[S3C2440] Added a i2c register
[qemu/mini2440.git] / target-arm / helper.c
blob838b20a1b71fb6ed9bc4a9de966320b25e7a363f
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name);
31 static inline void set_feature(CPUARMState *env, int feature)
33 env->features |= 1u << feature;
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM920T:
41 set_feature(env, ARM_FEATURE_S3C);
42 env->cp15.c0_cachetype = 0xd172172;
43 env->cp15.c1_sys = 0x00000078;
44 break;
45 case ARM_CPUID_ARM926:
46 set_feature(env, ARM_FEATURE_VFP);
47 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
48 env->cp15.c0_cachetype = 0x1dd20d2;
49 env->cp15.c1_sys = 0x00090078;
50 break;
51 case ARM_CPUID_ARM946:
52 set_feature(env, ARM_FEATURE_MPU);
53 env->cp15.c0_cachetype = 0x0f004006;
54 env->cp15.c1_sys = 0x00000078;
55 break;
56 case ARM_CPUID_ARM1026:
57 set_feature(env, ARM_FEATURE_VFP);
58 set_feature(env, ARM_FEATURE_AUXCR);
59 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
60 env->cp15.c0_cachetype = 0x1dd20d2;
61 env->cp15.c1_sys = 0x00090078;
62 break;
63 case ARM_CPUID_ARM1136_R2:
64 case ARM_CPUID_ARM1136:
65 set_feature(env, ARM_FEATURE_V6);
66 set_feature(env, ARM_FEATURE_VFP);
67 set_feature(env, ARM_FEATURE_AUXCR);
68 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
69 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
70 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
71 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
72 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
73 env->cp15.c0_cachetype = 0x1dd20d2;
74 break;
75 case ARM_CPUID_ARM11MPCORE:
76 set_feature(env, ARM_FEATURE_V6);
77 set_feature(env, ARM_FEATURE_V6K);
78 set_feature(env, ARM_FEATURE_VFP);
79 set_feature(env, ARM_FEATURE_AUXCR);
80 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
81 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
82 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
83 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
84 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
85 env->cp15.c0_cachetype = 0x1dd20d2;
86 break;
87 case ARM_CPUID_CORTEXA8:
88 set_feature(env, ARM_FEATURE_V6);
89 set_feature(env, ARM_FEATURE_V6K);
90 set_feature(env, ARM_FEATURE_V7);
91 set_feature(env, ARM_FEATURE_AUXCR);
92 set_feature(env, ARM_FEATURE_THUMB2);
93 set_feature(env, ARM_FEATURE_VFP);
94 set_feature(env, ARM_FEATURE_VFP3);
95 set_feature(env, ARM_FEATURE_NEON);
96 set_feature(env, ARM_FEATURE_THUMB2EE);
97 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
98 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
99 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
100 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
101 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
102 env->cp15.c0_cachetype = 0x82048004;
103 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
104 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
105 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
106 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
107 break;
108 case ARM_CPUID_CORTEXM3:
109 set_feature(env, ARM_FEATURE_V6);
110 set_feature(env, ARM_FEATURE_THUMB2);
111 set_feature(env, ARM_FEATURE_V7);
112 set_feature(env, ARM_FEATURE_M);
113 set_feature(env, ARM_FEATURE_DIV);
114 break;
115 case ARM_CPUID_ANY: /* For userspace emulation. */
116 set_feature(env, ARM_FEATURE_V6);
117 set_feature(env, ARM_FEATURE_V6K);
118 set_feature(env, ARM_FEATURE_V7);
119 set_feature(env, ARM_FEATURE_THUMB2);
120 set_feature(env, ARM_FEATURE_VFP);
121 set_feature(env, ARM_FEATURE_VFP3);
122 set_feature(env, ARM_FEATURE_NEON);
123 set_feature(env, ARM_FEATURE_THUMB2EE);
124 set_feature(env, ARM_FEATURE_DIV);
125 break;
126 case ARM_CPUID_TI915T:
127 case ARM_CPUID_TI925T:
128 set_feature(env, ARM_FEATURE_OMAPCP);
