Fix preprocessor guard condition
[qemu/mini2440.git] / hw / lsi53c895a.c
bloba08cfd9e3e11cc3ffa065a7a7236ca80c585e138
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include "hw.h"
14 #include "pci.h"
15 #include "scsi-disk.h"
17 //#define DEBUG_LSI
18 //#define DEBUG_LSI_REG
20 #ifdef DEBUG_LSI
21 #define DPRINTF(fmt, args...) \
22 do { printf("lsi_scsi: " fmt , ##args); } while (0)
23 #define BADF(fmt, args...) \
24 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
25 #else
26 #define DPRINTF(fmt, args...) do {} while(0)
27 #define BADF(fmt, args...) \
28 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
29 #endif
31 #define LSI_SCNTL0_TRG 0x01
32 #define LSI_SCNTL0_AAP 0x02
33 #define LSI_SCNTL0_EPC 0x08
34 #define LSI_SCNTL0_WATN 0x10
35 #define LSI_SCNTL0_START 0x20
37 #define LSI_SCNTL1_SST 0x01
38 #define LSI_SCNTL1_IARB 0x02
39 #define LSI_SCNTL1_AESP 0x04
40 #define LSI_SCNTL1_RST 0x08
41 #define LSI_SCNTL1_CON 0x10
42 #define LSI_SCNTL1_DHP 0x20
43 #define LSI_SCNTL1_ADB 0x40
44 #define LSI_SCNTL1_EXC 0x80
46 #define LSI_SCNTL2_WSR 0x01
47 #define LSI_SCNTL2_VUE0 0x02
48 #define LSI_SCNTL2_VUE1 0x04
49 #define LSI_SCNTL2_WSS 0x08
50 #define LSI_SCNTL2_SLPHBEN 0x10
51 #define LSI_SCNTL2_SLPMD 0x20
52 #define LSI_SCNTL2_CHM 0x40
53 #define LSI_SCNTL2_SDU 0x80
55 #define LSI_ISTAT0_DIP 0x01
56 #define LSI_ISTAT0_SIP 0x02
57 #define LSI_ISTAT0_INTF 0x04
58 #define LSI_ISTAT0_CON 0x08
59 #define LSI_ISTAT0_SEM 0x10
60 #define LSI_ISTAT0_SIGP 0x20
61 #define LSI_ISTAT0_SRST 0x40
62 #define LSI_ISTAT0_ABRT 0x80
64 #define LSI_ISTAT1_SI 0x01
65 #define LSI_ISTAT1_SRUN 0x02
66 #define LSI_ISTAT1_FLSH 0x04
68 #define LSI_SSTAT0_SDP0 0x01
69 #define LSI_SSTAT0_RST 0x02
70 #define LSI_SSTAT0_WOA 0x04
71 #define LSI_SSTAT0_LOA 0x08
72 #define LSI_SSTAT0_AIP 0x10
73 #define LSI_SSTAT0_OLF 0x20
74 #define LSI_SSTAT0_ORF 0x40
75 #define LSI_SSTAT0_ILF 0x80
77 #define LSI_SIST0_PAR 0x01
78 #define LSI_SIST0_RST 0x02
79 #define LSI_SIST0_UDC 0x04
80 #define LSI_SIST0_SGE 0x08
81 #define LSI_SIST0_RSL 0x10
82 #define LSI_SIST0_SEL 0x20
83 #define LSI_SIST0_CMP 0x40
84 #define LSI_SIST0_MA 0x80
86 #define LSI_SIST1_HTH 0x01
87 #define LSI_SIST1_GEN 0x02
88 #define LSI_SIST1_STO 0x04
89 #define LSI_SIST1_SBMC 0x10
91 #define LSI_SOCL_IO 0x01
92 #define LSI_SOCL_CD 0x02
93 #define LSI_SOCL_MSG 0x04
94 #define LSI_SOCL_ATN 0x08
95 #define LSI_SOCL_SEL 0x10
96 #define LSI_SOCL_BSY 0x20
97 #define LSI_SOCL_ACK 0x40
98 #define LSI_SOCL_REQ 0x80
100 #define LSI_DSTAT_IID 0x01
101 #define LSI_DSTAT_SIR 0x04
102 #define LSI_DSTAT_SSI 0x08
103 #define LSI_DSTAT_ABRT 0x10
104 #define LSI_DSTAT_BF 0x20
105 #define LSI_DSTAT_MDPE 0x40
106 #define LSI_DSTAT_DFE 0x80
108 #define LSI_DCNTL_COM 0x01
109 #define LSI_DCNTL_IRQD 0x02
110 #define LSI_DCNTL_STD 0x04
111 #define LSI_DCNTL_IRQM 0x08
112 #define LSI_DCNTL_SSM 0x10
113 #define LSI_DCNTL_PFEN 0x20
114 #define LSI_DCNTL_PFF 0x40
115 #define LSI_DCNTL_CLSE 0x80
117 #define LSI_DMODE_MAN 0x01
118 #define LSI_DMODE_BOF 0x02
119 #define LSI_DMODE_ERMP 0x04
120 #define LSI_DMODE_ERL 0x08
121 #define LSI_DMODE_DIOM 0x10
122 #define LSI_DMODE_SIOM 0x20
124 #define LSI_CTEST2_DACK 0x01
125 #define LSI_CTEST2_DREQ 0x02
126 #define LSI_CTEST2_TEOP 0x04
127 #define LSI_CTEST2_PCICIE 0x08
128 #define LSI_CTEST2_CM 0x10
129 #define LSI_CTEST2_CIO 0x20
130 #define LSI_CTEST2_SIGP 0x40
131 #define LSI_CTEST2_DDIR 0x80
133 #define LSI_CTEST5_BL2 0x04
134 #define LSI_CTEST5_DDIR 0x08
135 #define LSI_CTEST5_MASR 0x10
136 #define LSI_CTEST5_DFSN 0x20
137 #define LSI_CTEST5_BBCK 0x40
138 #define LSI_CTEST5_ADCK 0x80
140 #define LSI_CCNTL0_DILS 0x01
141 #define LSI_CCNTL0_DISFC 0x10
142 #define LSI_CCNTL0_ENNDJ 0x20
143 #define LSI_CCNTL0_PMJCTL 0x40
144 #define LSI_CCNTL0_ENPMJ 0x80
146 #define PHASE_DO 0
147 #define PHASE_DI 1
148 #define PHASE_CMD 2
149 #define PHASE_ST 3
150 #define PHASE_MO 6
151 #define PHASE_MI 7
152 #define PHASE_MASK 7
154 /* Maximum length of MSG IN data. */
155 #define LSI_MAX_MSGIN_LEN 8
157 /* Flag set if this is a tagged command. */
158 #define LSI_TAG_VALID (1 << 16)
160 typedef struct {
161 uint32_t tag;
162 uint32_t pending;
163 int out;
164 } lsi_queue;
166 typedef struct {
167 PCIDevice pci_dev;
168 int mmio_io_addr;
169 int ram_io_addr;
170 uint32_t script_ram_base;
172 int carry; /* ??? Should this be an a visible register somewhere? */
173 int sense;
174 /* Action to take at the end of a MSG IN phase.
175 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
176 int msg_action;
177 int msg_len;
178 uint8_t msg[LSI_MAX_MSGIN_LEN];
179 /* 0 if SCRIPTS are running or stopped.
