Add support of boot on NOR flash.
[qemu/mini2440.git] / target-arm / helper.c
bloba06365586654ff82be65e5fe1fc163959142d109
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name);
31 static inline void set_feature(CPUARMState *env, int feature)
33 env->features |= 1u << feature;
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM920T:
41 set_feature(env, ARM_FEATURE_S3C);
42 env->cp15.c0_cachetype = 0xd172172;
43 env->cp15.c1_sys = 0x00000078;
44 break;
45 case ARM_CPUID_ARM926:
46 set_feature(env, ARM_FEATURE_VFP);
47 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
48 env->cp15.c0_cachetype = 0x1dd20d2;
49 env->cp15.c1_sys = 0x00090078;
50 break;
51 case ARM_CPUID_ARM946:
52 set_feature(env, ARM_FEATURE_MPU);
53 env->cp15.c0_cachetype = 0x0f004006;
54 env->cp15.c1_sys = 0x00000078;
55 break;
56 case ARM_CPUID_ARM1026:
57 set_feature(env, ARM_FEATURE_VFP);
58 set_feature(env, ARM_FEATURE_AUXCR);
59 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
60 env->cp15.c0_cachetype = 0x1dd20d2;
61 env->cp15.c1_sys = 0x00090078;
62 break;
63 case ARM_CPUID_ARM1136_R2:
64 case ARM_CPUID_ARM1136:
65 set_feature(env, ARM_FEATURE_V6);
66 set_feature(env, ARM_FEATURE_VFP);
67 set_feature(env, ARM_FEATURE_AUXCR);
68 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
69 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
70 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
71 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
72 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
73 env->cp15.c0_cachetype = 0x1dd20d2;
74 break;
75 case ARM_CPUID_ARM11MPCORE:
76 set_feature(env, ARM_FEATURE_V6);
77 set_feature(env, ARM_FEATURE_V6K);
78 set_feature(env, ARM_FEATURE_VFP);
79 set_feature(env, ARM_FEATURE_AUXCR);
80 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
81 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
82 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
83 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
84 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
85 env->cp15.c0_cachetype = 0x1dd20d2;
86 break;
87 case ARM_CPUID_CORTEXA8:
88 set_feature(env, ARM_FEATURE_V6);
89 set_feature(env, ARM_FEATURE_V6K);
90 set_feature(env, ARM_FEATURE_V7);
91 set_feature(env, ARM_FEATURE_AUXCR);
92 set_feature(env, ARM_FEATURE_THUMB2);
93 set_feature(env, ARM_FEATURE_VFP);
94 set_feature(env, ARM_FEATURE_VFP3);
95 set_feature(env, ARM_FEATURE_NEON);
96 set_feature(env, ARM_FEATURE_THUMB2EE);
97 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
98 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
99 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
100 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
101 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
102 env->cp15.c0_cachetype = 0x82048004;
103 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
104 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
105 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
106 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
107 break;
108 case ARM_CPUID_CORTEXM3:
109 set_feature(env, ARM_FEATURE_V6);
110 set_feature(env, ARM_FEATURE_THUMB2);
111 set_feature(env, ARM_FEATURE_V7);
112 set_feature(env, ARM_FEATURE_M);
113 set_feature(env, ARM_FEATURE_DIV);
114 break;
115 case ARM_CPUID_ANY: /* For userspace emulation. */
116 set_feature(env, ARM_FEATURE_V6);
117 set_feature(env, ARM_FEATURE_V6K);
118 set_feature(env, ARM_FEATURE_V7);
119 set_feature(env, ARM_FEATURE_THUMB2);
120 set_feature(env, ARM_FEATURE_VFP);
121 set_feature(env, ARM_FEATURE_VFP3);
122 set_feature(env, ARM_FEATURE_NEON);
123 set_feature(env, ARM_FEATURE_THUMB2EE);
124 set_feature(env, ARM_FEATURE_DIV);
125 break;
126 case ARM_CPUID_TI915T:
127 case ARM_CPUID_TI925T:
128 set_feature(env, ARM_FEATURE_OMAPCP);
129 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
130 env->cp15.c0_cachetype = 0x5109149;
131 env->cp15.c1_sys = 0x00000070;
132 env->cp15.c15_i_max = 0x000;
133 env->cp15.c15_i_min = 0xff0;
134 break;
135 case ARM_CPUID_PXA250:
136 case ARM_CPUID_PXA255:
137 case ARM_CPUID_PXA260:
138 case ARM_CPUID_PXA261:
139 case ARM_CPUID_PXA262:
140 set_feature(env, ARM_FEATURE_XSCALE);
141 /* JTAG_ID is ((id << 28) | 0x09265013) */
142 env->cp15.c0_cachetype = 0xd172172;
143 env->cp15.c1_sys = 0x00000078;
144 break;
145 case ARM_CPUID_PXA270_A0:
146 case ARM_CPUID_PXA270_A1:
147 case ARM_CPUID_PXA270_B0:
148 case ARM_CPUID_PXA270_B1:
149 case ARM_CPUID_PXA270_C0:
150 case ARM_CPUID_PXA270_C5:
151 set_feature(env, ARM_FEATURE_XSCALE);
152 /* JTAG_ID is ((id << 28) | 0x09265013) */
153 set_feature(env, ARM_FEATURE_IWMMXT);
154 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
155 env->cp15.c0_cachetype = 0xd172172;
156 env->cp15.c1_sys = 0x00000078;
157 break;
158 default:
159 cpu_abort(env, "Bad CPU ID: %x\n", id);
160 break;
164 void cpu_reset(CPUARMState *env)
166 uint32_t id;
168 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
169 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
170 log_cpu_state(env, 0);
173 id = env->cp15.c0_cpuid;
174 memset(env, 0, offsetof(CPUARMState, breakpoints));
175 if (id)
176 cpu_reset_model_id(env, id);
177 #if defined (CONFIG_USER_ONLY)
178 env->uncached_cpsr = ARM_CPU_MODE_USR;
179 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
180 #else
181 /* SVC mode with interrupts disabled. */
182 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
183 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
184 clear at reset. */
185 if (IS_M(env))
186 env->uncached_cpsr &= ~CPSR_I;
187 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
188 env->cp15.c2_base_mask = 0xffffc000u;
189 #endif
190 env->regs[15] = 0;
191 tlb_flush(env, 1);
194 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
196 int nregs;
198 /* VFP data registers are always little-endian. */
199 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
200 if (reg < nregs) {
201 stfq_le_p(buf, env->vfp.regs[reg]);
202 return 8;
204 if (arm_feature(env, ARM_FEATURE_NEON)) {
205 /* Aliases for Q regs. */
206 nregs += 16;
207 if (reg < nregs) {
208 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
209 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
210 return 16;
213 switch (reg - nregs) {
214 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
215 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
216 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
218 return 0;
221 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
223 int nregs;
225 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
226 if (reg < nregs) {
227 env->vfp.regs[reg] = ldfq_le_p(buf);
228 return 8;
230 if (arm_feature(env, ARM_FEATURE_NEON)) {
231 nregs += 16;
232 if (reg < nregs) {
233 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
234 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
235 return 16;
238 switch (reg - nregs) {
239 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
240 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
241 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
243 return 0;
246 CPUARMState *cpu_arm_init(const char *cpu_model)
248 CPUARMState *env;
249 uint32_t id;
250 static int inited = 0;
252 id = cpu_arm_find_by_name(cpu_model);
253 if (id == 0)
254 return NULL;
255 env = qemu_mallocz(sizeof(CPUARMState));
256 cpu_exec_init(env);
257 if (!inited) {
258 inited = 1;
259 arm_translate_init();
262 env->cpu_model_str = cpu_model;
263 env->cp15.c0_cpuid = id;
264 cpu_reset(env);
265 if (arm_feature(env, ARM_FEATURE_NEON)) {
266 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