129 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
130 env->cp15.c0_cachetype = 0x5109149;
131 env->cp15.c1_sys = 0x00000070;
132 env->cp15.c15_i_max = 0x000;
133 env->cp15.c15_i_min = 0xff0;
134 break;
135 case ARM_CPUID_PXA250:
136 case ARM_CPUID_PXA255:
137 case ARM_CPUID_PXA260:
138 case ARM_CPUID_PXA261:
139 case ARM_CPUID_PXA262:
140 set_feature(env, ARM_FEATURE_XSCALE);
141 /* JTAG_ID is ((id << 28) | 0x09265013) */
142 env->cp15.c0_cachetype = 0xd172172;
143 env->cp15.c1_sys = 0x00000078;
144 break;
145 case ARM_CPUID_PXA270_A0:
146 case ARM_CPUID_PXA270_A1:
147 case ARM_CPUID_PXA270_B0:
148 case ARM_CPUID_PXA270_B1:
149 case ARM_CPUID_PXA270_C0:
150 case ARM_CPUID_PXA270_C5:
151 set_feature(env, ARM_FEATURE_XSCALE);
152 /* JTAG_ID is ((id << 28) | 0x09265013) */
153 set_feature(env, ARM_FEATURE_IWMMXT);
154 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
155 env->cp15.c0_cachetype = 0xd172172;
156 env->cp15.c1_sys = 0x00000078;
157 break;
158 default:
159 cpu_abort(env, "Bad CPU ID: %x\n", id);
160 break;
164 void cpu_reset(CPUARMState *env)
166 uint32_t id;
168 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
169 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
170 log_cpu_state(env, 0);
173 id = env->cp15.c0_cpuid;
174 memset(env, 0, offsetof(CPUARMState, breakpoints));
175 if (id)
176 cpu_reset_model_id(env, id);
177 #if defined (CONFIG_USER_ONLY)
178 env->uncached_cpsr = ARM_CPU_MODE_USR;
179 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
180 #else
181 /* SVC mode with interrupts disabled. */
182 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
183 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
184 clear at reset. */
185 if (IS_M(env))
186 env->uncached_cpsr &= ~CPSR_I;
187 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
188 env->cp15.c2_base_mask = 0xffffc000u;
189 #endif
190 env->regs[15] = 0;
191 tlb_flush(env, 1);
194 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
196 int nregs;
198 /* VFP data registers are always little-endian. */
199 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
200 if (reg < nregs) {
201 stfq_le_p(buf, env->vfp.regs[reg]);
202 return 8;
204 if (arm_feature(env, ARM_FEATURE_NEON)) {
205 /* Aliases for Q regs. */
206 nregs += 16;
207 if (reg < nregs) {
208 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
209 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
210 return 16;
213 switch (reg - nregs) {
214 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
215 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
216 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
218 return 0;
221 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
223 int nregs;
225 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
226 if (reg < nregs) {
227 env->vfp.regs[reg] = ldfq_le_p(buf);
228 return 8;
230 if (arm_feature(env, ARM_FEATURE_NEON)) {
231 nregs += 16;
232 if (reg < nregs) {
233 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
234 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
235 return 16;
238 switch (reg - nregs) {
239 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
240 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
241 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
243 return 0;
246 CPUARMState *cpu_arm_init(const char *cpu_model)
248 CPUARMState *env;
249 uint32_t id;
250 static int inited = 0;
252 id = cpu_arm_find_by_name(cpu_model);
253 if (id == 0)
254 return NULL;
255 env = qemu_mallocz(sizeof(CPUARMState));
256 cpu_exec_init(env);
257 if (!inited) {
258 inited = 1;
259 arm_translate_init();
262 env->cpu_model_str = cpu_model;
263 env->cp15.c0_cpuid = id;
264 cpu_reset(env);
265 if (arm_feature(env, ARM_FEATURE_NEON)) {
266 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
