Remove reserved registers from tcg_target_reg_alloc_order
[qemu/mini2440.git] / cpu-exec.c
blob611f1eab2e1c091802778bb2a6bd59e04ea7d767
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23 #include "tcg.h"
24 #include "kvm.h"
26 #if !defined(CONFIG_SOFTMMU)
27 #undef EAX
28 #undef ECX
29 #undef EDX
30 #undef EBX
31 #undef ESP
32 #undef EBP
33 #undef ESI
34 #undef EDI
35 #undef EIP
36 #include <signal.h>
37 #ifdef __linux__
38 #include <sys/ucontext.h>
39 #endif
40 #endif
42 #if defined(__sparc__) && !defined(HOST_SOLARIS)
43 // Work around ugly bugs in glibc that mangle global register contents
44 #undef env
45 #define env cpu_single_env
46 #endif
48 int tb_invalidated_flag;
50 //#define DEBUG_EXEC
51 //#define DEBUG_SIGNAL
53 void cpu_loop_exit(void)
55 /* NOTE: the register at this point must be saved by hand because
56 longjmp restore them */
57 regs_to_env();
58 longjmp(env->jmp_env, 1);
61 /* exit the current TB from a signal handler. The host registers are
62 restored in a state compatible with the CPU emulator
64 void cpu_resume_from_signal(CPUState *env1, void *puc)
66 #if !defined(CONFIG_SOFTMMU)
67 #ifdef __linux__
68 struct ucontext *uc = puc;
69 #elif defined(__OpenBSD__)
70 struct sigcontext *uc = puc;
71 #endif
72 #endif
74 env = env1;
76 /* XXX: restore cpu registers saved in host registers */
78 #if !defined(CONFIG_SOFTMMU)
79 if (puc) {
80 /* XXX: use siglongjmp ? */
81 #ifdef __linux__
82 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
83 #elif defined(__OpenBSD__)
84 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
85 #endif
87 #endif
88 env->exception_index = -1;
89 longjmp(env->jmp_env, 1);
92 /* Execute the code without caching the generated code. An interpreter
93 could be used if available. */
94 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
96 unsigned long next_tb;
97 TranslationBlock *tb;
99 /* Should never happen.
100 We only end up here when an existing TB is too long. */
101 if (max_cycles > CF_COUNT_MASK)
102 max_cycles = CF_COUNT_MASK;
104 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
105 max_cycles);
106 env->current_tb = tb;
107 /* execute the generated code */
108 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
110 if ((next_tb & 3) == 2) {
111 /* Restore PC. This may happen if async event occurs before
112 the TB starts executing. */
113 cpu_pc_from_tb(env, tb);
115 tb_phys_invalidate(tb, -1);
116 tb_free(tb);
119 static TranslationBlock *tb_find_slow(target_ulong pc,
120 target_ulong cs_base,
121 uint64_t flags)
123 TranslationBlock *tb, **ptb1;
124 unsigned int h;
125 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
127 tb_invalidated_flag = 0;
129 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
131 /* find translated block using physical mappings */
132 phys_pc = get_phys_addr_code(env, pc);
133 phys_page1 = phys_pc & TARGET_PAGE_MASK;
134 phys_page2 = -1;
135 h = tb_phys_hash_func(phys_pc);
136 ptb1 = &tb_phys_hash[h];
137 for(;;) {
138 tb = *ptb1;
139 if (!tb)
140 goto not_found;
141 if (tb->pc == pc &&
142 tb->page_addr[0] == phys_page1 &&
143 tb->cs_base == cs_base &&
144 tb->flags == flags) {
145 /* check next page if needed */
146 if (tb->page_addr[1] != -1) {
147 virt_page2 = (pc & TARGET_PAGE_MASK) +
148 TARGET_PAGE_SIZE;
149 phys_page2 = get_phys_addr_code(env, virt_page2);
150 if (tb->page_addr[1] == phys_page2)
151 goto found;
152 } else {
153 goto found;
156 ptb1 = &tb->phys_hash_next;
158 not_found:
159 /* if no translated code available, then translate it now */
160 tb = tb_gen_code(env, pc, cs_base, flags, 0);
162 found:
163 /* we add the TB in the virtual pc hash table */
164 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
165 return tb;
168 static inline TranslationBlock *tb_find_fast(void)
170 TranslationBlock *tb;
171 target_ulong cs_base, pc;
172 int flags;
174 /* we record a subset of the CPU state. It will
175 always be the same before a given translated block
176 is executed. */
177 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
178 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
179 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
180 tb->flags != flags)) {
181 tb = tb_find_slow(pc, cs_base, flags);
183 return tb;
186 static CPUDebugExcpHandler *debug_excp_handler;
188 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
190 CPUDebugExcpHandler *old_handler = debug_excp_handler;
192 debug_excp_handler = handler;
193 return old_handler;
196 static void cpu_handle_debug_exception(CPUState *env)
198 CPUWatchpoint *wp;
200 if (!env->watchpoint_hit)
201 TAILQ_FOREACH(wp, &env->watchpoints, entry)
202 wp->flags &= ~BP_WATCHPOINT_HIT;
204 if (debug_excp_handler)
205 debug_excp_handler(env);
208 /* main execution loop */
210 int cpu_exec(CPUState *env1)
212 #define DECLARE_HOST_REGS 1
213 #include "hostregs_helper.h"
214 int ret, interrupt_request;
215 TranslationBlock *tb;
216 uint8_t *tc_ptr;
217 unsigned long next_tb;
219 if (cpu_halted(env1) == EXCP_HALTED)
220 return EXCP_HALTED;
222 cpu_single_env = env1;
224 /* first we save global registers */
225 #define SAVE_HOST_REGS 1
226 #include "hostregs_helper.h"
227 env = env1;
229 env_to_regs();
230 #if defined(TARGET_I386)
231 /* put eflags in CPU temporary format */
232 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
233 DF = 1 - (2 * ((env->eflags >> 10) & 1));
234 CC_OP = CC_OP_EFLAGS;
235 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
