Only define __llseek if it is going to be used
[qemu/mini2440.git] / target-sparc / op_helper.c
bloba1f505493a23303c438679d1fb7aa32eb0a2394f
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
34 #ifdef TARGET_SPARC64
35 #ifndef TARGET_ABI32
36 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
37 #else
38 #define AM_CHECK(env1) (1)
39 #endif
40 #endif
42 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43 // Calculates TSB pointer value for fault page size 8k or 64k
44 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45 uint64_t tag_access_register,
46 int page_size)
48 uint64_t tsb_base = tsb_register & ~0x1fffULL;
49 int tsb_split = (env->dmmuregs[5] & 0x1000ULL) ? 1 : 0;
50 int tsb_size = env->dmmuregs[5] & 0xf;
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
55 // now reorder bits
56 uint64_t tsb_base_mask = ~0x1fffULL;
57 uint64_t va = tag_access_va;
59 // move va bits to correct position
60 if (page_size == 8*1024) {
61 va >>= 9;
62 } else if (page_size == 64*1024) {
63 va >>= 12;
66 if (tsb_size) {
67 tsb_base_mask <<= tsb_size;
70 // calculate tsb_base mask and adjust va if split is in use
71 if (tsb_split) {
72 if (page_size == 8*1024) {
73 va &= ~(1ULL << (13 + tsb_size));
74 } else if (page_size == 64*1024) {
75 va |= (1ULL << (13 + tsb_size));
77 tsb_base_mask <<= 1;
80 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
83 // Calculates tag target register value by reordering bits
84 // in tag access register
85 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
87 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
90 #endif
92 static inline void address_mask(CPUState *env1, target_ulong *addr)
94 #ifdef TARGET_SPARC64
95 if (AM_CHECK(env1))
96 *addr &= 0xffffffffULL;
97 #endif
100 static void raise_exception(int tt)
102 env->exception_index = tt;
103 cpu_loop_exit();
106 void HELPER(raise_exception)(int tt)
108 raise_exception(tt);
111 static inline void set_cwp(int new_cwp)
113 cpu_set_cwp(env, new_cwp);
116 void helper_check_align(target_ulong addr, uint32_t align)
118 if (addr & align) {
119 #ifdef DEBUG_UNALIGNED
120 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
121 "\n", addr, env->pc);
122 #endif
123 raise_exception(TT_UNALIGNED);
127 #define F_HELPER(name, p) void helper_f##name##p(void)
129 #define F_BINOP(name) \
130 float32 helper_f ## name ## s (float32 src1, float32 src2) \
132 return float32_ ## name (src1, src2, &env->fp_status); \
134 F_HELPER(name, d) \
136 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
138 F_HELPER(name, q) \
140 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
143 F_BINOP(add);
144 F_BINOP(sub);
145 F_BINOP(mul);
146 F_BINOP(div);
147 #undef F_BINOP
149 void helper_fsmuld(float32 src1, float32 src2)
151 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
152 float32_to_float64(src2, &env->fp_status),
153 &env->fp_status);
156 void helper_fdmulq(void)
158 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
159 float64_to_float128(DT1, &env->fp_status),
160 &env->fp_status);
163 float32 helper_fnegs(float32 src)
165 return float32_chs(src);
168 #ifdef TARGET_SPARC64
169 F_HELPER(neg, d)
171 DT0 = float64_chs(DT1);
174 F_HELPER(neg, q)
176 QT0 = float128_chs(QT1);
178 #endif
180 /* Integer to float conversion. */
181 float32 helper_fitos(int32_t src)
183 return int32_to_float32(src, &env->fp_status);
186 void helper_fitod(int32_t src)
188 DT0 = int32_to_float64(src, &env->fp_status);
191 void helper_fitoq(int32_t src)
193 QT0 = int32_to_float128(src, &env->fp_status);
196 #ifdef TARGET_SPARC64
197 float32 helper_fxtos(void)
199 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
202 F_HELPER(xto, d)
204 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
207 F_HELPER(xto, q)
209 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
211 #endif
212 #undef F_HELPER
214 /* floating point conversion */
215 float32 helper_fdtos(void)
217 return float64_to_float32(DT1, &env->fp_status);
220 void helper_fstod(float32 src)
222 DT0 = float32_to_float64(src, &env->fp_status);
225 float32 helper_fqtos(void)
227 return float128_to_float32(QT1, &env->fp_status);
230 void helper_fstoq(float32 src)
232 QT0 = float32_to_float128(src, &env->fp_status);
235 void helper_fqtod(void)
237 DT0 = float128_to_float64(QT1, &env->fp_status);
240 void helper_fdtoq(void)
242 QT0 = float64_to_float128(DT1, &env->fp_status);
245 /* Float to integer conversion. */
246 int32_t helper_fstoi(float32 src)
248 return float32_to_int32_round_to_zero(src, &env->fp_status);
251 int32_t helper_fdtoi(void)
253 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
256 int32_t helper_fqtoi(void)
258 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
261 #ifdef TARGET_SPARC64
262 void helper_fstox(float32 src)
264 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
267 void helper_fdtox(void)
269 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
272 void helper_fqtox(void)
274 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
277 void helper_faligndata(void)
279 uint64_t tmp;
281 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
282 /* on many architectures a shift of 64 does nothing */
283 if ((env->gsr & 7) != 0) {
284 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
286 *((uint64_t *)&DT0) = tmp;
289 #ifdef WORDS_BIGENDIAN
290 #define VIS_B64(n) b[7 - (n)]
291 #define VIS_W64(n) w[3 - (n)]
292 #define VIS_SW64(n) sw[3 - (n)]
293 #define VIS_L64(n) l[1 - (n)]
294 #define VIS_B32(n) b[3 - (n)]
295 #define VIS_W32(n) w[1 - (n)]
296 #else
297 #define VIS_B64(n) b[n]
298 #define VIS_W64(n) w[n]
299 #define VIS_SW64(n) sw[n]
300 #define VIS_L64(n) l[n]
301 #define VIS_B32(n) b[n]
302 #define VIS_W32(n) w[n]
303 #endif
305 typedef union {
306 uint8_t b[8];
307 uint16_t w[4];
308 int16_t sw[4];
309 uint32_t l[2];
310 float64 d;
311 } vis64;
313 typedef union {
314 uint8_t b[4];
315 uint16_t w[2];
316 uint32_t l;
317 float32 f;
318 } vis32;
320 void helper_fpmerge(void)
322 vis64 s, d;
324 s.d = DT0;
325 d.d = DT1;
327 // Reverse calculation order to handle overlap
328 d.VIS_B64(7) = s.VIS_B64(3);
329 d.VIS_B64(6) = d.VIS_B64(3);
330 d.VIS_B64(5) = s.VIS_B64(2);
331 d.VIS_B64(4) = d.VIS_B64(2);
332 d.VIS_B64(3) = s.VIS_B64(1);
333 d.VIS_B64(2) = d.VIS_B64(1);
334 d.VIS_B64(1) = s.VIS_B64(0);
335 //d.VIS_B64(0) = d.VIS_B64(0);
337 DT0 = d.d;
340 void helper_fmul8x16(void)
342 vis64 s, d;
343 uint32_t tmp;
345 s.d = DT0;
346 d.d = DT1;
348 #define PMUL(r) \
349 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
350 if ((tmp & 0xff) > 0x7f) \
351 tmp += 0x100; \
352 d.VIS_W64(r) = tmp >> 8;
354 PMUL(0);
355 PMUL(1);
356 PMUL(2);
357 PMUL(3);
358 #undef PMUL
360 DT0 = d.d;
363 void helper_fmul8x16al(void)
365 vis64 s, d;
366 uint32_t tmp;
368 s.d = DT0;
369 d.d = DT1;
371 #define PMUL(r) \
372 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
373 if ((tmp & 0xff) > 0x7f) \
374 tmp += 0x100; \
375 d.VIS_W64(r) = tmp >> 8;
377 PMUL(0);
378 PMUL(1);
379 PMUL(2);
380 PMUL(3);
381 #undef PMUL
383 DT0 = d.d;
386 void helper_fmul8x16au(void)
388 vis64 s, d;
389 uint32_t tmp;
391 s.d = DT0;
392 d.d = DT1;
394 #define PMUL(r) \
395 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
396 if ((tmp & 0xff) > 0x7f) \
397 tmp += 0x100; \
398 d.VIS_W64(r) = tmp >> 8;
400 PMUL(0);
401 PMUL(1);
402 PMUL(2);
403 PMUL(3);
404 #undef PMUL
406 DT0 = d.d;
409 void helper_fmul8sux16(void)
411 vis64 s, d;
412 uint32_t tmp;
414 s.d = DT0;
415 d.d = DT1;
417 #define PMUL(r) \
418 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
419 if ((tmp & 0xff) > 0x7f) \
420 tmp += 0x100; \
421 d.VIS_W64(r) = tmp >> 8;
423 PMUL(0);
424 PMUL(1);
425 PMUL(2);
426 PMUL(3);
427 #undef PMUL
429 DT0 = d.d;
432 void helper_fmul8ulx16(void)
434 vis64 s, d;
435 uint32_t tmp;
437 s.d = DT0;
438 d.d = DT1;
440 #define PMUL(r) \
441 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
442 if ((tmp & 0xff) > 0x7f) \
443 tmp += 0x100; \
444 d.VIS_W64(r) = tmp >> 8;
446 PMUL(0);
447 PMUL(1);
448 PMUL(2);
449 PMUL(3);
450 #undef PMUL
452 DT0 = d.d;
455 void helper_fmuld8sux16(void)
457 vis64 s, d;
458 uint32_t tmp;
460 s.d = DT0;
461 d.d = DT1;
463 #define PMUL(r) \
464 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
465 if ((tmp & 0xff) > 0x7f) \
466 tmp += 0x100; \
467 d.VIS_L64(r) = tmp;
469 // Reverse calculation order to handle overlap
470 PMUL(1);
471 PMUL(0);
472 #undef PMUL
474 DT0 = d.d;
477 void helper_fmuld8ulx16(void)
479 vis64 s, d;
480 uint32_t tmp;
482 s.d = DT0;
483 d.d = DT1;
485 #define PMUL(r) \
486 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
487 if ((tmp & 0xff) > 0x7f) \
488 tmp += 0x100; \
489 d.VIS_L64(r) = tmp;
491 // Reverse calculation order to handle overlap
492 PMUL(1);
493 PMUL(0);
494 #undef PMUL
496 DT0 = d.d;
499 void helper_fexpand(void)
501 vis32 s;
502 vis64 d;
504 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
505 d.d = DT1;
506 d.VIS_W64(0) = s.VIS_B32(0) << 4;
507 d.VIS_W64(1) = s.VIS_B32(1) << 4;
508 d.VIS_W64(2) = s.VIS_B32(2) << 4;
509 d.VIS_W64(3) = s.VIS_B32(3) << 4;
511 DT0 = d.d;
514 #define VIS_HELPER(name, F) \
515 void name##16(void) \
517 vis64 s, d; \
519 s.d = DT0; \
520 d.d = DT1; \
522 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
523 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
524 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
525 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
527 DT0 = d.d; \
530 uint32_t name##16s(uint32_t src1, uint32_t src2) \
532 vis32 s, d; \
534 s.l = src1; \
535 d.l = src2; \
537 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
538 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
540 return d.l; \
543 void name##32(void) \
545 vis64 s, d; \
547 s.d = DT0; \
548 d.d = DT1; \
550 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
551 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
553 DT0 = d.d; \
556 uint32_t name##32s(uint32_t src1, uint32_t src2) \
558 vis32 s, d; \
560 s.l = src1; \
561 d.l = src2; \
563 d.l = F(d.l, s.l); \
565 return d.l; \
568 #define FADD(a, b) ((a) + (b))
569 #define FSUB(a, b) ((a) - (b))
570 VIS_HELPER(helper_fpadd, FADD)
571 VIS_HELPER(helper_fpsub, FSUB)
573 #define VIS_CMPHELPER(name, F) \
574 void name##16(void) \
576 vis64 s, d; \
578 s.d = DT0; \
579 d.d = DT1; \
581 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
582 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
583 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
584 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
586 DT0 = d.d; \
589 void name##32(void) \
591 vis64 s, d; \
593 s.d = DT0; \
594 d.d = DT1; \
596 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
597 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
599 DT0 = d.d; \
602 #define FCMPGT(a, b) ((a) > (b))
603 #define FCMPEQ(a, b) ((a) == (b))
604 #define FCMPLE(a, b) ((a) <= (b))
605 #define FCMPNE(a, b) ((a) != (b))
607 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
608 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
609 VIS_CMPHELPER(helper_fcmple, FCMPLE)
610 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
611 #endif
613 void helper_check_ieee_exceptions(void)
615 target_ulong status;
617 status = get_float_exception_flags(&env->fp_status);
618 if (status) {
619 /* Copy IEEE 754 flags into FSR */
620 if (status & float_flag_invalid)
621 env->fsr |= FSR_NVC;
622 if (status & float_flag_overflow)
623 env->fsr |= FSR_OFC;
624 if (status & float_flag_underflow)
625 env->fsr |= FSR_UFC;
626 if (status & float_flag_divbyzero)
627 env->fsr |= FSR_DZC;
628 if (status & float_flag_inexact)
629 env->fsr |= FSR_NXC;
631 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
632 /* Unmasked exception, generate a trap */
633 env->fsr |= FSR_FTT_IEEE_EXCP;
634 raise_exception(TT_FP_EXCP);
635 } else {
636 /* Accumulate exceptions */
637 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
642 void helper_clear_float_exceptions(void)
644 set_float_exception_flags(0, &env->fp_status);
647 float32 helper_fabss(float32 src)
649 return float32_abs(src);
652 #ifdef TARGET_SPARC64
653 void helper_fabsd(void)
655 DT0 = float64_abs(DT1);
658 void helper_fabsq(void)
660 QT0 = float128_abs(QT1);
662 #endif
664 float32 helper_fsqrts(float32 src)
666 return float32_sqrt(src, &env->fp_status);
669 void helper_fsqrtd(void)
671 DT0 = float64_sqrt(DT1, &env->fp_status);
674 void helper_fsqrtq(void)
676 QT0 = float128_sqrt(QT1, &env->fp_status);
679 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
680 void glue(helper_, name) (void) \
682 target_ulong new_fsr; \
684 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
685 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
686 case float_relation_unordered: \
687 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
688 if ((env->fsr & FSR_NVM) || TRAP) { \
689 env->fsr |= new_fsr; \
690 env->fsr |= FSR_NVC; \
691 env->fsr |= FSR_FTT_IEEE_EXCP; \
692 raise_exception(TT_FP_EXCP); \
693 } else { \
694 env->fsr |= FSR_NVA; \
696 break; \
697 case float_relation_less: \
698 new_fsr = FSR_FCC0 << FS; \
699 break; \
700 case float_relation_greater: \
701 new_fsr = FSR_FCC1 << FS; \
702 break; \
703 default: \
704 new_fsr = 0; \
705 break; \
707 env->fsr |= new_fsr; \
709 #define GEN_FCMPS(name, size, FS, TRAP) \
710 void glue(helper_, name)(float32 src1, float32 src2) \
712 target_ulong new_fsr; \
714 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
715 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