267 51, "arm-neon.xml", 0);
268 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
269 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
270 35, "arm-vfp3.xml", 0);
271 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
272 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
273 19, "arm-vfp.xml", 0);
275 return env;
278 struct arm_cpu_t {
279 uint32_t id;
280 const char *name;
283 static const struct arm_cpu_t arm_cpu_names[] = {
284 { ARM_CPUID_ARM920T, "arm920t"},
285 { ARM_CPUID_ARM926, "arm926"},
286 { ARM_CPUID_ARM946, "arm946"},
287 { ARM_CPUID_ARM1026, "arm1026"},
288 { ARM_CPUID_ARM1136, "arm1136"},
289 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
290 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
291 { ARM_CPUID_CORTEXM3, "cortex-m3"},
292 { ARM_CPUID_CORTEXA8, "cortex-a8"},
293 { ARM_CPUID_TI925T, "ti925t" },
294 { ARM_CPUID_PXA250, "pxa250" },
295 { ARM_CPUID_PXA255, "pxa255" },
296 { ARM_CPUID_PXA260, "pxa260" },
297 { ARM_CPUID_PXA261, "pxa261" },
298 { ARM_CPUID_PXA262, "pxa262" },
299 { ARM_CPUID_PXA270, "pxa270" },
300 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
301 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
302 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
303 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
304 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
305 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
306 { ARM_CPUID_ANY, "any"},
307 { 0, NULL}
310 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
312 int i;
314 (*cpu_fprintf)(f, "Available CPUs:\n");
315 for (i = 0; arm_cpu_names[i].name; i++) {
316 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
320 /* return 0 if not found */
321 static uint32_t cpu_arm_find_by_name(const char *name)
323 int i;
324 uint32_t id;
326 id = 0;
327 for (i = 0; arm_cpu_names[i].name; i++) {
328 if (strcmp(name, arm_cpu_names[i].name) == 0) {
329 id = arm_cpu_names[i].id;
330 break;
333 return id;
336 void cpu_arm_close(CPUARMState *env)
338 free(env);
341 uint32_t cpsr_read(CPUARMState *env)
343 int ZF;
344 ZF = (env->ZF == 0);
345 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
346 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
347 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
348 | ((env->condexec_bits & 0xfc) << 8)
349 | (env->GE << 16);
352 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
354 if (mask & CPSR_NZCV) {
355 env->ZF = (~val) & CPSR_Z;
356 env->NF = val;
357 env->CF = (val >> 29) & 1;
358 env->VF = (val << 3) & 0x80000000;
360 if (mask & CPSR_Q)
361 env->QF = ((val & CPSR_Q) != 0);
362 if (mask & CPSR_T)
363 env->thumb = ((val & CPSR_T) != 0);
364 if (mask & CPSR_IT_0_1) {
365 env->condexec_bits &= ~3;
366 env->condexec_bits |= (val >> 25) & 3;
368 if (mask & CPSR_IT_2_7) {
369 env->condexec_bits &= 3;
370 env->condexec_bits |= (val >> 8) & 0xfc;
372 if (mask & CPSR_GE) {
373 env->GE = (val >> 16) & 0xf;
376 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
377 switch_mode(env, val & CPSR_M);
379 mask &= ~CACHED_CPSR_BITS;
380 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
383 /* Sign/zero extend */
384 uint32_t HELPER(sxtb16)(uint32_t x)
386 uint32_t res;
387 res = (uint16_t)(int8_t)x;
388 res |= (uint32_t)(int8_t)(x >> 16) << 16;
389 return res;
392 uint32_t HELPER(uxtb16)(uint32_t x)
394 uint32_t res;
395 res = (uint16_t)(uint8_t)x;
396 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
397 return res;
400 uint32_t HELPER(clz)(uint32_t x)
402 int count;
403 for (count = 32; x; count--)
404 x >>= 1;
405 return count;
408 int32_t HELPER(sdiv)(int32_t num, int32_t den)
410 if (den == 0)
411 return 0;
412 return num / den;
415 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
417 if (den == 0)