236 #elif defined(TARGET_SPARC)
237 #elif defined(TARGET_M68K)
238 env->cc_op = CC_OP_FLAGS;
239 env->cc_dest = env->sr & 0xf;
240 env->cc_x = (env->sr >> 4) & 1;
241 #elif defined(TARGET_ALPHA)
242 #elif defined(TARGET_ARM)
243 #elif defined(TARGET_PPC)
244 #elif defined(TARGET_MIPS)
245 #elif defined(TARGET_SH4)
246 #elif defined(TARGET_CRIS)
247 /* XXXXX */
248 #else
249 #error unsupported target CPU
250 #endif
251 env->exception_index = -1;
253 /* prepare setjmp context for exception handling */
254 for(;;) {
255 if (setjmp(env->jmp_env) == 0) {
256 #if defined(__sparc__) && !defined(HOST_SOLARIS)
257 #undef env
258 env = cpu_single_env;
259 #define env cpu_single_env
260 #endif
261 env->current_tb = NULL;
262 /* if an exception is pending, we execute it here */
263 if (env->exception_index >= 0) {
264 if (env->exception_index >= EXCP_INTERRUPT) {
265 /* exit request from the cpu execution loop */
266 ret = env->exception_index;
267 if (ret == EXCP_DEBUG)
268 cpu_handle_debug_exception(env);
269 break;
270 } else {
271 #if defined(CONFIG_USER_ONLY)
272 /* if user mode only, we simulate a fake exception
273 which will be handled outside the cpu execution
274 loop */
275 #if defined(TARGET_I386)
276 do_interrupt_user(env->exception_index,
277 env->exception_is_int,
278 env->error_code,
279 env->exception_next_eip);
280 /* successfully delivered */
281 env->old_exception = -1;
282 #endif
283 ret = env->exception_index;
284 break;
285 #else
286 #if defined(TARGET_I386)
287 /* simulate a real cpu exception. On i386, it can
288 trigger new exceptions, but we do not handle
289 double or triple faults yet. */
290 do_interrupt(env->exception_index,
291 env->exception_is_int,
292 env->error_code,
293 env->exception_next_eip, 0);
294 /* successfully delivered */
295 env->old_exception = -1;
296 #elif defined(TARGET_PPC)
297 do_interrupt(env);
298 #elif defined(TARGET_MIPS)
299 do_interrupt(env);
300 #elif defined(TARGET_SPARC)
301 do_interrupt(env);
302 #elif defined(TARGET_ARM)
303 do_interrupt(env);
304 #elif defined(TARGET_SH4)
305 do_interrupt(env);
306 #elif defined(TARGET_ALPHA)
307 do_interrupt(env);
308 #elif defined(TARGET_CRIS)
309 do_interrupt(env);
310 #elif defined(TARGET_M68K)
311 do_interrupt(0);
312 #endif
313 #endif
315 env->exception_index = -1;
317 #ifdef USE_KQEMU
318 if (kqemu_is_ok(env) && env->interrupt_request == 0 && env->exit_request == 0) {
319 int ret;
320 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
321 ret = kqemu_cpu_exec(env);
322 /* put eflags in CPU temporary format */
323 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324 DF = 1 - (2 * ((env->eflags >> 10) & 1));
325 CC_OP = CC_OP_EFLAGS;
326 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327 if (ret == 1) {
328 /* exception */
329 longjmp(env->jmp_env, 1);
330 } else if (ret == 2) {
331 /* softmmu execution needed */
332 } else {
333 if (env->interrupt_request != 0 || env->exit_request != 0) {
334 /* hardware interrupt will be executed just after */
335 } else {
336 /* otherwise, we restart */
337 longjmp(env->jmp_env, 1);
341 #endif
343 if (kvm_enabled()) {
344 kvm_cpu_exec(env);
345 longjmp(env->jmp_env, 1);
348 next_tb = 0; /* force lookup of first TB */
349 for(;;) {
350 interrupt_request = env->interrupt_request;
351 if (unlikely(interrupt_request)) {
352 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
353 /* Mask out external interrupts for this step. */
354 interrupt_request &= ~(CPU_INTERRUPT_HARD |
355 CPU_INTERRUPT_FIQ |
356 CPU_INTERRUPT_SMI |
357 CPU_INTERRUPT_NMI);
359 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
360 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
361 env->exception_index = EXCP_DEBUG;
362 cpu_loop_exit();
364 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
365 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
366 if (interrupt_request & CPU_INTERRUPT_HALT) {
367 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
368 env->halted = 1;
369 env->exception_index = EXCP_HLT;
370 cpu_loop_exit();
372 #endif
373 #if defined(TARGET_I386)
374 if (env->hflags2 & HF2_GIF_MASK) {
375 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
376 !(env->hflags & HF_SMM_MASK)) {
377 svm_check_intercept(SVM_EXIT_SMI);
378 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
379 do_smm_enter();
380 next_tb = 0;
381 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
382 !(env->hflags2 & HF2_NMI_MASK)) {
383 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
384 env->hflags2 |= HF2_NMI_MASK;
385 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
386 next_tb = 0;
387 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
388 (((env->hflags2 & HF2_VINTR_MASK) &&
389 (env->hflags2 & HF2_HIF_MASK)) ||
390 (!(env->hflags2 & HF2_VINTR_MASK) &&
391 (env->eflags & IF_MASK &&
392 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
393 int intno;
394 svm_check_intercept(SVM_EXIT_INTR);
395 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
396 intno = cpu_get_pic_interrupt(env);
397 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
398 #if defined(__sparc__) && !defined(HOST_SOLARIS)
399 #undef env
400 env = cpu_single_env;
401 #define env cpu_single_env
402 #endif
403 do_interrupt(intno, 0, 0, 0, 1);
404 /* ensure that no TB jump will be modified as
405 the program flow was changed */
406 next_tb = 0;
407 #if !defined(CONFIG_USER_ONLY)