180 * 1 if a Wait Reselect instruction has been issued.
181 * 2 if processing DMA from lsi_execute_script.
182 * 3 if a DMA operation is in progress. */
183 int waiting;
184 SCSIDevice *scsi_dev[LSI_MAX_DEVS];
185 SCSIDevice *current_dev;
186 int current_lun;
187 /* The tag is a combination of the device ID and the SCSI tag. */
188 uint32_t current_tag;
189 uint32_t current_dma_len;
190 int command_complete;
191 uint8_t *dma_buf;
192 lsi_queue *queue;
193 int queue_len;
194 int active_commands;
196 uint32_t dsa;
197 uint32_t temp;
198 uint32_t dnad;
199 uint32_t dbc;
200 uint8_t istat0;
201 uint8_t istat1;
202 uint8_t dcmd;
203 uint8_t dstat;
204 uint8_t dien;
205 uint8_t sist0;
206 uint8_t sist1;
207 uint8_t sien0;
208 uint8_t sien1;
209 uint8_t mbox0;
210 uint8_t mbox1;
211 uint8_t dfifo;
212 uint8_t ctest3;
213 uint8_t ctest4;
214 uint8_t ctest5;
215 uint8_t ccntl0;
216 uint8_t ccntl1;
217 uint32_t dsp;
218 uint32_t dsps;
219 uint8_t dmode;
220 uint8_t dcntl;
221 uint8_t scntl0;
222 uint8_t scntl1;
223 uint8_t scntl2;
224 uint8_t scntl3;
225 uint8_t sstat0;
226 uint8_t sstat1;
227 uint8_t scid;
228 uint8_t sxfer;
229 uint8_t socl;
230 uint8_t sdid;
231 uint8_t ssid;
232 uint8_t sfbr;
233 uint8_t stest1;
234 uint8_t stest2;
235 uint8_t stest3;
236 uint8_t sidl;
237 uint8_t stime0;
238 uint8_t respid0;
239 uint8_t respid1;
240 uint32_t mmrs;
241 uint32_t mmws;
242 uint32_t sfs;
243 uint32_t drs;
244 uint32_t sbms;
245 uint32_t dmbs;
246 uint32_t dnad64;
247 uint32_t pmjad1;
248 uint32_t pmjad2;
249 uint32_t rbc;
250 uint32_t ua;
251 uint32_t ia;
252 uint32_t sbc;
253 uint32_t csbc;
254 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
256 /* Script ram is stored as 32-bit words in host byteorder. */
257 uint32_t script_ram[2048];
258 } LSIState;
260 static void lsi_soft_reset(LSIState *s)
262 DPRINTF("Reset\n");
263 s->carry = 0;
265 s->waiting = 0;
266 s->dsa = 0;
267 s->dnad = 0;
268 s->dbc = 0;
269 s->temp = 0;
270 memset(s->scratch, 0, sizeof(s->scratch));
271 s->istat0 = 0;
272 s->istat1 = 0;
273 s->dcmd = 0;
274 s->dstat = 0;
275 s->dien = 0;
276 s->sist0 = 0;
277 s->sist1 = 0;
278 s->sien0 = 0;
279 s->sien1 = 0;
280 s->mbox0 = 0;
281 s->mbox1 = 0;
282 s->dfifo = 0;
283 s->ctest3 = 0;
284 s->ctest4 = 0;
285 s->ctest5 = 0;
286 s->ccntl0 = 0;
287 s->ccntl1 = 0;
288 s->dsp = 0;
289 s->dsps = 0;
290 s->dmode = 0;
291 s->dcntl = 0;
292 s->scntl0 = 0xc0;
293 s->scntl1 = 0;
294 s->scntl2 = 0;
295 s->scntl3 = 0;
296 s->sstat0 = 0;
297 s->sstat1 = 0;
298 s->scid = 7;
299 s->sxfer = 0;
300 s->socl = 0;
301 s->stest1 = 0;
302 s->stest2 = 0;
303 s->stest3 = 0;
304 s->sidl = 0;
305 s->stime0 = 0;
306 s->respid0 = 0x80;
307 s->respid1 = 0;
308 s->mmrs = 0;
309 s->mmws = 0;
310 s->sfs = 0;
311 s->drs = 0;
312 s->sbms = 0;
313 s->dmbs = 0;
314 s->dnad64 = 0;
315 s->pmjad1 = 0;
316 s->pmjad2 = 0;
317 s->rbc = 0;
318 s->ua = 0;
319 s->ia = 0;
320 s->sbc = 0;
321 s->csbc = 0;
324 static uint8_t lsi_reg_readb(LSIState *s, int offset);
325 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
326 static void lsi_execute_script(LSIState *s);
328 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
330 uint32_t buf;
332 /* Optimize reading from SCRIPTS RAM. */
333 if ((addr & 0xffffe000) == s->script_ram_base) {
334 return s->script_ram[(addr & 0x1fff) >> 2];
336 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
337 return cpu_to_le32(buf);
340 static void lsi_stop_script(LSIState *s)
342 s->istat1 &= ~LSI_ISTAT1_SRUN;
345 static void lsi_update_irq(LSIState *s)
347 int level;
348 static int last_level;