267 51, "arm-neon.xml", 0);
268 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
269 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
270 35, "arm-vfp3.xml", 0);
271 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
272 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
273 19, "arm-vfp.xml", 0);
275 qemu_init_vcpu(env);
276 return env;
279 struct arm_cpu_t {
280 uint32_t id;
281 const char *name;
284 static const struct arm_cpu_t arm_cpu_names[] = {
285 { ARM_CPUID_ARM920T, "arm920t"},
286 { ARM_CPUID_ARM926, "arm926"},
287 { ARM_CPUID_ARM946, "arm946"},
288 { ARM_CPUID_ARM1026, "arm1026"},
289 { ARM_CPUID_ARM1136, "arm1136"},
290 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
291 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
292 { ARM_CPUID_CORTEXM3, "cortex-m3"},
293 { ARM_CPUID_CORTEXA8, "cortex-a8"},
294 { ARM_CPUID_TI925T, "ti925t" },
295 { ARM_CPUID_PXA250, "pxa250" },
296 { ARM_CPUID_PXA255, "pxa255" },
297 { ARM_CPUID_PXA260, "pxa260" },
298 { ARM_CPUID_PXA261, "pxa261" },
299 { ARM_CPUID_PXA262, "pxa262" },
300 { ARM_CPUID_PXA270, "pxa270" },
301 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
302 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
303 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
304 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
305 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
306 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
307 { ARM_CPUID_ANY, "any"},
308 { 0, NULL}
311 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
313 int i;
315 (*cpu_fprintf)(f, "Available CPUs:\n");
316 for (i = 0; arm_cpu_names[i].name; i++) {
317 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
321 /* return 0 if not found */
322 static uint32_t cpu_arm_find_by_name(const char *name)
324 int i;
325 uint32_t id;
327 id = 0;
328 for (i = 0; arm_cpu_names[i].name; i++) {
329 if (strcmp(name, arm_cpu_names[i].name) == 0) {
330 id = arm_cpu_names[i].id;
331 break;
334 return id;
337 void cpu_arm_close(CPUARMState *env)
339 free(env);
342 uint32_t cpsr_read(CPUARMState *env)
344 int ZF;
345 ZF = (env->ZF == 0);
346 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
347 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
348 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
349 | ((env->condexec_bits & 0xfc) << 8)
350 | (env->GE << 16);
353 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
355 if (mask & CPSR_NZCV) {
356 env->ZF = (~val) & CPSR_Z;
357 env->NF = val;
358 env->CF = (val >> 29) & 1;
359 env->VF = (val << 3) & 0x80000000;
361 if (mask & CPSR_Q)
362 env->QF = ((val & CPSR_Q) != 0);
363 if (mask & CPSR_T)
364 env->thumb = ((val & CPSR_T) != 0);
365 if (mask & CPSR_IT_0_1) {
366 env->condexec_bits &= ~3;
367 env->condexec_bits |= (val >> 25) & 3;
369 if (mask & CPSR_IT_2_7) {
370 env->condexec_bits &= 3;
371 env->condexec_bits |= (val >> 8) & 0xfc;
373 if (mask & CPSR_GE) {
374 env->GE = (val >> 16) & 0xf;
377 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
378 switch_mode(env, val & CPSR_M);
380 mask &= ~CACHED_CPSR_BITS;
381 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
384 /* Sign/zero extend */
385 uint32_t HELPER(sxtb16)(uint32_t x)
387 uint32_t res;
388 res = (uint16_t)(int8_t)x;
389 res |= (uint32_t)(int8_t)(x >> 16) << 16;
390 return res;
393 uint32_t HELPER(uxtb16)(uint32_t x)
395 uint32_t res;
396 res = (uint16_t)(uint8_t)x;
397 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
398 return res;
401 uint32_t HELPER(clz)(uint32_t x)
403 int count;
404 for (count = 32; x; count--)
405 x >>= 1;
406 return count;
409 int32_t HELPER(sdiv)(int32_t num, int32_t den)
411 if (den == 0)
412 return 0;
413 return num / den;
416 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
418 if (den == 0)
419 return 0;
420 return num / den;
423 uint32_t HELPER(rbit)(uint32_t x)
425 x = ((x & 0xff000000) >> 24)
426 | ((x & 0x00ff0000) >> 8)
427 | ((x & 0x0000ff00) << 8)
428 | ((x & 0x000000ff) << 24);
429 x = ((x & 0xf0f0f0f0) >> 4)
430 | ((x & 0x0f0f0f0f) << 4);
431 x = ((x & 0x88888888) >> 3)
432 | ((x & 0x44444444) >> 1)
433 | ((x & 0x22222222) << 1)
434 | ((x & 0x11111111) << 3);
435 return x;
438 uint32_t HELPER(abs)(uint32_t x)
440 return ((int32_t)x < 0) ? -x : x;
443 #if defined(CONFIG_USER_ONLY)
445 void do_interrupt (CPUState *env)
447 env->exception_index = -1;
450 /* Structure used to record exclusive memory locations. */
451 typedef struct mmon_state {
452 struct mmon_state *next;
453 CPUARMState *cpu_env;
454 uint32_t addr;
455 } mmon_state;
457 /* Chain of current locks. */
458 static mmon_state* mmon_head = NULL;
460 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
461 int mmu_idx, int is_softmmu)
463 if (rw == 2) {
464 env->exception_index = EXCP_PREFETCH_ABORT;
465 env->cp15.c6_insn = address;
466 } else {
467 env->exception_index = EXCP_DATA_ABORT;
468 env->cp15.c6_data = address;
470 return 1;
473 static void allocate_mmon_state(CPUState *env)
475 env->mmon_entry = malloc(sizeof (mmon_state));
476 memset (env->mmon_entry, 0, sizeof (mmon_state));
477 env->mmon_entry->cpu_env = env;
478 mmon_head = env->mmon_entry;
481 /* Flush any monitor locks for the specified address. */
482 static void flush_mmon(uint32_t addr)
484 mmon_state *mon;
486 for (mon = mmon_head; mon; mon = mon->next)
488 if (mon->addr != addr)
489 continue;
491 mon->addr = 0;
492 break;
496 /* Mark an address for exclusive access. */
497 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
499 if (!env->mmon_entry)
500 allocate_mmon_state(env);
501 /* Clear any previous locks. */
502 flush_mmon(addr);
503 env->mmon_entry->addr = addr;
506 /* Test if an exclusive address is still exclusive. Returns zero
507 if the address is still exclusive. */
508 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
510 int res;
512 if (!env->mmon_entry)
513 return 1;
514 if (env->mmon_entry->addr == addr)
515 res = 0;
516 else
517 res = 1;
518 flush_mmon(addr);
519 return res;
522 void HELPER(clrex)(CPUState *env)
524 if (!(env->mmon_entry && env->mmon_entry->addr))
525 return;
526 flush_mmon(env->mmon_entry->addr);
529 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
531 return addr;
534 /* These should probably raise undefined insn exceptions. */
535 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
537 int op1 = (insn >> 8) & 0xf;
538 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
539 return;
542 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
544 int op1 = (insn >> 8) & 0xf;
545 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
546 return 0;
549 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
551 cpu_abort(env, "cp15 insn %08x\n", insn);
554 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
556 cpu_abort(env, "cp15 insn %08x\n", insn);
557 return 0;
560 /* These should probably raise undefined insn exceptions. */
561 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
563 cpu_abort(env, "v7m_mrs %d\n", reg);
566 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
568 cpu_abort(env, "v7m_mrs %d\n", reg);
569 return 0;
572 void switch_mode(CPUState *env, int mode)
574 if (mode != ARM_CPU_MODE_USR)
575 cpu_abort(env, "Tried to switch out of user mode\n");
578 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
580 cpu_abort(env, "banked r13 write\n");
583 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
585 cpu_abort(env, "banked r13 read\n");
586 return 0;
589 #else
591 extern int semihosting_enabled;
593 /* Map CPU modes onto saved register banks. */
594 static inline int bank_number (int mode)