716 case float_relation_unordered: \
717 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
718 if ((env->fsr & FSR_NVM) || TRAP) { \
719 env->fsr |= new_fsr; \
720 env->fsr |= FSR_NVC; \
721 env->fsr |= FSR_FTT_IEEE_EXCP; \
722 raise_exception(TT_FP_EXCP); \
723 } else { \
724 env->fsr |= FSR_NVA; \
726 break; \
727 case float_relation_less: \
728 new_fsr = FSR_FCC0 << FS; \
729 break; \
730 case float_relation_greater: \
731 new_fsr = FSR_FCC1 << FS; \
732 break; \
733 default: \
734 new_fsr = 0; \
735 break; \
737 env->fsr |= new_fsr; \
740 GEN_FCMPS(fcmps, float32, 0, 0);
741 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
743 GEN_FCMPS(fcmpes, float32, 0, 1);
744 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
746 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
747 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
749 static uint32_t compute_all_flags(void)
751 return env->psr & PSR_ICC;
754 static uint32_t compute_C_flags(void)
756 return env->psr & PSR_CARRY;
759 static inline uint32_t get_NZ_icc(target_ulong dst)
761 uint32_t ret = 0;
763 if (!(dst & 0xffffffffULL))
764 ret |= PSR_ZERO;
765 if ((int32_t) (dst & 0xffffffffULL) < 0)
766 ret |= PSR_NEG;
767 return ret;
770 #ifdef TARGET_SPARC64
771 static uint32_t compute_all_flags_xcc(void)
773 return env->xcc & PSR_ICC;
776 static uint32_t compute_C_flags_xcc(void)
778 return env->xcc & PSR_CARRY;
781 static inline uint32_t get_NZ_xcc(target_ulong dst)
783 uint32_t ret = 0;
785 if (!dst)
786 ret |= PSR_ZERO;
787 if ((int64_t)dst < 0)
788 ret |= PSR_NEG;
789 return ret;
791 #endif
793 static inline uint32_t get_V_div_icc(target_ulong src2)
795 uint32_t ret = 0;
797 if (src2 != 0)
798 ret |= PSR_OVF;
799 return ret;
802 static uint32_t compute_all_div(void)
804 uint32_t ret;
806 ret = get_NZ_icc(CC_DST);
807 ret |= get_V_div_icc(CC_SRC2);
808 return ret;
811 static uint32_t compute_C_div(void)
813 return 0;
816 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
818 uint32_t ret = 0;
820 if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
821 ret |= PSR_CARRY;
822 return ret;
825 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
826 target_ulong src2)
828 uint32_t ret = 0;
830 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
831 ret |= PSR_OVF;
832 return ret;
835 static uint32_t compute_all_add(void)
837 uint32_t ret;
839 ret = get_NZ_icc(CC_DST);
840 ret |= get_C_add_icc(CC_DST, CC_SRC);
841 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
842 return ret;
845 static uint32_t compute_C_add(void)
847 return get_C_add_icc(CC_DST, CC_SRC);
850 #ifdef TARGET_SPARC64
851 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
853 uint32_t ret = 0;
855 if (dst < src1)
856 ret |= PSR_CARRY;
857 return ret;
860 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
861 target_ulong src2)
863 uint32_t ret = 0;
865 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
866 ret |= PSR_OVF;
867 return ret;
870 static uint32_t compute_all_add_xcc(void)
872 uint32_t ret;
874 ret = get_NZ_xcc(CC_DST);
875 ret |= get_C_add_xcc(CC_DST, CC_SRC);
876 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
877 return ret;
880 static uint32_t compute_C_add_xcc(void)
882 return get_C_add_xcc(CC_DST, CC_SRC);
884 #endif
886 static uint32_t compute_all_addx(void)
888 uint32_t ret;
890 ret = get_NZ_icc(CC_DST);
891 ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
892 ret |= get_C_add_icc(CC_DST, CC_SRC);
893 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
894 return ret;
897 static uint32_t compute_C_addx(void)
899 uint32_t ret;
901 ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
902 ret |= get_C_add_icc(CC_DST, CC_SRC);
903 return ret;
906 #ifdef TARGET_SPARC64
907 static uint32_t compute_all_addx_xcc(void)
909 uint32_t ret;
911 ret = get_NZ_xcc(CC_DST);
912 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
913 ret |= get_C_add_xcc(CC_DST, CC_SRC);
914 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
915 return ret;
918 static uint32_t compute_C_addx_xcc(void)
920 uint32_t ret;
922 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
923 ret |= get_C_add_xcc(CC_DST, CC_SRC);
924 return ret;
926 #endif
928 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
930 uint32_t ret = 0;
932 if ((src1 | src2) & 0x3)
933 ret |= PSR_OVF;
934 return ret;
937 static uint32_t compute_all_tadd(void)
939 uint32_t ret;
941 ret = get_NZ_icc(CC_DST);
942 ret |= get_C_add_icc(CC_DST, CC_SRC);
943 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
944 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
945 return ret;
948 static uint32_t compute_C_tadd(void)
950 return get_C_add_icc(CC_DST, CC_SRC);
953 static uint32_t compute_all_taddtv(void)
955 uint32_t ret;
957 ret = get_NZ_icc(CC_DST);
958 ret |= get_C_add_icc(CC_DST, CC_SRC);
959 return ret;
962 static uint32_t compute_C_taddtv(void)
964 return get_C_add_icc(CC_DST, CC_SRC);
967 static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
969 uint32_t ret = 0;
971 if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
972 ret |= PSR_CARRY;
973 return ret;
976 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
977 target_ulong src2)
979 uint32_t ret = 0;
981 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
982 ret |= PSR_OVF;
983 return ret;
986 static uint32_t compute_all_sub(void)
988 uint32_t ret;
990 ret = get_NZ_icc(CC_DST);
991 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
992 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
993 return ret;
996 static uint32_t compute_C_sub(void)
998 return get_C_sub_icc(CC_SRC, CC_SRC2);
1001 #ifdef TARGET_SPARC64
1002 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1004 uint32_t ret = 0;
1006 if (src1 < src2)
1007 ret |= PSR_CARRY;
1008 return ret;
1011 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1012 target_ulong src2)
1014 uint32_t ret = 0;
1016 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1017 ret |= PSR_OVF;
1018 return ret;
1021 static uint32_t compute_all_sub_xcc(void)
1023 uint32_t ret;
1025 ret = get_NZ_xcc(CC_DST);
1026 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1027 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1028 return ret;
1031 static uint32_t compute_C_sub_xcc(void)
1033 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1035 #endif
1037 static uint32_t compute_all_subx(void)
1039 uint32_t ret;
1041 ret = get_NZ_icc(CC_DST);
1042 ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1043 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1044 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1045 return ret;
1048 static uint32_t compute_C_subx(void)
1050 uint32_t ret;
1052 ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1053 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1054 return ret;
1057 #ifdef TARGET_SPARC64
1058 static uint32_t compute_all_subx_xcc(void)
1060 uint32_t ret;
1062 ret = get_NZ_xcc(CC_DST);
1063 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1064 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1065 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1066 return ret;
1069 static uint32_t compute_C_subx_xcc(void)
1071 uint32_t ret;
1073 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1074 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1075 return ret;
1077 #endif
1079 static uint32_t compute_all_tsub(void)
1081 uint32_t ret;
1083 ret = get_NZ_icc(CC_DST);
1084 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1085 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1086 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1087 return ret;
1090 static uint32_t compute_C_tsub(void)
1092 return get_C_sub_icc(CC_DST, CC_SRC);
1095 static uint32_t compute_all_tsubtv(void)
1097 uint32_t ret;
1099 ret = get_NZ_icc(CC_DST);
1100 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1101 return ret;
1104 static uint32_t compute_C_tsubtv(void)
1106 return get_C_sub_icc(CC_DST, CC_SRC);
1109 static uint32_t compute_all_logic(void)
1111 return get_NZ_icc(CC_DST);
1114 static uint32_t compute_C_logic(void)
1116 return 0;
1119 #ifdef TARGET_SPARC64
1120 static uint32_t compute_all_logic_xcc(void)
1122 return get_NZ_xcc(CC_DST);
1124 #endif
1126 typedef struct CCTable {
1127 uint32_t (*compute_all)(void); /* return all the flags */
1128 uint32_t (*compute_c)(void); /* return the C flag */
1129 } CCTable;
1131 static const CCTable icc_table[CC_OP_NB] = {
1132 /* CC_OP_DYNAMIC should never happen */
1133 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1134 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1135 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1136 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1137 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1138 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1139 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1140 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1141 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1142 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1143 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1146 #ifdef TARGET_SPARC64
1147 static const CCTable xcc_table[CC_OP_NB] = {
1148 /* CC_OP_DYNAMIC should never happen */
1149 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1150 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1151 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1152 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1153 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1154 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1155 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1156 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1157 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1158 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1159 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1161 #endif
1163 void helper_compute_psr(void)
1165 uint32_t new_psr;
1167 new_psr = icc_table[CC_OP].compute_all();
1168 env->psr = new_psr;
1169 #ifdef TARGET_SPARC64
1170 new_psr = xcc_table[CC_OP].compute_all();
1171 env->xcc = new_psr;
1172 #endif
1173 CC_OP = CC_OP_FLAGS;
1176 uint32_t helper_compute_C_icc(void)
1178 uint32_t ret;
1180 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1181 return ret;
1184 #ifdef TARGET_SPARC64
1185 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1186 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1187 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1189 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1190 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1191 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1193 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1194 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1195 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1197 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1198 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1199 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1201 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1202 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1203 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1205 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1206 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1207 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1208 #endif
1209 #undef GEN_FCMPS
1211 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1212 defined(DEBUG_MXCC)
1213 static void dump_mxcc(CPUState *env)
1215 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
1216 env->mxccdata[0], env->mxccdata[1],
1217 env->mxccdata[2], env->mxccdata[3]);
1218 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
1219 " %016llx %016llx %016llx %016llx\n",
1220 env->mxccregs[0], env->mxccregs[1],
1221 env->mxccregs[2], env->mxccregs[3],
1222 env->mxccregs[4], env->mxccregs[5],
1223 env->mxccregs[6], env->mxccregs[7]);
1225 #endif
1227 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1228 && defined(DEBUG_ASI)
1229 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1230 uint64_t r1)
1232 switch (size)
1234 case 1:
1235 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1236 addr, asi, r1 & 0xff);
1237 break;
1238 case 2:
1239 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1240 addr, asi, r1 & 0xffff);
1241 break;
1242 case 4:
1243 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1244 addr, asi, r1 & 0xffffffff);
1245 break;
1246 case 8:
1247 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1248 addr, asi, r1);
1249 break;
1252 #endif
1254 #ifndef TARGET_SPARC64
1255 #ifndef CONFIG_USER_ONLY
1256 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1258 uint64_t ret = 0;
1259 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1260 uint32_t last_addr = addr;
1261 #endif
1263 helper_check_align(addr, size - 1);
1264 switch (asi) {
1265 case 2: /* SuperSparc MXCC registers */
1266 switch (addr) {
1267 case 0x01c00a00: /* MXCC control register */
1268 if (size == 8)
1269 ret = env->mxccregs[3];
1270 else
1271 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1272 size);
1273 break;
1274 case 0x01c00a04: /* MXCC control register */
1275 if (size == 4)
1276 ret = env->mxccregs[3];
1277 else
1278 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1279 size);
1280 break;
1281 case 0x01c00c00: /* Module reset register */
1282 if (size == 8) {
1283 ret = env->mxccregs[5];
1284 // should we do something here?