350 /* It's unclear whether the DIP/SIP bits should be cleared when the
351 Interrupt Status Registers are cleared or when istat0 is read.
352 We currently do the formwer, which seems to work. */
353 level = 0;
354 if (s->dstat) {
355 if (s->dstat & s->dien)
356 level = 1;
357 s->istat0 |= LSI_ISTAT0_DIP;
358 } else {
359 s->istat0 &= ~LSI_ISTAT0_DIP;
362 if (s->sist0 || s->sist1) {
363 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
364 level = 1;
365 s->istat0 |= LSI_ISTAT0_SIP;
366 } else {
367 s->istat0 &= ~LSI_ISTAT0_SIP;
369 if (s->istat0 & LSI_ISTAT0_INTF)
370 level = 1;
372 if (level != last_level) {
373 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
374 level, s->dstat, s->sist1, s->sist0);
375 last_level = level;
377 qemu_set_irq(s->pci_dev.irq[0], level);
380 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
381 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
383 uint32_t mask0;
384 uint32_t mask1;
386 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
387 stat1, stat0, s->sist1, s->sist0);
388 s->sist0 |= stat0;
389 s->sist1 |= stat1;
390 /* Stop processor on fatal or unmasked interrupt. As a special hack
391 we don't stop processing when raising STO. Instead continue
392 execution and stop at the next insn that accesses the SCSI bus. */
393 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
394 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
395 mask1 &= ~LSI_SIST1_STO;
396 if (s->sist0 & mask0 || s->sist1 & mask1) {
397 lsi_stop_script(s);
399 lsi_update_irq(s);
402 /* Stop SCRIPTS execution and raise a DMA interrupt. */
403 static void lsi_script_dma_interrupt(LSIState *s, int stat)
405 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
406 s->dstat |= stat;
407 lsi_update_irq(s);
408 lsi_stop_script(s);
411 static inline void lsi_set_phase(LSIState *s, int phase)
413 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
416 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
418 /* Trigger a phase mismatch. */
419 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
420 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
421 s->dsp = s->pmjad1;
422 } else {
423 s->dsp = s->pmjad2;
425 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
426 } else {
427 DPRINTF("Phase mismatch interrupt\n");
428 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
429 lsi_stop_script(s);
431 lsi_set_phase(s, new_phase);
435 /* Resume SCRIPTS execution after a DMA operation. */
436 static void lsi_resume_script(LSIState *s)
438 if (s->waiting != 2) {
439 s->waiting = 0;
440 lsi_execute_script(s);
441 } else {
442 s->waiting = 0;
446 /* Initiate a SCSI layer data transfer. */
447 static void lsi_do_dma(LSIState *s, int out)
449 uint32_t count;
450 uint32_t addr;
452 if (!s->current_dma_len) {
453 /* Wait until data is available. */
454 DPRINTF("DMA no data available\n");
455 return;
458 count = s->dbc;
459 if (count > s->current_dma_len)
460 count = s->current_dma_len;
461 DPRINTF("DMA addr=0x%08x len=%d\n", s->dnad, count);
463 addr = s->dnad;
464 s->csbc += count;
465 s->dnad += count;
466 s->dbc -= count;
468 if (s->dma_buf == NULL) {
469 s->dma_buf = s->current_dev->get_buf(s->current_dev,
470 s->current_tag);
473 /* ??? Set SFBR to first data byte. */
474 if (out) {
475 cpu_physical_memory_read(addr, s->dma_buf, count);
476 } else {
477 cpu_physical_memory_write(addr, s->dma_buf, count);
479 s->current_dma_len -= count;
480 if (s->current_dma_len == 0) {
481 s->dma_buf = NULL;
482 if (out) {
483 /* Write the data. */
484 s->current_dev->write_data(s->current_dev, s->current_tag);
485 } else {
486 /* Request any remaining data. */
487 s->current_dev->read_data(s->current_dev, s->current_tag);
489 } else {
490 s->dma_buf += count;
491 lsi_resume_script(s);
496 /* Add a command to the queue. */
497 static void lsi_queue_command(LSIState *s)
499 lsi_queue *p;
501 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
502 if (s->queue_len == s->active_commands) {
503 s->queue_len++;
504 s->queue = realloc(s->queue, s->queue_len * sizeof(lsi_queue));
506 p = &s->queue[s->active_commands++];
507 p->tag = s->current_tag;
508 p->pending = 0;
509 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
512 /* Queue a byte for a MSG IN phase. */
513 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
515 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
516 BADF("MSG IN data too long\n");
517 } else {
518 DPRINTF("MSG IN 0x%02x\n", data);
519 s->msg[s->msg_len++] = data;
523 /* Perform reselection to continue a command. */
524 static void lsi_reselect(LSIState *s, uint32_t tag)
526 lsi_queue *p;
527 int n;
528 int id;
530 p = NULL;
531 for (n = 0; n < s->active_commands; n++) {
532 p = &s->queue[n];
533 if (p->tag == tag)
534 break;
536 if (n == s->active_commands) {
537 BADF("Reselected non-existant command tag=0x%x\n", tag);
538 return;
540 id = (tag >> 8) & 0xf;
541 s->ssid = id | 0x80;
542 DPRINTF("Reselected target %d\n", id);
543 s->current_dev = s->scsi_dev[id];
544 s->current_tag = tag;
545 s->scntl1 |= LSI_SCNTL1_CON;
546 lsi_set_phase(s, PHASE_MI);
547 s->msg_action = p->out ? 2 : 3;
548 s->current_dma_len = p->pending;
549 s->dma_buf = NULL;
550 lsi_add_msg_byte(s, 0x80);
551 if (s->current_tag & LSI_TAG_VALID) {
552 lsi_add_msg_byte(s, 0x20);
553 lsi_add_msg_byte(s, tag & 0xff);
556 s->active_commands--;
557 if (n != s->active_commands) {
558 s->queue[n] = s->queue[s->active_commands];
562 /* Record that data is available for a queued command. Returns zero if
563 the device was reselected, nonzero if the IO is deferred. */
564 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
566 lsi_queue *p;
567 int i;
568 for (i = 0; i < s->active_commands; i++) {
569 p = &s->queue[i];
570 if (p->tag == tag) {
571 if (p->pending) {
572 BADF("Multiple IO pending for tag %d\n", tag);
574 p->pending = arg;
575 if (s->waiting == 1) {
576 /* Reselect device. */
577 lsi_reselect(s, tag);
578 return 0;
579 } else {
580 DPRINTF("Queueing IO tag=0x%x\n", tag);
581 p->pending = arg;
582 return 1;
586 BADF("IO with unknown tag %d\n", tag);
587 return 1;
590 /* Callback to indicate that the SCSI layer has completed a transfer. */
591 static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
592 uint32_t arg)
594 LSIState *s = (LSIState *)opaque;
595 int out;
597 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
598 if (reason == SCSI_REASON_DONE) {
599 DPRINTF("Command complete sense=%d\n", (int)arg);
600 s->sense = arg;
601 s->command_complete = 2;
602 if (s->waiting && s->dbc != 0) {
603 /* Raise phase mismatch for short transfers. */
604 lsi_bad_phase(s, out, PHASE_ST);
605 } else {
606 lsi_set_phase(s, PHASE_ST);
608 lsi_resume_script(s);
609 return;
612 if (s->waiting == 1 || tag != s->current_tag) {
613 if (lsi_queue_tag(s, tag, arg))
614 return;
616 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
617 s->current_dma_len = arg;
618 s->command_complete = 1;
619 if (!s->waiting)
620 return;
621 if (s->waiting == 1 || s->dbc == 0) {
622 lsi_resume_script(s);
623 } else {
624 lsi_do_dma(s, out);
628 static void lsi_do_command(LSIState *s)
630 uint8_t buf[16];
631 int n;
633 DPRINTF("Send command len=%d\n", s->dbc);
634 if (s->dbc > 16)
635 s->dbc = 16;
636 cpu_physical_memory_read(s->dnad, buf, s->dbc);
637 s->sfbr = buf[0];
638 s->command_complete = 0;
639 n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
640 s->current_lun);
