Break up vl.h.
[qemu/mini2440.git] / hw / arm_timer.c
blob417d53db849e63293f3a8c647db414230531b49e
1 /*
2 * ARM PrimeCell Timer modules.
4 * Copyright (c) 2005-2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
8 */
10 #include "hw.h"
11 #include "arm-misc.h"
12 #include "qemu-timer.h"
14 /* Common timer implementation. */
16 #define TIMER_CTRL_ONESHOT (1 << 0)
17 #define TIMER_CTRL_32BIT (1 << 1)
18 #define TIMER_CTRL_DIV1 (0 << 2)
19 #define TIMER_CTRL_DIV16 (1 << 2)
20 #define TIMER_CTRL_DIV256 (2 << 2)
21 #define TIMER_CTRL_IE (1 << 5)
22 #define TIMER_CTRL_PERIODIC (1 << 6)
23 #define TIMER_CTRL_ENABLE (1 << 7)
25 typedef struct {
26 ptimer_state *timer;
27 uint32_t control;
28 uint32_t limit;
29 int freq;
30 int int_level;
31 qemu_irq irq;
32 } arm_timer_state;
34 /* Check all active timers, and schedule the next timer interrupt. */
36 static void arm_timer_update(arm_timer_state *s)
38 /* Update interrupts. */
39 if (s->int_level && (s->control & TIMER_CTRL_IE)) {
40 qemu_irq_raise(s->irq);
41 } else {
42 qemu_irq_lower(s->irq);
46 uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
48 arm_timer_state *s = (arm_timer_state *)opaque;
50 switch (offset >> 2) {
51 case 0: /* TimerLoad */
52 case 6: /* TimerBGLoad */
53 return s->limit;
54 case 1: /* TimerValue */
55 return ptimer_get_count(s->timer);
56 case 2: /* TimerControl */
57 return s->control;
58 case 4: /* TimerRIS */
59 return s->int_level;
60 case 5: /* TimerMIS */
61 if ((s->control & TIMER_CTRL_IE) == 0)
62 return 0;
63 return s->int_level;
64 default:
65 cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n",
66 (int)offset);
67 return 0;
71 /* Reset the timer limit after settings have changed. */
72 static void arm_timer_recalibrate(arm_timer_state *s, int reload)
74 uint32_t limit;
76 if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
77 /* Free running. */
78 if (s->control & TIMER_CTRL_32BIT)
79 limit = 0xffffffff;
80 else
81 limit = 0xffff;
82 } else {
83 /* Periodic. */
84 limit = s->limit;
86 ptimer_set_limit(s->timer, limit, reload);
89 static void arm_timer_write(void *opaque, target_phys_addr_t offset,
90 uint32_t value)
92 arm_timer_state *s = (arm_timer_state *)opaque;
93 int freq;
95 switch (offset >> 2) {
96 case 0: /* TimerLoad */
97 s->limit = value;
98 arm_timer_recalibrate(s, 1);
99 break;
100 case 1: /* TimerValue */
101 /* ??? Linux seems to want to write to this readonly register.
102 Ignore it. */
103 break;
104 case 2: /* TimerControl */
105 if (s->control & TIMER_CTRL_ENABLE) {
106 /* Pause the timer if it is running. This may cause some
107 inaccuracy dure to rounding, but avoids a whole lot of other
108 messyness. */
109 ptimer_stop(s->timer);
111 s->control = value;
112 freq = s->freq;
113 /* ??? Need to recalculate expiry time after changing divisor. */
114 switch ((value >> 2) & 3) {
115 case 1: freq >>= 4; break;
116 case 2: freq >>= 8; break;
118 arm_timer_recalibrate(s, 0);
119 ptimer_set_freq(s->timer, freq);
120 if (s->control & TIMER_CTRL_ENABLE) {
121 /* Restart the timer if still enabled. */
122 ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
124 break;
125 case 3: /* TimerIntClr */
126 s->int_level = 0;
127 break;
128 case 6: /* TimerBGLoad */
129 s->limit = value;
130 arm_timer_recalibrate(s, 0);
131 break;
132 default:
133 cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n",
134 (int)offset);
136 arm_timer_update(s);
139 static void arm_timer_tick(void *opaque)
141 arm_timer_state *s = (arm_timer_state *)opaque;
142 s->int_level = 1;
143 arm_timer_update(s);
146 static void *arm_timer_init(uint32_t freq, qemu_irq irq)
148 arm_timer_state *s;
149 QEMUBH *bh;
151 s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
152 s->irq = irq;
153 s->freq = freq;
154 s->control = TIMER_CTRL_IE;
156 bh = qemu_bh_new(arm_timer_tick, s);
157 s->timer = ptimer_init(bh);
158 /* ??? Save/restore. */
159 return s;
162 /* ARM PrimeCell SP804 dual timer module.