596 switch (mode) {
597 case ARM_CPU_MODE_USR:
598 case ARM_CPU_MODE_SYS:
599 return 0;
600 case ARM_CPU_MODE_SVC:
601 return 1;
602 case ARM_CPU_MODE_ABT:
603 return 2;
604 case ARM_CPU_MODE_UND:
605 return 3;
606 case ARM_CPU_MODE_IRQ:
607 return 4;
608 case ARM_CPU_MODE_FIQ:
609 return 5;
611 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
612 return -1;
615 void switch_mode(CPUState *env, int mode)
617 int old_mode;
618 int i;
620 old_mode = env->uncached_cpsr & CPSR_M;
621 if (mode == old_mode)
622 return;
624 if (old_mode == ARM_CPU_MODE_FIQ) {
625 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
626 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
627 } else if (mode == ARM_CPU_MODE_FIQ) {
628 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
629 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
632 i = bank_number(old_mode);
633 env->banked_r13[i] = env->regs[13];
634 env->banked_r14[i] = env->regs[14];
635 env->banked_spsr[i] = env->spsr;
637 i = bank_number(mode);
638 env->regs[13] = env->banked_r13[i];
639 env->regs[14] = env->banked_r14[i];
640 env->spsr = env->banked_spsr[i];
643 static void v7m_push(CPUARMState *env, uint32_t val)
645 env->regs[13] -= 4;
646 stl_phys(env->regs[13], val);
649 static uint32_t v7m_pop(CPUARMState *env)
651 uint32_t val;
652 val = ldl_phys(env->regs[13]);
653 env->regs[13] += 4;
654 return val;
657 /* Switch to V7M main or process stack pointer. */
658 static void switch_v7m_sp(CPUARMState *env, int process)
660 uint32_t tmp;
661 if (env->v7m.current_sp != process) {
662 tmp = env->v7m.other_sp;
663 env->v7m.other_sp = env->regs[13];
664 env->regs[13] = tmp;
665 env->v7m.current_sp = process;
669 static void do_v7m_exception_exit(CPUARMState *env)
671 uint32_t type;
672 uint32_t xpsr;
674 type = env->regs[15];
675 if (env->v7m.exception != 0)
676 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
678 /* Switch to the target stack. */
679 switch_v7m_sp(env, (type & 4) != 0);
680 /* Pop registers. */
681 env->regs[0] = v7m_pop(env);
682 env->regs[1] = v7m_pop(env);
683 env->regs[2] = v7m_pop(env);
684 env->regs[3] = v7m_pop(env);
685 env->regs[12] = v7m_pop(env);
686 env->regs[14] = v7m_pop(env);
687 env->regs[15] = v7m_pop(env);
688 xpsr = v7m_pop(env);
689 xpsr_write(env, xpsr, 0xfffffdff);
690 /* Undo stack alignment. */
691 if (xpsr & 0x200)
692 env->regs[13] |= 4;
693 /* ??? The exception return type specifies Thread/Handler mode. However
694 this is also implied by the xPSR value. Not sure what to do
695 if there is a mismatch. */
696 /* ??? Likewise for mismatches between the CONTROL register and the stack
697 pointer. */
700 static void do_interrupt_v7m(CPUARMState *env)
702 uint32_t xpsr = xpsr_read(env);
703 uint32_t lr;
704 uint32_t addr;
706 lr = 0xfffffff1;
707 if (env->v7m.current_sp)
708 lr |= 4;
709 if (env->v7m.exception == 0)
710 lr |= 8;
712 /* For exceptions we just mark as pending on the NVIC, and let that
713 handle it. */
714 /* TODO: Need to escalate if the current priority is higher than the
715 one we're raising. */
716 switch (env->exception_index) {
717 case EXCP_UDEF:
718 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
719 return;
720 case EXCP_SWI:
721 env->regs[15] += 2;
722 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
723 return;
724 case EXCP_PREFETCH_ABORT:
725 case EXCP_DATA_ABORT:
726 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
727 return;
728 case EXCP_BKPT:
729 if (semihosting_enabled) {
730 int nr;
731 nr = lduw_code(env->regs[15]) & 0xff;
732 if (nr == 0xab) {
733 env->regs[15] += 2;
734 env->regs[0] = do_arm_semihosting(env);
735 return;
738 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
739 return;
740 case EXCP_IRQ:
741 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
742 break;
743 case EXCP_EXCEPTION_EXIT:
744 do_v7m_exception_exit(env);
745 return;
746 default:
747 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
748 return; /* Never happens. Keep compiler happy. */
751 /* Align stack pointer. */
752 /* ??? Should only do this if Configuration Control Register
753 STACKALIGN bit is set. */
754 if (env->regs[13] & 4) {
755 env->regs[13] -= 4;
756 xpsr |= 0x200;
758 /* Switch to the handler mode. */
759 v7m_push(env, xpsr);
760 v7m_push(env, env->regs[15]);
761 v7m_push(env, env->regs[14]);
762 v7m_push(env, env->regs[12]);
763 v7m_push(env, env->regs[3]);
764 v7m_push(env, env->regs[2]);
765 v7m_push(env, env->regs[1]);
766 v7m_push(env, env->regs[0]);
767 switch_v7m_sp(env, 0);
768 env->uncached_cpsr &= ~CPSR_IT;
769 env->regs[14] = lr;
770 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
771 env->regs[15] = addr & 0xfffffffe;
772 env->thumb = addr & 1;
775 /* Handle a CPU exception. */
776 void do_interrupt(CPUARMState *env)
778 uint32_t addr;
779 uint32_t mask;
780 int new_mode;
781 uint32_t offset;
783 if (IS_M(env)) {
784 do_interrupt_v7m(env);
785 return;
787 /* TODO: Vectored interrupt controller. */
788 switch (env->exception_index) {
789 case EXCP_UDEF:
790 new_mode = ARM_CPU_MODE_UND;
791 addr = 0x04;
792 mask = CPSR_I;
793 if (env->thumb)
794 offset = 2;
795 else
796 offset = 4;
797 break;
798 case EXCP_SWI:
799 if (semihosting_enabled) {
800 /* Check for semihosting interrupt. */
801 if (env->thumb) {
802 mask = lduw_code(env->regs[15] - 2) & 0xff;
803 } else {
804 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
806 /* Only intercept calls from privileged modes, to provide some
807 semblance of security. */
808 if (((mask == 0x123456 && !env->thumb)
809 || (mask == 0xab && env->thumb))
810 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
811 env->regs[0] = do_arm_semihosting(env);
812 return;
815 new_mode = ARM_CPU_MODE_SVC;
816 addr = 0x08;
817 mask = CPSR_I;
818 /* The PC already points to the next instruction. */
819 offset = 0;
820 break;
821 case EXCP_BKPT:
822 /* See if this is a semihosting syscall. */
823 if (env->thumb && semihosting_enabled) {
824 mask = lduw_code(env->regs[15]) & 0xff;
825 if (mask == 0xab
826 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
827 env->regs[15] += 2;
828 env->regs[0] = do_arm_semihosting(env);
829 return;
832 /* Fall through to prefetch abort. */
833 case EXCP_PREFETCH_ABORT:
834 new_mode = ARM_CPU_MODE_ABT;
835 addr = 0x0c;
836 mask = CPSR_A | CPSR_I;
837 offset = 4;
838 break;
839 case EXCP_DATA_ABORT:
840 new_mode = ARM_CPU_MODE_ABT;
841 addr = 0x10;
842 mask = CPSR_A | CPSR_I;
843 offset = 8;
844 break;
845 case EXCP_IRQ:
846 new_mode = ARM_CPU_MODE_IRQ;
847 addr = 0x18;
848 /* Disable IRQ and imprecise data aborts. */
849 mask = CPSR_A | CPSR_I;
850 offset = 4;
851 break;
852 case EXCP_FIQ:
853 new_mode = ARM_CPU_MODE_FIQ;
854 addr = 0x1c;
855 /* Disable FIQ, IRQ and imprecise data aborts. */
856 mask = CPSR_A | CPSR_I | CPSR_F;
857 offset = 4;
858 break;
859 default:
860 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
861 return; /* Never happens. Keep compiler happy. */
863 /* High vectors. */
864 if (env->cp15.c1_sys & (1 << 13)) {
865 addr += 0xffff0000;
867 switch_mode (env, new_mode);
868 env->spsr = cpsr_read(env);
869 /* Clear IT bits. */
870 env->condexec_bits = 0;
871 /* Switch to the new mode, and switch to Arm mode. */
872 /* ??? Thumb interrupt handlers not implemented. */
873 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
874 env->uncached_cpsr |= mask;
875 env->thumb = 0;
876 env->regs[14] = env->regs[15] + offset;
877 env->regs[15] = addr;
878 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
881 /* Check section/page access permissions.