1285 } else
1286 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1287 size);
1288 break;
1289 case 0x01c00f00: /* MBus port address register */
1290 if (size == 8)
1291 ret = env->mxccregs[7];
1292 else
1293 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1294 size);
1295 break;
1296 default:
1297 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1298 size);
1299 break;
1301 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1302 "addr = %08x -> ret = %" PRIx64 ","
1303 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1304 #ifdef DEBUG_MXCC
1305 dump_mxcc(env);
1306 #endif
1307 break;
1308 case 3: /* MMU probe */
1310 int mmulev;
1312 mmulev = (addr >> 8) & 15;
1313 if (mmulev > 4)
1314 ret = 0;
1315 else
1316 ret = mmu_probe(env, addr, mmulev);
1317 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1318 addr, mmulev, ret);
1320 break;
1321 case 4: /* read MMU regs */
1323 int reg = (addr >> 8) & 0x1f;
1325 ret = env->mmuregs[reg];
1326 if (reg == 3) /* Fault status cleared on read */
1327 env->mmuregs[3] = 0;
1328 else if (reg == 0x13) /* Fault status read */
1329 ret = env->mmuregs[3];
1330 else if (reg == 0x14) /* Fault address read */
1331 ret = env->mmuregs[4];
1332 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1334 break;
1335 case 5: // Turbosparc ITLB Diagnostic
1336 case 6: // Turbosparc DTLB Diagnostic
1337 case 7: // Turbosparc IOTLB Diagnostic
1338 break;
1339 case 9: /* Supervisor code access */
1340 switch(size) {
1341 case 1:
1342 ret = ldub_code(addr);
1343 break;
1344 case 2:
1345 ret = lduw_code(addr);
1346 break;
1347 default:
1348 case 4:
1349 ret = ldl_code(addr);
1350 break;
1351 case 8:
1352 ret = ldq_code(addr);
1353 break;
1355 break;
1356 case 0xa: /* User data access */
1357 switch(size) {
1358 case 1:
1359 ret = ldub_user(addr);
1360 break;
1361 case 2:
1362 ret = lduw_user(addr);
1363 break;
1364 default:
1365 case 4:
1366 ret = ldl_user(addr);
1367 break;
1368 case 8:
1369 ret = ldq_user(addr);
1370 break;
1372 break;
1373 case 0xb: /* Supervisor data access */
1374 switch(size) {
1375 case 1:
1376 ret = ldub_kernel(addr);
1377 break;
1378 case 2:
1379 ret = lduw_kernel(addr);
1380 break;
1381 default:
1382 case 4:
1383 ret = ldl_kernel(addr);
1384 break;
1385 case 8:
1386 ret = ldq_kernel(addr);
1387 break;
1389 break;
1390 case 0xc: /* I-cache tag */
1391 case 0xd: /* I-cache data */
1392 case 0xe: /* D-cache tag */
1393 case 0xf: /* D-cache data */
1394 break;
1395 case 0x20: /* MMU passthrough */
1396 switch(size) {
1397 case 1:
1398 ret = ldub_phys(addr);
1399 break;
1400 case 2:
1401 ret = lduw_phys(addr);
1402 break;
1403 default:
1404 case 4:
1405 ret = ldl_phys(addr);
1406 break;
1407 case 8:
1408 ret = ldq_phys(addr);
1409 break;
1411 break;
1412 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1413 switch(size) {
1414 case 1:
1415 ret = ldub_phys((target_phys_addr_t)addr
1416 | ((target_phys_addr_t)(asi & 0xf) << 32));
1417 break;
1418 case 2:
1419 ret = lduw_phys((target_phys_addr_t)addr
1420 | ((target_phys_addr_t)(asi & 0xf) << 32));
1421 break;
1422 default:
1423 case 4:
1424 ret = ldl_phys((target_phys_addr_t)addr
1425 | ((target_phys_addr_t)(asi & 0xf) << 32));
1426 break;
1427 case 8:
1428 ret = ldq_phys((target_phys_addr_t)addr
1429 | ((target_phys_addr_t)(asi & 0xf) << 32));
1430 break;
1432 break;
1433 case 0x30: // Turbosparc secondary cache diagnostic
1434 case 0x31: // Turbosparc RAM snoop
1435 case 0x32: // Turbosparc page table descriptor diagnostic
1436 case 0x39: /* data cache diagnostic register */
1437 ret = 0;
1438 break;
1439 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1441 int reg = (addr >> 8) & 3;
1443 switch(reg) {
1444 case 0: /* Breakpoint Value (Addr) */
1445 ret = env->mmubpregs[reg];
1446 break;
1447 case 1: /* Breakpoint Mask */
1448 ret = env->mmubpregs[reg];
1449 break;
1450 case 2: /* Breakpoint Control */
1451 ret = env->mmubpregs[reg];
1452 break;
1453 case 3: /* Breakpoint Status */
1454 ret = env->mmubpregs[reg];
1455 env->mmubpregs[reg] = 0ULL;
1456 break;
1458 DPRINTF_MMU("read breakpoint reg[%d] 0x%016llx\n", reg, ret);
1460 break;
1461 case 8: /* User code access, XXX */
1462 default:
1463 do_unassigned_access(addr, 0, 0, asi, size);
1464 ret = 0;
1465 break;
1467 if (sign) {
1468 switch(size) {
1469 case 1:
1470 ret = (int8_t) ret;
1471 break;
1472 case 2:
1473 ret = (int16_t) ret;
1474 break;
1475 case 4:
1476 ret = (int32_t) ret;
1477 break;
1478 default:
1479 break;
1482 #ifdef DEBUG_ASI
1483 dump_asi("read ", last_addr, asi, size, ret);
1484 #endif
1485 return ret;
1488 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1490 helper_check_align(addr, size - 1);
1491 switch(asi) {
1492 case 2: /* SuperSparc MXCC registers */
1493 switch (addr) {
1494 case 0x01c00000: /* MXCC stream data register 0 */
1495 if (size == 8)
1496 env->mxccdata[0] = val;
1497 else
1498 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1499 size);
1500 break;
1501 case 0x01c00008: /* MXCC stream data register 1 */
1502 if (size == 8)
1503 env->mxccdata[1] = val;
1504 else
1505 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1506 size);
1507 break;
1508 case 0x01c00010: /* MXCC stream data register 2 */
1509 if (size == 8)
1510 env->mxccdata[2] = val;
1511 else
1512 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1513 size);
1514 break;
1515 case 0x01c00018: /* MXCC stream data register 3 */
1516 if (size == 8)
1517 env->mxccdata[3] = val;
1518 else
1519 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1520 size);
1521 break;
1522 case 0x01c00100: /* MXCC stream source */
1523 if (size == 8)
1524 env->mxccregs[0] = val;
1525 else
1526 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1527 size);
1528 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1530 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1532 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1533 16);
1534 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1535 24);
1536 break;
1537 case 0x01c00200: /* MXCC stream destination */
1538 if (size == 8)
1539 env->mxccregs[1] = val;
1540 else
1541 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1542 size);
1543 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1544 env->mxccdata[0]);
1545 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1546 env->mxccdata[1]);
1547 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1548 env->mxccdata[2]);
1549 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1550 env->mxccdata[3]);
1551 break;
1552 case 0x01c00a00: /* MXCC control register */
1553 if (size == 8)
1554 env->mxccregs[3] = val;
1555 else
1556 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1557 size);
1558 break;
1559 case 0x01c00a04: /* MXCC control register */
1560 if (size == 4)
1561 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1562 | val;
1563 else
1564 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1565 size);
1566 break;
1567 case 0x01c00e00: /* MXCC error register */
1568 // writing a 1 bit clears the error
1569 if (size == 8)
1570 env->mxccregs[6] &= ~val;
1571 else
1572 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1573 size);
1574 break;
1575 case 0x01c00f00: /* MBus port address register */
1576 if (size == 8)
1577 env->mxccregs[7] = val;
1578 else
1579 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1580 size);
1581 break;
1582 default:
1583 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1584 size);
1585 break;
1587 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1588 asi, size, addr, val);
1589 #ifdef DEBUG_MXCC
1590 dump_mxcc(env);
1591 #endif
1592 break;
1593 case 3: /* MMU flush */
1595 int mmulev;
1597 mmulev = (addr >> 8) & 15;
1598 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1599 switch (mmulev) {
1600 case 0: // flush page
1601 tlb_flush_page(env, addr & 0xfffff000);
1602 break;
1603 case 1: // flush segment (256k)
1604 case 2: // flush region (16M)
1605 case 3: // flush context (4G)
1606 case 4: // flush entire
1607 tlb_flush(env, 1);
1608 break;
1609 default:
1610 break;
1612 #ifdef DEBUG_MMU
1613 dump_mmu(env);
1614 #endif
1616 break;
1617 case 4: /* write MMU regs */
1619 int reg = (addr >> 8) & 0x1f;
1620 uint32_t oldreg;
1622 oldreg = env->mmuregs[reg];
1623 switch(reg) {
1624 case 0: // Control Register
1625 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1626 (val & 0x00ffffff);
1627 // Mappings generated during no-fault mode or MMU
1628 // disabled mode are invalid in normal mode
1629 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1630 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1631 tlb_flush(env, 1);
1632 break;
1633 case 1: // Context Table Pointer Register
1634 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1635 break;
1636 case 2: // Context Register
1637 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1638 if (oldreg != env->mmuregs[reg]) {
1639 /* we flush when the MMU context changes because
1640 QEMU has no MMU context support */
1641 tlb_flush(env, 1);
1643 break;
1644 case 3: // Synchronous Fault Status Register with Clear
1645 case 4: // Synchronous Fault Address Register
1646 break;
1647 case 0x10: // TLB Replacement Control Register
1648 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1649 break;
1650 case 0x13: // Synchronous Fault Status Register with Read and Clear
1651 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1652 break;