163 Docs for this device don't seem to be publicly available. This
164 implementation is based on guesswork, the linux kernel sources and the
165 Integrator/CP timer modules. */
167 typedef struct {
168 void *timer[2];
169 int level[2];
170 uint32_t base;
171 qemu_irq irq;
172 } sp804_state;
174 /* Merge the IRQs from the two component devices. */
175 static void sp804_set_irq(void *opaque, int irq, int level)
177 sp804_state *s = (sp804_state *)opaque;
179 s->level[irq] = level;
180 qemu_set_irq(s->irq, s->level[0] || s->level[1]);
183 static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
185 sp804_state *s = (sp804_state *)opaque;
187 /* ??? Don't know the PrimeCell ID for this device. */
188 offset -= s->base;
189 if (offset < 0x20) {
190 return arm_timer_read(s->timer[0], offset);
191 } else {
192 return arm_timer_read(s->timer[1], offset - 0x20);
196 static void sp804_write(void *opaque, target_phys_addr_t offset,
197 uint32_t value)
199 sp804_state *s = (sp804_state *)opaque;
201 offset -= s->base;
202 if (offset < 0x20) {
203 arm_timer_write(s->timer[0], offset, value);
204 } else {
205 arm_timer_write(s->timer[1], offset - 0x20, value);
209 static CPUReadMemoryFunc *sp804_readfn[] = {
210 sp804_read,
211 sp804_read,
212 sp804_read
215 static CPUWriteMemoryFunc *sp804_writefn[] = {
216 sp804_write,
217 sp804_write,
218 sp804_write
221 void sp804_init(uint32_t base, qemu_irq irq)
223 int iomemtype;
224 sp804_state *s;
225 qemu_irq *qi;
227 s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
228 qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
229 s->base = base;
230 s->irq = irq;
231 /* ??? The timers are actually configurable between 32kHz and 1MHz, but
232 we don't implement that. */
233 s->timer[0] = arm_timer_init(1000000, qi[0]);
234 s->timer[1] = arm_timer_init(1000000, qi[1]);
235 iomemtype = cpu_register_io_memory(0, sp804_readfn,
236 sp804_writefn, s);
237 cpu_register_physical_memory(base, 0x00001000, iomemtype);
238 /* ??? Save/restore. */
242 /* Integrator/CP timer module. */
244 typedef struct {
245 void *timer[3];
246 uint32_t base;
247 } icp_pit_state;
249 static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
251 icp_pit_state *s = (icp_pit_state *)opaque;
252 int n;
254 /* ??? Don't know the PrimeCell ID for this device. */
255 offset -= s->base;
256 n = offset >> 8;
257 if (n > 3)
258 cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
260 return arm_timer_read(s->timer[n], offset & 0xff);
263 static void icp_pit_write(void *opaque, target_phys_addr_t offset,
264 uint32_t value)
266 icp_pit_state *s = (icp_pit_state *)opaque;
267 int n;
269 offset -= s->base;
270 n = offset >> 8;
271 if (n > 3)
272 cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
274 arm_timer_write(s->timer[n], offset & 0xff, value);
278 static CPUReadMemoryFunc *icp_pit_readfn[] = {
279 icp_pit_read,
280 icp_pit_read,
281 icp_pit_read
284 static CPUWriteMemoryFunc *icp_pit_writefn[] = {
285 icp_pit_write,
286 icp_pit_write,
287 icp_pit_write
290 void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
292 int iomemtype;
293 icp_pit_state *s;
295 s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
296 s->base = base;
297 /* Timer 0 runs at the system clock speed (40MHz). */
298 s->timer[0] = arm_timer_init(40000000, pic[irq]);
299 /* The other two timers run at 1MHz. */
300 s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
301 s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
303 iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
304 icp_pit_writefn, s);
305 cpu_register_physical_memory(base, 0x00001000, iomemtype);
306 /* ??? Save/restore. */