Relax qemu_ld/st constraints for !SOFTMMU case
[qemu/mini2440.git] / gdbstub.c
blob3f062be9f3b3381ed680b84edbc097a32f3d49a1
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "config.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "qemu-common.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #include "qemu_socket.h"
39 #ifdef _WIN32
40 /* XXX: these constants may be independent of the host ones even for Unix */
41 #ifndef SIGTRAP
42 #define SIGTRAP 5
43 #endif
44 #ifndef SIGINT
45 #define SIGINT 2
46 #endif
47 #else
48 #include <signal.h>
49 #endif
51 //#define DEBUG_GDB
53 enum RSState {
54 RS_IDLE,
55 RS_GETLINE,
56 RS_CHKSUM1,
57 RS_CHKSUM2,
58 RS_SYSCALL,
60 typedef struct GDBState {
61 CPUState *env; /* current CPU */
62 enum RSState state; /* parsing state */
63 char line_buf[4096];
64 int line_buf_index;
65 int line_csum;
66 uint8_t last_packet[4100];
67 int last_packet_len;
68 int signal;
69 #ifdef CONFIG_USER_ONLY
70 int fd;
71 int running_state;
72 #else
73 CharDriverState *chr;
74 #endif
75 } GDBState;
77 /* By default use no IRQs and no timers while single stepping so as to
78 * make single stepping like an ICE HW step.
80 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
82 #ifdef CONFIG_USER_ONLY
83 /* XXX: This is not thread safe. Do we care? */
84 static int gdbserver_fd = -1;
86 /* XXX: remove this hack. */
87 static GDBState gdbserver_state;
89 static int get_char(GDBState *s)
91 uint8_t ch;
92 int ret;
94 for(;;) {
95 ret = recv(s->fd, &ch, 1, 0);
96 if (ret < 0) {
97 if (errno == ECONNRESET)
98 s->fd = -1;
99 if (errno != EINTR && errno != EAGAIN)
100 return -1;
101 } else if (ret == 0) {
102 close(s->fd);
103 s->fd = -1;
104 return -1;
105 } else {
106 break;
109 return ch;
111 #endif
113 /* GDB stub state for use by semihosting syscalls. */
114 static GDBState *gdb_syscall_state;
115 static gdb_syscall_complete_cb gdb_current_syscall_cb;
117 enum {
118 GDB_SYS_UNKNOWN,
119 GDB_SYS_ENABLED,
120 GDB_SYS_DISABLED,
121 } gdb_syscall_mode;
123 /* If gdb is connected when the first semihosting syscall occurs then use
124 remote gdb syscalls. Otherwise use native file IO. */
125 int use_gdb_syscalls(void)
127 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
128 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
129 : GDB_SYS_DISABLED);
131 return gdb_syscall_mode == GDB_SYS_ENABLED;
134 /* Resume execution. */
135 static inline void gdb_continue(GDBState *s)
137 #ifdef CONFIG_USER_ONLY
138 s->running_state = 1;
139 #else
140 vm_start();
141 #endif
144 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
146 #ifdef CONFIG_USER_ONLY
147 int ret;
149 while (len > 0) {
150 ret = send(s->fd, buf, len, 0);
151 if (ret < 0) {
152 if (errno != EINTR && errno != EAGAIN)
153 return;
154 } else {
155 buf += ret;
156 len -= ret;
159 #else
160 qemu_chr_write(s->chr, buf, len);
161 #endif
164 static inline int fromhex(int v)
166 if (v >= '0' && v <= '9')
167 return v - '0';
168 else if (v >= 'A' && v <= 'F')
169 return v - 'A' + 10;
170 else if (v >= 'a' && v <= 'f')
171 return v - 'a' + 10;
172 else
173 return 0;
176 static inline int tohex(int v)
178 if (v < 10)
179 return v + '0';
180 else
181 return v - 10 + 'a';
184 static void memtohex(char *buf, const uint8_t *mem, int len)
186 int i, c;
187 char *q;
188 q = buf;
189 for(i = 0; i < len; i++) {
190 c = mem[i];
191 *q++ = tohex(c >> 4);
192 *q++ = tohex(c & 0xf);
194 *q = '\0';
197 static void hextomem(uint8_t *mem, const char *buf, int len)
199 int i;
201 for(i = 0; i < len; i++) {
202 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
203 buf += 2;
207 /* return -1 if error, 0 if OK */
208 static int put_packet(GDBState *s, char *buf)
210 int len, csum, i;
211 uint8_t *p;
213 #ifdef DEBUG_GDB
214 printf("reply='%s'\n", buf);
215 #endif
217 for(;;) {
218 p = s->last_packet;
219 *(p++) = '$';
220 len = strlen(buf);
221 memcpy(p, buf, len);
222 p += len;
223 csum = 0;
224 for(i = 0; i < len; i++) {
225 csum += buf[i];
227 *(p++) = '#';
228 *(p++) = tohex((csum >> 4) & 0xf);
229 *(p++) = tohex((csum) & 0xf);
231 s->last_packet_len = p - s->last_packet;
232 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
234 #ifdef CONFIG_USER_ONLY
235 i = get_char(s);
236 if (i < 0)
237 return -1;
238 if (i == '+')
239 break;
240 #else
241 break;
242 #endif
244 return 0;
247 #if defined(TARGET_I386)
249 #ifdef TARGET_X86_64
250 static const uint8_t gdb_x86_64_regs[16] = {
251 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
252 8, 9, 10, 11, 12, 13, 14, 15,
254 #endif
256 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
258 int i, fpus, nb_regs;
259 uint8_t *p;