1653 case 0x14: // Synchronous Fault Address Register
1654 env->mmuregs[4] = val;
1655 break;
1656 default:
1657 env->mmuregs[reg] = val;
1658 break;
1660 if (oldreg != env->mmuregs[reg]) {
1661 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1662 reg, oldreg, env->mmuregs[reg]);
1664 #ifdef DEBUG_MMU
1665 dump_mmu(env);
1666 #endif
1668 break;
1669 case 5: // Turbosparc ITLB Diagnostic
1670 case 6: // Turbosparc DTLB Diagnostic
1671 case 7: // Turbosparc IOTLB Diagnostic
1672 break;
1673 case 0xa: /* User data access */
1674 switch(size) {
1675 case 1:
1676 stb_user(addr, val);
1677 break;
1678 case 2:
1679 stw_user(addr, val);
1680 break;
1681 default:
1682 case 4:
1683 stl_user(addr, val);
1684 break;
1685 case 8:
1686 stq_user(addr, val);
1687 break;
1689 break;
1690 case 0xb: /* Supervisor data access */
1691 switch(size) {
1692 case 1:
1693 stb_kernel(addr, val);
1694 break;
1695 case 2:
1696 stw_kernel(addr, val);
1697 break;
1698 default:
1699 case 4:
1700 stl_kernel(addr, val);
1701 break;
1702 case 8:
1703 stq_kernel(addr, val);
1704 break;
1706 break;
1707 case 0xc: /* I-cache tag */
1708 case 0xd: /* I-cache data */
1709 case 0xe: /* D-cache tag */
1710 case 0xf: /* D-cache data */
1711 case 0x10: /* I/D-cache flush page */
1712 case 0x11: /* I/D-cache flush segment */
1713 case 0x12: /* I/D-cache flush region */
1714 case 0x13: /* I/D-cache flush context */
1715 case 0x14: /* I/D-cache flush user */
1716 break;
1717 case 0x17: /* Block copy, sta access */
1719 // val = src
1720 // addr = dst
1721 // copy 32 bytes
1722 unsigned int i;
1723 uint32_t src = val & ~3, dst = addr & ~3, temp;
1725 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1726 temp = ldl_kernel(src);
1727 stl_kernel(dst, temp);
1730 break;
1731 case 0x1f: /* Block fill, stda access */
1733 // addr = dst
1734 // fill 32 bytes with val
1735 unsigned int i;
1736 uint32_t dst = addr & 7;
1738 for (i = 0; i < 32; i += 8, dst += 8)
1739 stq_kernel(dst, val);
1741 break;
1742 case 0x20: /* MMU passthrough */
1744 switch(size) {
1745 case 1:
1746 stb_phys(addr, val);
1747 break;
1748 case 2:
1749 stw_phys(addr, val);
1750 break;
1751 case 4:
1752 default:
1753 stl_phys(addr, val);
1754 break;
1755 case 8:
1756 stq_phys(addr, val);
1757 break;
1760 break;
1761 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1763 switch(size) {
1764 case 1:
1765 stb_phys((target_phys_addr_t)addr
1766 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1767 break;
1768 case 2:
1769 stw_phys((target_phys_addr_t)addr
1770 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1771 break;
1772 case 4:
1773 default:
1774 stl_phys((target_phys_addr_t)addr
1775 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1776 break;
1777 case 8:
1778 stq_phys((target_phys_addr_t)addr
1779 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1780 break;
1783 break;
1784 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1785 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1786 // Turbosparc snoop RAM
1787 case 0x32: // store buffer control or Turbosparc page table
1788 // descriptor diagnostic
1789 case 0x36: /* I-cache flash clear */
1790 case 0x37: /* D-cache flash clear */
1791 case 0x4c: /* breakpoint action */
1792 break;
1793 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1795 int reg = (addr >> 8) & 3;
1797 switch(reg) {
1798 case 0: /* Breakpoint Value (Addr) */
1799 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1800 break;
1801 case 1: /* Breakpoint Mask */
1802 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1803 break;
1804 case 2: /* Breakpoint Control */
1805 env->mmubpregs[reg] = (val & 0x7fULL);
1806 break;
1807 case 3: /* Breakpoint Status */
1808 env->mmubpregs[reg] = (val & 0xfULL);
1809 break;
1811 DPRINTF_MMU("write breakpoint reg[%d] 0x%016llx\n", reg,
1812 env->mmuregs[reg]);
1814 break;
1815 case 8: /* User code access, XXX */
1816 case 9: /* Supervisor code access, XXX */
1817 default:
1818 do_unassigned_access(addr, 1, 0, asi, size);
1819 break;
1821 #ifdef DEBUG_ASI
1822 dump_asi("write", addr, asi, size, val);
1823 #endif
1826 #endif /* CONFIG_USER_ONLY */
1827 #else /* TARGET_SPARC64 */
1829 #ifdef CONFIG_USER_ONLY
1830 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1832 uint64_t ret = 0;
1833 #if defined(DEBUG_ASI)
1834 target_ulong last_addr = addr;
1835 #endif
1837 if (asi < 0x80)
1838 raise_exception(TT_PRIV_ACT);
1840 helper_check_align(addr, size - 1);
1841 address_mask(env, &addr);
1843 switch (asi) {
1844 case 0x82: // Primary no-fault
1845 case 0x8a: // Primary no-fault LE
1846 if (page_check_range(addr, size, PAGE_READ) == -1) {
1847 #ifdef DEBUG_ASI
1848 dump_asi("read ", last_addr, asi, size, ret);
1849 #endif
1850 return 0;
1852 // Fall through
1853 case 0x80: // Primary
1854 case 0x88: // Primary LE
1856 switch(size) {
1857 case 1:
1858 ret = ldub_raw(addr);
1859 break;
1860 case 2:
1861 ret = lduw_raw(addr);
1862 break;
1863 case 4:
1864 ret = ldl_raw(addr);
1865 break;
1866 default:
1867 case 8:
1868 ret = ldq_raw(addr);
1869 break;
1872 break;
1873 case 0x83: // Secondary no-fault
1874 case 0x8b: // Secondary no-fault LE
1875 if (page_check_range(addr, size, PAGE_READ) == -1) {
1876 #ifdef DEBUG_ASI
1877 dump_asi("read ", last_addr, asi, size, ret);
1878 #endif
1879 return 0;
1881 // Fall through
1882 case 0x81: // Secondary
1883 case 0x89: // Secondary LE
1884 // XXX
1885 break;
1886 default:
1887 break;
1890 /* Convert from little endian */
1891 switch (asi) {
1892 case 0x88: // Primary LE
1893 case 0x89: // Secondary LE
1894 case 0x8a: // Primary no-fault LE
1895 case 0x8b: // Secondary no-fault LE
1896 switch(size) {
1897 case 2:
1898 ret = bswap16(ret);
1899 break;
1900 case 4:
1901 ret = bswap32(ret);
1902 break;
1903 case 8:
1904 ret = bswap64(ret);
1905 break;
1906 default:
1907 break;
1909 default:
1910 break;
1913 /* Convert to signed number */
1914 if (sign) {
1915 switch(size) {
1916 case 1:
1917 ret = (int8_t) ret;
1918 break;
1919 case 2:
1920 ret = (int16_t) ret;
1921 break;
1922 case 4:
1923 ret = (int32_t) ret;
1924 break;
1925 default:
1926 break;
1929 #ifdef DEBUG_ASI
1930 dump_asi("read ", last_addr, asi, size, ret);
1931 #endif
1932 return ret;
1935 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1937 #ifdef DEBUG_ASI
1938 dump_asi("write", addr, asi, size, val);
1939 #endif
1940 if (asi < 0x80)
1941 raise_exception(TT_PRIV_ACT);
1943 helper_check_align(addr, size - 1);
1944 address_mask(env, &addr);
1946 /* Convert to little endian */
1947 switch (asi) {
1948 case 0x88: // Primary LE
1949 case 0x89: // Secondary LE
1950 switch(size) {
1951 case 2:
1952 addr = bswap16(addr);
1953 break;
1954 case 4:
1955 addr = bswap32(addr);
1956 break;
1957 case 8:
1958 addr = bswap64(addr);
1959 break;
1960 default:
1961 break;
1963 default:
1964 break;
1967 switch(asi) {
1968 case 0x80: // Primary
1969 case 0x88: // Primary LE
1971 switch(size) {
1972 case 1:
1973 stb_raw(addr, val);
1974 break;
1975 case 2:
1976 stw_raw(addr, val);
1977 break;
1978 case 4:
1979 stl_raw(addr, val);
1980 break;
1981 case 8:
1982 default:
1983 stq_raw(addr, val);
1984 break;
1987 break;
1988 case 0x81: // Secondary
1989 case 0x89: // Secondary LE
1990 // XXX
1991 return;
1993 case 0x82: // Primary no-fault, RO
1994 case 0x83: // Secondary no-fault, RO
1995 case 0x8a: // Primary no-fault LE, RO
1996 case 0x8b: // Secondary no-fault LE, RO
1997 default:
1998 do_unassigned_access(addr, 1, 0, 1, size);
1999 return;
2003 #else /* CONFIG_USER_ONLY */
2005 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2007 uint64_t ret = 0;
2008 #if defined(DEBUG_ASI)
2009 target_ulong last_addr = addr;
2010 #endif
2012 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2013 || ((env->def->features & CPU_FEATURE_HYPV)
2014 && asi >= 0x30 && asi < 0x80
2015 && !(env->hpstate & HS_PRIV)))
2016 raise_exception(TT_PRIV_ACT);
2018 helper_check_align(addr, size - 1);
2019 switch (asi) {
2020 case 0x82: // Primary no-fault
2021 case 0x8a: // Primary no-fault LE
2022 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2023 #ifdef DEBUG_ASI
2024 dump_asi("read ", last_addr, asi, size, ret);
2025 #endif
2026 return 0;
2028 // Fall through
2029 case 0x10: // As if user primary
2030 case 0x18: // As if user primary LE
2031 case 0x80: // Primary
2032 case 0x88: // Primary LE
2033 case 0xe2: // UA2007 Primary block init
2034 case 0xe3: // UA2007 Secondary block init
2035 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2036 if ((env->def->features & CPU_FEATURE_HYPV)
2037 && env->hpstate & HS_PRIV) {
2038 switch(size) {
2039 case 1:
2040 ret = ldub_hypv(addr);
2041 break;
2042 case 2:
2043 ret = lduw_hypv(addr);
2044 break;
2045 case 4:
2046 ret = ldl_hypv(addr);
2047 break;
2048 default:
2049 case 8:
2050 ret = ldq_hypv(addr);
2051 break;
2053 } else {
2054 switch(size) {
2055 case 1:
2056 ret = ldub_kernel(addr);
2057 break;
2058 case 2:
2059 ret = lduw_kernel(addr);
2060 break;
2061 case 4:
2062 ret = ldl_kernel(addr);
2063 break;
2064 default:
2065 case 8:
2066 ret = ldq_kernel(addr);
2067 break;
2070 } else {
2071 switch(size) {
2072 case 1:
2073 ret = ldub_user(addr);
2074 break;
2075 case 2:
2076 ret = lduw_user(addr);
2077 break;
2078 case 4:
2079 ret = ldl_user(addr);
2080 break;
2081 default:
2082 case 8:
2083 ret = ldq_user(addr);
2084 break;
2087 break;
2088 case 0x14: // Bypass
2089 case 0x15: // Bypass, non-cacheable