882 Returns the page protection flags, or zero if the access is not
883 permitted. */
884 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
885 int is_user)
887 int prot_ro;
889 if (domain == 3)
890 return PAGE_READ | PAGE_WRITE;
892 if (access_type == 1)
893 prot_ro = 0;
894 else
895 prot_ro = PAGE_READ;
897 switch (ap) {
898 case 0:
899 if (access_type == 1)
900 return 0;
901 switch ((env->cp15.c1_sys >> 8) & 3) {
902 case 1:
903 return is_user ? 0 : PAGE_READ;
904 case 2:
905 return PAGE_READ;
906 default:
907 return 0;
909 case 1:
910 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
911 case 2:
912 if (is_user)
913 return prot_ro;
914 else
915 return PAGE_READ | PAGE_WRITE;
916 case 3:
917 return PAGE_READ | PAGE_WRITE;
918 case 4: /* Reserved. */
919 return 0;
920 case 5:
921 return is_user ? 0 : prot_ro;
922 case 6:
923 return prot_ro;
924 case 7:
925 if (!arm_feature (env, ARM_FEATURE_V7))
926 return 0;
927 return prot_ro;
928 default:
929 abort();
933 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
935 uint32_t table;
937 if (address & env->cp15.c2_mask)
938 table = env->cp15.c2_base1 & 0xffffc000;
939 else
940 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
942 table |= (address >> 18) & 0x3ffc;
943 return table;
946 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
947 int is_user, uint32_t *phys_ptr, int *prot)
949 int code;
950 uint32_t table;
951 uint32_t desc;
952 int type;
953 int ap;
954 int domain;
955 uint32_t phys_addr;
957 /* Pagetable walk. */
958 /* Lookup l1 descriptor. */
959 table = get_level1_table_address(env, address);
960 desc = ldl_phys(table);
961 type = (desc & 3);
962 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
963 if (type == 0) {
964 /* Section translation fault. */
965 code = 5;
966 goto do_fault;
968 if (domain == 0 || domain == 2) {
969 if (type == 2)
970 code = 9; /* Section domain fault. */
971 else
972 code = 11; /* Page domain fault. */
973 goto do_fault;
975 if (type == 2) {
976 /* 1Mb section. */
977 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
978 ap = (desc >> 10) & 3;
979 code = 13;
980 } else {
981 /* Lookup l2 entry. */
982 if (type == 1) {
983 /* Coarse pagetable. */
984 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
985 } else {
986 /* Fine pagetable. */
987 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
989 desc = ldl_phys(table);
990 switch (desc & 3) {
991 case 0: /* Page translation fault. */
992 code = 7;
993 goto do_fault;
994 case 1: /* 64k page. */
995 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
996 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
997 break;
998 case 2: /* 4k page. */
999 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1000 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1001 break;
1002 case 3: /* 1k page. */
1003 if (type == 1) {
1004 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1005 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1006 } else {
1007 /* Page translation fault. */
1008 code = 7;
1009 goto do_fault;
1011 } else {
1012 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1014 ap = (desc >> 4) & 3;
1015 break;
1016 default:
1017 /* Never happens, but compiler isn't smart enough to tell. */
1018 abort();
1020 code = 15;
1022 *prot = check_ap(env, ap, domain, access_type, is_user);
1023 if (!*prot) {
1024 /* Access permission fault. */
1025 goto do_fault;
1027 *phys_ptr = phys_addr;
1028 return 0;
1029 do_fault:
1030 return code | (domain << 4);
1033 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1034 int is_user, uint32_t *phys_ptr, int *prot)
1036 int code;
1037 uint32_t table;
1038 uint32_t desc;
1039 uint32_t xn;
1040 int type;
1041 int ap;
1042 int domain;
1043 uint32_t phys_addr;
1045 /* Pagetable walk. */
1046 /* Lookup l1 descriptor. */
1047 table = get_level1_table_address(env, address);
1048 desc = ldl_phys(table);
1049 type = (desc & 3);
1050 if (type == 0) {
1051 /* Section translation fault. */
1052 code = 5;
1053 domain = 0;
1054 goto do_fault;
1055 } else if (type == 2 && (desc & (1 << 18))) {
1056 /* Supersection. */
1057 domain = 0;
1058 } else {
1059 /* Section or page. */
1060 domain = (desc >> 4) & 0x1e;
1062 domain = (env->cp15.c3 >> domain) & 3;
1063 if (domain == 0 || domain == 2) {
1064 if (type == 2)
1065 code = 9; /* Section domain fault. */
1066 else
1067 code = 11; /* Page domain fault. */
1068 goto do_fault;
1070 if (type == 2) {
1071 if (desc & (1 << 18)) {
1072 /* Supersection. */
1073 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1074 } else {
1075 /* Section. */
1076 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1078 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1079 xn = desc & (1 << 4);
1080 code = 13;
1081 } else {
1082 /* Lookup l2 entry. */
1083 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1084 desc = ldl_phys(table);
1085 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1086 switch (desc & 3) {
1087 case 0: /* Page translation fault. */
1088 code = 7;
1089 goto do_fault;
1090 case 1: /* 64k page. */
1091 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1092 xn = desc & (1 << 15);
1093 break;
1094 case 2: case 3: /* 4k page. */
1095 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1096 xn = desc & 1;
1097 break;
1098 default:
1099 /* Never happens, but compiler isn't smart enough to tell. */
1100 abort();
1102 code = 15;
1104 if (xn && access_type == 2)
1105 goto do_fault;
1107 /* The simplified model uses AP[0] as an access control bit. */
1108 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1109 /* Access flag fault. */
1110 code = (code == 15) ? 6 : 3;
1111 goto do_fault;
1113 *prot = check_ap(env, ap, domain, access_type, is_user);
1114 if (!*prot) {
1115 /* Access permission fault. */
1116 goto do_fault;
1118 *phys_ptr = phys_addr;
1119 return 0;
1120 do_fault:
1121 return code | (domain << 4);
1124 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1125 int is_user, uint32_t *phys_ptr, int *prot)
1127 int n;
1128 uint32_t mask;
1129 uint32_t base;
1131 *phys_ptr = address;
1132 for (n = 7; n >= 0; n--) {
1133 base = env->cp15.c6_region[n];
1134 if ((base & 1) == 0)
1135 continue;
1136 mask = 1 << ((base >> 1) & 0x1f);
1137 /* Keep this shift separate from the above to avoid an
1138 (undefined) << 32. */
1139 mask = (mask << 1) - 1;
1140 if (((base ^ address) & ~mask) == 0)
1141 break;
1143 if (n < 0)
1144 return 2;
1146 if (access_type == 2) {
1147 mask = env->cp15.c5_insn;
1148 } else {
1149 mask = env->cp15.c5_data;
1151 mask = (mask >> (n * 4)) & 0xf;
1152 switch (mask) {
1153 case 0:
1154 return 1;
1155 case 1:
1156 if (is_user)
1157 return 1;
1158 *prot = PAGE_READ | PAGE_WRITE;
1159 break;
1160 case 2:
1161 *prot = PAGE_READ;
1162 if (!is_user)
1163 *prot |= PAGE_WRITE;
1164 break;
1165 case 3:
1166 *prot = PAGE_READ | PAGE_WRITE;
1167 break;
1168 case 5:
1169 if (is_user)
1170 return 1;
1171 *prot = PAGE_READ;
1172 break;
1173 case 6:
1174 *prot = PAGE_READ;
1175 break;
1176 default:
1177 /* Bad permission. */
1178 return 1;
1180 return 0;
1183 static inline int get_phys_addr(CPUState *env, uint32_t address,
1184 int access_type, int is_user,
1185 uint32_t *phys_ptr, int *prot)
1187 /* Fast Context Switch Extension. */
1188 if (address < 0x02000000)
1189 address += env->cp15.c13_fcse;
1191 if ((env->cp15.c1_sys & 1) == 0) {
1192 /* MMU/MPU disabled. */
1193 *phys_ptr = address;
1194 *prot = PAGE_READ | PAGE_WRITE;
1195 return 0;
1196 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1197 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1198 prot);
1199 } else if (env->cp15.c1_sys & (1 << 23)) {
1200 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1201 prot);
1202 } else {
1203 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1204 prot);
1208 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1209 int access_type, int mmu_idx, int is_softmmu)
1211 uint32_t phys_addr;
1212 int prot;
1213 int ret, is_user;
1215 is_user = mmu_idx == MMU_USER_IDX;
1216 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1217 if (ret == 0) {
1218 /* Map a single [sub]page. */
1219 phys_addr &= ~(uint32_t)0x3ff;
1220 address &= ~(uint32_t)0x3ff;
1221 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1222 is_softmmu);
1225 if (access_type == 2) {
1226 env->cp15.c5_insn = ret;
1227 env->cp15.c6_insn = address;
1228 env->exception_index = EXCP_PREFETCH_ABORT;
1229 } else {
1230 env->cp15.c5_data = ret;
1231 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1232 env->cp15.c5_data |= (1 << 11);
1233 env->cp15.c6_data = address;
1234 env->exception_index = EXCP_DATA_ABORT;
1236 return 1;
1239 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1241 uint32_t phys_addr;
1242 int prot;
1243 int ret;
1245 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1247 if (ret != 0)
1248 return -1;
1250 return phys_addr;
1253 /* Not really implemented. Need to figure out a sane way of doing this.