261 p = mem_buf;
262 #ifdef TARGET_X86_64
263 if (env->hflags & HF_CS64_MASK) {
264 nb_regs = 16;
265 for(i = 0; i < 16; i++) {
266 *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
267 p += 8;
269 *(uint64_t *)p = tswap64(env->eip);
270 p += 8;
271 } else
272 #endif
274 nb_regs = 8;
275 for(i = 0; i < 8; i++) {
276 *(uint32_t *)p = tswap32(env->regs[i]);
277 p += 4;
279 *(uint32_t *)p = tswap32(env->eip);
280 p += 4;
283 *(uint32_t *)p = tswap32(env->eflags);
284 p += 4;
285 *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
286 p += 4;
287 *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
288 p += 4;
289 *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
290 p += 4;
291 *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
292 p += 4;
293 *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
294 p += 4;
295 *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
296 p += 4;
297 for(i = 0; i < 8; i++) {
298 /* XXX: convert floats */
299 #ifdef USE_X86LDOUBLE
300 memcpy(p, &env->fpregs[i], 10);
301 #else
302 memset(p, 0, 10);
303 #endif
304 p += 10;
306 *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
307 p += 4;
308 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
309 *(uint32_t *)p = tswap32(fpus); /* fstat */
310 p += 4;
311 *(uint32_t *)p = 0; /* ftag */
312 p += 4;
313 *(uint32_t *)p = 0; /* fiseg */
314 p += 4;
315 *(uint32_t *)p = 0; /* fioff */
316 p += 4;
317 *(uint32_t *)p = 0; /* foseg */
318 p += 4;
319 *(uint32_t *)p = 0; /* fooff */
320 p += 4;
321 *(uint32_t *)p = 0; /* fop */
322 p += 4;
323 for(i = 0; i < nb_regs; i++) {
324 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
325 p += 8;
326 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
327 p += 8;
329 *(uint32_t *)p = tswap32(env->mxcsr);
330 p += 4;
331 return p - mem_buf;
334 static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp,
335 int sreg)
337 const uint8_t *p;
338 uint32_t sel;
339 p = *pp;
340 sel = tswap32(*(uint32_t *)p);
341 p += 4;
342 if (sel != env->segs[sreg].selector) {
343 #if defined(CONFIG_USER_ONLY)
344 cpu_x86_load_seg(env, sreg, sel);
345 #else
346 /* XXX: do it with a debug function which does not raise an
347 exception */
348 #endif
350 *pp = p;
353 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
355 const uint8_t *p = mem_buf;
356 int i, nb_regs;
357 uint16_t fpus;
359 #ifdef TARGET_X86_64
360 if (env->hflags & HF_CS64_MASK) {
361 nb_regs = 16;
362 for(i = 0; i < 16; i++) {
363 env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
364 p += 8;
366 env->eip = tswap64(*(uint64_t *)p);
367 p += 8;
368 } else
369 #endif
371 nb_regs = 8;
372 for(i = 0; i < 8; i++) {
373 env->regs[i] = tswap32(*(uint32_t *)p);
374 p += 4;
376 env->eip = tswap32(*(uint32_t *)p);
377 p += 4;
379 env->eflags = tswap32(*(uint32_t *)p);
380 p += 4;
381 cpu_gdb_load_seg(env, &p, R_CS);
382 cpu_gdb_load_seg(env, &p, R_SS);
383 cpu_gdb_load_seg(env, &p, R_DS);
384 cpu_gdb_load_seg(env, &p, R_ES);
385 cpu_gdb_load_seg(env, &p, R_FS);
386 cpu_gdb_load_seg(env, &p, R_GS);
388 /* FPU state */
389 for(i = 0; i < 8; i++) {
390 /* XXX: convert floats */
391 #ifdef USE_X86LDOUBLE
392 memcpy(&env->fpregs[i], p, 10);
393 #endif
394 p += 10;
396 env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
397 p += 4;
398 fpus = tswap32(*(uint32_t *)p);
399 p += 4;
400 env->fpstt = (fpus >> 11) & 7;
401 env->fpus = fpus & ~0x3800;
402 p += 4 * 6;
404 if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
405 /* SSE state */
406 for(i = 0; i < nb_regs; i++) {
407 env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
408 p += 8;
409 env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
410 p += 8;
412 env->mxcsr = tswap32(*(uint32_t *)p);
413 p += 4;
417 #elif defined (TARGET_PPC)
418 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
420 uint32_t *registers = (uint32_t *)mem_buf, tmp;
421 int i;
423 /* fill in gprs */
424 for(i = 0; i < 32; i++) {
425 registers[i] = tswapl(env->gpr[i]);
427 /* fill in fprs */
428 for (i = 0; i < 32; i++) {
429 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
430 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
432 /* nip, msr, ccr, lnk, ctr, xer, mq */
433 registers[96] = tswapl(env->nip);
434 registers[97] = tswapl(env->msr);
435 tmp = 0;
436 for (i = 0; i < 8; i++)
437 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
438 registers[98] = tswapl(tmp);
439 registers[99] = tswapl(env->lr);
440 registers[100] = tswapl(env->ctr);
441 registers[101] = tswapl(ppc_load_xer(env));
442 registers[102] = 0;
444 return 103 * 4;
447 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