408 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
409 (env->eflags & IF_MASK) &&
410 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
411 int intno;
412 /* FIXME: this should respect TPR */
413 svm_check_intercept(SVM_EXIT_VINTR);
414 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
415 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
416 do_interrupt(intno, 0, 0, 0, 1);
417 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
418 next_tb = 0;
419 #endif
422 #elif defined(TARGET_PPC)
423 #if 0
424 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
425 cpu_ppc_reset(env);
427 #endif
428 if (interrupt_request & CPU_INTERRUPT_HARD) {
429 ppc_hw_interrupt(env);
430 if (env->pending_interrupts == 0)
431 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
432 next_tb = 0;
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
436 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
437 (env->CP0_Status & (1 << CP0St_IE)) &&
438 !(env->CP0_Status & (1 << CP0St_EXL)) &&
439 !(env->CP0_Status & (1 << CP0St_ERL)) &&
440 !(env->hflags & MIPS_HFLAG_DM)) {
441 /* Raise it */
442 env->exception_index = EXCP_EXT_INTERRUPT;
443 env->error_code = 0;
444 do_interrupt(env);
445 next_tb = 0;
447 #elif defined(TARGET_SPARC)
448 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
449 (env->psret != 0)) {
450 int pil = env->interrupt_index & 15;
451 int type = env->interrupt_index & 0xf0;
453 if (((type == TT_EXTINT) &&
454 (pil == 15 || pil > env->psrpil)) ||
455 type != TT_EXTINT) {
456 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
457 env->exception_index = env->interrupt_index;
458 do_interrupt(env);
459 env->interrupt_index = 0;
460 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
461 cpu_check_irqs(env);
462 #endif
463 next_tb = 0;
465 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
466 //do_interrupt(0, 0, 0, 0, 0);
467 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469 #elif defined(TARGET_ARM)
470 if (interrupt_request & CPU_INTERRUPT_FIQ
471 && !(env->uncached_cpsr & CPSR_F)) {
472 env->exception_index = EXCP_FIQ;
473 do_interrupt(env);
474 next_tb = 0;
476 /* ARMv7-M interrupt return works by loading a magic value
477 into the PC. On real hardware the load causes the
478 return to occur. The qemu implementation performs the
479 jump normally, then does the exception return when the
480 CPU tries to execute code at the magic address.
481 This will cause the magic PC value to be pushed to
482 the stack if an interrupt occured at the wrong time.
483 We avoid this by disabling interrupts when
484 pc contains a magic address. */
485 if (interrupt_request & CPU_INTERRUPT_HARD
486 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
487 || !(env->uncached_cpsr & CPSR_I))) {
488 env->exception_index = EXCP_IRQ;
489 do_interrupt(env);
490 next_tb = 0;
492 #elif defined(TARGET_SH4)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 do_interrupt(env);
495 next_tb = 0;
497 #elif defined(TARGET_ALPHA)
498 if (interrupt_request & CPU_INTERRUPT_HARD) {
499 do_interrupt(env);
500 next_tb = 0;
502 #elif defined(TARGET_CRIS)
503 if (interrupt_request & CPU_INTERRUPT_HARD
504 && (env->pregs[PR_CCS] & I_FLAG)) {
505 env->exception_index = EXCP_IRQ;
506 do_interrupt(env);
507 next_tb = 0;
509 if (interrupt_request & CPU_INTERRUPT_NMI
510 && (env->pregs[PR_CCS] & M_FLAG)) {
511 env->exception_index = EXCP_NMI;
512 do_interrupt(env);
513 next_tb = 0;
515 #elif defined(TARGET_M68K)
516 if (interrupt_request & CPU_INTERRUPT_HARD
517 && ((env->sr & SR_I) >> SR_I_SHIFT)
518 < env->pending_level) {
519 /* Real hardware gets the interrupt vector via an
520 IACK cycle at this point. Current emulated
521 hardware doesn't rely on this, so we
522 provide/save the vector when the interrupt is
523 first signalled. */
524 env->exception_index = env->pending_vector;
525 do_interrupt(1);
526 next_tb = 0;
528 #endif
529 /* Don't use the cached interupt_request value,
530 do_interrupt may have updated the EXITTB flag. */
531 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
532 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
533 /* ensure that no TB jump will be modified as
534 the program flow was changed */
535 next_tb = 0;
538 if (unlikely(env->exit_request)) {
539 env->exit_request = 0;
540 env->exception_index = EXCP_INTERRUPT;
541 cpu_loop_exit();
543 #ifdef DEBUG_EXEC
544 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
545 /* restore flags in standard format */
546 regs_to_env();
547 #if defined(TARGET_I386)
548 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
549 log_cpu_state(env, X86_DUMP_CCOP);
550 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
551 #elif defined(TARGET_ARM)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_SPARC)
554 log_cpu_state(env, 0);
555 #elif defined(TARGET_PPC)
556 log_cpu_state(env, 0);
557 #elif defined(TARGET_M68K)
558 cpu_m68k_flush_flags(env, env->cc_op);
559 env->cc_op = CC_OP_FLAGS;
560 env->sr = (env->sr & 0xffe0)
561 | env->cc_dest | (env->cc_x << 4);
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_MIPS)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_SH4)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_ALPHA)
568 log_cpu_state(env, 0);
569 #elif defined(TARGET_CRIS)
570 log_cpu_state(env, 0);
571 #else
572 #error unsupported target CPU
573 #endif
575 #endif
576 spin_lock(&tb_lock);
577 tb = tb_find_fast();