1254 Maybe add generic watchpoint support and use that. */
1256 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1258 env->mmon_addr = addr;
1261 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1263 return (env->mmon_addr != addr);
1266 void HELPER(clrex)(CPUState *env)
1268 env->mmon_addr = -1;
1271 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1273 int cp_num = (insn >> 8) & 0xf;
1274 int cp_info = (insn >> 5) & 7;
1275 int src = (insn >> 16) & 0xf;
1276 int operand = insn & 0xf;
1278 if (env->cp[cp_num].cp_write)
1279 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1280 cp_info, src, operand, val);
1283 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1285 int cp_num = (insn >> 8) & 0xf;
1286 int cp_info = (insn >> 5) & 7;
1287 int dest = (insn >> 16) & 0xf;
1288 int operand = insn & 0xf;
1290 if (env->cp[cp_num].cp_read)
1291 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1292 cp_info, dest, operand);
1293 return 0;
1296 /* Return basic MPU access permission bits. */
1297 static uint32_t simple_mpu_ap_bits(uint32_t val)
1299 uint32_t ret;
1300 uint32_t mask;
1301 int i;
1302 ret = 0;
1303 mask = 3;
1304 for (i = 0; i < 16; i += 2) {
1305 ret |= (val >> i) & mask;
1306 mask <<= 2;
1308 return ret;
1311 /* Pad basic MPU access permission bits to extended format. */
1312 static uint32_t extended_mpu_ap_bits(uint32_t val)
1314 uint32_t ret;
1315 uint32_t mask;
1316 int i;
1317 ret = 0;
1318 mask = 3;
1319 for (i = 0; i < 16; i += 2) {
1320 ret |= (val & mask) << i;
1321 mask <<= 2;
1323 return ret;
1326 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1328 int op1;
1329 int op2;
1330 int crm;
1332 op1 = (insn >> 21) & 7;
1333 op2 = (insn >> 5) & 7;
1334 crm = insn & 0xf;
1335 switch ((insn >> 16) & 0xf) {
1336 case 0:
1337 /* ID codes. */
1338 if (arm_feature(env, ARM_FEATURE_XSCALE))
1339 break;
1340 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1341 break;
1342 if (arm_feature(env, ARM_FEATURE_V7)
1343 && op1 == 2 && crm == 0 && op2 == 0) {
1344 env->cp15.c0_cssel = val & 0xf;
1345 break;
1347 goto bad_reg;
1348 case 1: /* System configuration. */
1349 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1350 op2 = 0;
1351 switch (op2) {
1352 case 0:
1353 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1354 env->cp15.c1_sys = val;
1355 /* ??? Lots of these bits are not implemented. */
1356 /* This may enable/disable the MMU, so do a TLB flush. */
1357 tlb_flush(env, 1);
1358 break;
1359 case 1: /* Auxiliary cotrol register. */
1360 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1361 env->cp15.c1_xscaleauxcr = val;
1362 break;
1364 /* Not implemented. */
1365 break;
1366 case 2:
1367 if (arm_feature(env, ARM_FEATURE_XSCALE))
1368 goto bad_reg;
1369 if (env->cp15.c1_coproc != val) {
1370 env->cp15.c1_coproc = val;
1371 /* ??? Is this safe when called from within a TB? */
1372 tb_flush(env);
1374 break;
1375 default:
1376 goto bad_reg;
1378 break;
1379 case 2: /* MMU Page table control / MPU cache control. */
1380 if (arm_feature(env, ARM_FEATURE_MPU)) {
1381 switch (op2) {
1382 case 0:
1383 env->cp15.c2_data = val;
1384 break;
1385 case 1:
1386 env->cp15.c2_insn = val;
1387 break;
1388 default:
1389 goto bad_reg;
1391 } else {
1392 switch (op2) {
1393 case 0:
1394 env->cp15.c2_base0 = val;
1395 break;
1396 case 1:
1397 env->cp15.c2_base1 = val;
1398 break;
1399 case 2:
1400 val &= 7;
1401 env->cp15.c2_control = val;
1402 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1403 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1404 break;
1405 default:
1406 goto bad_reg;
1409 break;
1410 case 3: /* MMU Domain access control / MPU write buffer control. */
1411 env->cp15.c3 = val;
1412 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1413 break;
1414 case 4: /* Reserved. */
1415 goto bad_reg;
1416 case 5: /* MMU Fault status / MPU access permission. */
1417 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1418 op2 = 0;
1419 switch (op2) {
1420 case 0:
1421 if (arm_feature(env, ARM_FEATURE_MPU))
1422 val = extended_mpu_ap_bits(val);
1423 env->cp15.c5_data = val;
1424 break;
1425 case 1:
1426 if (arm_feature(env, ARM_FEATURE_MPU))
1427 val = extended_mpu_ap_bits(val);
1428 env->cp15.c5_insn = val;
1429 break;
1430 case 2:
1431 if (!arm_feature(env, ARM_FEATURE_MPU))
1432 goto bad_reg;
1433 env->cp15.c5_data = val;
1434 break;
1435 case 3:
1436 if (!arm_feature(env, ARM_FEATURE_MPU))
1437 goto bad_reg;
1438 env->cp15.c5_insn = val;
1439 break;
1440 default:
1441 goto bad_reg;
1443 break;
1444 case 6: /* MMU Fault address / MPU base/size. */
1445 if (arm_feature(env, ARM_FEATURE_MPU)) {
1446 if (crm >= 8)
1447 goto bad_reg;
1448 env->cp15.c6_region[crm] = val;
1449 } else {
1450 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1451 op2 = 0;
1452 switch (op2) {
1453 case 0:
1454 env->cp15.c6_data = val;
1455 break;
1456 case 1: /* ??? This is WFAR on armv6 */
1457 case 2:
1458 env->cp15.c6_insn = val;
1459 break;
1460 default:
1461 goto bad_reg;
1464 break;
1465 case 7: /* Cache control. */
1466 env->cp15.c15_i_max = 0x000;
1467 env->cp15.c15_i_min = 0xff0;
1468 /* No cache, so nothing to do. */
1469 /* ??? MPCore has VA to PA translation functions. */
1470 break;
1471 case 8: /* MMU TLB control. */
1472 switch (op2) {
1473 case 0: /* Invalidate all. */
1474 tlb_flush(env, 0);
1475 break;
1476 case 1: /* Invalidate single TLB entry. */
1477 #if 0
1478 /* ??? This is wrong for large pages and sections. */
1479 /* As an ugly hack to make linux work we always flush a 4K
1480 pages. */
1481 val &= 0xfffff000;
1482 tlb_flush_page(env, val);
1483 tlb_flush_page(env, val + 0x400);
1484 tlb_flush_page(env, val + 0x800);
1485 tlb_flush_page(env, val + 0xc00);
1486 #else
1487 tlb_flush(env, 1);
1488 #endif
1489 break;
1490 case 2: /* Invalidate on ASID. */
1491 tlb_flush(env, val == 0);
1492 break;
1493 case 3: /* Invalidate single entry on MVA. */
1494 /* ??? This is like case 1, but ignores ASID. */
1495 tlb_flush(env, 1);
1496 break;
1497 default:
1498 goto bad_reg;
1500 break;
1501 case 9:
1502 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1503 break;
1504 switch (crm) {
1505 case 0: /* Cache lockdown. */
1506 switch (op1) {
1507 case 0: /* L1 cache. */
1508 switch (op2) {
1509 case 0:
1510 env->cp15.c9_data = val;
1511 break;
1512 case 1:
1513 env->cp15.c9_insn = val;
1514 break;
1515 default:
1516 goto bad_reg;
1518 break;
1519 case 1: /* L2 cache. */
1520 /* Ignore writes to L2 lockdown/auxiliary registers. */
1521 break;
1522 default:
1523 goto bad_reg;
1525 break;
1526 case 1: /* TCM memory region registers. */
1527 /* Not implemented. */
1528 goto bad_reg;
1529 default:
1530 goto bad_reg;
1532 break;
1533 case 10: /* MMU TLB lockdown. */
1534 /* ??? TLB lockdown not implemented. */
1535 break;
1536 case 12: /* Reserved. */
1537 goto bad_reg;
1538 case 13: /* Process ID. */
1539 if (arm_feature(env, ARM_FEATURE_S3C))
1540 op2 = 0;
1541 switch (op2) {
1542 case 0:
1543 /* Unlike real hardware the qemu TLB uses virtual addresses,
1544 not modified virtual addresses, so this causes a TLB flush.