449 uint32_t *registers = (uint32_t *)mem_buf;
450 int i;
452 /* fill in gprs */
453 for (i = 0; i < 32; i++) {
454 env->gpr[i] = tswapl(registers[i]);
456 /* fill in fprs */
457 for (i = 0; i < 32; i++) {
458 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
459 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
461 /* nip, msr, ccr, lnk, ctr, xer, mq */
462 env->nip = tswapl(registers[96]);
463 ppc_store_msr(env, tswapl(registers[97]));
464 registers[98] = tswapl(registers[98]);
465 for (i = 0; i < 8; i++)
466 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
467 env->lr = tswapl(registers[99]);
468 env->ctr = tswapl(registers[100]);
469 ppc_store_xer(env, tswapl(registers[101]));
471 #elif defined (TARGET_SPARC)
472 #ifdef TARGET_ABI32
473 #define tswap_abi(val) tswap32(val &0xffffffff)
474 #else
475 #define tswap_abi(val) tswapl(val)
476 #endif
477 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
479 #ifdef TARGET_ABI32
480 abi_ulong *registers = (abi_ulong *)mem_buf;
481 #else
482 target_ulong *registers = (target_ulong *)mem_buf;
483 #endif
484 int i;
486 /* fill in g0..g7 */
487 for(i = 0; i < 8; i++) {
488 registers[i] = tswap_abi(env->gregs[i]);
490 /* fill in register window */
491 for(i = 0; i < 24; i++) {
492 registers[i + 8] = tswap_abi(env->regwptr[i]);
494 #if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
495 /* fill in fprs */
496 for (i = 0; i < 32; i++) {
497 registers[i + 32] = tswap_abi(*((uint32_t *)&env->fpr[i]));
499 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
500 registers[64] = tswap_abi(env->y);
502 uint32_t tmp;
504 tmp = GET_PSR(env);
505 registers[65] = tswap32(tmp);
507 registers[66] = tswap_abi(env->wim);
508 registers[67] = tswap_abi(env->tbr);
509 registers[68] = tswap_abi(env->pc);
510 registers[69] = tswap_abi(env->npc);
511 registers[70] = tswap_abi(env->fsr);
512 registers[71] = 0; /* csr */
513 registers[72] = 0;
514 return 73 * sizeof(uint32_t);
515 #else
516 /* fill in fprs */
517 for (i = 0; i < 64; i += 2) {
518 uint64_t tmp;
520 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
521 tmp |= *(uint32_t *)&env->fpr[i + 1];
522 registers[i / 2 + 32] = tswap64(tmp);
524 registers[64] = tswapl(env->pc);
525 registers[65] = tswapl(env->npc);
526 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
527 ((env->asi & 0xff) << 24) |
528 ((env->pstate & 0xfff) << 8) |
529 GET_CWP64(env));
530 registers[67] = tswapl(env->fsr);
531 registers[68] = tswapl(env->fprs);
532 registers[69] = tswapl(env->y);
533 return 70 * sizeof(target_ulong);
534 #endif
537 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
539 #ifdef TARGET_ABI32
540 abi_ulong *registers = (abi_ulong *)mem_buf;
541 #else
542 target_ulong *registers = (target_ulong *)mem_buf;
543 #endif
544 int i;
546 /* fill in g0..g7 */
547 for(i = 0; i < 7; i++) {
548 env->gregs[i] = tswap_abi(registers[i]);
550 /* fill in register window */
551 for(i = 0; i < 24; i++) {
552 env->regwptr[i] = tswap_abi(registers[i + 8]);
554 #if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
555 /* fill in fprs */
556 for (i = 0; i < 32; i++) {
557 *((uint32_t *)&env->fpr[i]) = tswap_abi(registers[i + 32]);
559 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
560 env->y = tswap_abi(registers[64]);
561 PUT_PSR(env, tswap_abi(registers[65]));
562 env->wim = tswap_abi(registers[66]);
563 env->tbr = tswap_abi(registers[67]);
564 env->pc = tswap_abi(registers[68]);
565 env->npc = tswap_abi(registers[69]);
566 env->fsr = tswap_abi(registers[70]);
567 #else
568 for (i = 0; i < 64; i += 2) {
569 uint64_t tmp;
571 tmp = tswap64(registers[i / 2 + 32]);
572 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
573 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
575 env->pc = tswapl(registers[64]);
576 env->npc = tswapl(registers[65]);
578 uint64_t tmp = tswapl(registers[66]);
580 PUT_CCR(env, tmp >> 32);
581 env->asi = (tmp >> 24) & 0xff;
582 env->pstate = (tmp >> 8) & 0xfff;
583 PUT_CWP64(env, tmp & 0xff);
585 env->fsr = tswapl(registers[67]);
586 env->fprs = tswapl(registers[68]);
587 env->y = tswapl(registers[69]);
588 #endif
590 #undef tswap_abi
591 #elif defined (TARGET_ARM)
592 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
594 int i;
595 uint8_t *ptr;
597 ptr = mem_buf;
598 /* 16 core integer registers (4 bytes each). */
599 for (i = 0; i < 16; i++)
601 *(uint32_t *)ptr = tswapl(env->regs[i]);
602 ptr += 4;
604 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
605 Not yet implemented. */
606 memset (ptr, 0, 8 * 12 + 4);
607 ptr += 8 * 12 + 4;
608 /* CPSR (4 bytes). */
609 *(uint32_t *)ptr = tswapl (cpsr_read(env));
610 ptr += 4;