578 /* Note: we do it here to avoid a gcc bug on Mac OS X when
579 doing it in tb_find_slow */
580 if (tb_invalidated_flag) {
581 /* as some TB could have been invalidated because
582 of memory exceptions while generating the code, we
583 must recompute the hash index here */
584 next_tb = 0;
585 tb_invalidated_flag = 0;
587 #ifdef DEBUG_EXEC
588 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
589 (long)tb->tc_ptr, tb->pc,
590 lookup_symbol(tb->pc));
591 #endif
592 /* see if we can patch the calling TB. When the TB
593 spans two pages, we cannot safely do a direct
594 jump. */
596 if (next_tb != 0 &&
597 #ifdef USE_KQEMU
598 (env->kqemu_enabled != 2) &&
599 #endif
600 tb->page_addr[1] == -1) {
601 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
604 spin_unlock(&tb_lock);
605 env->current_tb = tb;
607 /* cpu_interrupt might be called while translating the
608 TB, but before it is linked into a potentially
609 infinite loop and becomes env->current_tb. Avoid
610 starting execution if there is a pending interrupt. */
611 if (unlikely (env->exit_request))
612 env->current_tb = NULL;
614 while (env->current_tb) {
615 tc_ptr = tb->tc_ptr;
616 /* execute the generated code */
617 #if defined(__sparc__) && !defined(HOST_SOLARIS)
618 #undef env
619 env = cpu_single_env;
620 #define env cpu_single_env
621 #endif
622 next_tb = tcg_qemu_tb_exec(tc_ptr);
623 env->current_tb = NULL;
624 if ((next_tb & 3) == 2) {
625 /* Instruction counter expired. */
626 int insns_left;
627 tb = (TranslationBlock *)(long)(next_tb & ~3);
628 /* Restore PC. */
629 cpu_pc_from_tb(env, tb);
630 insns_left = env->icount_decr.u32;
631 if (env->icount_extra && insns_left >= 0) {
632 /* Refill decrementer and continue execution. */
633 env->icount_extra += insns_left;
634 if (env->icount_extra > 0xffff) {
635 insns_left = 0xffff;
636 } else {
637 insns_left = env->icount_extra;
639 env->icount_extra -= insns_left;
640 env->icount_decr.u16.low = insns_left;
641 } else {
642 if (insns_left > 0) {
643 /* Execute remaining instructions. */
644 cpu_exec_nocache(insns_left, tb);
646 env->exception_index = EXCP_INTERRUPT;
647 next_tb = 0;
648 cpu_loop_exit();
652 /* reset soft MMU for next block (it can currently
653 only be set by a memory fault) */
654 #if defined(USE_KQEMU)
655 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
656 if (kqemu_is_ok(env) &&
657 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
658 cpu_loop_exit();
660 #endif
661 } /* for(;;) */
662 } else {
663 env_to_regs();
665 } /* for(;;) */
668 #if defined(TARGET_I386)
669 /* restore flags in standard format */
670 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
671 #elif defined(TARGET_ARM)
672 /* XXX: Save/restore host fpu exception state?. */
673 #elif defined(TARGET_SPARC)
674 #elif defined(TARGET_PPC)
675 #elif defined(TARGET_M68K)
676 cpu_m68k_flush_flags(env, env->cc_op);
677 env->cc_op = CC_OP_FLAGS;
678 env->sr = (env->sr & 0xffe0)
679 | env->cc_dest | (env->cc_x << 4);
680 #elif defined(TARGET_MIPS)
681 #elif defined(TARGET_SH4)
682 #elif defined(TARGET_ALPHA)
683 #elif defined(TARGET_CRIS)
684 /* XXXXX */
685 #else
686 #error unsupported target CPU
687 #endif
689 /* restore global registers */
690 #include "hostregs_helper.h"
692 /* fail safe : never use cpu_single_env outside cpu_exec() */
693 cpu_single_env = NULL;
694 return ret;
697 /* must only be called from the generated code as an exception can be
698 generated */
699 void tb_invalidate_page_range(target_ulong start, target_ulong end)
701 /* XXX: cannot enable it yet because it yields to MMU exception
702 where NIP != read address on PowerPC */
703 #if 0
704 target_ulong phys_addr;
705 phys_addr = get_phys_addr_code(env, start);
706 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
707 #endif
710 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
712 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
714 CPUX86State *saved_env;
716 saved_env = env;
717 env = s;
718 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
719 selector &= 0xffff;
720 cpu_x86_load_seg_cache(env, seg_reg, selector,
721 (selector << 4), 0xffff, 0);
722 } else {
723 helper_load_seg(seg_reg, selector);
725 env = saved_env;
728 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
730 CPUX86State *saved_env;
732 saved_env = env;
733 env = s;
735 helper_fsave(ptr, data32);
737 env = saved_env;
740 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
742 CPUX86State *saved_env;
744 saved_env = env;
745 env = s;
747 helper_frstor(ptr, data32);
749 env = saved_env;
752 #endif /* TARGET_I386 */
754 #if !defined(CONFIG_SOFTMMU)
756 #if defined(TARGET_I386)
758 /* 'pc' is the host PC at which the exception was raised. 'address' is
759 the effective address of the memory exception. 'is_write' is 1 if a
760 write caused the exception and otherwise 0'. 'old_set' is the
761 signal set which should be restored */
762 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
763 int is_write, sigset_t *old_set,
764 void *puc)
766 TranslationBlock *tb;
767 int ret;
769 if (cpu_single_env)
770 env = cpu_single_env; /* XXX: find a correct solution for multithread */
771 #if defined(DEBUG_SIGNAL)
772 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
773 pc, address, is_write, *(unsigned long *)old_set);
774 #endif
775 /* XXX: locking issue */
776 if (is_write && page_unprotect(h2g(address), pc, puc)) {
777 return 1;
780 /* see if it is an MMU fault */