418 return 0;
419 return num / den;
422 uint32_t HELPER(rbit)(uint32_t x)
424 x = ((x & 0xff000000) >> 24)
425 | ((x & 0x00ff0000) >> 8)
426 | ((x & 0x0000ff00) << 8)
427 | ((x & 0x000000ff) << 24);
428 x = ((x & 0xf0f0f0f0) >> 4)
429 | ((x & 0x0f0f0f0f) << 4);
430 x = ((x & 0x88888888) >> 3)
431 | ((x & 0x44444444) >> 1)
432 | ((x & 0x22222222) << 1)
433 | ((x & 0x11111111) << 3);
434 return x;
437 uint32_t HELPER(abs)(uint32_t x)
439 return ((int32_t)x < 0) ? -x : x;
442 #if defined(CONFIG_USER_ONLY)
444 void do_interrupt (CPUState *env)
446 env->exception_index = -1;
449 /* Structure used to record exclusive memory locations. */
450 typedef struct mmon_state {
451 struct mmon_state *next;
452 CPUARMState *cpu_env;
453 uint32_t addr;
454 } mmon_state;
456 /* Chain of current locks. */
457 static mmon_state* mmon_head = NULL;
459 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
460 int mmu_idx, int is_softmmu)
462 if (rw == 2) {
463 env->exception_index = EXCP_PREFETCH_ABORT;
464 env->cp15.c6_insn = address;
465 } else {
466 env->exception_index = EXCP_DATA_ABORT;
467 env->cp15.c6_data = address;
469 return 1;
472 static void allocate_mmon_state(CPUState *env)
474 env->mmon_entry = malloc(sizeof (mmon_state));
475 memset (env->mmon_entry, 0, sizeof (mmon_state));
476 env->mmon_entry->cpu_env = env;
477 mmon_head = env->mmon_entry;
480 /* Flush any monitor locks for the specified address. */
481 static void flush_mmon(uint32_t addr)
483 mmon_state *mon;
485 for (mon = mmon_head; mon; mon = mon->next)
487 if (mon->addr != addr)
488 continue;
490 mon->addr = 0;
491 break;
495 /* Mark an address for exclusive access. */
496 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
498 if (!env->mmon_entry)
499 allocate_mmon_state(env);
500 /* Clear any previous locks. */
501 flush_mmon(addr);
502 env->mmon_entry->addr = addr;
505 /* Test if an exclusive address is still exclusive. Returns zero
506 if the address is still exclusive. */
507 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
509 int res;
511 if (!env->mmon_entry)
512 return 1;
513 if (env->mmon_entry->addr == addr)
514 res = 0;
515 else
516 res = 1;
517 flush_mmon(addr);
518 return res;
521 void HELPER(clrex)(CPUState *env)
523 if (!(env->mmon_entry && env->mmon_entry->addr))
524 return;
525 flush_mmon(env->mmon_entry->addr);
528 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
530 return addr;
533 /* These should probably raise undefined insn exceptions. */
534 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
536 int op1 = (insn >> 8) & 0xf;
537 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
538 return;
541 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
543 int op1 = (insn >> 8) & 0xf;
544 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
545 return 0;
548 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
550 cpu_abort(env, "cp15 insn %08x\n", insn);
553 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
555 cpu_abort(env, "cp15 insn %08x\n", insn);
556 return 0;
559 /* These should probably raise undefined insn exceptions. */
560 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
562 cpu_abort(env, "v7m_mrs %d\n", reg);
565 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
567 cpu_abort(env, "v7m_mrs %d\n", reg);
568 return 0;
571 void switch_mode(CPUState *env, int mode)
573 if (mode != ARM_CPU_MODE_USR)
574 cpu_abort(env, "Tried to switch out of user mode\n");
577 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
579 cpu_abort(env, "banked r13 write\n");
582 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
584 cpu_abort(env, "banked r13 read\n");
585 return 0;
588 #else
590 extern int semihosting_enabled;
592 /* Map CPU modes onto saved register banks. */
593 static inline int bank_number (int mode)
