Remove redundant cirrus vga ram functions.
[qemu/mini2440.git] / target-i386 / kvm.c
blob2de8b81296f5ed82778bdd45dfedc8c2315e2e3b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
27 //#define DEBUG_KVM
29 #ifdef DEBUG_KVM
30 #define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32 #else
33 #define dprintf(fmt, ...) \
34 do { } while (0)
35 #endif
37 int kvm_arch_init_vcpu(CPUState *env)
39 struct {
40 struct kvm_cpuid2 cpuid;
41 struct kvm_cpuid_entry2 entries[100];
42 } __attribute__((packed)) cpuid_data;
43 uint32_t limit, i, j, cpuid_i;
44 uint32_t unused;
46 cpuid_i = 0;
48 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
50 for (i = 0; i <= limit; i++) {
51 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
53 switch (i) {
54 case 2: {
55 /* Keep reading function 2 till all the input is received */
56 int times;
58 c->function = i;
59 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
60 KVM_CPUID_FLAG_STATE_READ_NEXT;
61 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
62 times = c->eax & 0xff;
64 for (j = 1; j < times; ++j) {
65 c = &cpuid_data.entries[cpuid_i++];
66 c->function = i;
67 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
68 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
70 break;
72 case 4:
73 case 0xb:
74 case 0xd:
75 for (j = 0; ; j++) {
76 c->function = i;
77 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
78 c->index = j;
79 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
81 if (i == 4 && c->eax == 0)
82 break;
83 if (i == 0xb && !(c->ecx & 0xff00))
84 break;
85 if (i == 0xd && c->eax == 0)
86 break;
88 c = &cpuid_data.entries[cpuid_i++];
90 break;
91 default:
92 c->function = i;
93 c->flags = 0;
94 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
95 break;
98 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
100 for (i = 0x80000000; i <= limit; i++) {
101 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
103 c->function = i;
104 c->flags = 0;
105 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
108 cpuid_data.cpuid.nent = cpuid_i;
110 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
113 static int kvm_has_msr_star(CPUState *env)
115 static int has_msr_star;
116 int ret;
118 /* first time */
119 if (has_msr_star == 0) {
120 struct kvm_msr_list msr_list, *kvm_msr_list;
122 has_msr_star = -1;
124 /* Obtain MSR list from KVM. These are the MSRs that we must
125 * save/restore */
126 msr_list.nmsrs = 0;
127 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
128 if (ret < 0)
129 return 0;
131 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
132 msr_list.nmsrs * sizeof(msr_list.indices[0]));
134 kvm_msr_list->nmsrs = msr_list.nmsrs;
135 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
136 if (ret >= 0) {
137 int i;
139 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
140 if (kvm_msr_list->indices[i] == MSR_STAR) {
141 has_msr_star = 1;
142 break;
147 free(kvm_msr_list);
150 if (has_msr_star == 1)
151 return 1;
152 return 0;
155 int kvm_arch_init(KVMState *s, int smp_cpus)
157 int ret;
159 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
160 * directly. In order to use vm86 mode, a TSS is needed. Since this
161 * must be part of guest physical memory, we need to allocate it. Older
162 * versions of KVM just assumed that it would be at the end of physical
163 * memory but that doesn't work with more than 4GB of memory. We simply
164 * refuse to work with those older versions of KVM. */
165 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
166 if (ret <= 0) {
167 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
168 return ret;
171 /* this address is 3 pages before the bios, and the bios should present
172 * as unavaible memory. FIXME, need to ensure the e820 map deals with
173 * this?