781 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
782 if (ret < 0)
783 return 0; /* not an MMU fault */
784 if (ret == 0)
785 return 1; /* the MMU fault was handled without causing real CPU fault */
786 /* now we have a real cpu fault */
787 tb = tb_find_pc(pc);
788 if (tb) {
789 /* the PC is inside the translated code. It means that we have
790 a virtual CPU fault */
791 cpu_restore_state(tb, env, pc, puc);
793 if (ret == 1) {
794 #if 0
795 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
796 env->eip, env->cr[2], env->error_code);
797 #endif
798 /* we restore the process signal mask as the sigreturn should
799 do it (XXX: use sigsetjmp) */
800 sigprocmask(SIG_SETMASK, old_set, NULL);
801 raise_exception_err(env->exception_index, env->error_code);
802 } else {
803 /* activate soft MMU for this block */
804 env->hflags |= HF_SOFTMMU_MASK;
805 cpu_resume_from_signal(env, puc);
807 /* never comes here */
808 return 1;
811 #elif defined(TARGET_ARM)
812 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
813 int is_write, sigset_t *old_set,
814 void *puc)
816 TranslationBlock *tb;
817 int ret;
819 if (cpu_single_env)
820 env = cpu_single_env; /* XXX: find a correct solution for multithread */
821 #if defined(DEBUG_SIGNAL)
822 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
823 pc, address, is_write, *(unsigned long *)old_set);
824 #endif
825 /* XXX: locking issue */
826 if (is_write && page_unprotect(h2g(address), pc, puc)) {
827 return 1;
829 /* see if it is an MMU fault */
830 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
831 if (ret < 0)
832 return 0; /* not an MMU fault */
833 if (ret == 0)
834 return 1; /* the MMU fault was handled without causing real CPU fault */
835 /* now we have a real cpu fault */
836 tb = tb_find_pc(pc);
837 if (tb) {
838 /* the PC is inside the translated code. It means that we have
839 a virtual CPU fault */
840 cpu_restore_state(tb, env, pc, puc);
842 /* we restore the process signal mask as the sigreturn should
843 do it (XXX: use sigsetjmp) */
844 sigprocmask(SIG_SETMASK, old_set, NULL);
845 cpu_loop_exit();
846 /* never comes here */
847 return 1;
849 #elif defined(TARGET_SPARC)
850 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
851 int is_write, sigset_t *old_set,
852 void *puc)
854 TranslationBlock *tb;
855 int ret;
857 if (cpu_single_env)
858 env = cpu_single_env; /* XXX: find a correct solution for multithread */
859 #if defined(DEBUG_SIGNAL)
860 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
861 pc, address, is_write, *(unsigned long *)old_set);
862 #endif
863 /* XXX: locking issue */
864 if (is_write && page_unprotect(h2g(address), pc, puc)) {
865 return 1;
867 /* see if it is an MMU fault */
868 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
869 if (ret < 0)
870 return 0; /* not an MMU fault */
871 if (ret == 0)
872 return 1; /* the MMU fault was handled without causing real CPU fault */
873 /* now we have a real cpu fault */
874 tb = tb_find_pc(pc);
875 if (tb) {
876 /* the PC is inside the translated code. It means that we have
877 a virtual CPU fault */
878 cpu_restore_state(tb, env, pc, puc);
880 /* we restore the process signal mask as the sigreturn should
881 do it (XXX: use sigsetjmp) */
882 sigprocmask(SIG_SETMASK, old_set, NULL);
883 cpu_loop_exit();
884 /* never comes here */
885 return 1;
887 #elif defined (TARGET_PPC)
888 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
889 int is_write, sigset_t *old_set,
890 void *puc)
892 TranslationBlock *tb;
893 int ret;
895 if (cpu_single_env)
896 env = cpu_single_env; /* XXX: find a correct solution for multithread */
897 #if defined(DEBUG_SIGNAL)
898 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
899 pc, address, is_write, *(unsigned long *)old_set);
900 #endif
901 /* XXX: locking issue */
902 if (is_write && page_unprotect(h2g(address), pc, puc)) {
903 return 1;
906 /* see if it is an MMU fault */
907 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
908 if (ret < 0)
909 return 0; /* not an MMU fault */
910 if (ret == 0)
911 return 1; /* the MMU fault was handled without causing real CPU fault */
913 /* now we have a real cpu fault */
914 tb = tb_find_pc(pc);
915 if (tb) {
916 /* the PC is inside the translated code. It means that we have
917 a virtual CPU fault */
918 cpu_restore_state(tb, env, pc, puc);
920 if (ret == 1) {
921 #if 0
922 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
923 env->nip, env->error_code, tb);
924 #endif
925 /* we restore the process signal mask as the sigreturn should
926 do it (XXX: use sigsetjmp) */
927 sigprocmask(SIG_SETMASK, old_set, NULL);
928 cpu_loop_exit();
929 } else {
930 /* activate soft MMU for this block */
931 cpu_resume_from_signal(env, puc);
933 /* never comes here */
934 return 1;
937 #elif defined(TARGET_M68K)
938 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
939 int is_write, sigset_t *old_set,
940 void *puc)
942 TranslationBlock *tb;
943 int ret;
945 if (cpu_single_env)
946 env = cpu_single_env; /* XXX: find a correct solution for multithread */
947 #if defined(DEBUG_SIGNAL)
948 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
949 pc, address, is_write, *(unsigned long *)old_set);
950 #endif
951 /* XXX: locking issue */
952 if (is_write && page_unprotect(address, pc, puc)) {
953 return 1;
955 /* see if it is an MMU fault */
956 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
957 if (ret < 0)