1546 if (env->cp15.c13_fcse != val)
1547 tlb_flush(env, 1);
1548 env->cp15.c13_fcse = val;
1549 break;
1550 case 1:
1551 /* This changes the ASID, so do a TLB flush. */
1552 if (env->cp15.c13_context != val
1553 && !arm_feature(env, ARM_FEATURE_MPU))
1554 tlb_flush(env, 0);
1555 env->cp15.c13_context = val;
1556 break;
1557 case 2:
1558 env->cp15.c13_tls1 = val;
1559 break;
1560 case 3:
1561 env->cp15.c13_tls2 = val;
1562 break;
1563 case 4:
1564 env->cp15.c13_tls3 = val;
1565 break;
1566 default:
1567 goto bad_reg;
1569 break;
1570 case 14: /* Reserved. */
1571 goto bad_reg;
1572 case 15: /* Implementation specific. */
1573 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1574 if (op2 == 0 && crm == 1) {
1575 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1576 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1577 tb_flush(env);
1578 env->cp15.c15_cpar = val & 0x3fff;
1580 break;
1582 goto bad_reg;
1584 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1585 switch (crm) {
1586 case 0:
1587 break;
1588 case 1: /* Set TI925T configuration. */
1589 env->cp15.c15_ticonfig = val & 0xe7;
1590 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1591 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1592 break;
1593 case 2: /* Set I_max. */
1594 env->cp15.c15_i_max = val;
1595 break;
1596 case 3: /* Set I_min. */
1597 env->cp15.c15_i_min = val;
1598 break;
1599 case 4: /* Set thread-ID. */
1600 env->cp15.c15_threadid = val & 0xffff;
1601 break;
1602 case 8: /* Wait-for-interrupt (deprecated). */
1603 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1604 break;
1605 default:
1606 goto bad_reg;
1609 break;
1611 return;
1612 bad_reg:
1613 /* ??? For debugging only. Should raise illegal instruction exception. */
1614 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1615 (insn >> 16) & 0xf, crm, op1, op2);
1618 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1620 int op1;
1621 int op2;
1622 int crm;
1624 op1 = (insn >> 21) & 7;
1625 op2 = (insn >> 5) & 7;
1626 crm = insn & 0xf;
1627 switch ((insn >> 16) & 0xf) {
1628 case 0: /* ID codes. */
1629 switch (op1) {
1630 case 0:
1631 switch (crm) {
1632 case 0:
1633 switch (op2) {
1634 case 0: /* Device ID. */
1635 return env->cp15.c0_cpuid;
1636 case 1: /* Cache Type. */
1637 return env->cp15.c0_cachetype;
1638 case 2: /* TCM status. */
1639 if (arm_feature(env, ARM_FEATURE_S3C))
1640 return env->cp15.c0_cpuid;
1641 return 0;
1642 case 3: /* TLB type register. */
1643 return 0; /* No lockable TLB entries. */
1644 case 5: /* CPU ID */
1645 return env->cpu_index;
1646 default:
1647 goto bad_reg;
1649 case 1:
1650 if (!arm_feature(env, ARM_FEATURE_V6))
1651 goto bad_reg;
1652 return env->cp15.c0_c1[op2];
1653 case 2:
1654 if (!arm_feature(env, ARM_FEATURE_V6))
1655 goto bad_reg;
1656 return env->cp15.c0_c2[op2];
1657 case 3: case 4: case 5: case 6: case 7:
1658 return 0;
1659 default:
1660 goto bad_reg;
1662 case 1:
1663 /* These registers aren't documented on arm11 cores. However
1664 Linux looks at them anyway. */
1665 if (!arm_feature(env, ARM_FEATURE_V6))
1666 goto bad_reg;
1667 if (crm != 0)
1668 goto bad_reg;
1669 if (!arm_feature(env, ARM_FEATURE_V7))
1670 return 0;
1672 switch (op2) {
1673 case 0:
1674 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1675 case 1:
1676 return env->cp15.c0_clid;
1677 case 7:
1678 return 0;
1680 goto bad_reg;
1681 case 2:
1682 if (op2 != 0 || crm != 0)
1683 goto bad_reg;
1684 return env->cp15.c0_cssel;
1685 default:
1686 goto bad_reg;
1688 case 1: /* System configuration. */
1689 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1690 op2 = 0;
1691 switch (op2) {
1692 case 0: /* Control register. */
1693 return env->cp15.c1_sys;
1694 case 1: /* Auxiliary control register. */
1695 if (arm_feature(env, ARM_FEATURE_XSCALE))
1696 return env->cp15.c1_xscaleauxcr;
1697 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1698 goto bad_reg;
1699 switch (ARM_CPUID(env)) {
1700 case ARM_CPUID_ARM1026:
1701 return 1;
1702 case ARM_CPUID_ARM1136:
1703 case ARM_CPUID_ARM1136_R2:
1704 return 7;
1705 case ARM_CPUID_ARM11MPCORE:
1706 return 1;
1707 case ARM_CPUID_CORTEXA8:
1708 return 2;
1709 default:
1710 goto bad_reg;
1712 case 2: /* Coprocessor access register. */
1713 if (arm_feature(env, ARM_FEATURE_XSCALE))
1714 goto bad_reg;
1715 return env->cp15.c1_coproc;
1716 default:
1717 goto bad_reg;
1719 case 2: /* MMU Page table control / MPU cache control. */
1720 if (arm_feature(env, ARM_FEATURE_MPU)) {
1721 switch (op2) {
1722 case 0:
1723 return env->cp15.c2_data;
1724 break;
1725 case 1:
1726 return env->cp15.c2_insn;
1727 break;
1728 default:
1729 goto bad_reg;
1731 } else {
1732 switch (op2) {
1733 case 0:
1734 return env->cp15.c2_base0;
1735 case 1:
1736 return env->cp15.c2_base1;
1737 case 2:
1738 return env->cp15.c2_control;
1739 default:
1740 goto bad_reg;
1743 case 3: /* MMU Domain access control / MPU write buffer control. */
1744 return env->cp15.c3;
1745 case 4: /* Reserved. */
1746 goto bad_reg;
1747 case 5: /* MMU Fault status / MPU access permission. */
1748 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1749 op2 = 0;
1750 switch (op2) {
1751 case 0:
1752 if (arm_feature(env, ARM_FEATURE_MPU))
1753 return simple_mpu_ap_bits(env->cp15.c5_data);
1754 return env->cp15.c5_data;
1755 case 1:
1756 if (arm_feature(env, ARM_FEATURE_MPU))
1757 return simple_mpu_ap_bits(env->cp15.c5_data);
1758 return env->cp15.c5_insn;
1759 case 2:
1760 if (!arm_feature(env, ARM_FEATURE_MPU))
1761 goto bad_reg;
1762 return env->cp15.c5_data;
1763 case 3:
1764 if (!arm_feature(env, ARM_FEATURE_MPU))
1765 goto bad_reg;
1766 return env->cp15.c5_insn;
1767 default:
1768 goto bad_reg;
1770 case 6: /* MMU Fault address. */
1771 if (arm_feature(env, ARM_FEATURE_MPU)) {
1772 if (crm >= 8)
1773 goto bad_reg;
1774 return env->cp15.c6_region[crm];
1775 } else {
1776 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1777 op2 = 0;
1778 switch (op2) {
1779 case 0:
1780 return env->cp15.c6_data;
1781 case 1:
1782 if (arm_feature(env, ARM_FEATURE_V6)) {
1783 /* Watchpoint Fault Adrress. */
1784 return 0; /* Not implemented. */
1785 } else {
1786 /* Instruction Fault Adrress. */
1787 /* Arm9 doesn't have an IFAR, but implementing it anyway
1788 shouldn't do any harm. */
1789 return env->cp15.c6_insn;
1791 case 2:
1792 if (arm_feature(env, ARM_FEATURE_V6)) {
1793 /* Instruction Fault Adrress. */
1794 return env->cp15.c6_insn;
1795 } else {
1796 goto bad_reg;
1798 default:
1799 goto bad_reg;
1802 case 7: /* Cache control. */
1803 /* FIXME: Should only clear Z flag if destination is r15. */
1804 env->ZF = 0;
1805 return 0;
1806 case 8: /* MMU TLB control. */
1807 goto bad_reg;
1808 case 9: /* Cache lockdown. */
1809 switch (op1) {
1810 case 0: /* L1 cache. */
1811 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1812 return 0;
1813 switch (op2) {
1814 case 0:
1815 return env->cp15.c9_data;
1816 case 1:
1817 return env->cp15.c9_insn;
1818 default:
1819 goto bad_reg;
1821 case 1: /* L2 cache */
1822 if (crm != 0)
1823 goto bad_reg;
1824 /* L2 Lockdown and Auxiliary control. */
1825 return 0;
1826 default:
1827 goto bad_reg;
1829 case 10: /* MMU TLB lockdown. */
1830 /* ??? TLB lockdown not implemented. */
1831 return 0;
1832 case 11: /* TCM DMA control. */
1833 case 12: /* Reserved. */
1834 goto bad_reg;
1835 case 13: /* Process ID. */
1836 switch (op2) {
1837 case 0:
1838 return env->cp15.c13_fcse;
1839 case 1:
1840 return env->cp15.c13_context;
1841 case 2:
1842 return env->cp15.c13_tls1;
1843 case 3:
1844 return env->cp15.c13_tls2;
1845 case 4:
1846 return env->cp15.c13_tls3;
1847 default:
1848 goto bad_reg;
1850 case 14: /* Reserved. */
1851 goto bad_reg;
1852 case 15: /* Implementation specific. */
1853 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1854 if (op2 == 0 && crm == 1)
1855 return env->cp15.c15_cpar;
1857 goto bad_reg;
1859 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1860 switch (crm) {
1861 case 0:
1862 return 0;
1863 case 1: /* Read TI925T configuration. */
1864 return env->cp15.c15_ticonfig;
1865 case 2: /* Read I_max. */
1866 return env->cp15.c15_i_max;
1867 case 3: /* Read I_min. */
1868 return env->cp15.c15_i_min;
1869 case 4: /* Read thread-ID. */
1870 return env->cp15.c15_threadid;
1871 case 8: /* TI925T_status */
1872 return 0;
1874 /* TODO: Peripheral port remap register:
1875 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1876 * controller base address at $rn & ~0xfff and map size of
1877 * 0x200 << ($rn & 0xfff), when MMU is off. */
1878 goto bad_reg;
1880 return 0;
1882 bad_reg:
1883 /* ??? For debugging only. Should raise illegal instruction exception. */
1884 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1885 (insn >> 16) & 0xf, crm, op1, op2);
1886 return 0;
1889 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1891 env->banked_r13[bank_number(mode)] = val;
1894 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1896 return env->banked_r13[bank_number(mode)];
1899 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1901 switch (reg) {
1902 case 0: /* APSR */
1903 return xpsr_read(env) & 0xf8000000;