175 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
178 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
180 lhs->selector = rhs->selector;
181 lhs->base = rhs->base;
182 lhs->limit = rhs->limit;
183 lhs->type = 3;
184 lhs->present = 1;
185 lhs->dpl = 3;
186 lhs->db = 0;
187 lhs->s = 1;
188 lhs->l = 0;
189 lhs->g = 0;
190 lhs->avl = 0;
191 lhs->unusable = 0;
194 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
196 unsigned flags = rhs->flags;
197 lhs->selector = rhs->selector;
198 lhs->base = rhs->base;
199 lhs->limit = rhs->limit;
200 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
201 lhs->present = (flags & DESC_P_MASK) != 0;
202 lhs->dpl = rhs->selector & 3;
203 lhs->db = (flags >> DESC_B_SHIFT) & 1;
204 lhs->s = (flags & DESC_S_MASK) != 0;
205 lhs->l = (flags >> DESC_L_SHIFT) & 1;
206 lhs->g = (flags & DESC_G_MASK) != 0;
207 lhs->avl = (flags & DESC_AVL_MASK) != 0;
208 lhs->unusable = 0;
211 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
213 lhs->selector = rhs->selector;
214 lhs->base = rhs->base;
215 lhs->limit = rhs->limit;
216 lhs->flags =
217 (rhs->type << DESC_TYPE_SHIFT)
218 | (rhs->present * DESC_P_MASK)
219 | (rhs->dpl << DESC_DPL_SHIFT)
220 | (rhs->db << DESC_B_SHIFT)
221 | (rhs->s * DESC_S_MASK)
222 | (rhs->l << DESC_L_SHIFT)
223 | (rhs->g * DESC_G_MASK)
224 | (rhs->avl * DESC_AVL_MASK);
227 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
229 if (set)
230 *kvm_reg = *qemu_reg;
231 else
232 *qemu_reg = *kvm_reg;
235 static int kvm_getput_regs(CPUState *env, int set)
237 struct kvm_regs regs;
238 int ret = 0;
240 if (!set) {
241 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
242 if (ret < 0)
243 return ret;
246 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
247 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
248 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
249 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
250 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
251 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
252 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
253 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
254 #ifdef TARGET_X86_64
255 kvm_getput_reg(&regs.r8, &env->regs[8], set);
256 kvm_getput_reg(&regs.r9, &env->regs[9], set);
257 kvm_getput_reg(&regs.r10, &env->regs[10], set);
258 kvm_getput_reg(&regs.r11, &env->regs[11], set);
259 kvm_getput_reg(&regs.r12, &env->regs[12], set);
260 kvm_getput_reg(&regs.r13, &env->regs[13], set);
261 kvm_getput_reg(&regs.r14, &env->regs[14], set);
262 kvm_getput_reg(&regs.r15, &env->regs[15], set);
263 #endif
265 kvm_getput_reg(&regs.rflags, &env->eflags, set);
266 kvm_getput_reg(&regs.rip, &env->eip, set);
268 if (set)
269 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
271 return ret;
274 static int kvm_put_fpu(CPUState *env)
276 struct kvm_fpu fpu;
277 int i;
279 memset(&fpu, 0, sizeof fpu);
280 fpu.fsw = env->fpus & ~(7 << 11);
281 fpu.fsw |= (env->fpstt & 7) << 11;
282 fpu.fcw = env->fpuc;
283 for (i = 0; i < 8; ++i)
284 fpu.ftwx |= (!env->fptags[i]) << i;
285 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
286 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
287 fpu.mxcsr = env->mxcsr;
289 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
292 static int kvm_put_sregs(CPUState *env)
294 struct kvm_sregs sregs;
296 memcpy(sregs.interrupt_bitmap,
297 env->interrupt_bitmap,
298 sizeof(sregs.interrupt_bitmap));
300 if ((env->eflags & VM_MASK)) {
301 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
302 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
303 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
304 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
305 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
306 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
307 } else {
308 set_seg(&sregs.cs, &env->segs[R_CS]);
309 set_seg(&sregs.ds, &env->segs[R_DS]);
310 set_seg(&sregs.es, &env->segs[R_ES]);
311 set_seg(&sregs.fs, &env->segs[R_FS]);
312 set_seg(&sregs.gs, &env->segs[R_GS]);
313 set_seg(&sregs.ss, &env->segs[R_SS]);
315 if (env->cr[0] & CR0_PE_MASK) {