612 return ptr - mem_buf;
615 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
617 int i;
618 uint8_t *ptr;
620 ptr = mem_buf;
621 /* Core integer registers. */
622 for (i = 0; i < 16; i++)
624 env->regs[i] = tswapl(*(uint32_t *)ptr);
625 ptr += 4;
627 /* Ignore FPA regs and scr. */
628 ptr += 8 * 12 + 4;
629 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
631 #elif defined (TARGET_M68K)
632 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
634 int i;
635 uint8_t *ptr;
636 CPU_DoubleU u;
638 ptr = mem_buf;
639 /* D0-D7 */
640 for (i = 0; i < 8; i++) {
641 *(uint32_t *)ptr = tswapl(env->dregs[i]);
642 ptr += 4;
644 /* A0-A7 */
645 for (i = 0; i < 8; i++) {
646 *(uint32_t *)ptr = tswapl(env->aregs[i]);
647 ptr += 4;
649 *(uint32_t *)ptr = tswapl(env->sr);
650 ptr += 4;
651 *(uint32_t *)ptr = tswapl(env->pc);
652 ptr += 4;
653 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
654 ColdFire has 8-bit double precision registers. */
655 for (i = 0; i < 8; i++) {
656 u.d = env->fregs[i];
657 *(uint32_t *)ptr = tswap32(u.l.upper);
658 *(uint32_t *)ptr = tswap32(u.l.lower);
660 /* FP control regs (not implemented). */
661 memset (ptr, 0, 3 * 4);
662 ptr += 3 * 4;
664 return ptr - mem_buf;
667 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
669 int i;
670 uint8_t *ptr;
671 CPU_DoubleU u;
673 ptr = mem_buf;
674 /* D0-D7 */
675 for (i = 0; i < 8; i++) {
676 env->dregs[i] = tswapl(*(uint32_t *)ptr);
677 ptr += 4;
679 /* A0-A7 */
680 for (i = 0; i < 8; i++) {
681 env->aregs[i] = tswapl(*(uint32_t *)ptr);
682 ptr += 4;
684 env->sr = tswapl(*(uint32_t *)ptr);
685 ptr += 4;
686 env->pc = tswapl(*(uint32_t *)ptr);
687 ptr += 4;
688 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
689 ColdFire has 8-bit double precision registers. */
690 for (i = 0; i < 8; i++) {
691 u.l.upper = tswap32(*(uint32_t *)ptr);
692 u.l.lower = tswap32(*(uint32_t *)ptr);
693 env->fregs[i] = u.d;
695 /* FP control regs (not implemented). */
696 ptr += 3 * 4;
698 #elif defined (TARGET_MIPS)
699 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
701 int i;
702 uint8_t *ptr;
704 ptr = mem_buf;
705 for (i = 0; i < 32; i++)
707 *(target_ulong *)ptr = tswapl(env->active_tc.gpr[i]);
708 ptr += sizeof(target_ulong);
711 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
712 ptr += sizeof(target_ulong);
714 *(target_ulong *)ptr = tswapl(env->active_tc.LO[0]);
715 ptr += sizeof(target_ulong);
717 *(target_ulong *)ptr = tswapl(env->active_tc.HI[0]);
718 ptr += sizeof(target_ulong);
720 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
721 ptr += sizeof(target_ulong);
723 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
724 ptr += sizeof(target_ulong);
726 *(target_ulong *)ptr = tswapl(env->active_tc.PC);
727 ptr += sizeof(target_ulong);
729 if (env->CP0_Config1 & (1 << CP0C1_FP))
731 for (i = 0; i < 32; i++)
733 if (env->CP0_Status & (1 << CP0St_FR))
734 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
735 else
736 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
737 ptr += sizeof(target_ulong);
740 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
741 ptr += sizeof(target_ulong);
743 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
744 ptr += sizeof(target_ulong);
747 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
748 *(target_ulong *)ptr = 0;
749 ptr += sizeof(target_ulong);
751 /* Registers for embedded use, we just pad them. */
752 for (i = 0; i < 16; i++)
754 *(target_ulong *)ptr = 0;
755 ptr += sizeof(target_ulong);
758 /* Processor ID. */
759 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
760 ptr += sizeof(target_ulong);
762 return ptr - mem_buf;
765 /* convert MIPS rounding mode in FCR31 to IEEE library */
766 static unsigned int ieee_rm[] =
768 float_round_nearest_even,
769 float_round_to_zero,
770 float_round_up,
771 float_round_down
773 #define RESTORE_ROUNDING_MODE \
774 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
776 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
778 int i;
779 uint8_t *ptr;
781 ptr = mem_buf;
782 for (i = 0; i < 32; i++)
784 env->active_tc.gpr[i] = tswapl(*(target_ulong *)ptr);
785 ptr += sizeof(target_ulong);
788 env->CP0_Status = tswapl(*(target_ulong *)ptr);
789 ptr += sizeof(target_ulong);
791 env->active_tc.LO[0] = tswapl(*(target_ulong *)ptr);
792 ptr += sizeof(target_ulong);
794 env->active_tc.HI[0] = tswapl(*(target_ulong *)ptr);
795 ptr += sizeof(target_ulong);
797 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
798 ptr += sizeof(target_ulong);
800 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
801 ptr += sizeof(target_ulong);