641 if (n > 0) {
642 lsi_set_phase(s, PHASE_DI);
643 s->current_dev->read_data(s->current_dev, s->current_tag);
644 } else if (n < 0) {
645 lsi_set_phase(s, PHASE_DO);
646 s->current_dev->write_data(s->current_dev, s->current_tag);
649 if (!s->command_complete) {
650 if (n) {
651 /* Command did not complete immediately so disconnect. */
652 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
653 lsi_add_msg_byte(s, 4); /* DISCONNECT */
654 /* wait data */
655 lsi_set_phase(s, PHASE_MI);
656 s->msg_action = 1;
657 lsi_queue_command(s);
658 } else {
659 /* wait command complete */
660 lsi_set_phase(s, PHASE_DI);
665 static void lsi_do_status(LSIState *s)
667 uint8_t sense;
668 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
669 if (s->dbc != 1)
670 BADF("Bad Status move\n");
671 s->dbc = 1;
672 sense = s->sense;
673 s->sfbr = sense;
674 cpu_physical_memory_write(s->dnad, &sense, 1);
675 lsi_set_phase(s, PHASE_MI);
676 s->msg_action = 1;
677 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
680 static void lsi_disconnect(LSIState *s)
682 s->scntl1 &= ~LSI_SCNTL1_CON;
683 s->sstat1 &= ~PHASE_MASK;
686 static void lsi_do_msgin(LSIState *s)
688 int len;
689 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
690 s->sfbr = s->msg[0];
691 len = s->msg_len;
692 if (len > s->dbc)
693 len = s->dbc;
694 cpu_physical_memory_write(s->dnad, s->msg, len);
695 /* Linux drivers rely on the last byte being in the SIDL. */
696 s->sidl = s->msg[len - 1];
697 s->msg_len -= len;
698 if (s->msg_len) {
699 memmove(s->msg, s->msg + len, s->msg_len);
700 } else {
701 /* ??? Check if ATN (not yet implemented) is asserted and maybe
702 switch to PHASE_MO. */
703 switch (s->msg_action) {
704 case 0:
705 lsi_set_phase(s, PHASE_CMD);
706 break;
707 case 1:
708 lsi_disconnect(s);
709 break;
710 case 2:
711 lsi_set_phase(s, PHASE_DO);
712 break;
713 case 3:
714 lsi_set_phase(s, PHASE_DI);
715 break;
716 default:
717 abort();
722 /* Read the next byte during a MSGOUT phase. */
723 static uint8_t lsi_get_msgbyte(LSIState *s)
725 uint8_t data;
726 cpu_physical_memory_read(s->dnad, &data, 1);
727 s->dnad++;
728 s->dbc--;
729 return data;
732 static void lsi_do_msgout(LSIState *s)
734 uint8_t msg;
735 int len;
737 DPRINTF("MSG out len=%d\n", s->dbc);
738 while (s->dbc) {
739 msg = lsi_get_msgbyte(s);
740 s->sfbr = msg;
742 switch (msg) {
743 case 0x00:
744 DPRINTF("MSG: Disconnect\n");
745 lsi_disconnect(s);
746 break;
747 case 0x08:
748 DPRINTF("MSG: No Operation\n");
749 lsi_set_phase(s, PHASE_CMD);
750 break;
751 case 0x01:
752 len = lsi_get_msgbyte(s);
753 msg = lsi_get_msgbyte(s);
754 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
755 switch (msg) {
756 case 1:
757 DPRINTF("SDTR (ignored)\n");
758 s->dbc -= 2;
759 break;
760 case 3:
761 DPRINTF("WDTR (ignored)\n");
762 s->dbc -= 1;
763 break;
764 default:
765 goto bad;
767 break;
768 case 0x20: /* SIMPLE queue */
769 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
770 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
771 break;
772 case 0x21: /* HEAD of queue */
773 BADF("HEAD queue not implemented\n");
774 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
775 break;
776 case 0x22: /* ORDERED queue */
777 BADF("ORDERED queue not implemented\n");
778 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
779 break;
780 default:
781 if ((msg & 0x80) == 0) {
782 goto bad;
784 s->current_lun = msg & 7;
785 DPRINTF("Select LUN %d\n", s->current_lun);
786 lsi_set_phase(s, PHASE_CMD);
787 break;
790 return;
791 bad:
792 BADF("Unimplemented message 0x%02x\n", msg);
793 lsi_set_phase(s, PHASE_MI);
794 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
795 s->msg_action = 0;
798 /* Sign extend a 24-bit value. */
799 static inline int32_t sxt24(int32_t n)
801 return (n << 8) >> 8;
804 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
806 int n;
807 uint8_t buf[TARGET_PAGE_SIZE];
809 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
810 while (count) {
811 n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
812 cpu_physical_memory_read(src, buf, n);
813 cpu_physical_memory_write(dest, buf, n);
814 src += n;
815 dest += n;
816 count -= n;
820 static void lsi_wait_reselect(LSIState *s)
822 int i;
823 DPRINTF("Wait Reselect\n");
824 if (s->current_dma_len)
825 BADF("Reselect with pending DMA\n");
826 for (i = 0; i < s->active_commands; i++) {
827 if (s->queue[i].pending) {
828 lsi_reselect(s, s->queue[i].tag);
829 break;
832 if (s->current_dma_len == 0) {
833 s->waiting = 1;
837 static void lsi_execute_script(LSIState *s)
839 uint32_t insn;
840 uint32_t addr;
841 int opcode;
843 s->istat1 |= LSI_ISTAT1_SRUN;
844 again:
845 insn = read_dword(s, s->dsp);
846 addr = read_dword(s, s->dsp + 4);
847 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
848 s->dsps = addr;
849 s->dcmd = insn >> 24;
850 s->dsp += 8;
851 switch (insn >> 30) {
852 case 0: /* Block move. */
853 if (s->sist1 & LSI_SIST1_STO) {
854 DPRINTF("Delayed select timeout\n");
855 lsi_stop_script(s);
856 break;
858 s->dbc = insn & 0xffffff;
859 s->rbc = s->dbc;
860 if (insn & (1 << 29)) {
861 /* Indirect addressing. */
862 addr = read_dword(s, addr);
863 } else if (insn & (1 << 28)) {
864 uint32_t buf[2];
865 int32_t offset;
866 /* Table indirect addressing. */
867 offset = sxt24(addr);
868 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
869 s->dbc = cpu_to_le32(buf[0]);
870 s->rbc = s->dbc;
871 addr = cpu_to_le32(buf[1]);
873 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
874 DPRINTF("Wrong phase got %d expected %d\n",
875 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
876 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
877 break;
879 s->dnad = addr;
880 /* ??? Set ESA. */
881 s->ia = s->dsp - 8;
882 switch (s->sstat1 & 0x7) {
883 case PHASE_DO:
884 s->waiting = 2;
885 lsi_do_dma(s, 1);
886 if (s->waiting)
887 s->waiting = 3;
888 break;
889 case PHASE_DI:
890 s->waiting = 2;
891 lsi_do_dma(s, 0);
892 if (s->waiting)
893 s->waiting = 3;
894 break;
895 case PHASE_CMD:
896 lsi_do_command(s);
897 break;
898 case PHASE_ST:
899 lsi_do_status(s);
900 break;
901 case PHASE_MO:
902 lsi_do_msgout(s);
903 break;
904 case PHASE_MI:
905 lsi_do_msgin(s);
906 break;
907 default:
908 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
909 exit(1);
911 s->dfifo = s->dbc & 0xff;
912 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
913 s->sbc = s->dbc;
914 s->rbc -= s->dbc;
915 s->ua = addr + s->dbc;
916 break;
918 case 1: /* IO or Read/Write instruction. */
919 opcode = (insn >> 27) & 7;
920 if (opcode < 5) {
921 uint32_t id;
923 if (insn & (1 << 25)) {
924 id = read_dword(s, s->dsa + sxt24(insn));
925 } else {
926 id = addr;
928 id = (id >> 16) & 0xf;
929 if (insn & (1 << 26)) {
930 addr = s->dsp + sxt24(addr);
932 s->dnad = addr;
933 switch (opcode) {
934 case 0: /* Select */
935 s->sdid = id;
936 if (s->current_dma_len && (s->ssid & 0xf) == id) {
937 DPRINTF("Already reselected by target %d\n", id);
938 break;
940 s->sstat0 |= LSI_SSTAT0_WOA;
941 s->scntl1 &= ~LSI_SCNTL1_IARB;
942 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
943 DPRINTF("Selected absent target %d\n", id);
944 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
945 lsi_disconnect(s);
946 break;
948 DPRINTF("Selected target %d%s\n",
949 id, insn & (1 << 3) ? " ATN" : "");
950 /* ??? Linux drivers compain when this is set. Maybe
951 it only applies in low-level mode (unimplemented).