316 /* force ss cpl to cs cpl */
317 sregs.ss.selector = (sregs.ss.selector & ~3) |
318 (sregs.cs.selector & 3);
319 sregs.ss.dpl = sregs.ss.selector & 3;
323 set_seg(&sregs.tr, &env->tr);
324 set_seg(&sregs.ldt, &env->ldt);
326 sregs.idt.limit = env->idt.limit;
327 sregs.idt.base = env->idt.base;
328 sregs.gdt.limit = env->gdt.limit;
329 sregs.gdt.base = env->gdt.base;
331 sregs.cr0 = env->cr[0];
332 sregs.cr2 = env->cr[2];
333 sregs.cr3 = env->cr[3];
334 sregs.cr4 = env->cr[4];
336 sregs.cr8 = cpu_get_apic_tpr(env);
337 sregs.apic_base = cpu_get_apic_base(env);
339 sregs.efer = env->efer;
341 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
344 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
345 uint32_t index, uint64_t value)
347 entry->index = index;
348 entry->data = value;
351 static int kvm_put_msrs(CPUState *env)
353 struct {
354 struct kvm_msrs info;
355 struct kvm_msr_entry entries[100];
356 } msr_data;
357 struct kvm_msr_entry *msrs = msr_data.entries;
358 int n = 0;
360 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
361 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
362 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
363 if (kvm_has_msr_star(env))
364 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
365 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
366 #ifdef TARGET_X86_64
367 /* FIXME if lm capable */
368 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
369 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
370 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
371 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
372 #endif
373 msr_data.info.nmsrs = n;
375 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
380 static int kvm_get_fpu(CPUState *env)
382 struct kvm_fpu fpu;
383 int i, ret;
385 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
386 if (ret < 0)
387 return ret;
389 env->fpstt = (fpu.fsw >> 11) & 7;
390 env->fpus = fpu.fsw;
391 env->fpuc = fpu.fcw;
392 for (i = 0; i < 8; ++i)
393 env->fptags[i] = !((fpu.ftwx >> i) & 1);
394 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
395 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
396 env->mxcsr = fpu.mxcsr;
398 return 0;
401 static int kvm_get_sregs(CPUState *env)
403 struct kvm_sregs sregs;
404 uint32_t hflags;
405 int ret;
407 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
408 if (ret < 0)
409 return ret;
411 memcpy(env->interrupt_bitmap,
412 sregs.interrupt_bitmap,
413 sizeof(sregs.interrupt_bitmap));
415 get_seg(&env->segs[R_CS], &sregs.cs);
416 get_seg(&env->segs[R_DS], &sregs.ds);
417 get_seg(&env->segs[R_ES], &sregs.es);
418 get_seg(&env->segs[R_FS], &sregs.fs);
419 get_seg(&env->segs[R_GS], &sregs.gs);
420 get_seg(&env->segs[R_SS], &sregs.ss);
422 get_seg(&env->tr, &sregs.tr);
423 get_seg(&env->ldt, &sregs.ldt);
425 env->idt.limit = sregs.idt.limit;
426 env->idt.base = sregs.idt.base;
427 env->gdt.limit = sregs.gdt.limit;
428 env->gdt.base = sregs.gdt.base;
430 env->cr[0] = sregs.cr0;
431 env->cr[2] = sregs.cr2;
432 env->cr[3] = sregs.cr3;
433 env->cr[4] = sregs.cr4;
435 cpu_set_apic_base(env, sregs.apic_base);
437 env->efer = sregs.efer;
438 //cpu_set_apic_tpr(env, sregs.cr8);
440 #define HFLAG_COPY_MASK ~( \
441 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
442 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
443 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
444 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
448 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
449 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
450 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
451 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
452 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
453 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
454 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
456 if (env->efer & MSR_EFER_LMA) {
457 hflags |= HF_LMA_MASK;
460 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
461 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
462 } else {
463 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
464 (DESC_B_SHIFT - HF_CS32_SHIFT);