595 switch (mode) {
596 case ARM_CPU_MODE_USR:
597 case ARM_CPU_MODE_SYS:
598 return 0;
599 case ARM_CPU_MODE_SVC:
600 return 1;
601 case ARM_CPU_MODE_ABT:
602 return 2;
603 case ARM_CPU_MODE_UND:
604 return 3;
605 case ARM_CPU_MODE_IRQ:
606 return 4;
607 case ARM_CPU_MODE_FIQ:
608 return 5;
610 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
611 return -1;
614 void switch_mode(CPUState *env, int mode)
616 int old_mode;
617 int i;
619 old_mode = env->uncached_cpsr & CPSR_M;
620 if (mode == old_mode)
621 return;
623 if (old_mode == ARM_CPU_MODE_FIQ) {
624 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
625 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
626 } else if (mode == ARM_CPU_MODE_FIQ) {
627 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
628 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
631 i = bank_number(old_mode);
632 env->banked_r13[i] = env->regs[13];
633 env->banked_r14[i] = env->regs[14];
634 env->banked_spsr[i] = env->spsr;
636 i = bank_number(mode);
637 env->regs[13] = env->banked_r13[i];
638 env->regs[14] = env->banked_r14[i];
639 env->spsr = env->banked_spsr[i];
642 static void v7m_push(CPUARMState *env, uint32_t val)
644 env->regs[13] -= 4;
645 stl_phys(env->regs[13], val);
648 static uint32_t v7m_pop(CPUARMState *env)
650 uint32_t val;
651 val = ldl_phys(env->regs[13]);
652 env->regs[13] += 4;
653 return val;
656 /* Switch to V7M main or process stack pointer. */
657 static void switch_v7m_sp(CPUARMState *env, int process)
659 uint32_t tmp;
660 if (env->v7m.current_sp != process) {
661 tmp = env->v7m.other_sp;
662 env->v7m.other_sp = env->regs[13];
663 env->regs[13] = tmp;
664 env->v7m.current_sp = process;
668 static void do_v7m_exception_exit(CPUARMState *env)
670 uint32_t type;
671 uint32_t xpsr;
673 type = env->regs[15];
674 if (env->v7m.exception != 0)
675 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
677 /* Switch to the target stack. */
678 switch_v7m_sp(env, (type & 4) != 0);
679 /* Pop registers. */
680 env->regs[0] = v7m_pop(env);
681 env->regs[1] = v7m_pop(env);
682 env->regs[2] = v7m_pop(env);
683 env->regs[3] = v7m_pop(env);
684 env->regs[12] = v7m_pop(env);
685 env->regs[14] = v7m_pop(env);
686 env->regs[15] = v7m_pop(env);
687 xpsr = v7m_pop(env);
688 xpsr_write(env, xpsr, 0xfffffdff);
689 /* Undo stack alignment. */
690 if (xpsr & 0x200)
691 env->regs[13] |= 4;
692 /* ??? The exception return type specifies Thread/Handler mode. However
693 this is also implied by the xPSR value. Not sure what to do
694 if there is a mismatch. */
695 /* ??? Likewise for mismatches between the CONTROL register and the stack
696 pointer. */
699 static void do_interrupt_v7m(CPUARMState *env)
701 uint32_t xpsr = xpsr_read(env);
702 uint32_t lr;
703 uint32_t addr;
705 lr = 0xfffffff1;
706 if (env->v7m.current_sp)
707 lr |= 4;
708 if (env->v7m.exception == 0)
709 lr |= 8;
711 /* For exceptions we just mark as pending on the NVIC, and let that
712 handle it. */
713 /* TODO: Need to escalate if the current priority is higher than the
714 one we're raising. */
715 switch (env->exception_index) {
716 case EXCP_UDEF:
717 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
718 return;
719 case EXCP_SWI:
720 env->regs[15] += 2;
721 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
722 return;
723 case EXCP_PREFETCH_ABORT:
724 case EXCP_DATA_ABORT:
725 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
726 return;
727 case EXCP_BKPT:
728 if (semihosting_enabled) {
729 int nr;
730 nr = lduw_code(env->regs[15]) & 0xff;
731 if (nr == 0xab) {
732 env->regs[15] += 2;
733 env->regs[0] = do_arm_semihosting(env);
734 return;
737 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
738 return;
739 case EXCP_IRQ:
740 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