958 return 0; /* not an MMU fault */
959 if (ret == 0)
960 return 1; /* the MMU fault was handled without causing real CPU fault */
961 /* now we have a real cpu fault */
962 tb = tb_find_pc(pc);
963 if (tb) {
964 /* the PC is inside the translated code. It means that we have
965 a virtual CPU fault */
966 cpu_restore_state(tb, env, pc, puc);
968 /* we restore the process signal mask as the sigreturn should
969 do it (XXX: use sigsetjmp) */
970 sigprocmask(SIG_SETMASK, old_set, NULL);
971 cpu_loop_exit();
972 /* never comes here */
973 return 1;
976 #elif defined (TARGET_MIPS)
977 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
978 int is_write, sigset_t *old_set,
979 void *puc)
981 TranslationBlock *tb;
982 int ret;
984 if (cpu_single_env)
985 env = cpu_single_env; /* XXX: find a correct solution for multithread */
986 #if defined(DEBUG_SIGNAL)
987 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
988 pc, address, is_write, *(unsigned long *)old_set);
989 #endif
990 /* XXX: locking issue */
991 if (is_write && page_unprotect(h2g(address), pc, puc)) {
992 return 1;
995 /* see if it is an MMU fault */
996 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
997 if (ret < 0)
998 return 0; /* not an MMU fault */
999 if (ret == 0)
1000 return 1; /* the MMU fault was handled without causing real CPU fault */
1002 /* now we have a real cpu fault */
1003 tb = tb_find_pc(pc);
1004 if (tb) {
1005 /* the PC is inside the translated code. It means that we have
1006 a virtual CPU fault */
1007 cpu_restore_state(tb, env, pc, puc);
1009 if (ret == 1) {
1010 #if 0
1011 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1012 env->PC, env->error_code, tb);
1013 #endif
1014 /* we restore the process signal mask as the sigreturn should
1015 do it (XXX: use sigsetjmp) */
1016 sigprocmask(SIG_SETMASK, old_set, NULL);
1017 cpu_loop_exit();
1018 } else {
1019 /* activate soft MMU for this block */
1020 cpu_resume_from_signal(env, puc);
1022 /* never comes here */
1023 return 1;
1026 #elif defined (TARGET_SH4)
1027 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1028 int is_write, sigset_t *old_set,
1029 void *puc)
1031 TranslationBlock *tb;
1032 int ret;
1034 if (cpu_single_env)
1035 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1036 #if defined(DEBUG_SIGNAL)
1037 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1038 pc, address, is_write, *(unsigned long *)old_set);
1039 #endif
1040 /* XXX: locking issue */
1041 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1042 return 1;
1045 /* see if it is an MMU fault */
1046 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1047 if (ret < 0)
1048 return 0; /* not an MMU fault */
1049 if (ret == 0)
1050 return 1; /* the MMU fault was handled without causing real CPU fault */
1052 /* now we have a real cpu fault */
1053 tb = tb_find_pc(pc);
1054 if (tb) {
1055 /* the PC is inside the translated code. It means that we have
1056 a virtual CPU fault */
1057 cpu_restore_state(tb, env, pc, puc);
1059 #if 0
1060 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1061 env->nip, env->error_code, tb);
1062 #endif
1063 /* we restore the process signal mask as the sigreturn should
1064 do it (XXX: use sigsetjmp) */
1065 sigprocmask(SIG_SETMASK, old_set, NULL);
1066 cpu_loop_exit();
1067 /* never comes here */
1068 return 1;
1071 #elif defined (TARGET_ALPHA)
1072 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1073 int is_write, sigset_t *old_set,
1074 void *puc)
1076 TranslationBlock *tb;
1077 int ret;
1079 if (cpu_single_env)
1080 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1081 #if defined(DEBUG_SIGNAL)
1082 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1083 pc, address, is_write, *(unsigned long *)old_set);
1084 #endif
1085 /* XXX: locking issue */
1086 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1087 return 1;
1090 /* see if it is an MMU fault */
1091 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1092 if (ret < 0)
1093 return 0; /* not an MMU fault */
1094 if (ret == 0)
1095 return 1; /* the MMU fault was handled without causing real CPU fault */
1097 /* now we have a real cpu fault */
1098 tb = tb_find_pc(pc);
1099 if (tb) {
1100 /* the PC is inside the translated code. It means that we have
1101 a virtual CPU fault */
1102 cpu_restore_state(tb, env, pc, puc);
1104 #if 0
1105 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1106 env->nip, env->error_code, tb);
1107 #endif
1108 /* we restore the process signal mask as the sigreturn should
1109 do it (XXX: use sigsetjmp) */
1110 sigprocmask(SIG_SETMASK, old_set, NULL);
1111 cpu_loop_exit();
1112 /* never comes here */
1113 return 1;
1115 #elif defined (TARGET_CRIS)
1116 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1117 int is_write, sigset_t *old_set,
1118 void *puc)
1120 TranslationBlock *tb;
1121 int ret;
1123 if (cpu_single_env)
1124 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1125 #if defined(DEBUG_SIGNAL)
1126 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1127 pc, address, is_write, *(unsigned long *)old_set);
1128 #endif
1129 /* XXX: locking issue */
1130 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1131 return 1;
1134 /* see if it is an MMU fault */
1135 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1136 if (ret < 0)
1137 return 0; /* not an MMU fault */
1138 if (ret == 0)
1139 return 1; /* the MMU fault was handled without causing real CPU fault */