465 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
466 (DESC_B_SHIFT - HF_SS32_SHIFT);
467 if (!(env->cr[0] & CR0_PE_MASK) ||
468 (env->eflags & VM_MASK) ||
469 !(hflags & HF_CS32_MASK)) {
470 hflags |= HF_ADDSEG_MASK;
471 } else {
472 hflags |= ((env->segs[R_DS].base |
473 env->segs[R_ES].base |
474 env->segs[R_SS].base) != 0) <<
475 HF_ADDSEG_SHIFT;
478 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
480 return 0;
483 static int kvm_get_msrs(CPUState *env)
485 struct {
486 struct kvm_msrs info;
487 struct kvm_msr_entry entries[100];
488 } msr_data;
489 struct kvm_msr_entry *msrs = msr_data.entries;
490 int ret, i, n;
492 n = 0;
493 msrs[n++].index = MSR_IA32_SYSENTER_CS;
494 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
495 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
496 if (kvm_has_msr_star(env))
497 msrs[n++].index = MSR_STAR;
498 msrs[n++].index = MSR_IA32_TSC;
499 #ifdef TARGET_X86_64
500 /* FIXME lm_capable_kernel */
501 msrs[n++].index = MSR_CSTAR;
502 msrs[n++].index = MSR_KERNELGSBASE;
503 msrs[n++].index = MSR_FMASK;
504 msrs[n++].index = MSR_LSTAR;
505 #endif
506 msr_data.info.nmsrs = n;
507 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
508 if (ret < 0)
509 return ret;
511 for (i = 0; i < ret; i++) {
512 switch (msrs[i].index) {
513 case MSR_IA32_SYSENTER_CS:
514 env->sysenter_cs = msrs[i].data;
515 break;
516 case MSR_IA32_SYSENTER_ESP:
517 env->sysenter_esp = msrs[i].data;
518 break;
519 case MSR_IA32_SYSENTER_EIP:
520 env->sysenter_eip = msrs[i].data;
521 break;
522 case MSR_STAR:
523 env->star = msrs[i].data;
524 break;
525 #ifdef TARGET_X86_64
526 case MSR_CSTAR:
527 env->cstar = msrs[i].data;
528 break;
529 case MSR_KERNELGSBASE:
530 env->kernelgsbase = msrs[i].data;
531 break;
532 case MSR_FMASK:
533 env->fmask = msrs[i].data;
534 break;
535 case MSR_LSTAR:
536 env->lstar = msrs[i].data;
537 break;
538 #endif
539 case MSR_IA32_TSC:
540 env->tsc = msrs[i].data;
541 break;
545 return 0;
548 int kvm_arch_put_registers(CPUState *env)
550 int ret;
552 ret = kvm_getput_regs(env, 1);
553 if (ret < 0)
554 return ret;
556 ret = kvm_put_fpu(env);
557 if (ret < 0)
558 return ret;
560 ret = kvm_put_sregs(env);
561 if (ret < 0)
562 return ret;
564 ret = kvm_put_msrs(env);
565 if (ret < 0)
566 return ret;
568 return 0;
571 int kvm_arch_get_registers(CPUState *env)
573 int ret;
575 ret = kvm_getput_regs(env, 0);
576 if (ret < 0)
577 return ret;
579 ret = kvm_get_fpu(env);
580 if (ret < 0)
581 return ret;
583 ret = kvm_get_sregs(env);
584 if (ret < 0)
585 return ret;
587 ret = kvm_get_msrs(env);
588 if (ret < 0)
589 return ret;
591 return 0;
594 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
596 /* Try to inject an interrupt if the guest can accept it */
597 if (run->ready_for_interrupt_injection &&
598 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
599 (env->eflags & IF_MASK)) {
600 int irq;
602 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
603 irq = cpu_get_pic_interrupt(env);
604 if (irq >= 0) {
605 struct kvm_interrupt intr;
606 intr.irq = irq;
607 /* FIXME: errors */
608 dprintf("injected interrupt %d\n", irq);
609 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
613 /* If we have an interrupt but the guest is not ready to receive an
614 * interrupt, request an interrupt window exit. This will
615 * cause a return to userspace as soon as the guest is ready to
616 * receive interrupts. */
617 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
618 run->request_interrupt_window = 1;
619 else
620 run->request_interrupt_window = 0;
622 dprintf("setting tpr\n");
623 run->cr8 = cpu_get_apic_tpr(env);
625 return 0;
628 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
630 if (run->if_flag)
631 env->eflags |= IF_MASK;
632 else
633 env->eflags &= ~IF_MASK;
635 cpu_set_apic_tpr(env, run->cr8);
636 cpu_set_apic_base(env, run->apic_base);
638 return 0;
641 static int kvm_handle_halt(CPUState *env)
643 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
644 (env->eflags & IF_MASK)) &&
645 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
646 env->halted = 1;
647 env->exception_index = EXCP_HLT;