803 env->active_tc.PC = tswapl(*(target_ulong *)ptr);
804 ptr += sizeof(target_ulong);
806 if (env->CP0_Config1 & (1 << CP0C1_FP))
808 for (i = 0; i < 32; i++)
810 if (env->CP0_Status & (1 << CP0St_FR))
811 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
812 else
813 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
814 ptr += sizeof(target_ulong);
817 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
818 ptr += sizeof(target_ulong);
820 /* The remaining registers are assumed to be read-only. */
822 /* set rounding mode */
823 RESTORE_ROUNDING_MODE;
825 #ifndef CONFIG_SOFTFLOAT
826 /* no floating point exception for native float */
827 SET_FP_ENABLE(env->fcr31, 0);
828 #endif
831 #elif defined (TARGET_SH4)
833 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
835 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
837 uint32_t *ptr = (uint32_t *)mem_buf;
838 int i;
840 #define SAVE(x) *ptr++=tswapl(x)
841 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
842 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
843 } else {
844 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
846 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
847 SAVE (env->pc);
848 SAVE (env->pr);
849 SAVE (env->gbr);
850 SAVE (env->vbr);
851 SAVE (env->mach);
852 SAVE (env->macl);
853 SAVE (env->sr);
854 SAVE (env->fpul);
855 SAVE (env->fpscr);
856 for (i = 0; i < 16; i++)
857 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
858 SAVE (env->ssr);
859 SAVE (env->spc);
860 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
861 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
862 return ((uint8_t *)ptr - mem_buf);
865 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
867 uint32_t *ptr = (uint32_t *)mem_buf;
868 int i;
870 #define LOAD(x) (x)=*ptr++;
871 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
872 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
873 } else {
874 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
876 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
877 LOAD (env->pc);
878 LOAD (env->pr);
879 LOAD (env->gbr);
880 LOAD (env->vbr);
881 LOAD (env->mach);
882 LOAD (env->macl);
883 LOAD (env->sr);
884 LOAD (env->fpul);
885 LOAD (env->fpscr);
886 for (i = 0; i < 16; i++)
887 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
888 LOAD (env->ssr);
889 LOAD (env->spc);
890 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
891 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
893 #elif defined (TARGET_CRIS)
895 static int cris_save_32 (unsigned char *d, uint32_t value)
897 *d++ = (value);
898 *d++ = (value >>= 8);
899 *d++ = (value >>= 8);
900 *d++ = (value >>= 8);
901 return 4;
903 static int cris_save_16 (unsigned char *d, uint32_t value)
905 *d++ = (value);
906 *d++ = (value >>= 8);
907 return 2;
909 static int cris_save_8 (unsigned char *d, uint32_t value)
911 *d++ = (value);
912 return 1;
915 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
916 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
918 uint8_t *ptr = mem_buf;
919 uint8_t srs;
920 int i;
922 for (i = 0; i < 16; i++)
923 ptr += cris_save_32 (ptr, env->regs[i]);
925 srs = env->pregs[PR_SRS];
927 ptr += cris_save_8 (ptr, env->pregs[0]);
928 ptr += cris_save_8 (ptr, env->pregs[1]);
929 ptr += cris_save_32 (ptr, env->pregs[2]);
930 ptr += cris_save_8 (ptr, srs);
931 ptr += cris_save_16 (ptr, env->pregs[4]);
933 for (i = 5; i < 16; i++)
934 ptr += cris_save_32 (ptr, env->pregs[i]);
936 ptr += cris_save_32 (ptr, env->pc);
938 for (i = 0; i < 16; i++)
939 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
941 return ((uint8_t *)ptr - mem_buf);
944 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
946 uint32_t *ptr = (uint32_t *)mem_buf;
947 int i;
949 #define LOAD(x) (x)=*ptr++;
950 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
951 LOAD (env->pc);
953 #else
954 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
956 return 0;
959 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
963 #endif
965 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
967 const char *p;
968 int ch, reg_size, type;
969 char buf[4096];
970 uint8_t mem_buf[4096];
971 uint32_t *registers;
972 target_ulong addr, len;
974 #ifdef DEBUG_GDB
975 printf("command='%s'\n", line_buf);
976 #endif
977 p = line_buf;
978 ch = *p++;
979 switch(ch) {
980 case '?':
981 /* TODO: Make this return the correct value for user-mode. */
982 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
983 put_packet(s, buf);
984 /* Remove all the breakpoints when this query is issued,
985 * because gdb is doing and initial connect and the state
986 * should be cleaned up.