1141 /* now we have a real cpu fault */
1142 tb = tb_find_pc(pc);
1143 if (tb) {
1144 /* the PC is inside the translated code. It means that we have
1145 a virtual CPU fault */
1146 cpu_restore_state(tb, env, pc, puc);
1148 /* we restore the process signal mask as the sigreturn should
1149 do it (XXX: use sigsetjmp) */
1150 sigprocmask(SIG_SETMASK, old_set, NULL);
1151 cpu_loop_exit();
1152 /* never comes here */
1153 return 1;
1156 #else
1157 #error unsupported target CPU
1158 #endif
1160 #if defined(__i386__)
1162 #if defined(__APPLE__)
1163 # include <sys/ucontext.h>
1165 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1166 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1167 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1168 # define MASK_sig(context) ((context)->uc_sigmask)
1169 #elif defined(__OpenBSD__)
1170 # define EIP_sig(context) ((context)->sc_eip)
1171 # define TRAP_sig(context) ((context)->sc_trapno)
1172 # define ERROR_sig(context) ((context)->sc_err)
1173 # define MASK_sig(context) ((context)->sc_mask)
1174 #else
1175 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1176 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1177 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1178 # define MASK_sig(context) ((context)->uc_sigmask)
1179 #endif
1181 int cpu_signal_handler(int host_signum, void *pinfo,
1182 void *puc)
1184 siginfo_t *info = pinfo;
1185 #if defined(__OpenBSD__)
1186 struct sigcontext *uc = puc;
1187 #else
1188 struct ucontext *uc = puc;
1189 #endif
1190 unsigned long pc;
1191 int trapno;
1193 #ifndef REG_EIP
1194 /* for glibc 2.1 */
1195 #define REG_EIP EIP
1196 #define REG_ERR ERR
1197 #define REG_TRAPNO TRAPNO
1198 #endif
1199 pc = EIP_sig(uc);
1200 trapno = TRAP_sig(uc);
1201 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1202 trapno == 0xe ?
1203 (ERROR_sig(uc) >> 1) & 1 : 0,
1204 &MASK_sig(uc), puc);
1207 #elif defined(__x86_64__)
1209 #ifdef __NetBSD__
1210 #define PC_sig(context) _UC_MACHINE_PC(context)
1211 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1212 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1213 #define MASK_sig(context) ((context)->uc_sigmask)
1214 #elif defined(__OpenBSD__)
1215 #define PC_sig(context) ((context)->sc_rip)
1216 #define TRAP_sig(context) ((context)->sc_trapno)
1217 #define ERROR_sig(context) ((context)->sc_err)
1218 #define MASK_sig(context) ((context)->sc_mask)
1219 #else
1220 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1221 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1222 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1223 #define MASK_sig(context) ((context)->uc_sigmask)
1224 #endif
1226 int cpu_signal_handler(int host_signum, void *pinfo,
1227 void *puc)
1229 siginfo_t *info = pinfo;
1230 unsigned long pc;
1231 #ifdef __NetBSD__
1232 ucontext_t *uc = puc;
1233 #elif defined(__OpenBSD__)
1234 struct sigcontext *uc = puc;
1235 #else
1236 struct ucontext *uc = puc;
1237 #endif
1239 pc = PC_sig(uc);
1240 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1241 TRAP_sig(uc) == 0xe ?
1242 (ERROR_sig(uc) >> 1) & 1 : 0,
1243 &MASK_sig(uc), puc);
1246 #elif defined(_ARCH_PPC)
1248 /***********************************************************************
1249 * signal context platform-specific definitions
1250 * From Wine
1252 #ifdef linux
1253 /* All Registers access - only for local access */
1254 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1255 /* Gpr Registers access */
1256 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1257 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1258 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1259 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1260 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1261 # define LR_sig(context) REG_sig(link, context) /* Link register */
1262 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1263 /* Float Registers access */
1264 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1265 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1266 /* Exception Registers access */
1267 # define DAR_sig(context) REG_sig(dar, context)
1268 # define DSISR_sig(context) REG_sig(dsisr, context)
1269 # define TRAP_sig(context) REG_sig(trap, context)
1270 #endif /* linux */
1272 #ifdef __APPLE__
1273 # include <sys/ucontext.h>
1274 typedef struct ucontext SIGCONTEXT;
1275 /* All Registers access - only for local access */
1276 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1277 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1278 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1279 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1280 /* Gpr Registers access */
1281 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1282 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1283 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1284 # define CTR_sig(context) REG_sig(ctr, context)
1285 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1286 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1287 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1288 /* Float Registers access */
1289 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1290 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1291 /* Exception Registers access */
1292 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1293 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1294 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1295 #endif /* __APPLE__ */