952 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
953 s->current_dev = s->scsi_dev[id];
954 s->current_tag = id << 8;
955 s->scntl1 |= LSI_SCNTL1_CON;
956 if (insn & (1 << 3)) {
957 s->socl |= LSI_SOCL_ATN;
959 lsi_set_phase(s, PHASE_MO);
960 break;
961 case 1: /* Disconnect */
962 DPRINTF("Wait Disconect\n");
963 s->scntl1 &= ~LSI_SCNTL1_CON;
964 break;
965 case 2: /* Wait Reselect */
966 lsi_wait_reselect(s);
967 break;
968 case 3: /* Set */
969 DPRINTF("Set%s%s%s%s\n",
970 insn & (1 << 3) ? " ATN" : "",
971 insn & (1 << 6) ? " ACK" : "",
972 insn & (1 << 9) ? " TM" : "",
973 insn & (1 << 10) ? " CC" : "");
974 if (insn & (1 << 3)) {
975 s->socl |= LSI_SOCL_ATN;
976 lsi_set_phase(s, PHASE_MO);
978 if (insn & (1 << 9)) {
979 BADF("Target mode not implemented\n");
980 exit(1);
982 if (insn & (1 << 10))
983 s->carry = 1;
984 break;
985 case 4: /* Clear */
986 DPRINTF("Clear%s%s%s%s\n",
987 insn & (1 << 3) ? " ATN" : "",
988 insn & (1 << 6) ? " ACK" : "",
989 insn & (1 << 9) ? " TM" : "",
990 insn & (1 << 10) ? " CC" : "");
991 if (insn & (1 << 3)) {
992 s->socl &= ~LSI_SOCL_ATN;
994 if (insn & (1 << 10))
995 s->carry = 0;
996 break;
998 } else {
999 uint8_t op0;
1000 uint8_t op1;
1001 uint8_t data8;
1002 int reg;
1003 int operator;
1004 #ifdef DEBUG_LSI
1005 static const char *opcode_names[3] =
1006 {"Write", "Read", "Read-Modify-Write"};
1007 static const char *operator_names[8] =
1008 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1009 #endif
1011 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1012 data8 = (insn >> 8) & 0xff;
1013 opcode = (insn >> 27) & 7;
1014 operator = (insn >> 24) & 7;
1015 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1016 opcode_names[opcode - 5], reg,
1017 operator_names[operator], data8, s->sfbr,
1018 (insn & (1 << 23)) ? " SFBR" : "");
1019 op0 = op1 = 0;
1020 switch (opcode) {
1021 case 5: /* From SFBR */
1022 op0 = s->sfbr;
1023 op1 = data8;
1024 break;
1025 case 6: /* To SFBR */
1026 if (operator)
1027 op0 = lsi_reg_readb(s, reg);
1028 op1 = data8;
1029 break;
1030 case 7: /* Read-modify-write */
1031 if (operator)
1032 op0 = lsi_reg_readb(s, reg);
1033 if (insn & (1 << 23)) {
1034 op1 = s->sfbr;
1035 } else {
1036 op1 = data8;
1038 break;
1041 switch (operator) {
1042 case 0: /* move */
1043 op0 = op1;
1044 break;
1045 case 1: /* Shift left */
1046 op1 = op0 >> 7;
1047 op0 = (op0 << 1) | s->carry;
1048 s->carry = op1;
1049 break;
1050 case 2: /* OR */
1051 op0 |= op1;
1052 break;
1053 case 3: /* XOR */
1054 op0 ^= op1;
1055 break;
1056 case 4: /* AND */
1057 op0 &= op1;
1058 break;
1059 case 5: /* SHR */
1060 op1 = op0 & 1;
1061 op0 = (op0 >> 1) | (s->carry << 7);
1062 s->carry = op1;
1063 break;
1064 case 6: /* ADD */
1065 op0 += op1;
1066 s->carry = op0 < op1;
1067 break;
1068 case 7: /* ADC */
1069 op0 += op1 + s->carry;
1070 if (s->carry)
1071 s->carry = op0 <= op1;
1072 else
1073 s->carry = op0 < op1;
1074 break;
1077 switch (opcode) {
1078 case 5: /* From SFBR */
1079 case 7: /* Read-modify-write */
1080 lsi_reg_writeb(s, reg, op0);
1081 break;
1082 case 6: /* To SFBR */
1083 s->sfbr = op0;
1084 break;
1087 break;
1089 case 2: /* Transfer Control. */
1091 int cond;
1092 int jmp;
1094 if ((insn & 0x002e0000) == 0) {
1095 DPRINTF("NOP\n");
1096 break;
1098 if (s->sist1 & LSI_SIST1_STO) {
1099 DPRINTF("Delayed select timeout\n");
1100 lsi_stop_script(s);
1101 break;
1103 cond = jmp = (insn & (1 << 19)) != 0;
1104 if (cond == jmp && (insn & (1 << 21))) {
1105 DPRINTF("Compare carry %d\n", s->carry == jmp);
1106 cond = s->carry != 0;
1108 if (cond == jmp && (insn & (1 << 17))) {
1109 DPRINTF("Compare phase %d %c= %d\n",
1110 (s->sstat1 & PHASE_MASK),
1111 jmp ? '=' : '!',
1112 ((insn >> 24) & 7));
1113 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1115 if (cond == jmp && (insn & (1 << 18))) {
1116 uint8_t mask;
1118 mask = (~insn >> 8) & 0xff;
1119 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1120 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1121 cond = (s->sfbr & mask) == (insn & mask);
1123 if (cond == jmp) {
1124 if (insn & (1 << 23)) {
1125 /* Relative address. */
1126 addr = s->dsp + sxt24(addr);
1128 switch ((insn >> 27) & 7) {
1129 case 0: /* Jump */
1130 DPRINTF("Jump to 0x%08x\n", addr);
1131 s->dsp = addr;
1132 break;
1133 case 1: /* Call */
1134 DPRINTF("Call 0x%08x\n", addr);
1135 s->temp = s->dsp;
1136 s->dsp = addr;
1137 break;
1138 case 2: /* Return */
1139 DPRINTF("Return to 0x%08x\n", s->temp);
1140 s->dsp = s->temp;
1141 break;
1142 case 3: /* Interrupt */
1143 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1144 if ((insn & (1 << 20)) != 0) {
1145 s->istat0 |= LSI_ISTAT0_INTF;
1146 lsi_update_irq(s);
1147 } else {
1148 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1150 break;
1151 default:
1152 DPRINTF("Illegal transfer control\n");
1153 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1154 break;
1156 } else {
1157 DPRINTF("Control condition failed\n");
1160 break;
1162 case 3:
1163 if ((insn & (1 << 29)) == 0) {
1164 /* Memory move. */
1165 uint32_t dest;
1166 /* ??? The docs imply the destination address is loaded into
1167 the TEMP register. However the Linux drivers rely on
1168 the value being presrved. */
1169 dest = read_dword(s, s->dsp);
1170 s->dsp += 4;
1171 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1172 } else {
1173 uint8_t data[7];
1174 int reg;
1175 int n;
1176 int i;
1178 if (insn & (1 << 28)) {
1179 addr = s->dsa + sxt24(addr);
1181 n = (insn & 7);
1182 reg = (insn >> 16) & 0xff;
1183 if (insn & (1 << 24)) {
1184 cpu_physical_memory_read(addr, data, n);
1185 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1186 addr, *(int *)data);
1187 for (i = 0; i < n; i++) {
1188 lsi_reg_writeb(s, reg + i, data[i]);
1190 } else {
1191 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1192 for (i = 0; i < n; i++) {
1193 data[i] = lsi_reg_readb(s, reg + i);
1195 cpu_physical_memory_write(addr, data, n);
1199 /* ??? Need to avoid infinite loops. */
1200 if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1201 if (s->dcntl & LSI_DCNTL_SSM) {