2090 case 0x1c: // Bypass LE
2091 case 0x1d: // Bypass, non-cacheable LE
2093 switch(size) {
2094 case 1:
2095 ret = ldub_phys(addr);
2096 break;
2097 case 2:
2098 ret = lduw_phys(addr);
2099 break;
2100 case 4:
2101 ret = ldl_phys(addr);
2102 break;
2103 default:
2104 case 8:
2105 ret = ldq_phys(addr);
2106 break;
2108 break;
2110 case 0x24: // Nucleus quad LDD 128 bit atomic
2111 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2112 // Only ldda allowed
2113 raise_exception(TT_ILL_INSN);
2114 return 0;
2115 case 0x83: // Secondary no-fault
2116 case 0x8b: // Secondary no-fault LE
2117 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2118 #ifdef DEBUG_ASI
2119 dump_asi("read ", last_addr, asi, size, ret);
2120 #endif
2121 return 0;
2123 // Fall through
2124 case 0x04: // Nucleus
2125 case 0x0c: // Nucleus Little Endian (LE)
2126 case 0x11: // As if user secondary
2127 case 0x19: // As if user secondary LE
2128 case 0x4a: // UPA config
2129 case 0x81: // Secondary
2130 case 0x89: // Secondary LE
2131 // XXX
2132 break;
2133 case 0x45: // LSU
2134 ret = env->lsu;
2135 break;
2136 case 0x50: // I-MMU regs
2138 int reg = (addr >> 3) & 0xf;
2140 if (reg == 0) {
2141 // I-TSB Tag Target register
2142 ret = ultrasparc_tag_target(env->immuregs[6]);
2143 } else {
2144 ret = env->immuregs[reg];
2147 break;
2149 case 0x51: // I-MMU 8k TSB pointer
2151 // env->immuregs[5] holds I-MMU TSB register value
2152 // env->immuregs[6] holds I-MMU Tag Access register value
2153 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2154 8*1024);
2155 break;
2157 case 0x52: // I-MMU 64k TSB pointer
2159 // env->immuregs[5] holds I-MMU TSB register value
2160 // env->immuregs[6] holds I-MMU Tag Access register value
2161 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2162 64*1024);
2163 break;
2165 case 0x55: // I-MMU data access
2167 int reg = (addr >> 3) & 0x3f;
2169 ret = env->itlb_tte[reg];
2170 break;
2172 case 0x56: // I-MMU tag read
2174 int reg = (addr >> 3) & 0x3f;
2176 ret = env->itlb_tag[reg];
2177 break;
2179 case 0x58: // D-MMU regs
2181 int reg = (addr >> 3) & 0xf;
2183 if (reg == 0) {
2184 // D-TSB Tag Target register
2185 ret = ultrasparc_tag_target(env->dmmuregs[6]);
2186 } else {
2187 ret = env->dmmuregs[reg];
2189 break;
2191 case 0x59: // D-MMU 8k TSB pointer
2193 // env->dmmuregs[5] holds D-MMU TSB register value
2194 // env->dmmuregs[6] holds D-MMU Tag Access register value
2195 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2196 8*1024);
2197 break;
2199 case 0x5a: // D-MMU 64k TSB pointer
2201 // env->dmmuregs[5] holds D-MMU TSB register value
2202 // env->dmmuregs[6] holds D-MMU Tag Access register value
2203 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2204 64*1024);
2205 break;
2207 case 0x5d: // D-MMU data access
2209 int reg = (addr >> 3) & 0x3f;
2211 ret = env->dtlb_tte[reg];
2212 break;
2214 case 0x5e: // D-MMU tag read
2216 int reg = (addr >> 3) & 0x3f;
2218 ret = env->dtlb_tag[reg];
2219 break;
2221 case 0x46: // D-cache data
2222 case 0x47: // D-cache tag access
2223 case 0x4b: // E-cache error enable
2224 case 0x4c: // E-cache asynchronous fault status
2225 case 0x4d: // E-cache asynchronous fault address
2226 case 0x4e: // E-cache tag data
2227 case 0x66: // I-cache instruction access
2228 case 0x67: // I-cache tag access
2229 case 0x6e: // I-cache predecode
2230 case 0x6f: // I-cache LRU etc.
2231 case 0x76: // E-cache tag
2232 case 0x7e: // E-cache tag
2233 break;
2234 case 0x5b: // D-MMU data pointer
2235 case 0x48: // Interrupt dispatch, RO
2236 case 0x49: // Interrupt data receive
2237 case 0x7f: // Incoming interrupt vector, RO
2238 // XXX
2239 break;
2240 case 0x54: // I-MMU data in, WO
2241 case 0x57: // I-MMU demap, WO
2242 case 0x5c: // D-MMU data in, WO
2243 case 0x5f: // D-MMU demap, WO
2244 case 0x77: // Interrupt vector, WO
2245 default:
2246 do_unassigned_access(addr, 0, 0, 1, size);
2247 ret = 0;
2248 break;
2251 /* Convert from little endian */
2252 switch (asi) {
2253 case 0x0c: // Nucleus Little Endian (LE)
2254 case 0x18: // As if user primary LE
2255 case 0x19: // As if user secondary LE
2256 case 0x1c: // Bypass LE
2257 case 0x1d: // Bypass, non-cacheable LE
2258 case 0x88: // Primary LE
2259 case 0x89: // Secondary LE
2260 case 0x8a: // Primary no-fault LE
2261 case 0x8b: // Secondary no-fault LE
2262 switch(size) {
2263 case 2:
2264 ret = bswap16(ret);
2265 break;
2266 case 4:
2267 ret = bswap32(ret);
2268 break;
2269 case 8:
2270 ret = bswap64(ret);
2271 break;
2272 default:
2273 break;
2275 default:
2276 break;
2279 /* Convert to signed number */
2280 if (sign) {
2281 switch(size) {
2282 case 1:
2283 ret = (int8_t) ret;
2284 break;
2285 case 2:
2286 ret = (int16_t) ret;
2287 break;
2288 case 4:
2289 ret = (int32_t) ret;
2290 break;
2291 default:
2292 break;
2295 #ifdef DEBUG_ASI
2296 dump_asi("read ", last_addr, asi, size, ret);
2297 #endif
2298 return ret;
2301 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2303 #ifdef DEBUG_ASI
2304 dump_asi("write", addr, asi, size, val);
2305 #endif
2306 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2307 || ((env->def->features & CPU_FEATURE_HYPV)
2308 && asi >= 0x30 && asi < 0x80
2309 && !(env->hpstate & HS_PRIV)))
2310 raise_exception(TT_PRIV_ACT);
2312 helper_check_align(addr, size - 1);
2313 /* Convert to little endian */
2314 switch (asi) {
2315 case 0x0c: // Nucleus Little Endian (LE)
2316 case 0x18: // As if user primary LE
2317 case 0x19: // As if user secondary LE
2318 case 0x1c: // Bypass LE
2319 case 0x1d: // Bypass, non-cacheable LE
2320 case 0x88: // Primary LE
2321 case 0x89: // Secondary LE
2322 switch(size) {
2323 case 2:
2324 addr = bswap16(addr);
2325 break;
2326 case 4:
2327 addr = bswap32(addr);
2328 break;
2329 case 8:
2330 addr = bswap64(addr);
2331 break;
2332 default:
2333 break;
2335 default:
2336 break;
2339 switch(asi) {
2340 case 0x10: // As if user primary
2341 case 0x18: // As if user primary LE
2342 case 0x80: // Primary
2343 case 0x88: // Primary LE
2344 case 0xe2: // UA2007 Primary block init
2345 case 0xe3: // UA2007 Secondary block init
2346 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2347 if ((env->def->features & CPU_FEATURE_HYPV)
2348 && env->hpstate & HS_PRIV) {
2349 switch(size) {
2350 case 1:
2351 stb_hypv(addr, val);
2352 break;
2353 case 2:
2354 stw_hypv(addr, val);
2355 break;
2356 case 4:
2357 stl_hypv(addr, val);
2358 break;
2359 case 8:
2360 default:
2361 stq_hypv(addr, val);
2362 break;
2364 } else {
2365 switch(size) {
2366 case 1:
2367 stb_kernel(addr, val);
2368 break;
2369 case 2:
2370 stw_kernel(addr, val);
2371 break;
2372 case 4:
2373 stl_kernel(addr, val);
2374 break;
2375 case 8:
2376 default:
2377 stq_kernel(addr, val);
2378 break;
2381 } else {
2382 switch(size) {
2383 case 1:
2384 stb_user(addr, val);
2385 break;
2386 case 2:
2387 stw_user(addr, val);
2388 break;
2389 case 4:
2390 stl_user(addr, val);
2391 break;
2392 case 8:
2393 default:
2394 stq_user(addr, val);
2395 break;
2398 break;
2399 case 0x14: // Bypass
2400 case 0x15: // Bypass, non-cacheable
2401 case 0x1c: // Bypass LE
2402 case 0x1d: // Bypass, non-cacheable LE
2404 switch(size) {
2405 case 1:
2406 stb_phys(addr, val);
2407 break;
2408 case 2:
2409 stw_phys(addr, val);
2410 break;
2411 case 4:
2412 stl_phys(addr, val);
2413 break;
2414 case 8:
2415 default:
2416 stq_phys(addr, val);
2417 break;
2420 return;
2421 case 0x24: // Nucleus quad LDD 128 bit atomic
2422 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2423 // Only ldda allowed
2424 raise_exception(TT_ILL_INSN);
2425 return;
2426 case 0x04: // Nucleus
2427 case 0x0c: // Nucleus Little Endian (LE)
2428 case 0x11: // As if user secondary
2429 case 0x19: // As if user secondary LE
2430 case 0x4a: // UPA config
2431 case 0x81: // Secondary
2432 case 0x89: // Secondary LE
2433 // XXX
2434 return;
2435 case 0x45: // LSU
2437 uint64_t oldreg;
2439 oldreg = env->lsu;
2440 env->lsu = val & (DMMU_E | IMMU_E);
2441 // Mappings generated during D/I MMU disabled mode are
2442 // invalid in normal mode
2443 if (oldreg != env->lsu) {
2444 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2445 oldreg, env->lsu);
2446 #ifdef DEBUG_MMU
2447 dump_mmu(env);
2448 #endif
2449 tlb_flush(env, 1);
2451 return;
2453 case 0x50: // I-MMU regs
2455 int reg = (addr >> 3) & 0xf;
2456 uint64_t oldreg;
2458 oldreg = env->immuregs[reg];
2459 switch(reg) {
2460 case 0: // RO
2461 case 4:
2462 return;
2463 case 1: // Not in I-MMU
2464 case 2:
2465 case 7:
2466 case 8:
2467 return;
2468 case 3: // SFSR
2469 if ((val & 1) == 0)
2470 val = 0; // Clear SFSR
2471 break;
2472 case 5: // TSB access
2473 case 6: // Tag access
2474 default:
2475 break;
2477 env->immuregs[reg] = val;
2478 if (oldreg != env->immuregs[reg]) {
2479 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2480 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2482 #ifdef DEBUG_MMU
2483 dump_mmu(env);
2484 #endif
2485 return;
2487 case 0x54: // I-MMU data in
2489 unsigned int i;
2491 // Try finding an invalid entry
2492 for (i = 0; i < 64; i++) {
2493 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2494 env->itlb_tag[i] = env->immuregs[6];
2495 env->itlb_tte[i] = val;
2496 return;
2499 // Try finding an unlocked entry
2500 for (i = 0; i < 64; i++) {
2501 if ((env->itlb_tte[i] & 0x40) == 0) {
2502 env->itlb_tag[i] = env->immuregs[6];
2503 env->itlb_tte[i] = val;
2504 return;
2507 // error state?