1297 int cpu_signal_handler(int host_signum, void *pinfo,
1298 void *puc)
1300 siginfo_t *info = pinfo;
1301 struct ucontext *uc = puc;
1302 unsigned long pc;
1303 int is_write;
1305 pc = IAR_sig(uc);
1306 is_write = 0;
1307 #if 0
1308 /* ppc 4xx case */
1309 if (DSISR_sig(uc) & 0x00800000)
1310 is_write = 1;
1311 #else
1312 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1313 is_write = 1;
1314 #endif
1315 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1316 is_write, &uc->uc_sigmask, puc);
1319 #elif defined(__alpha__)
1321 int cpu_signal_handler(int host_signum, void *pinfo,
1322 void *puc)
1324 siginfo_t *info = pinfo;
1325 struct ucontext *uc = puc;
1326 uint32_t *pc = uc->uc_mcontext.sc_pc;
1327 uint32_t insn = *pc;
1328 int is_write = 0;
1330 /* XXX: need kernel patch to get write flag faster */
1331 switch (insn >> 26) {
1332 case 0x0d: // stw
1333 case 0x0e: // stb
1334 case 0x0f: // stq_u
1335 case 0x24: // stf
1336 case 0x25: // stg
1337 case 0x26: // sts
1338 case 0x27: // stt
1339 case 0x2c: // stl
1340 case 0x2d: // stq
1341 case 0x2e: // stl_c
1342 case 0x2f: // stq_c
1343 is_write = 1;
1346 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1347 is_write, &uc->uc_sigmask, puc);
1349 #elif defined(__sparc__)
1351 int cpu_signal_handler(int host_signum, void *pinfo,
1352 void *puc)
1354 siginfo_t *info = pinfo;
1355 int is_write;
1356 uint32_t insn;
1357 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1358 uint32_t *regs = (uint32_t *)(info + 1);
1359 void *sigmask = (regs + 20);
1360 /* XXX: is there a standard glibc define ? */
1361 unsigned long pc = regs[1];
1362 #else
1363 #ifdef __linux__
1364 struct sigcontext *sc = puc;
1365 unsigned long pc = sc->sigc_regs.tpc;
1366 void *sigmask = (void *)sc->sigc_mask;
1367 #elif defined(__OpenBSD__)
1368 struct sigcontext *uc = puc;
1369 unsigned long pc = uc->sc_pc;
1370 void *sigmask = (void *)(long)uc->sc_mask;
1371 #endif
1372 #endif
1374 /* XXX: need kernel patch to get write flag faster */
1375 is_write = 0;
1376 insn = *(uint32_t *)pc;
1377 if ((insn >> 30) == 3) {
1378 switch((insn >> 19) & 0x3f) {
1379 case 0x05: // stb
1380 case 0x06: // sth
1381 case 0x04: // st
1382 case 0x07: // std
1383 case 0x24: // stf
1384 case 0x27: // stdf
1385 case 0x25: // stfsr
1386 is_write = 1;
1387 break;
1390 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1391 is_write, sigmask, NULL);
1394 #elif defined(__arm__)
1396 int cpu_signal_handler(int host_signum, void *pinfo,
1397 void *puc)
1399 siginfo_t *info = pinfo;
1400 struct ucontext *uc = puc;
1401 unsigned long pc;
1402 int is_write;
1404 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1405 pc = uc->uc_mcontext.gregs[R15];
1406 #else
1407 pc = uc->uc_mcontext.arm_pc;
1408 #endif
1409 /* XXX: compute is_write */
1410 is_write = 0;
1411 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1412 is_write,
1413 &uc->uc_sigmask, puc);
1416 #elif defined(__mc68000)
1418 int cpu_signal_handler(int host_signum, void *pinfo,
1419 void *puc)
1421 siginfo_t *info = pinfo;
1422 struct ucontext *uc = puc;
1423 unsigned long pc;
1424 int is_write;
1426 pc = uc->uc_mcontext.gregs[16];
1427 /* XXX: compute is_write */
1428 is_write = 0;
1429 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1430 is_write,
1431 &uc->uc_sigmask, puc);
1434 #elif defined(__ia64)
1436 #ifndef __ISR_VALID
1437 /* This ought to be in <bits/siginfo.h>... */
1438 # define __ISR_VALID 1
1439 #endif
1441 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1443 siginfo_t *info = pinfo;
1444 struct ucontext *uc = puc;
1445 unsigned long ip;
1446 int is_write = 0;
1448 ip = uc->uc_mcontext.sc_ip;
1449 switch (host_signum) {
1450 case SIGILL:
1451 case SIGFPE:
1452 case SIGSEGV:
1453 case SIGBUS:
1454 case SIGTRAP:
1455 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1456 /* ISR.W (write-access) is bit 33: */
1457 is_write = (info->si_isr >> 33) & 1;
1458 break;
1460 default:
1461 break;
1463 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1464 is_write,
1465 &uc->uc_sigmask, puc);
1468 #elif defined(__s390__)
1470 int cpu_signal_handler(int host_signum, void *pinfo,
1471 void *puc)
1473 siginfo_t *info = pinfo;
1474 struct ucontext *uc = puc;
1475 unsigned long pc;
1476 int is_write;
1478 pc = uc->uc_mcontext.psw.addr;
1479 /* XXX: compute is_write */
1480 is_write = 0;
1481 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1482 is_write, &uc->uc_sigmask, puc);
1485 #elif defined(__mips__)
1487 int cpu_signal_handler(int host_signum, void *pinfo,
1488 void *puc)
1490 siginfo_t *info = pinfo;
1491 struct ucontext *uc = puc;
1492 greg_t pc = uc->uc_mcontext.pc;
1493 int is_write;
1495 /* XXX: compute is_write */
1496 is_write = 0;
1497 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1498 is_write, &uc->uc_sigmask, puc);
1501 #elif defined(__hppa__)
1503 int cpu_signal_handler(int host_signum, void *pinfo,
1504 void *puc)
1506 struct siginfo *info = pinfo;
1507 struct ucontext *uc = puc;
1508 unsigned long pc;
1509 int is_write;
1511 pc = uc->uc_mcontext.sc_iaoq[0];
1512 /* FIXME: compute is_write */
1513 is_write = 0;
1514 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1515 is_write,
1516 &uc->uc_sigmask, puc);
1519 #else
1521 #error host CPU specific signal handler needed
1523 #endif
1525 #endif /* !defined(CONFIG_SOFTMMU) */