1202 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1203 } else {
1204 goto again;
1207 DPRINTF("SCRIPTS execution stopped\n");
1210 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1212 uint8_t tmp;
1213 #define CASE_GET_REG32(name, addr) \
1214 case addr: return s->name & 0xff; \
1215 case addr + 1: return (s->name >> 8) & 0xff; \
1216 case addr + 2: return (s->name >> 16) & 0xff; \
1217 case addr + 3: return (s->name >> 24) & 0xff;
1219 #ifdef DEBUG_LSI_REG
1220 DPRINTF("Read reg %x\n", offset);
1221 #endif
1222 switch (offset) {
1223 case 0x00: /* SCNTL0 */
1224 return s->scntl0;
1225 case 0x01: /* SCNTL1 */
1226 return s->scntl1;
1227 case 0x02: /* SCNTL2 */
1228 return s->scntl2;
1229 case 0x03: /* SCNTL3 */
1230 return s->scntl3;
1231 case 0x04: /* SCID */
1232 return s->scid;
1233 case 0x05: /* SXFER */
1234 return s->sxfer;
1235 case 0x06: /* SDID */
1236 return s->sdid;
1237 case 0x07: /* GPREG0 */
1238 return 0x7f;
1239 case 0x08: /* Revision ID */
1240 return 0x00;
1241 case 0xa: /* SSID */
1242 return s->ssid;
1243 case 0xb: /* SBCL */
1244 /* ??? This is not correct. However it's (hopefully) only
1245 used for diagnostics, so should be ok. */
1246 return 0;
1247 case 0xc: /* DSTAT */
1248 tmp = s->dstat | 0x80;
1249 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1250 s->dstat = 0;
1251 lsi_update_irq(s);
1252 return tmp;
1253 case 0x0d: /* SSTAT0 */
1254 return s->sstat0;
1255 case 0x0e: /* SSTAT1 */
1256 return s->sstat1;
1257 case 0x0f: /* SSTAT2 */
1258 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1259 CASE_GET_REG32(dsa, 0x10)
1260 case 0x14: /* ISTAT0 */
1261 return s->istat0;
1262 case 0x16: /* MBOX0 */
1263 return s->mbox0;
1264 case 0x17: /* MBOX1 */
1265 return s->mbox1;
1266 case 0x18: /* CTEST0 */
1267 return 0xff;
1268 case 0x19: /* CTEST1 */
1269 return 0;
1270 case 0x1a: /* CTEST2 */
1271 tmp = LSI_CTEST2_DACK | LSI_CTEST2_CM;
1272 if (s->istat0 & LSI_ISTAT0_SIGP) {
1273 s->istat0 &= ~LSI_ISTAT0_SIGP;
1274 tmp |= LSI_CTEST2_SIGP;
1276 return tmp;
1277 case 0x1b: /* CTEST3 */
1278 return s->ctest3;
1279 CASE_GET_REG32(temp, 0x1c)
1280 case 0x20: /* DFIFO */
1281 return 0;
1282 case 0x21: /* CTEST4 */
1283 return s->ctest4;
1284 case 0x22: /* CTEST5 */
1285 return s->ctest5;
1286 case 0x23: /* CTEST6 */
1287 return 0;
1288 case 0x24: /* DBC[0:7] */
1289 return s->dbc & 0xff;
1290 case 0x25: /* DBC[8:15] */
1291 return (s->dbc >> 8) & 0xff;
1292 case 0x26: /* DBC[16->23] */
1293 return (s->dbc >> 16) & 0xff;
1294 case 0x27: /* DCMD */
1295 return s->dcmd;
1296 CASE_GET_REG32(dsp, 0x2c)
1297 CASE_GET_REG32(dsps, 0x30)
1298 CASE_GET_REG32(scratch[0], 0x34)
1299 case 0x38: /* DMODE */
1300 return s->dmode;
1301 case 0x39: /* DIEN */
1302 return s->dien;
1303 case 0x3b: /* DCNTL */
1304 return s->dcntl;
1305 case 0x40: /* SIEN0 */
1306 return s->sien0;
1307 case 0x41: /* SIEN1 */
1308 return s->sien1;
1309 case 0x42: /* SIST0 */
1310 tmp = s->sist0;
1311 s->sist0 = 0;
1312 lsi_update_irq(s);
1313 return tmp;
1314 case 0x43: /* SIST1 */
1315 tmp = s->sist1;
1316 s->sist1 = 0;
1317 lsi_update_irq(s);
1318 return tmp;
1319 case 0x47: /* GPCNTL0 */
1320 return 0x0f;
1321 case 0x48: /* STIME0 */
1322 return s->stime0;
1323 case 0x4a: /* RESPID0 */
1324 return s->respid0;
1325 case 0x4b: /* RESPID1 */
1326 return s->respid1;
1327 case 0x4d: /* STEST1 */
1328 return s->stest1;
1329 case 0x4e: /* STEST2 */
1330 return s->stest2;
1331 case 0x4f: /* STEST3 */
1332 return s->stest3;
1333 case 0x50: /* SIDL */
1334 /* This is needed by the linux drivers. We currently only update it
1335 during the MSG IN phase. */
1336 return s->sidl;
1337 case 0x52: /* STEST4 */
1338 return 0xe0;
1339 case 0x56: /* CCNTL0 */
1340 return s->ccntl0;
1341 case 0x57: /* CCNTL1 */
1342 return s->ccntl1;
1343 case 0x58: /* SBDL */
1344 /* Some drivers peek at the data bus during the MSG IN phase. */
1345 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1346 return s->msg[0];
1347 return 0;
1348 case 0x59: /* SBDL high */
1349 return 0;
1350 CASE_GET_REG32(mmrs, 0xa0)
1351 CASE_GET_REG32(mmws, 0xa4)
1352 CASE_GET_REG32(sfs, 0xa8)
1353 CASE_GET_REG32(drs, 0xac)
1354 CASE_GET_REG32(sbms, 0xb0)
1355 CASE_GET_REG32(dmbs, 0xb4)
1356 CASE_GET_REG32(dnad64, 0xb8)
1357 CASE_GET_REG32(pmjad1, 0xc0)
1358 CASE_GET_REG32(pmjad2, 0xc4)
1359 CASE_GET_REG32(rbc, 0xc8)
1360 CASE_GET_REG32(ua, 0xcc)
1361 CASE_GET_REG32(ia, 0xd4)
1362 CASE_GET_REG32(sbc, 0xd8)
1363 CASE_GET_REG32(csbc, 0xdc)
1365 if (offset >= 0x5c && offset < 0xa0) {
1366 int n;
1367 int shift;
1368 n = (offset - 0x58) >> 2;
1369 shift = (offset & 3) * 8;
1370 return (s->scratch[n] >> shift) & 0xff;
1372 BADF("readb 0x%x\n", offset);
1373 exit(1);
1374 #undef CASE_GET_REG32
1377 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1379 #define CASE_SET_REG32(name, addr) \
1380 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1381 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1382 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1383 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1385 #ifdef DEBUG_LSI_REG
1386 DPRINTF("Write reg %x = %02x\n", offset, val);
1387 #endif
1388 switch (offset) {
1389 case 0x00: /* SCNTL0 */
1390 s->scntl0 = val;
1391 if (val & LSI_SCNTL0_START) {
1392 BADF("Start sequence not implemented\n");
1394 break;
1395 case 0x01: /* SCNTL1 */
1396 s->scntl1 = val & ~LSI_SCNTL1_SST;
1397 if (val & LSI_SCNTL1_IARB) {
1398 BADF("Immediate Arbritration not implemented\n");
1400 if (val & LSI_SCNTL1_RST) {
1401 s->sstat0 |= LSI_SSTAT0_RST;
1402 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1403 } else {
1404 s->sstat0 &= ~LSI_SSTAT0_RST;
1406 break;
1407 case 0x02: /* SCNTL2 */
1408 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1409 s->scntl2 = val;
1410 break;
1411 case 0x03: /* SCNTL3 */
1412 s->scntl3 = val;
1413 break;
1414 case 0x04: /* SCID */
1415 s->scid = val;
1416 break;
1417 case 0x05: /* SXFER */
1418 s->sxfer = val;
1419 break;
1420 case 0x06: /* SDID */