741 break;
742 case EXCP_EXCEPTION_EXIT:
743 do_v7m_exception_exit(env);
744 return;
745 default:
746 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
747 return; /* Never happens. Keep compiler happy. */
750 /* Align stack pointer. */
751 /* ??? Should only do this if Configuration Control Register
752 STACKALIGN bit is set. */
753 if (env->regs[13] & 4) {
754 env->regs[13] -= 4;
755 xpsr |= 0x200;
757 /* Switch to the handler mode. */
758 v7m_push(env, xpsr);
759 v7m_push(env, env->regs[15]);
760 v7m_push(env, env->regs[14]);
761 v7m_push(env, env->regs[12]);
762 v7m_push(env, env->regs[3]);
763 v7m_push(env, env->regs[2]);
764 v7m_push(env, env->regs[1]);
765 v7m_push(env, env->regs[0]);
766 switch_v7m_sp(env, 0);
767 env->uncached_cpsr &= ~CPSR_IT;
768 env->regs[14] = lr;
769 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
770 env->regs[15] = addr & 0xfffffffe;
771 env->thumb = addr & 1;
774 /* Handle a CPU exception. */
775 void do_interrupt(CPUARMState *env)
777 uint32_t addr;
778 uint32_t mask;
779 int new_mode;
780 uint32_t offset;
782 if (IS_M(env)) {
783 do_interrupt_v7m(env);
784 return;
786 /* TODO: Vectored interrupt controller. */
787 switch (env->exception_index) {
788 case EXCP_UDEF:
789 new_mode = ARM_CPU_MODE_UND;
790 addr = 0x04;
791 mask = CPSR_I;
792 if (env->thumb)
793 offset = 2;
794 else
795 offset = 4;
796 break;
797 case EXCP_SWI:
798 if (semihosting_enabled) {
799 /* Check for semihosting interrupt. */
800 if (env->thumb) {
801 mask = lduw_code(env->regs[15] - 2) & 0xff;
802 } else {
803 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
805 /* Only intercept calls from privileged modes, to provide some
806 semblance of security. */
807 if (((mask == 0x123456 && !env->thumb)
808 || (mask == 0xab && env->thumb))
809 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
810 env->regs[0] = do_arm_semihosting(env);
811 return;
814 new_mode = ARM_CPU_MODE_SVC;
815 addr = 0x08;
816 mask = CPSR_I;
817 /* The PC already points to the next instruction. */
818 offset = 0;
819 break;
820 case EXCP_BKPT:
821 /* See if this is a semihosting syscall. */
822 if (env->thumb && semihosting_enabled) {
823 mask = lduw_code(env->regs[15]) & 0xff;
824 if (mask == 0xab
825 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
826 env->regs[15] += 2;
827 env->regs[0] = do_arm_semihosting(env);
828 return;
831 /* Fall through to prefetch abort. */
832 case EXCP_PREFETCH_ABORT:
833 new_mode = ARM_CPU_MODE_ABT;
834 addr = 0x0c;
835 mask = CPSR_A | CPSR_I;
836 offset = 4;
837 break;
838 case EXCP_DATA_ABORT:
839 new_mode = ARM_CPU_MODE_ABT;
840 addr = 0x10;
841 mask = CPSR_A | CPSR_I;
842 offset = 8;
843 break;
844 case EXCP_IRQ:
845 new_mode = ARM_CPU_MODE_IRQ;
846 addr = 0x18;
847 /* Disable IRQ and imprecise data aborts. */
848 mask = CPSR_A | CPSR_I;
849 offset = 4;
850 break;
851 case EXCP_FIQ:
852 new_mode = ARM_CPU_MODE_FIQ;
853 addr = 0x1c;
854 /* Disable FIQ, IRQ and imprecise data aborts. */
855 mask = CPSR_A | CPSR_I | CPSR_F;
856 offset = 4;
857 break;
858 default:
859 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
860 return; /* Never happens. Keep compiler happy. */
862 /* High vectors. */
863 if (env->cp15.c1_sys & (1 << 13)) {
864 addr += 0xffff0000;
866 switch_mode (env, new_mode);
867 env->spsr = cpsr_read(env);
868 /* Clear IT bits. */
869 env->condexec_bits = 0;
870 /* Switch to the new mode, and switch to Arm mode. */
871 /* ??? Thumb interrupt handlers not implemented. */
872 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
873 env->uncached_cpsr |= mask;
874 env->thumb = 0;
875 env->regs[14] = env->regs[15] + offset;
876 env->regs[15] = addr;
877 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
880 /* Check section/page access permissions.
