflags |= HF_SVME_MASK;