2508 return;
2510 case 0x55: // I-MMU data access
2512 // TODO: auto demap
2514 unsigned int i = (addr >> 3) & 0x3f;
2516 env->itlb_tag[i] = env->immuregs[6];
2517 env->itlb_tte[i] = val;
2518 return;
2520 case 0x57: // I-MMU demap
2522 unsigned int i;
2524 for (i = 0; i < 64; i++) {
2525 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
2526 target_ulong mask = 0xffffffffffffe000ULL;
2528 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
2529 if ((val & mask) == (env->itlb_tag[i] & mask)) {
2530 env->itlb_tag[i] = 0;
2531 env->itlb_tte[i] = 0;
2533 return;
2537 return;
2538 case 0x58: // D-MMU regs
2540 int reg = (addr >> 3) & 0xf;
2541 uint64_t oldreg;
2543 oldreg = env->dmmuregs[reg];
2544 switch(reg) {
2545 case 0: // RO
2546 case 4:
2547 return;
2548 case 3: // SFSR
2549 if ((val & 1) == 0) {
2550 val = 0; // Clear SFSR, Fault address
2551 env->dmmuregs[4] = 0;
2553 env->dmmuregs[reg] = val;
2554 break;
2555 case 1: // Primary context
2556 case 2: // Secondary context
2557 case 5: // TSB access
2558 case 6: // Tag access
2559 case 7: // Virtual Watchpoint
2560 case 8: // Physical Watchpoint
2561 default:
2562 break;
2564 env->dmmuregs[reg] = val;
2565 if (oldreg != env->dmmuregs[reg]) {
2566 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2567 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2569 #ifdef DEBUG_MMU
2570 dump_mmu(env);
2571 #endif
2572 return;
2574 case 0x5c: // D-MMU data in
2576 unsigned int i;
2578 // Try finding an invalid entry
2579 for (i = 0; i < 64; i++) {
2580 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2581 env->dtlb_tag[i] = env->dmmuregs[6];
2582 env->dtlb_tte[i] = val;
2583 return;
2586 // Try finding an unlocked entry
2587 for (i = 0; i < 64; i++) {
2588 if ((env->dtlb_tte[i] & 0x40) == 0) {
2589 env->dtlb_tag[i] = env->dmmuregs[6];
2590 env->dtlb_tte[i] = val;
2591 return;
2594 // error state?
2595 return;
2597 case 0x5d: // D-MMU data access
2599 unsigned int i = (addr >> 3) & 0x3f;
2601 env->dtlb_tag[i] = env->dmmuregs[6];
2602 env->dtlb_tte[i] = val;
2603 return;
2605 case 0x5f: // D-MMU demap
2607 unsigned int i;
2609 for (i = 0; i < 64; i++) {
2610 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2611 target_ulong mask = 0xffffffffffffe000ULL;
2613 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2614 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2615 env->dtlb_tag[i] = 0;
2616 env->dtlb_tte[i] = 0;
2618 return;
2622 return;
2623 case 0x49: // Interrupt data receive
2624 // XXX
2625 return;
2626 case 0x46: // D-cache data
2627 case 0x47: // D-cache tag access
2628 case 0x4b: // E-cache error enable
2629 case 0x4c: // E-cache asynchronous fault status
2630 case 0x4d: // E-cache asynchronous fault address
2631 case 0x4e: // E-cache tag data
2632 case 0x66: // I-cache instruction access
2633 case 0x67: // I-cache tag access
2634 case 0x6e: // I-cache predecode
2635 case 0x6f: // I-cache LRU etc.
2636 case 0x76: // E-cache tag
2637 case 0x7e: // E-cache tag
2638 return;
2639 case 0x51: // I-MMU 8k TSB pointer, RO
2640 case 0x52: // I-MMU 64k TSB pointer, RO
2641 case 0x56: // I-MMU tag read, RO
2642 case 0x59: // D-MMU 8k TSB pointer, RO
2643 case 0x5a: // D-MMU 64k TSB pointer, RO
2644 case 0x5b: // D-MMU data pointer, RO
2645 case 0x5e: // D-MMU tag read, RO
2646 case 0x48: // Interrupt dispatch, RO
2647 case 0x7f: // Incoming interrupt vector, RO
2648 case 0x82: // Primary no-fault, RO
2649 case 0x83: // Secondary no-fault, RO
2650 case 0x8a: // Primary no-fault LE, RO
2651 case 0x8b: // Secondary no-fault LE, RO
2652 default:
2653 do_unassigned_access(addr, 1, 0, 1, size);
2654 return;
2657 #endif /* CONFIG_USER_ONLY */
2659 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2661 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2662 || ((env->def->features & CPU_FEATURE_HYPV)
2663 && asi >= 0x30 && asi < 0x80
2664 && !(env->hpstate & HS_PRIV)))
2665 raise_exception(TT_PRIV_ACT);
2667 switch (asi) {
2668 case 0x24: // Nucleus quad LDD 128 bit atomic
2669 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2670 helper_check_align(addr, 0xf);
2671 if (rd == 0) {
2672 env->gregs[1] = ldq_kernel(addr + 8);
2673 if (asi == 0x2c)
2674 bswap64s(&env->gregs[1]);
2675 } else if (rd < 8) {
2676 env->gregs[rd] = ldq_kernel(addr);
2677 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2678 if (asi == 0x2c) {
2679 bswap64s(&env->gregs[rd]);
2680 bswap64s(&env->gregs[rd + 1]);
2682 } else {
2683 env->regwptr[rd] = ldq_kernel(addr);
2684 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2685 if (asi == 0x2c) {
2686 bswap64s(&env->regwptr[rd]);
2687 bswap64s(&env->regwptr[rd + 1]);
2690 break;
2691 default:
2692 helper_check_align(addr, 0x3);
2693 if (rd == 0)
2694 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2695 else if (rd < 8) {
2696 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2697 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2698 } else {
2699 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2700 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2702 break;
2706 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2708 unsigned int i;
2709 target_ulong val;
2711 helper_check_align(addr, 3);
2712 switch (asi) {
2713 case 0xf0: // Block load primary
2714 case 0xf1: // Block load secondary
2715 case 0xf8: // Block load primary LE
2716 case 0xf9: // Block load secondary LE
2717 if (rd & 7) {
2718 raise_exception(TT_ILL_INSN);
2719 return;
2721 helper_check_align(addr, 0x3f);
2722 for (i = 0; i < 16; i++) {
2723 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2725 addr += 4;
2728 return;
2729 default:
2730 break;
2733 val = helper_ld_asi(addr, asi, size, 0);
2734 switch(size) {
2735 default:
2736 case 4:
2737 *((uint32_t *)&env->fpr[rd]) = val;
2738 break;
2739 case 8:
2740 *((int64_t *)&DT0) = val;
2741 break;
2742 case 16:
2743 // XXX
2744 break;
2748 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2750 unsigned int i;
2751 target_ulong val = 0;
2753 helper_check_align(addr, 3);
2754 switch (asi) {
2755 case 0xe0: // UA2007 Block commit store primary (cache flush)
2756 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2757 case 0xf0: // Block store primary
2758 case 0xf1: // Block store secondary
2759 case 0xf8: // Block store primary LE
2760 case 0xf9: // Block store secondary LE
2761 if (rd & 7) {
2762 raise_exception(TT_ILL_INSN);
2763 return;
2765 helper_check_align(addr, 0x3f);
2766 for (i = 0; i < 16; i++) {
2767 val = *(uint32_t *)&env->fpr[rd++];
2768 helper_st_asi(addr, val, asi & 0x8f, 4);
2769 addr += 4;
2772 return;
2773 default:
2774 break;
2777 switch(size) {
2778 default:
2779 case 4:
2780 val = *((uint32_t *)&env->fpr[rd]);
2781 break;
2782 case 8:
2783 val = *((int64_t *)&DT0);
2784 break;
2785 case 16:
2786 // XXX
2787 break;
2789 helper_st_asi(addr, val, asi, size);
2792 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2793 target_ulong val2, uint32_t asi)
2795 target_ulong ret;
2797 val2 &= 0xffffffffUL;
2798 ret = helper_ld_asi(addr, asi, 4, 0);
2799 ret &= 0xffffffffUL;
2800 if (val2 == ret)
2801 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2802 return ret;
2805 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2806 target_ulong val2, uint32_t asi)
2808 target_ulong ret;
2810 ret = helper_ld_asi(addr, asi, 8, 0);
2811 if (val2 == ret)
2812 helper_st_asi(addr, val1, asi, 8);
2813 return ret;
2815 #endif /* TARGET_SPARC64 */
2817 #ifndef TARGET_SPARC64
2818 void helper_rett(void)
2820 unsigned int cwp;
2822 if (env->psret == 1)
2823 raise_exception(TT_ILL_INSN);
2825 env->psret = 1;
2826 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2827 if (env->wim & (1 << cwp)) {
2828 raise_exception(TT_WIN_UNF);
2830 set_cwp(cwp);
2831 env->psrs = env->psrps;
2833 #endif
2835 target_ulong helper_udiv(target_ulong a, target_ulong b)
2837 uint64_t x0;
2838 uint32_t x1;
2840 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2841 x1 = b;
2843 if (x1 == 0) {
2844 raise_exception(TT_DIV_ZERO);
2847 x0 = x0 / x1;
2848 if (x0 > 0xffffffff) {
2849 env->cc_src2 = 1;
2850 return 0xffffffff;
2851 } else {
2852 env->cc_src2 = 0;
2853 return x0;
2857 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2859 int64_t x0;
2860 int32_t x1;
2862 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2863 x1 = b;
2865 if (x1 == 0) {
2866 raise_exception(TT_DIV_ZERO);
2869 x0 = x0 / x1;
2870 if ((int32_t) x0 != x0) {
2871 env->cc_src2 = 1;
2872 return x0 < 0? 0x80000000: 0x7fffffff;
2873 } else {
2874 env->cc_src2 = 0;
2875 return x0;
2879 void helper_stdf(target_ulong addr, int mem_idx)
2881 helper_check_align(addr, 7);
2882 #if !defined(CONFIG_USER_ONLY)
2883 switch (mem_idx) {
2884 case 0:
2885 stfq_user(addr, DT0);
2886 break;
2887 case 1:
2888 stfq_kernel(addr, DT0);
2889 break;
2890 #ifdef TARGET_SPARC64
2891 case 2:
2892 stfq_hypv(addr, DT0);
2893 break;
2894 #endif
2895 default:
2896 break;
2898 #else
2899 address_mask(env, &addr);
2900 stfq_raw(addr, DT0);
2901 #endif
2904 void helper_lddf(target_ulong addr, int mem_idx)
2906 helper_check_align(addr, 7);
2907 #if !defined(CONFIG_USER_ONLY)
2908 switch (mem_idx) {
2909 case 0:
2910 DT0 = ldfq_user(addr);
2911 break;
2912 case 1:
2913 DT0 = ldfq_kernel(addr);
2914 break;
2915 #ifdef TARGET_SPARC64
2916 case 2:
2917 DT0 = ldfq_hypv(addr);
2918 break;
2919 #endif
2920 default:
2921 break;
2923 #else
2924 address_mask(env, &addr);
2925 DT0 = ldfq_raw(addr);
2926 #endif