1904 case 1: /* IAPSR */
1905 return xpsr_read(env) & 0xf80001ff;
1906 case 2: /* EAPSR */
1907 return xpsr_read(env) & 0xff00fc00;
1908 case 3: /* xPSR */
1909 return xpsr_read(env) & 0xff00fdff;
1910 case 5: /* IPSR */
1911 return xpsr_read(env) & 0x000001ff;
1912 case 6: /* EPSR */
1913 return xpsr_read(env) & 0x0700fc00;
1914 case 7: /* IEPSR */
1915 return xpsr_read(env) & 0x0700edff;
1916 case 8: /* MSP */
1917 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1918 case 9: /* PSP */
1919 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1920 case 16: /* PRIMASK */
1921 return (env->uncached_cpsr & CPSR_I) != 0;
1922 case 17: /* FAULTMASK */
1923 return (env->uncached_cpsr & CPSR_F) != 0;
1924 case 18: /* BASEPRI */
1925 case 19: /* BASEPRI_MAX */
1926 return env->v7m.basepri;
1927 case 20: /* CONTROL */
1928 return env->v7m.control;
1929 default:
1930 /* ??? For debugging only. */
1931 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1932 return 0;
1936 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1938 switch (reg) {
1939 case 0: /* APSR */
1940 xpsr_write(env, val, 0xf8000000);
1941 break;
1942 case 1: /* IAPSR */
1943 xpsr_write(env, val, 0xf8000000);
1944 break;
1945 case 2: /* EAPSR */
1946 xpsr_write(env, val, 0xfe00fc00);
1947 break;
1948 case 3: /* xPSR */
1949 xpsr_write(env, val, 0xfe00fc00);
1950 break;
1951 case 5: /* IPSR */
1952 /* IPSR bits are readonly. */
1953 break;
1954 case 6: /* EPSR */
1955 xpsr_write(env, val, 0x0600fc00);
1956 break;
1957 case 7: /* IEPSR */
1958 xpsr_write(env, val, 0x0600fc00);
1959 break;
1960 case 8: /* MSP */
1961 if (env->v7m.current_sp)
1962 env->v7m.other_sp = val;
1963 else
1964 env->regs[13] = val;
1965 break;
1966 case 9: /* PSP */
1967 if (env->v7m.current_sp)
1968 env->regs[13] = val;
1969 else
1970 env->v7m.other_sp = val;
1971 break;
1972 case 16: /* PRIMASK */
1973 if (val & 1)
1974 env->uncached_cpsr |= CPSR_I;
1975 else
1976 env->uncached_cpsr &= ~CPSR_I;
1977 break;
1978 case 17: /* FAULTMASK */
1979 if (val & 1)
1980 env->uncached_cpsr |= CPSR_F;
1981 else
1982 env->uncached_cpsr &= ~CPSR_F;
1983 break;
1984 case 18: /* BASEPRI */
1985 env->v7m.basepri = val & 0xff;
1986 break;
1987 case 19: /* BASEPRI_MAX */
1988 val &= 0xff;
1989 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1990 env->v7m.basepri = val;
1991 break;
1992 case 20: /* CONTROL */
1993 env->v7m.control = val & 3;
1994 switch_v7m_sp(env, (val & 2) != 0);
1995 break;
1996 default:
1997 /* ??? For debugging only. */
1998 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1999 return;
2003 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2004 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2005 void *opaque)
2007 if (cpnum < 0 || cpnum > 14) {
2008 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2009 return;
2012 env->cp[cpnum].cp_read = cp_read;
2013 env->cp[cpnum].cp_write = cp_write;
2014 env->cp[cpnum].opaque = opaque;
2017 #endif
2019 /* Note that signed overflow is undefined in C. The following routines are
2020 careful to use unsigned types where modulo arithmetic is required.
2021 Failure to do so _will_ break on newer gcc. */
2023 /* Signed saturating arithmetic. */
2025 /* Perform 16-bit signed saturating addition. */
2026 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2028 uint16_t res;
2030 res = a + b;
2031 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2032 if (a & 0x8000)
2033 res = 0x8000;
2034 else
2035 res = 0x7fff;
2037 return res;
2040 /* Perform 8-bit signed saturating addition. */
2041 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2043 uint8_t res;
2045 res = a + b;
2046 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2047 if (a & 0x80)
2048 res = 0x80;
2049 else
2050 res = 0x7f;
2052 return res;
2055 /* Perform 16-bit signed saturating subtraction. */
2056 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2058 uint16_t res;
2060 res = a - b;
2061 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2062 if (a & 0x8000)
2063 res = 0x8000;
2064 else
2065 res = 0x7fff;
2067 return res;
2070 /* Perform 8-bit signed saturating subtraction. */
2071 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2073 uint8_t res;
2075 res = a - b;
2076 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2077 if (a & 0x80)
2078 res = 0x80;
2079 else
2080 res = 0x7f;
2082 return res;
2085 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2086 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2087 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2088 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2089 #define PFX q
2091 #include "op_addsub.h"
2093 /* Unsigned saturating arithmetic. */
2094 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2096 uint16_t res;
2097 res = a + b;
2098 if (res < a)
2099 res = 0xffff;
2100 return res;
2103 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2105 if (a < b)
2106 return a - b;
2107 else
2108 return 0;
2111 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2113 uint8_t res;
2114 res = a + b;
2115 if (res < a)
2116 res = 0xff;
2117 return res;
2120 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2122 if (a < b)
2123 return a - b;
2124 else
2125 return 0;
2128 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2129 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2130 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2131 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2132 #define PFX uq
2134 #include "op_addsub.h"
2136 /* Signed modulo arithmetic. */
2137 #define SARITH16(a, b, n, op) do { \
2138 int32_t sum; \
2139 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2140 RESULT(sum, n, 16); \
2141 if (sum >= 0) \
2142 ge |= 3 << (n * 2); \
2143 } while(0)
2145 #define SARITH8(a, b, n, op) do { \
2146 int32_t sum; \
2147 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2148 RESULT(sum, n, 8); \
2149 if (sum >= 0) \
2150 ge |= 1 << n; \
2151 } while(0)
2154 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2155 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2156 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2157 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2158 #define PFX s
2159 #define ARITH_GE
2161 #include "op_addsub.h"
2163 /* Unsigned modulo arithmetic. */
2164 #define ADD16(a, b, n) do { \
2165 uint32_t sum; \
2166 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2167 RESULT(sum, n, 16); \
2168 if ((sum >> 16) == 1) \
2169 ge |= 3 << (n * 2); \
2170 } while(0)
2172 #define ADD8(a, b, n) do { \
2173 uint32_t sum; \
2174 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2175 RESULT(sum, n, 8); \
2176 if ((sum >> 8) == 1) \
2177 ge |= 1 << n; \
2178 } while(0)
2180 #define SUB16(a, b, n) do { \
2181 uint32_t sum; \
2182 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2183 RESULT(sum, n, 16); \
2184 if ((sum >> 16) == 0) \
2185 ge |= 3 << (n * 2); \
2186 } while(0)
2188 #define SUB8(a, b, n) do { \
2189 uint32_t sum; \
2190 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2191 RESULT(sum, n, 8); \
2192 if ((sum >> 8) == 0) \
2193 ge |= 1 << n; \
2194 } while(0)
2196 #define PFX u
2197 #define ARITH_GE
2199 #include "op_addsub.h"
2201 /* Halved signed arithmetic. */
2202 #define ADD16(a, b, n) \
2203 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2204 #define SUB16(a, b, n) \
2205 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2206 #define ADD8(a, b, n) \
2207 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2208 #define SUB8(a, b, n) \
2209 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2210 #define PFX sh
2212 #include "op_addsub.h"
2214 /* Halved unsigned arithmetic. */
2215 #define ADD16(a, b, n) \
2216 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2217 #define SUB16(a, b, n) \
2218 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2219 #define ADD8(a, b, n) \
2220 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2221 #define SUB8(a, b, n) \
2222 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2223 #define PFX uh
2225 #include "op_addsub.h"
2227 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2229 if (a > b)
2230 return a - b;
2231 else
2232 return b - a;
2235 /* Unsigned sum of absolute byte differences. */
2236 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2238 uint32_t sum;
2239 sum = do_usad(a, b);
2240 sum += do_usad(a >> 8, b >> 8);
2241 sum += do_usad(a >> 16, b >>16);
2242 sum += do_usad(a >> 24, b >> 24);
2243 return sum;
2246 /* For ARMv6 SEL instruction. */
2247 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2249 uint32_t mask;
2251 mask = 0;
2252 if (flags & 1)
2253 mask |= 0xff;
2254 if (flags & 2)
2255 mask |= 0xff00;
2256 if (flags & 4)
2257 mask |= 0xff0000;
2258 if (flags & 8)
2259 mask |= 0xff000000;
2260 return (a & mask) | (b & ~mask);
2263 uint32_t HELPER(logicq_cc)(uint64_t val)
2265 return (val >> 32) | (val != 0);
2268 /* VFP support. We follow the convention used for VFP instrunctions:
2269 Single precition routines have a "s" suffix, double precision a
2270 "d" suffix. */
2272 /* Convert host exception flags to vfp form. */