988 cpu_breakpoint_remove_all(env);
989 cpu_watchpoint_remove_all(env);
990 break;
991 case 'c':
992 if (*p != '\0') {
993 addr = strtoull(p, (char **)&p, 16);
994 #if defined(TARGET_I386)
995 env->eip = addr;
996 #elif defined (TARGET_PPC)
997 env->nip = addr;
998 #elif defined (TARGET_SPARC)
999 env->pc = addr;
1000 env->npc = addr + 4;
1001 #elif defined (TARGET_ARM)
1002 env->regs[15] = addr;
1003 #elif defined (TARGET_SH4)
1004 env->pc = addr;
1005 #elif defined (TARGET_MIPS)
1006 env->active_tc.PC = addr;
1007 #elif defined (TARGET_CRIS)
1008 env->pc = addr;
1009 #endif
1011 gdb_continue(s);
1012 return RS_IDLE;
1013 case 'C':
1014 s->signal = strtoul(p, (char **)&p, 16);
1015 gdb_continue(s);
1016 return RS_IDLE;
1017 case 'k':
1018 /* Kill the target */
1019 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1020 exit(0);
1021 case 'D':
1022 /* Detach packet */
1023 cpu_breakpoint_remove_all(env);
1024 cpu_watchpoint_remove_all(env);
1025 gdb_continue(s);
1026 put_packet(s, "OK");
1027 break;
1028 case 's':
1029 if (*p != '\0') {
1030 addr = strtoull(p, (char **)&p, 16);
1031 #if defined(TARGET_I386)
1032 env->eip = addr;
1033 #elif defined (TARGET_PPC)
1034 env->nip = addr;
1035 #elif defined (TARGET_SPARC)
1036 env->pc = addr;
1037 env->npc = addr + 4;
1038 #elif defined (TARGET_ARM)
1039 env->regs[15] = addr;
1040 #elif defined (TARGET_SH4)
1041 env->pc = addr;
1042 #elif defined (TARGET_MIPS)
1043 env->active_tc.PC = addr;
1044 #elif defined (TARGET_CRIS)
1045 env->pc = addr;
1046 #endif
1048 cpu_single_step(env, sstep_flags);
1049 gdb_continue(s);
1050 return RS_IDLE;
1051 case 'F':
1053 target_ulong ret;
1054 target_ulong err;
1056 ret = strtoull(p, (char **)&p, 16);
1057 if (*p == ',') {
1058 p++;
1059 err = strtoull(p, (char **)&p, 16);
1060 } else {
1061 err = 0;
1063 if (*p == ',')
1064 p++;
1065 type = *p;
1066 if (gdb_current_syscall_cb)
1067 gdb_current_syscall_cb(s->env, ret, err);
1068 if (type == 'C') {
1069 put_packet(s, "T02");
1070 } else {
1071 gdb_continue(s);
1074 break;
1075 case 'g':
1076 reg_size = cpu_gdb_read_registers(env, mem_buf);
1077 memtohex(buf, mem_buf, reg_size);
1078 put_packet(s, buf);
1079 break;
1080 case 'G':
1081 registers = (void *)mem_buf;
1082 len = strlen(p) / 2;
1083 hextomem((uint8_t *)registers, p, len);
1084 cpu_gdb_write_registers(env, mem_buf, len);
1085 put_packet(s, "OK");
1086 break;
1087 case 'm':
1088 addr = strtoull(p, (char **)&p, 16);
1089 if (*p == ',')
1090 p++;
1091 len = strtoull(p, NULL, 16);
1092 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1093 put_packet (s, "E14");
1094 } else {
1095 memtohex(buf, mem_buf, len);
1096 put_packet(s, buf);
1098 break;
1099 case 'M':
1100 addr = strtoull(p, (char **)&p, 16);
1101 if (*p == ',')
1102 p++;
1103 len = strtoull(p, (char **)&p, 16);
1104 if (*p == ':')
1105 p++;
1106 hextomem(mem_buf, p, len);
1107 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1108 put_packet(s, "E14");
1109 else
1110 put_packet(s, "OK");
1111 break;
1112 case 'Z':
1113 type = strtoul(p, (char **)&p, 16);
1114 if (*p == ',')
1115 p++;
1116 addr = strtoull(p, (char **)&p, 16);
1117 if (*p == ',')
1118 p++;
1119 len = strtoull(p, (char **)&p, 16);
1120 switch (type) {
1121 case 0:
1122 case 1:
1123 if (cpu_breakpoint_insert(env, addr) < 0)
1124 goto breakpoint_error;
1125 put_packet(s, "OK");
1126 break;
1127 #ifndef CONFIG_USER_ONLY
1128 case 2:
1129 type = PAGE_WRITE;
1130 goto insert_watchpoint;
1131 case 3:
1132 type = PAGE_READ;
1133 goto insert_watchpoint;
1134 case 4:
1135 type = PAGE_READ | PAGE_WRITE;
1136 insert_watchpoint:
1137 if (cpu_watchpoint_insert(env, addr, type) < 0)
1138 goto breakpoint_error;
1139 put_packet(s, "OK");
1140 break;
1141 #endif
1142 default:
1143 put_packet(s, "");
1144 break;
1146 break;
1147 breakpoint_error:
1148 put_packet(s, "E22");
1149 break;
1151 case 'z':
1152 type = strtoul(p, (char **)&p, 16);
1153 if (*p == ',')
1154 p++;
1155 addr = strtoull(p, (char **)&p, 16);
1156 if (*p == ',')
1157 p++;
1158 len = strtoull(p, (char **)&p, 16);
1159 if (type == 0 || type == 1) {
1160 cpu_breakpoint_remove(env, addr);
1161 put_packet(s, "OK");
1162 #ifndef CONFIG_USER_ONLY
1163 } else if (type >= 2 || type <= 4) {
1164 cpu_watchpoint_remove(env, addr);
1165 put_packet(s, "OK");
1166 #endif
1167 } else {
1168 put_packet(s, "");
1170 break;
1171 case 'q':
1172 case 'Q':
1173 /* parse any 'q' packets here */
1174 if (!strcmp(p,"qemu.sstepbits")) {
1175 /* Query Breakpoint bit definitions */
1176 sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1177 SSTEP_ENABLE,