2929 void helper_ldqf(target_ulong addr, int mem_idx)
2931 // XXX add 128 bit load
2932 CPU_QuadU u;
2934 helper_check_align(addr, 7);
2935 #if !defined(CONFIG_USER_ONLY)
2936 switch (mem_idx) {
2937 case 0:
2938 u.ll.upper = ldq_user(addr);
2939 u.ll.lower = ldq_user(addr + 8);
2940 QT0 = u.q;
2941 break;
2942 case 1:
2943 u.ll.upper = ldq_kernel(addr);
2944 u.ll.lower = ldq_kernel(addr + 8);
2945 QT0 = u.q;
2946 break;
2947 #ifdef TARGET_SPARC64
2948 case 2:
2949 u.ll.upper = ldq_hypv(addr);
2950 u.ll.lower = ldq_hypv(addr + 8);
2951 QT0 = u.q;
2952 break;
2953 #endif
2954 default:
2955 break;
2957 #else
2958 address_mask(env, &addr);
2959 u.ll.upper = ldq_raw(addr);
2960 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2961 QT0 = u.q;
2962 #endif
2965 void helper_stqf(target_ulong addr, int mem_idx)
2967 // XXX add 128 bit store
2968 CPU_QuadU u;
2970 helper_check_align(addr, 7);
2971 #if !defined(CONFIG_USER_ONLY)
2972 switch (mem_idx) {
2973 case 0:
2974 u.q = QT0;
2975 stq_user(addr, u.ll.upper);
2976 stq_user(addr + 8, u.ll.lower);
2977 break;
2978 case 1:
2979 u.q = QT0;
2980 stq_kernel(addr, u.ll.upper);
2981 stq_kernel(addr + 8, u.ll.lower);
2982 break;
2983 #ifdef TARGET_SPARC64
2984 case 2:
2985 u.q = QT0;
2986 stq_hypv(addr, u.ll.upper);
2987 stq_hypv(addr + 8, u.ll.lower);
2988 break;
2989 #endif
2990 default:
2991 break;
2993 #else
2994 u.q = QT0;
2995 address_mask(env, &addr);
2996 stq_raw(addr, u.ll.upper);
2997 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2998 #endif
3001 static inline void set_fsr(void)
3003 int rnd_mode;
3005 switch (env->fsr & FSR_RD_MASK) {
3006 case FSR_RD_NEAREST:
3007 rnd_mode = float_round_nearest_even;
3008 break;
3009 default:
3010 case FSR_RD_ZERO:
3011 rnd_mode = float_round_to_zero;
3012 break;
3013 case FSR_RD_POS:
3014 rnd_mode = float_round_up;
3015 break;
3016 case FSR_RD_NEG:
3017 rnd_mode = float_round_down;
3018 break;
3020 set_float_rounding_mode(rnd_mode, &env->fp_status);
3023 void helper_ldfsr(uint32_t new_fsr)
3025 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3026 set_fsr();
3029 #ifdef TARGET_SPARC64
3030 void helper_ldxfsr(uint64_t new_fsr)
3032 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3033 set_fsr();
3035 #endif
3037 void helper_debug(void)
3039 env->exception_index = EXCP_DEBUG;
3040 cpu_loop_exit();
3043 #ifndef TARGET_SPARC64
3044 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3045 handling ? */
3046 void helper_save(void)
3048 uint32_t cwp;
3050 cwp = cpu_cwp_dec(env, env->cwp - 1);
3051 if (env->wim & (1 << cwp)) {
3052 raise_exception(TT_WIN_OVF);
3054 set_cwp(cwp);
3057 void helper_restore(void)
3059 uint32_t cwp;
3061 cwp = cpu_cwp_inc(env, env->cwp + 1);
3062 if (env->wim & (1 << cwp)) {
3063 raise_exception(TT_WIN_UNF);
3065 set_cwp(cwp);
3068 void helper_wrpsr(target_ulong new_psr)
3070 if ((new_psr & PSR_CWP) >= env->nwindows)
3071 raise_exception(TT_ILL_INSN);
3072 else
3073 PUT_PSR(env, new_psr);
3076 target_ulong helper_rdpsr(void)
3078 return GET_PSR(env);
3081 #else
3082 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3083 handling ? */
3084 void helper_save(void)
3086 uint32_t cwp;
3088 cwp = cpu_cwp_dec(env, env->cwp - 1);
3089 if (env->cansave == 0) {
3090 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3091 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3092 ((env->wstate & 0x7) << 2)));
3093 } else {
3094 if (env->cleanwin - env->canrestore == 0) {
3095 // XXX Clean windows without trap
3096 raise_exception(TT_CLRWIN);
3097 } else {
3098 env->cansave--;
3099 env->canrestore++;
3100 set_cwp(cwp);
3105 void helper_restore(void)
3107 uint32_t cwp;
3109 cwp = cpu_cwp_inc(env, env->cwp + 1);
3110 if (env->canrestore == 0) {
3111 raise_exception(TT_FILL | (env->otherwin != 0 ?
3112 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3113 ((env->wstate & 0x7) << 2)));
3114 } else {
3115 env->cansave++;
3116 env->canrestore--;
3117 set_cwp(cwp);
3121 void helper_flushw(void)
3123 if (env->cansave != env->nwindows - 2) {
3124 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3125 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3126 ((env->wstate & 0x7) << 2)));
3130 void helper_saved(void)
3132 env->cansave++;
3133 if (env->otherwin == 0)
3134 env->canrestore--;
3135 else
3136 env->otherwin--;
3139 void helper_restored(void)
3141 env->canrestore++;
3142 if (env->cleanwin < env->nwindows - 1)
3143 env->cleanwin++;
3144 if (env->otherwin == 0)
3145 env->cansave--;
3146 else
3147 env->otherwin--;
3150 target_ulong helper_rdccr(void)
3152 return GET_CCR(env);
3155 void helper_wrccr(target_ulong new_ccr)
3157 PUT_CCR(env, new_ccr);
3160 // CWP handling is reversed in V9, but we still use the V8 register
3161 // order.
3162 target_ulong helper_rdcwp(void)
3164 return GET_CWP64(env);
3167 void helper_wrcwp(target_ulong new_cwp)
3169 PUT_CWP64(env, new_cwp);
3172 // This function uses non-native bit order
3173 #define GET_FIELD(X, FROM, TO) \
3174 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3176 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3177 #define GET_FIELD_SP(X, FROM, TO) \
3178 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3180 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3182 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3183 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3184 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3185 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3186 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3187 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3188 (((pixel_addr >> 55) & 1) << 4) |
3189 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3190 GET_FIELD_SP(pixel_addr, 11, 12);
3193 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3195 uint64_t tmp;
3197 tmp = addr + offset;
3198 env->gsr &= ~7ULL;
3199 env->gsr |= tmp & 7ULL;
3200 return tmp & ~7ULL;
3203 target_ulong helper_popc(target_ulong val)
3205 return ctpop64(val);
3208 static inline uint64_t *get_gregset(uint64_t pstate)
3210 switch (pstate) {
3211 default:
3212 case 0:
3213 return env->bgregs;
3214 case PS_AG:
3215 return env->agregs;
3216 case PS_MG:
3217 return env->mgregs;
3218 case PS_IG:
3219 return env->igregs;
3223 static inline void change_pstate(uint64_t new_pstate)
3225 uint64_t pstate_regs, new_pstate_regs;
3226 uint64_t *src, *dst;
3228 pstate_regs = env->pstate & 0xc01;
3229 new_pstate_regs = new_pstate & 0xc01;
3230 if (new_pstate_regs != pstate_regs) {
3231 // Switch global register bank
3232 src = get_gregset(new_pstate_regs);
3233 dst = get_gregset(pstate_regs);
3234 memcpy32(dst, env->gregs);
3235 memcpy32(env->gregs, src);
3237 env->pstate = new_pstate;
3240 void helper_wrpstate(target_ulong new_state)
3242 if (!(env->def->features & CPU_FEATURE_GL))
3243 change_pstate(new_state & 0xf3f);
3246 void helper_done(void)
3248 env->pc = env->tsptr->tpc;
3249 env->npc = env->tsptr->tnpc + 4;
3250 PUT_CCR(env, env->tsptr->tstate >> 32);
3251 env->asi = (env->tsptr->tstate >> 24) & 0xff;
3252 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3253 PUT_CWP64(env, env->tsptr->tstate & 0xff);
3254 env->tl--;
3255 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3258 void helper_retry(void)
3260 env->pc = env->tsptr->tpc;
3261 env->npc = env->tsptr->tnpc;
3262 PUT_CCR(env, env->tsptr->tstate >> 32);
3263 env->asi = (env->tsptr->tstate >> 24) & 0xff;
3264 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3265 PUT_CWP64(env, env->tsptr->tstate & 0xff);
3266 env->tl--;
3267 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3270 void helper_set_softint(uint64_t value)
3272 env->softint |= (uint32_t)value;
3275 void helper_clear_softint(uint64_t value)
3277 env->softint &= (uint32_t)~value;
3280 void helper_write_softint(uint64_t value)
3282 env->softint = (uint32_t)value;
3284 #endif
3286 void helper_flush(target_ulong addr)
3288 addr &= ~7;
3289 tb_invalidate_page_range(addr, addr + 8);
3292 #ifdef TARGET_SPARC64
3293 #ifdef DEBUG_PCALL
3294 static const char * const excp_names[0x80] = {
3295 [TT_TFAULT] = "Instruction Access Fault",
3296 [TT_TMISS] = "Instruction Access MMU Miss",
3297 [TT_CODE_ACCESS] = "Instruction Access Error",
3298 [TT_ILL_INSN] = "Illegal Instruction",
3299 [TT_PRIV_INSN] = "Privileged Instruction",
3300 [TT_NFPU_INSN] = "FPU Disabled",
3301 [TT_FP_EXCP] = "FPU Exception",
3302 [TT_TOVF] = "Tag Overflow",
3303 [TT_CLRWIN] = "Clean Windows",
3304 [TT_DIV_ZERO] = "Division By Zero",
3305 [TT_DFAULT] = "Data Access Fault",
3306 [TT_DMISS] = "Data Access MMU Miss",
3307 [TT_DATA_ACCESS] = "Data Access Error",
3308 [TT_DPROT] = "Data Protection Error",
3309 [TT_UNALIGNED] = "Unaligned Memory Access",
3310 [TT_PRIV_ACT] = "Privileged Action",
3311 [TT_EXTINT | 0x1] = "External Interrupt 1",
3312 [TT_EXTINT | 0x2] = "External Interrupt 2",
3313 [TT_EXTINT | 0x3] = "External Interrupt 3",
3314 [TT_EXTINT | 0x4] = "External Interrupt 4",
3315 [TT_EXTINT | 0x5] = "External Interrupt 5",
3316 [TT_EXTINT | 0x6] = "External Interrupt 6",
3317 [TT_EXTINT | 0x7] = "External Interrupt 7",
3318 [TT_EXTINT | 0x8] = "External Interrupt 8",
3319 [TT_EXTINT | 0x9] = "External Interrupt 9",
3320 [TT_EXTINT | 0xa] = "External Interrupt 10",
3321 [TT_EXTINT | 0xb] = "External Interrupt 11",
3322 [TT_EXTINT | 0xc] = "External Interrupt 12",
3323 [TT_EXTINT | 0xd] = "External Interrupt 13",
3324 [TT_EXTINT | 0xe] = "External Interrupt 14",