1421 if ((val & 0xf) != (s->ssid & 0xf))
1422 BADF("Destination ID does not match SSID\n");
1423 s->sdid = val & 0xf;
1424 break;
1425 case 0x07: /* GPREG0 */
1426 break;
1427 case 0x08: /* SFBR */
1428 /* The CPU is not allowed to write to this register. However the
1429 SCRIPTS register move instructions are. */
1430 s->sfbr = val;
1431 break;
1432 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1433 /* Linux writes to these readonly registers on startup. */
1434 return;
1435 CASE_SET_REG32(dsa, 0x10)
1436 case 0x14: /* ISTAT0 */
1437 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1438 if (val & LSI_ISTAT0_ABRT) {
1439 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1441 if (val & LSI_ISTAT0_INTF) {
1442 s->istat0 &= ~LSI_ISTAT0_INTF;
1443 lsi_update_irq(s);
1445 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1446 DPRINTF("Woken by SIGP\n");
1447 s->waiting = 0;
1448 s->dsp = s->dnad;
1449 lsi_execute_script(s);
1451 if (val & LSI_ISTAT0_SRST) {
1452 lsi_soft_reset(s);
1454 break;
1455 case 0x16: /* MBOX0 */
1456 s->mbox0 = val;
1457 break;
1458 case 0x17: /* MBOX1 */
1459 s->mbox1 = val;
1460 break;
1461 case 0x1b: /* CTEST3 */
1462 s->ctest3 = val & 0x0f;
1463 break;
1464 CASE_SET_REG32(temp, 0x1c)
1465 case 0x21: /* CTEST4 */
1466 if (val & 7) {
1467 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1469 s->ctest4 = val;
1470 break;
1471 case 0x22: /* CTEST5 */
1472 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1473 BADF("CTEST5 DMA increment not implemented\n");
1475 s->ctest5 = val;
1476 break;
1477 case 0x2c: /* DSP[0:7] */
1478 s->dsp &= 0xffffff00;
1479 s->dsp |= val;
1480 break;
1481 case 0x2d: /* DSP[8:15] */
1482 s->dsp &= 0xffff00ff;
1483 s->dsp |= val << 8;
1484 break;
1485 case 0x2e: /* DSP[16:23] */
1486 s->dsp &= 0xff00ffff;
1487 s->dsp |= val << 16;
1488 break;
1489 case 0x2f: /* DSP[24:31] */
1490 s->dsp &= 0x00ffffff;
1491 s->dsp |= val << 24;
1492 if ((s->dmode & LSI_DMODE_MAN) == 0
1493 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1494 lsi_execute_script(s);
1495 break;
1496 CASE_SET_REG32(dsps, 0x30)
1497 CASE_SET_REG32(scratch[0], 0x34)
1498 case 0x38: /* DMODE */
1499 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1500 BADF("IO mappings not implemented\n");
1502 s->dmode = val;
1503 break;
1504 case 0x39: /* DIEN */
1505 s->dien = val;
1506 lsi_update_irq(s);
1507 break;
1508 case 0x3b: /* DCNTL */
1509 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1510 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1511 lsi_execute_script(s);
1512 break;
1513 case 0x40: /* SIEN0 */
1514 s->sien0 = val;
1515 lsi_update_irq(s);
1516 break;
1517 case 0x41: /* SIEN1 */
1518 s->sien1 = val;
1519 lsi_update_irq(s);
1520 break;
1521 case 0x47: /* GPCNTL0 */
1522 break;
1523 case 0x48: /* STIME0 */
1524 s->stime0 = val;
1525 break;
1526 case 0x49: /* STIME1 */
1527 if (val & 0xf) {
1528 DPRINTF("General purpose timer not implemented\n");
1529 /* ??? Raising the interrupt immediately seems to be sufficient
1530 to keep the FreeBSD driver happy. */
1531 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1533 break;
1534 case 0x4a: /* RESPID0 */
1535 s->respid0 = val;
1536 break;
1537 case 0x4b: /* RESPID1 */
1538 s->respid1 = val;
1539 break;
1540 case 0x4d: /* STEST1 */
1541 s->stest1 = val;
1542 break;
1543 case 0x4e: /* STEST2 */
1544 if (val & 1) {
1545 BADF("Low level mode not implemented\n");
1547 s->stest2 = val;
1548 break;
1549 case 0x4f: /* STEST3 */
1550 if (val & 0x41) {
1551 BADF("SCSI FIFO test mode not implemented\n");
1553 s->stest3 = val;
1554 break;
1555 case 0x56: /* CCNTL0 */
1556 s->ccntl0 = val;
1557 break;
1558 case 0x57: /* CCNTL1 */
1559 s->ccntl1 = val;
1560 break;
1561 CASE_SET_REG32(mmrs, 0xa0)
1562 CASE_SET_REG32(mmws, 0xa4)
1563 CASE_SET_REG32(sfs, 0xa8)
1564 CASE_SET_REG32(drs, 0xac)
1565 CASE_SET_REG32(sbms, 0xb0)
1566 CASE_SET_REG32(dmbs, 0xb4)
1567 CASE_SET_REG32(dnad64, 0xb8)
1568 CASE_SET_REG32(pmjad1, 0xc0)
1569 CASE_SET_REG32(pmjad2, 0xc4)
1570 CASE_SET_REG32(rbc, 0xc8)
1571 CASE_SET_REG32(ua, 0xcc)
1572 CASE_SET_REG32(ia, 0xd4)
1573 CASE_SET_REG32(sbc, 0xd8)
1574 CASE_SET_REG32(csbc, 0xdc)
1575 default:
1576 if (offset >= 0x5c && offset < 0xa0) {
1577 int n;
1578 int shift;
1579 n = (offset - 0x58) >> 2;
1580 shift = (offset & 3) * 8;
1581 s->scratch[n] &= ~(0xff << shift);
1582 s->scratch[n] |= (val & 0xff) << shift;
1583 } else {
1584 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1587 #undef CASE_SET_REG32
1590 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1592 LSIState *s = (LSIState *)opaque;
1594 lsi_reg_writeb(s, addr & 0xff, val);
1597 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1599 LSIState *s = (LSIState *)opaque;
1601 addr &= 0xff;
1602 lsi_reg_writeb(s, addr, val & 0xff);
1603 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1606 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1608 LSIState *s = (LSIState *)opaque;
1610 addr &= 0xff;
1611 lsi_reg_writeb(s, addr, val & 0xff);
1612 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1613 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1614 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1617 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1619 LSIState *s = (LSIState *)opaque;
1621 return lsi_reg_readb(s, addr & 0xff);
1624 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1626 LSIState *s = (LSIState *)opaque;
1627 uint32_t val;
1629 addr &= 0xff;
1630 val = lsi_reg_readb(s, addr);
1631 val |= lsi_reg_readb(s, addr + 1) << 8;
1632 return val;
1635 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1637 LSIState *s = (LSIState *)opaque;
1638 uint32_t val;
1639 addr &= 0xff;
1640 val = lsi_reg_readb(s, addr);
1641 val |= lsi_reg_readb(s, addr + 1) << 8;
1642 val |= lsi_reg_readb(s, addr + 2) << 16;
1643 val |= lsi_reg_readb(s, addr + 3) << 24;
1644 return val;
1647 static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1648 lsi_mmio_readb,
1649 lsi_mmio_readw,
1650 lsi_mmio_readl,
1653 static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1654 lsi_mmio_writeb,