2273 static inline int vfp_exceptbits_from_host(int host_bits)
2275 int target_bits = 0;
2277 if (host_bits & float_flag_invalid)
2278 target_bits |= 1;
2279 if (host_bits & float_flag_divbyzero)
2280 target_bits |= 2;
2281 if (host_bits & float_flag_overflow)
2282 target_bits |= 4;
2283 if (host_bits & float_flag_underflow)
2284 target_bits |= 8;
2285 if (host_bits & float_flag_inexact)
2286 target_bits |= 0x10;
2287 return target_bits;
2290 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2292 int i;
2293 uint32_t fpscr;
2295 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2296 | (env->vfp.vec_len << 16)
2297 | (env->vfp.vec_stride << 20);
2298 i = get_float_exception_flags(&env->vfp.fp_status);
2299 fpscr |= vfp_exceptbits_from_host(i);
2300 return fpscr;
2303 /* Convert vfp exception flags to target form. */
2304 static inline int vfp_exceptbits_to_host(int target_bits)
2306 int host_bits = 0;
2308 if (target_bits & 1)
2309 host_bits |= float_flag_invalid;
2310 if (target_bits & 2)
2311 host_bits |= float_flag_divbyzero;
2312 if (target_bits & 4)
2313 host_bits |= float_flag_overflow;
2314 if (target_bits & 8)
2315 host_bits |= float_flag_underflow;
2316 if (target_bits & 0x10)
2317 host_bits |= float_flag_inexact;
2318 return host_bits;
2321 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2323 int i;
2324 uint32_t changed;
2326 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2327 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2328 env->vfp.vec_len = (val >> 16) & 7;
2329 env->vfp.vec_stride = (val >> 20) & 3;
2331 changed ^= val;
2332 if (changed & (3 << 22)) {
2333 i = (val >> 22) & 3;
2334 switch (i) {
2335 case 0:
2336 i = float_round_nearest_even;
2337 break;
2338 case 1:
2339 i = float_round_up;
2340 break;
2341 case 2:
2342 i = float_round_down;
2343 break;
2344 case 3:
2345 i = float_round_to_zero;
2346 break;
2348 set_float_rounding_mode(i, &env->vfp.fp_status);
2350 if (changed & (1 << 24))
2351 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2352 if (changed & (1 << 25))
2353 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2355 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2356 set_float_exception_flags(i, &env->vfp.fp_status);
2359 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2361 #define VFP_BINOP(name) \
2362 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2364 return float32_ ## name (a, b, &env->vfp.fp_status); \
2366 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2368 return float64_ ## name (a, b, &env->vfp.fp_status); \
2370 VFP_BINOP(add)
2371 VFP_BINOP(sub)
2372 VFP_BINOP(mul)
2373 VFP_BINOP(div)
2374 #undef VFP_BINOP
2376 float32 VFP_HELPER(neg, s)(float32 a)
2378 return float32_chs(a);
2381 float64 VFP_HELPER(neg, d)(float64 a)
2383 return float64_chs(a);
2386 float32 VFP_HELPER(abs, s)(float32 a)
2388 return float32_abs(a);
2391 float64 VFP_HELPER(abs, d)(float64 a)
2393 return float64_abs(a);
2396 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2398 return float32_sqrt(a, &env->vfp.fp_status);
2401 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2403 return float64_sqrt(a, &env->vfp.fp_status);
2406 /* XXX: check quiet/signaling case */
2407 #define DO_VFP_cmp(p, type) \
2408 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2410 uint32_t flags; \
2411 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2412 case 0: flags = 0x6; break; \
2413 case -1: flags = 0x8; break; \
2414 case 1: flags = 0x2; break; \
2415 default: case 2: flags = 0x3; break; \
2417 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2418 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2420 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2422 uint32_t flags; \
2423 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2424 case 0: flags = 0x6; break; \
2425 case -1: flags = 0x8; break; \
2426 case 1: flags = 0x2; break; \
2427 default: case 2: flags = 0x3; break; \
2429 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2430 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2432 DO_VFP_cmp(s, float32)
2433 DO_VFP_cmp(d, float64)
2434 #undef DO_VFP_cmp
2436 /* Helper routines to perform bitwise copies between float and int. */
2437 static inline float32 vfp_itos(uint32_t i)
2439 union {
2440 uint32_t i;
2441 float32 s;
2442 } v;
2444 v.i = i;
2445 return v.s;
2448 static inline uint32_t vfp_stoi(float32 s)
2450 union {
2451 uint32_t i;
2452 float32 s;
2453 } v;
2455 v.s = s;
2456 return v.i;
2459 static inline float64 vfp_itod(uint64_t i)
2461 union {
2462 uint64_t i;
2463 float64 d;
2464 } v;
2466 v.i = i;
2467 return v.d;
2470 static inline uint64_t vfp_dtoi(float64 d)
2472 union {
2473 uint64_t i;
2474 float64 d;
2475 } v;
2477 v.d = d;
2478 return v.i;
2481 /* Integer to float conversion. */
2482 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2484 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2487 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2489 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2492 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2494 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2497 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2499 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2502 /* Float to integer conversion. */
2503 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2505 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2508 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2510 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2513 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2515 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2518 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2520 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2523 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2525 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2528 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2530 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2533 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2535 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2538 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2540 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2543 /* floating point conversion */
2544 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2546 return float32_to_float64(x, &env->vfp.fp_status);
2549 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2551 return float64_to_float32(x, &env->vfp.fp_status);
2554 /* VFP3 fixed point conversion. */
2555 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2556 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2558 ftype tmp; \
2559 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2560 &env->vfp.fp_status); \
2561 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2563 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2565 ftype tmp; \
2566 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2567 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2568 &env->vfp.fp_status)); \
2571 VFP_CONV_FIX(sh, d, float64, int16, )
2572 VFP_CONV_FIX(sl, d, float64, int32, )
2573 VFP_CONV_FIX(uh, d, float64, uint16, u)
2574 VFP_CONV_FIX(ul, d, float64, uint32, u)
2575 VFP_CONV_FIX(sh, s, float32, int16, )
2576 VFP_CONV_FIX(sl, s, float32, int32, )
2577 VFP_CONV_FIX(uh, s, float32, uint16, u)
2578 VFP_CONV_FIX(ul, s, float32, uint32, u)
2579 #undef VFP_CONV_FIX
2581 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2583 float_status *s = &env->vfp.fp_status;
2584 float32 two = int32_to_float32(2, s);
2585 return float32_sub(two, float32_mul(a, b, s), s);
2588 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2590 float_status *s = &env->vfp.fp_status;
2591 float32 three = int32_to_float32(3, s);
2592 return float32_sub(three, float32_mul(a, b, s), s);
2595 /* NEON helpers. */
2597 /* TODO: The architecture specifies the value that the estimate functions
2598 should return. We return the exact reciprocal/root instead. */
2599 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2601 float_status *s = &env->vfp.fp_status;
2602 float32 one = int32_to_float32(1, s);
2603 return float32_div(one, a, s);
2606 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2608 float_status *s = &env->vfp.fp_status;
2609 float32 one = int32_to_float32(1, s);
2610 return float32_div(one, float32_sqrt(a, s), s);
2613 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2615 float_status *s = &env->vfp.fp_status;
2616 float32 tmp;
2617 tmp = int32_to_float32(a, s);
2618 tmp = float32_scalbn(tmp, -32, s);
2619 tmp = helper_recpe_f32(tmp, env);
2620 tmp = float32_scalbn(tmp, 31, s);
2621 return float32_to_int32(tmp, s);
2624 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2626 float_status *s = &env->vfp.fp_status;
2627 float32 tmp;
2628 tmp = int32_to_float32(a, s);
2629 tmp = float32_scalbn(tmp, -32, s);
2630 tmp = helper_rsqrte_f32(tmp, env);
2631 tmp = float32_scalbn(tmp, 31, s);
2632 return float32_to_int32(tmp, s);
2635 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2637 val &= 1;
2638 if (env->teecr != val) {
2639 env->teecr = val;
2640 tb_flush(env);