648 return 0;
651 return 1;
654 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
656 int ret = 0;
658 switch (run->exit_reason) {
659 case KVM_EXIT_HLT:
660 dprintf("handle_hlt\n");
661 ret = kvm_handle_halt(env);
662 break;
665 return ret;
668 #ifdef KVM_CAP_SET_GUEST_DEBUG
669 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
671 const static uint8_t int3 = 0xcc;
673 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
674 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
675 return -EINVAL;
676 return 0;
679 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
681 uint8_t int3;
683 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
684 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
685 return -EINVAL;
686 return 0;
689 static struct {
690 target_ulong addr;
691 int len;
692 int type;
693 } hw_breakpoint[4];
695 static int nb_hw_breakpoint;
697 static int find_hw_breakpoint(target_ulong addr, int len, int type)
699 int n;
701 for (n = 0; n < nb_hw_breakpoint; n++)
702 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
703 (hw_breakpoint[n].len == len || len == -1))
704 return n;
705 return -1;
708 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
709 target_ulong len, int type)
711 switch (type) {
712 case GDB_BREAKPOINT_HW:
713 len = 1;
714 break;
715 case GDB_WATCHPOINT_WRITE:
716 case GDB_WATCHPOINT_ACCESS:
717 switch (len) {
718 case 1:
719 break;
720 case 2:
721 case 4:
722 case 8:
723 if (addr & (len - 1))
724 return -EINVAL;
725 break;
726 default:
727 return -EINVAL;
729 break;
730 default:
731 return -ENOSYS;
734 if (nb_hw_breakpoint == 4)
735 return -ENOBUFS;
737 if (find_hw_breakpoint(addr, len, type) >= 0)
738 return -EEXIST;
740 hw_breakpoint[nb_hw_breakpoint].addr = addr;
741 hw_breakpoint[nb_hw_breakpoint].len = len;
742 hw_breakpoint[nb_hw_breakpoint].type = type;
743 nb_hw_breakpoint++;
745 return 0;
748 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
749 target_ulong len, int type)
751 int n;
753 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
754 if (n < 0)
755 return -ENOENT;
757 nb_hw_breakpoint--;
758 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
760 return 0;
763 void kvm_arch_remove_all_hw_breakpoints(void)
765 nb_hw_breakpoint = 0;
768 static CPUWatchpoint hw_watchpoint;
770 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
772 int handle = 0;
773 int n;
775 if (arch_info->exception == 1) {
776 if (arch_info->dr6 & (1 << 14)) {
777 if (cpu_single_env->singlestep_enabled)
778 handle = 1;
779 } else {
780 for (n = 0; n < 4; n++)
781 if (arch_info->dr6 & (1 << n))
782 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
783 case 0x0:
784 handle = 1;
785 break;
786 case 0x1:
787 handle = 1;
788 cpu_single_env->watchpoint_hit = &hw_watchpoint;
789 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
790 hw_watchpoint.flags = BP_MEM_WRITE;
791 break;
792 case 0x3:
793 handle = 1;
794 cpu_single_env->watchpoint_hit = &hw_watchpoint;
795 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
796 hw_watchpoint.flags = BP_MEM_ACCESS;
797 break;
800 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
801 handle = 1;
803 if (!handle)
804 kvm_update_guest_debug(cpu_single_env,
805 (arch_info->exception == 1) ?
806 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
808 return handle;
811 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
813 const uint8_t type_code[] = {
814 [GDB_BREAKPOINT_HW] = 0x0,
815 [GDB_WATCHPOINT_WRITE] = 0x1,
816 [GDB_WATCHPOINT_ACCESS] = 0x3
818 const uint8_t len_code[] = {
819 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
821 int n;
823 if (kvm_sw_breakpoints_active(env))
824 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
826 if (nb_hw_breakpoint > 0) {
827 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
828 dbg->arch.debugreg[7] = 0x0600;
829 for (n = 0; n < nb_hw_breakpoint; n++) {
830 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
831 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
832 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
833 (len_code[hw_breakpoint[n].len] << (18 + n*4));
837 #endif /* KVM_CAP_SET_GUEST_DEBUG */