3325 [TT_EXTINT | 0xf] = "External Interrupt 15",
3327 #endif
3329 void do_interrupt(CPUState *env)
3331 int intno = env->exception_index;
3333 #ifdef DEBUG_PCALL
3334 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3335 static int count;
3336 const char *name;
3338 if (intno < 0 || intno >= 0x180)
3339 name = "Unknown";
3340 else if (intno >= 0x100)
3341 name = "Trap Instruction";
3342 else if (intno >= 0xc0)
3343 name = "Window Fill";
3344 else if (intno >= 0x80)
3345 name = "Window Spill";
3346 else {
3347 name = excp_names[intno];
3348 if (!name)
3349 name = "Unknown";
3352 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3353 " SP=%016" PRIx64 "\n",
3354 count, name, intno,
3355 env->pc,
3356 env->npc, env->regwptr[6]);
3357 log_cpu_state(env, 0);
3358 #if 0
3360 int i;
3361 uint8_t *ptr;
3363 qemu_log(" code=");
3364 ptr = (uint8_t *)env->pc;
3365 for(i = 0; i < 16; i++) {
3366 qemu_log(" %02x", ldub(ptr + i));
3368 qemu_log("\n");
3370 #endif
3371 count++;
3373 #endif
3374 #if !defined(CONFIG_USER_ONLY)
3375 if (env->tl >= env->maxtl) {
3376 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3377 " Error state", env->exception_index, env->tl, env->maxtl);
3378 return;
3380 #endif
3381 if (env->tl < env->maxtl - 1) {
3382 env->tl++;
3383 } else {
3384 env->pstate |= PS_RED;
3385 if (env->tl < env->maxtl)
3386 env->tl++;
3388 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3389 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3390 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3391 GET_CWP64(env);
3392 env->tsptr->tpc = env->pc;
3393 env->tsptr->tnpc = env->npc;
3394 env->tsptr->tt = intno;
3395 if (!(env->def->features & CPU_FEATURE_GL)) {
3396 switch (intno) {
3397 case TT_IVEC:
3398 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3399 break;
3400 case TT_TFAULT:
3401 case TT_TMISS:
3402 case TT_DFAULT:
3403 case TT_DMISS:
3404 case TT_DPROT:
3405 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3406 break;
3407 default:
3408 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3409 break;
3412 if (intno == TT_CLRWIN)
3413 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3414 else if ((intno & 0x1c0) == TT_SPILL)
3415 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3416 else if ((intno & 0x1c0) == TT_FILL)
3417 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3418 env->tbr &= ~0x7fffULL;
3419 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3420 env->pc = env->tbr;
3421 env->npc = env->pc + 4;
3422 env->exception_index = 0;
3424 #else
3425 #ifdef DEBUG_PCALL
3426 static const char * const excp_names[0x80] = {
3427 [TT_TFAULT] = "Instruction Access Fault",
3428 [TT_ILL_INSN] = "Illegal Instruction",
3429 [TT_PRIV_INSN] = "Privileged Instruction",
3430 [TT_NFPU_INSN] = "FPU Disabled",
3431 [TT_WIN_OVF] = "Window Overflow",
3432 [TT_WIN_UNF] = "Window Underflow",
3433 [TT_UNALIGNED] = "Unaligned Memory Access",
3434 [TT_FP_EXCP] = "FPU Exception",
3435 [TT_DFAULT] = "Data Access Fault",
3436 [TT_TOVF] = "Tag Overflow",
3437 [TT_EXTINT | 0x1] = "External Interrupt 1",
3438 [TT_EXTINT | 0x2] = "External Interrupt 2",
3439 [TT_EXTINT | 0x3] = "External Interrupt 3",
3440 [TT_EXTINT | 0x4] = "External Interrupt 4",
3441 [TT_EXTINT | 0x5] = "External Interrupt 5",
3442 [TT_EXTINT | 0x6] = "External Interrupt 6",
3443 [TT_EXTINT | 0x7] = "External Interrupt 7",
3444 [TT_EXTINT | 0x8] = "External Interrupt 8",
3445 [TT_EXTINT | 0x9] = "External Interrupt 9",
3446 [TT_EXTINT | 0xa] = "External Interrupt 10",
3447 [TT_EXTINT | 0xb] = "External Interrupt 11",
3448 [TT_EXTINT | 0xc] = "External Interrupt 12",
3449 [TT_EXTINT | 0xd] = "External Interrupt 13",
3450 [TT_EXTINT | 0xe] = "External Interrupt 14",
3451 [TT_EXTINT | 0xf] = "External Interrupt 15",
3452 [TT_TOVF] = "Tag Overflow",
3453 [TT_CODE_ACCESS] = "Instruction Access Error",
3454 [TT_DATA_ACCESS] = "Data Access Error",
3455 [TT_DIV_ZERO] = "Division By Zero",
3456 [TT_NCP_INSN] = "Coprocessor Disabled",
3458 #endif
3460 void do_interrupt(CPUState *env)
3462 int cwp, intno = env->exception_index;
3464 #ifdef DEBUG_PCALL
3465 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3466 static int count;
3467 const char *name;
3469 if (intno < 0 || intno >= 0x100)
3470 name = "Unknown";
3471 else if (intno >= 0x80)
3472 name = "Trap Instruction";
3473 else {
3474 name = excp_names[intno];
3475 if (!name)
3476 name = "Unknown";
3479 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3480 count, name, intno,
3481 env->pc,
3482 env->npc, env->regwptr[6]);
3483 log_cpu_state(env, 0);
3484 #if 0
3486 int i;
3487 uint8_t *ptr;
3489 qemu_log(" code=");
3490 ptr = (uint8_t *)env->pc;
3491 for(i = 0; i < 16; i++) {
3492 qemu_log(" %02x", ldub(ptr + i));
3494 qemu_log("\n");
3496 #endif
3497 count++;
3499 #endif
3500 #if !defined(CONFIG_USER_ONLY)
3501 if (env->psret == 0) {
3502 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3503 env->exception_index);
3504 return;
3506 #endif
3507 env->psret = 0;
3508 cwp = cpu_cwp_dec(env, env->cwp - 1);
3509 cpu_set_cwp(env, cwp);
3510 env->regwptr[9] = env->pc;
3511 env->regwptr[10] = env->npc;
3512 env->psrps = env->psrs;
3513 env->psrs = 1;
3514 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3515 env->pc = env->tbr;
3516 env->npc = env->pc + 4;
3517 env->exception_index = 0;
3519 #endif
3521 #if !defined(CONFIG_USER_ONLY)
3523 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3524 void *retaddr);
3526 #define MMUSUFFIX _mmu
3527 #define ALIGNED_ONLY
3529 #define SHIFT 0
3530 #include "softmmu_template.h"
3532 #define SHIFT 1
3533 #include "softmmu_template.h"
3535 #define SHIFT 2
3536 #include "softmmu_template.h"
3538 #define SHIFT 3
3539 #include "softmmu_template.h"
3541 /* XXX: make it generic ? */
3542 static void cpu_restore_state2(void *retaddr)
3544 TranslationBlock *tb;
3545 unsigned long pc;
3547 if (retaddr) {
3548 /* now we have a real cpu fault */
3549 pc = (unsigned long)retaddr;
3550 tb = tb_find_pc(pc);
3551 if (tb) {
3552 /* the PC is inside the translated code. It means that we have
3553 a virtual CPU fault */
3554 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3559 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3560 void *retaddr)
3562 #ifdef DEBUG_UNALIGNED
3563 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3564 "\n", addr, env->pc);
3565 #endif
3566 cpu_restore_state2(retaddr);
3567 raise_exception(TT_UNALIGNED);
3570 /* try to fill the TLB and return an exception if error. If retaddr is
3571 NULL, it means that the function was called in C code (i.e. not
3572 from generated code or from helper.c) */
3573 /* XXX: fix it to restore all registers */
3574 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3576 int ret;
3577 CPUState *saved_env;
3579 /* XXX: hack to restore env in all cases, even if not called from
3580 generated code */
3581 saved_env = env;
3582 env = cpu_single_env;
3584 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3585 if (ret) {
3586 cpu_restore_state2(retaddr);
3587 cpu_loop_exit();
3589 env = saved_env;
3592 #endif
3594 #ifndef TARGET_SPARC64
3595 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3596 int is_asi, int size)
3598 CPUState *saved_env;
3600 /* XXX: hack to restore env in all cases, even if not called from
3601 generated code */
3602 saved_env = env;
3603 env = cpu_single_env;
3604 #ifdef DEBUG_UNASSIGNED
3605 if (is_asi)
3606 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3607 " asi 0x%02x from " TARGET_FMT_lx "\n",
3608 is_exec ? "exec" : is_write ? "write" : "read", size,
3609 size == 1 ? "" : "s", addr, is_asi, env->pc);
3610 else
3611 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3612 " from " TARGET_FMT_lx "\n",
3613 is_exec ? "exec" : is_write ? "write" : "read", size,
3614 size == 1 ? "" : "s", addr, env->pc);
3615 #endif
3616 if (env->mmuregs[3]) /* Fault status register */
3617 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3618 if (is_asi)
3619 env->mmuregs[3] |= 1 << 16;
3620 if (env->psrs)
3621 env->mmuregs[3] |= 1 << 5;
3622 if (is_exec)
3623 env->mmuregs[3] |= 1 << 6;
3624 if (is_write)
3625 env->mmuregs[3] |= 1 << 7;
3626 env->mmuregs[3] |= (5 << 2) | 2;
3627 env->mmuregs[4] = addr; /* Fault address register */
3628 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3629 if (is_exec)
3630 raise_exception(TT_CODE_ACCESS);
3631 else
3632 raise_exception(TT_DATA_ACCESS);
3634 env = saved_env;
3636 #else
3637 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3638 int is_asi, int size)
3640 #ifdef DEBUG_UNASSIGNED
3641 CPUState *saved_env;
3643 /* XXX: hack to restore env in all cases, even if not called from
3644 generated code */
3645 saved_env = env;
3646 env = cpu_single_env;
3647 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3648 "\n", addr, env->pc);
3649 env = saved_env;
3650 #endif
3651 if (is_exec)
3652 raise_exception(TT_CODE_ACCESS);
3653 else
3654 raise_exception(TT_DATA_ACCESS);
3656 #endif
3658 #ifdef TARGET_SPARC64
3659 void helper_tick_set_count(void *opaque, uint64_t count)
3661 #if !defined(CONFIG_USER_ONLY)
3662 cpu_tick_set_count(opaque, count);
3663 #endif
3666 uint64_t helper_tick_get_count(void *opaque)
3668 #if !defined(CONFIG_USER_ONLY)
3669 return cpu_tick_get_count(opaque);
3670 #else
3671 return 0;
3672 #endif
3675 void helper_tick_set_limit(void *opaque, uint64_t limit)
3677 #if !defined(CONFIG_USER_ONLY)
3678 cpu_tick_set_limit(opaque, limit);
3679 #endif
3681 #endif