1178 SSTEP_NOIRQ,
1179 SSTEP_NOTIMER);
1180 put_packet(s, buf);
1181 break;
1182 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1183 /* Display or change the sstep_flags */
1184 p += 10;
1185 if (*p != '=') {
1186 /* Display current setting */
1187 sprintf(buf,"0x%x", sstep_flags);
1188 put_packet(s, buf);
1189 break;
1191 p++;
1192 type = strtoul(p, (char **)&p, 16);
1193 sstep_flags = type;
1194 put_packet(s, "OK");
1195 break;
1197 #ifdef CONFIG_LINUX_USER
1198 else if (strncmp(p, "Offsets", 7) == 0) {
1199 TaskState *ts = env->opaque;
1201 sprintf(buf,
1202 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1203 ";Bss=" TARGET_ABI_FMT_lx,
1204 ts->info->code_offset,
1205 ts->info->data_offset,
1206 ts->info->data_offset);
1207 put_packet(s, buf);
1208 break;
1210 #endif
1211 /* Fall through. */
1212 default:
1213 /* put empty packet */
1214 buf[0] = '\0';
1215 put_packet(s, buf);
1216 break;
1218 return RS_IDLE;
1221 extern void tb_flush(CPUState *env);
1223 #ifndef CONFIG_USER_ONLY
1224 static void gdb_vm_stopped(void *opaque, int reason)
1226 GDBState *s = opaque;
1227 char buf[256];
1228 int ret;
1230 if (s->state == RS_SYSCALL)
1231 return;
1233 /* disable single step if it was enable */
1234 cpu_single_step(s->env, 0);
1236 if (reason == EXCP_DEBUG) {
1237 if (s->env->watchpoint_hit) {
1238 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1239 SIGTRAP,
1240 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1241 put_packet(s, buf);
1242 s->env->watchpoint_hit = 0;
1243 return;
1245 tb_flush(s->env);
1246 ret = SIGTRAP;
1247 } else if (reason == EXCP_INTERRUPT) {
1248 ret = SIGINT;
1249 } else {
1250 ret = 0;
1252 snprintf(buf, sizeof(buf), "S%02x", ret);
1253 put_packet(s, buf);
1255 #endif
1257 /* Send a gdb syscall request.
1258 This accepts limited printf-style format specifiers, specifically:
1259 %x - target_ulong argument printed in hex.
1260 %lx - 64-bit argument printed in hex.
1261 %s - string pointer (target_ulong) and length (int) pair. */
1262 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1264 va_list va;
1265 char buf[256];
1266 char *p;
1267 target_ulong addr;
1268 uint64_t i64;
1269 GDBState *s;
1271 s = gdb_syscall_state;
1272 if (!s)
1273 return;
1274 gdb_current_syscall_cb = cb;
1275 s->state = RS_SYSCALL;
1276 #ifndef CONFIG_USER_ONLY
1277 vm_stop(EXCP_DEBUG);
1278 #endif
1279 s->state = RS_IDLE;
1280 va_start(va, fmt);
1281 p = buf;
1282 *(p++) = 'F';
1283 while (*fmt) {
1284 if (*fmt == '%') {
1285 fmt++;
1286 switch (*fmt++) {
1287 case 'x':
1288 addr = va_arg(va, target_ulong);
1289 p += sprintf(p, TARGET_FMT_lx, addr);
1290 break;
1291 case 'l':
1292 if (*(fmt++) != 'x')
1293 goto bad_format;
1294 i64 = va_arg(va, uint64_t);
1295 p += sprintf(p, "%" PRIx64, i64);
1296 break;
1297 case 's':
1298 addr = va_arg(va, target_ulong);
1299 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1300 break;
1301 default:
1302 bad_format:
1303 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1304 fmt - 1);
1305 break;
1307 } else {
1308 *(p++) = *(fmt++);
1311 *p = 0;
1312 va_end(va);
1313 put_packet(s, buf);
1314 #ifdef CONFIG_USER_ONLY
1315 gdb_handlesig(s->env, 0);
1316 #else
1317 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1318 #endif
1321 static void gdb_read_byte(GDBState *s, int ch)
1323 CPUState *env = s->env;
1324 int i, csum;
1325 uint8_t reply;
1327 #ifndef CONFIG_USER_ONLY
1328 if (s->last_packet_len) {
1329 /* Waiting for a response to the last packet. If we see the start
1330 of a new command then abandon the previous response. */
1331 if (ch == '-') {
1332 #ifdef DEBUG_GDB
1333 printf("Got NACK, retransmitting\n");
1334 #endif
1335 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1337 #ifdef DEBUG_GDB
1338 else if (ch == '+')
1339 printf("Got ACK\n");
1340 else
1341 printf("Got '%c' when expecting ACK/NACK\n", ch);
1342 #endif
1343 if (ch == '+' || ch == '$')
1344 s->last_packet_len = 0;
1345 if (ch != '$')
1346 return;
1348 if (vm_running) {
1349 /* when the CPU is running, we cannot do anything except stop
1350 it when receiving a char */
1351 vm_stop(EXCP_INTERRUPT);
1352 } else
1353 #endif
1355 switch(s->state) {
1356 case RS_IDLE:
1357 if (ch == '$') {
1358 s->line_buf_index = 0;
1359 s->state = RS_GETLINE;
1361 break;
1362 case RS_GETLINE:
1363 if (ch == '#') {
1364 s->state = RS_CHKSUM1;
1365 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1366 s->state = RS_IDLE;
1367 } else {
1368 s->line_buf[s->line_buf_index++] = ch;
1370 break;
1371 case RS_CHKSUM1:
1372 s->line_buf[s->line_buf_index] = '\0';
1373 s->line_csum = fromhex(ch) << 4;
1374 s->state = RS_CHKSUM2;
1375 break;
1376 case RS_CHKSUM2:
1377 s->line_csum |= fromhex(ch);
1378 csum = 0;
1379 for(i = 0; i < s->line_buf_index; i++) {
1380 csum += s->line_buf[i];
1382 if (s->line_csum != (csum & 0xff)) {
1383 reply = '-';
1384 put_buffer(s, &reply, 1);
1385 s->state = RS_IDLE;
1386 } else {
1387 reply = '+';
1388 put_buffer(s, &reply, 1);
1389 s->state = gdb_handle_packet(s, env, s->line_buf);
1391 break;
1392 default:
1393 abort();
1398 #ifdef CONFIG_USER_ONLY
1400 gdb_handlesig (CPUState *env, int sig)
1402 GDBState *s;
1403 char buf[256];
1404 int n;
1406 s = &gdbserver_state;
1407 if (gdbserver_fd < 0 || s->fd < 0)
1408 return sig;
1410 /* disable single step if it was enabled */
1411 cpu_single_step(env, 0);
1412 tb_flush(env);
1414 if (sig != 0)
1416 snprintf(buf, sizeof(buf), "S%02x", sig);
1417 put_packet(s, buf);
1419 /* put_packet() might have detected that the peer terminated the
1420 connection. */
1421 if (s->fd < 0)
1422 return sig;
1424 sig = 0;
1425 s->state = RS_IDLE;
1426 s->running_state = 0;
1427 while (s->running_state == 0) {
1428 n = read (s->fd, buf, 256);
1429 if (n > 0)
1431 int i;
1433 for (i = 0; i < n; i++)
1434 gdb_read_byte (s, buf[i]);
1436 else if (n == 0 || errno != EAGAIN)
1438 /* XXX: Connection closed. Should probably wait for annother
1439 connection before continuing. */
1440 return sig;
1443 sig = s->signal;
1444 s->signal = 0;
1445 return sig;
1448 /* Tell the remote gdb that the process has exited. */
1449 void gdb_exit(CPUState *env, int code)
1451 GDBState *s;
1452 char buf[4];
1454 s = &gdbserver_state;
1455 if (gdbserver_fd < 0 || s->fd < 0)
1456 return;
1458 snprintf(buf, sizeof(buf), "W%02x", code);
1459 put_packet(s, buf);
1463 static void gdb_accept(void *opaque)
1465 GDBState *s;
1466 struct sockaddr_in sockaddr;
1467 socklen_t len;
1468 int val, fd;
1470 for(;;) {
1471 len = sizeof(sockaddr);
1472 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1473 if (fd < 0 && errno != EINTR) {
1474 perror("accept");
1475 return;
1476 } else if (fd >= 0) {
1477 break;
1481 /* set short latency */
1482 val = 1;
1483 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1485 s = &gdbserver_state;
1486 memset (s, 0, sizeof (GDBState));
1487 s->env = first_cpu; /* XXX: allow to change CPU */
1488 s->fd = fd;
1490 gdb_syscall_state = s;
1492 fcntl(fd, F_SETFL, O_NONBLOCK);
1495 static int gdbserver_open(int port)
1497 struct sockaddr_in sockaddr;
1498 int fd, val, ret;
1500 fd = socket(PF_INET, SOCK_STREAM, 0);
1501 if (fd < 0) {
1502 perror("socket");
1503 return -1;
1506 /* allow fast reuse */
1507 val = 1;
1508 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1510 sockaddr.sin_family = AF_INET;
1511 sockaddr.sin_port = htons(port);
1512 sockaddr.sin_addr.s_addr = 0;
1513 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1514 if (ret < 0) {
1515 perror("bind");
1516 return -1;
1518 ret = listen(fd, 0);
1519 if (ret < 0) {
1520 perror("listen");
1521 return -1;
1523 return fd;
1526 int gdbserver_start(int port)
1528 gdbserver_fd = gdbserver_open(port);
1529 if (gdbserver_fd < 0)
1530 return -1;
1531 /* accept connections */
1532 gdb_accept (NULL);
1533 return 0;
1535 #else
1536 static int gdb_chr_can_receive(void *opaque)
1538 return 1;
1541 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1543 GDBState *s = opaque;
1544 int i;
1546 for (i = 0; i < size; i++) {
1547 gdb_read_byte(s, buf[i]);
1551 static void gdb_chr_event(void *opaque, int event)
1553 switch (event) {
1554 case CHR_EVENT_RESET:
1555 vm_stop(EXCP_INTERRUPT);
1556 gdb_syscall_state = opaque;
1557 break;
1558 default:
1559 break;
1563 int gdbserver_start(const char *port)
1565 GDBState *s;
1566 char gdbstub_port_name[128];
1567 int port_num;
1568 char *p;
1569 CharDriverState *chr;
1571 if (!port || !*port)
1572 return -1;
1574 port_num = strtol(port, &p, 10);
1575 if (*p == 0) {
1576 /* A numeric value is interpreted as a port number. */
1577 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1578 "tcp::%d,nowait,nodelay,server", port_num);
1579 port = gdbstub_port_name;
1582 chr = qemu_chr_open(port);
1583 if (!chr)
1584 return -1;
1586 s = qemu_mallocz(sizeof(GDBState));
1587 if (!s) {
1588 return -1;
1590 s->env = first_cpu; /* XXX: allow to change CPU */
1591 s->chr = chr;
1592 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1593 gdb_chr_event, s);
1594 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1595 return 0;
1597 #endif