1655 lsi_mmio_writew,
1656 lsi_mmio_writel,
1659 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1661 LSIState *s = (LSIState *)opaque;
1662 uint32_t newval;
1663 int shift;
1665 addr &= 0x1fff;
1666 newval = s->script_ram[addr >> 2];
1667 shift = (addr & 3) * 8;
1668 newval &= ~(0xff << shift);
1669 newval |= val << shift;
1670 s->script_ram[addr >> 2] = newval;
1673 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1675 LSIState *s = (LSIState *)opaque;
1676 uint32_t newval;
1678 addr &= 0x1fff;
1679 newval = s->script_ram[addr >> 2];
1680 if (addr & 2) {
1681 newval = (newval & 0xffff) | (val << 16);
1682 } else {
1683 newval = (newval & 0xffff0000) | val;
1685 s->script_ram[addr >> 2] = newval;
1689 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1691 LSIState *s = (LSIState *)opaque;
1693 addr &= 0x1fff;
1694 s->script_ram[addr >> 2] = val;
1697 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1699 LSIState *s = (LSIState *)opaque;
1700 uint32_t val;
1702 addr &= 0x1fff;
1703 val = s->script_ram[addr >> 2];
1704 val >>= (addr & 3) * 8;
1705 return val & 0xff;
1708 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1710 LSIState *s = (LSIState *)opaque;
1711 uint32_t val;
1713 addr &= 0x1fff;
1714 val = s->script_ram[addr >> 2];
1715 if (addr & 2)
1716 val >>= 16;
1717 return le16_to_cpu(val);
1720 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1722 LSIState *s = (LSIState *)opaque;
1724 addr &= 0x1fff;
1725 return le32_to_cpu(s->script_ram[addr >> 2]);
1728 static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1729 lsi_ram_readb,
1730 lsi_ram_readw,
1731 lsi_ram_readl,
1734 static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1735 lsi_ram_writeb,
1736 lsi_ram_writew,
1737 lsi_ram_writel,
1740 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1742 LSIState *s = (LSIState *)opaque;
1743 return lsi_reg_readb(s, addr & 0xff);
1746 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1748 LSIState *s = (LSIState *)opaque;
1749 uint32_t val;
1750 addr &= 0xff;
1751 val = lsi_reg_readb(s, addr);
1752 val |= lsi_reg_readb(s, addr + 1) << 8;
1753 return val;
1756 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1758 LSIState *s = (LSIState *)opaque;
1759 uint32_t val;
1760 addr &= 0xff;
1761 val = lsi_reg_readb(s, addr);
1762 val |= lsi_reg_readb(s, addr + 1) << 8;
1763 val |= lsi_reg_readb(s, addr + 2) << 16;
1764 val |= lsi_reg_readb(s, addr + 3) << 24;
1765 return val;
1768 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1770 LSIState *s = (LSIState *)opaque;
1771 lsi_reg_writeb(s, addr & 0xff, val);
1774 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1776 LSIState *s = (LSIState *)opaque;
1777 addr &= 0xff;
1778 lsi_reg_writeb(s, addr, val & 0xff);
1779 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1782 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1784 LSIState *s = (LSIState *)opaque;
1785 addr &= 0xff;
1786 lsi_reg_writeb(s, addr, val & 0xff);
1787 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1788 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1789 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1792 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1793 uint32_t addr, uint32_t size, int type)
1795 LSIState *s = (LSIState *)pci_dev;
1797 DPRINTF("Mapping IO at %08x\n", addr);
1799 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1800 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1801 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1802 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1803 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1804 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1807 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1808 uint32_t addr, uint32_t size, int type)
1810 LSIState *s = (LSIState *)pci_dev;
1812 DPRINTF("Mapping ram at %08x\n", addr);
1813 s->script_ram_base = addr;
1814 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1817 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1818 uint32_t addr, uint32_t size, int type)
1820 LSIState *s = (LSIState *)pci_dev;
1822 DPRINTF("Mapping registers at %08x\n", addr);
1823 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1826 void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
1828 LSIState *s = (LSIState *)opaque;
1830 if (id < 0) {
1831 for (id = 0; id < LSI_MAX_DEVS; id++) {
1832 if (s->scsi_dev[id] == NULL)
1833 break;
1836 if (id >= LSI_MAX_DEVS) {
1837 BADF("Bad Device ID %d\n", id);
1838 return;
1840 if (s->scsi_dev[id]) {
1841 DPRINTF("Destroying device %d\n", id);
1842 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1844 DPRINTF("Attaching block device %d\n", id);
1845 s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1846 if (s->scsi_dev[id] == NULL)
1847 s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1850 void *lsi_scsi_init(PCIBus *bus, int devfn)
1852 LSIState *s;
1854 s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
1855 sizeof(*s), devfn, NULL, NULL);
1856 if (s == NULL) {
1857 fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
1858 return NULL;
1861 s->pci_dev.config[0x00] = 0x00;
1862 s->pci_dev.config[0x01] = 0x10;
1863 s->pci_dev.config[0x02] = 0x12;
1864 s->pci_dev.config[0x03] = 0x00;
1865 s->pci_dev.config[0x0b] = 0x01;
1866 s->pci_dev.config[0x3d] = 0x01; /* interrupt pin 1 */
1868 s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
1869 lsi_mmio_writefn, s);
1870 s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
1871 lsi_ram_writefn, s);
1873 pci_register_io_region((struct PCIDevice *)s, 0, 256,
1874 PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
1875 pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
1876 PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
1877 pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
1878 PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
1879 s->queue = qemu_malloc(sizeof(lsi_queue));
1880 s->queue_len = 1;
1881 s->active_commands = 0;
1883 lsi_soft_reset(s);
1885 return s;