881 Returns the page protection flags, or zero if the access is not
882 permitted. */
883 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
884 int is_user)
886 int prot_ro;
888 if (domain == 3)
889 return PAGE_READ | PAGE_WRITE;
891 if (access_type == 1)
892 prot_ro = 0;
893 else
894 prot_ro = PAGE_READ;
896 switch (ap) {
897 case 0:
898 if (access_type == 1)
899 return 0;
900 switch ((env->cp15.c1_sys >> 8) & 3) {
901 case 1:
902 return is_user ? 0 : PAGE_READ;
903 case 2:
904 return PAGE_READ;
905 default:
906 return 0;
908 case 1:
909 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
910 case 2:
911 if (is_user)
912 return prot_ro;
913 else
914 return PAGE_READ | PAGE_WRITE;
915 case 3:
916 return PAGE_READ | PAGE_WRITE;
917 case 4: /* Reserved. */
918 return 0;
919 case 5:
920 return is_user ? 0 : prot_ro;
921 case 6:
922 return prot_ro;
923 case 7:
924 if (!arm_feature (env, ARM_FEATURE_V7))
925 return 0;
926 return prot_ro;
927 default:
928 abort();
932 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
934 uint32_t table;
936 if (address & env->cp15.c2_mask)
937 table = env->cp15.c2_base1 & 0xffffc000;
938 else
939 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
941 table |= (address >> 18) & 0x3ffc;
942 return table;
945 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
946 int is_user, uint32_t *phys_ptr, int *prot)
948 int code;
949 uint32_t table;
950 uint32_t desc;
951 int type;
952 int ap;
953 int domain;
954 uint32_t phys_addr;
956 /* Pagetable walk. */
957 /* Lookup l1 descriptor. */
958 table = get_level1_table_address(env, address);
959 desc = ldl_phys(table);
960 type = (desc & 3);
961 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
962 if (type == 0) {
963 /* Section translation fault. */
964 code = 5;
965 goto do_fault;
967 if (domain == 0 || domain == 2) {
968 if (type == 2)
969 code = 9; /* Section domain fault. */
970 else
971 code = 11; /* Page domain fault. */
972 goto do_fault;
974 if (type == 2) {
975 /* 1Mb section. */
976 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
977 ap = (desc >> 10) & 3;
978 code = 13;
979 } else {
980 /* Lookup l2 entry. */
981 if (type == 1) {
982 /* Coarse pagetable. */
983 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
984 } else {
985 /* Fine pagetable. */
986 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
988 desc = ldl_phys(table);
989 switch (desc & 3) {
990 case 0: /* Page translation fault. */
991 code = 7;
992 goto do_fault;
993 case 1: /* 64k page. */
994 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
995 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
996 break;
997 case 2: /* 4k page. */
998 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
999 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1000 break;
1001 case 3: /* 1k page. */
1002 if (type == 1) {
1003 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1004 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1005 } else {
1006 /* Page translation fault. */
1007 code = 7;
1008 goto do_fault;
1010 } else {
1011 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1013 ap = (desc >> 4) & 3;
1014 break;
1015 default:
1016 /* Never happens, but compiler isn't smart enough to tell. */
1017 abort();
1019 code = 15;
1021 *prot = check_ap(env, ap, domain, access_type, is_user);
1022 if (!*prot) {
1023 /* Access permission fault. */
1024 goto do_fault;
1026 *phys_ptr = phys_addr;
1027 return 0;
1028 do_fault:
1029 return code | (domain << 4);
1032 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1033 int is_user, uint32_t *phys_ptr, int *prot)
1035 int code;
1036 uint32_t table;
1037 uint32_t desc;
1038 uint32_t xn;
1039 int type;
1040 int ap;
1041 int domain;
1042 uint32_t phys_addr;
1044 /* Pagetable walk. */
1045 /* Lookup l1 descriptor. */
1046 table = get_level1_table_address(env, address);
1047 desc = ldl_phys(table);
1048 type = (desc & 3);
1049 if (type == 0) {
1050 /* Section translation fault. */
1051 code = 5;
1052 domain = 0;
1053 goto do_fault;
1054 } else if (type == 2 && (desc & (1 << 18))) {
1055 /* Supersection. */
1056 domain = 0;
1057 } else {
1058 /* Section or page. */
1059 domain = (desc >> 4) & 0x1e;
1061 domain = (env->cp15.c3 >> domain) & 3;
1062 if (domain == 0 || domain == 2) {
1063 if (type == 2)
1064 code = 9; /* Section domain fault. */
1065 else
1066 code = 11; /* Page domain fault. */
1067 goto do_fault;
1069 if (type == 2) {
1070 if (desc & (1 << 18)) {
1071 /* Supersection. */
1072 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1073 } else {
1074 /* Section. */
1075 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1077 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1078 xn = desc & (1 << 4);
1079 code = 13;
1080 } else {
1081 /* Lookup l2 entry. */
1082 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1083 desc = ldl_phys(table);
1084 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1085 switch (desc & 3) {
1086 case 0: /* Page translation fault. */
1087 code = 7;
1088 goto do_fault;
1089 case 1: /* 64k page. */
1090 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1091 xn = desc & (1 << 15);
1092 break;
1093 case 2: case 3: /* 4k page. */
1094 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1095 xn = desc & 1;
1096 break;
1097 default:
1098 /* Never happens, but compiler isn't smart enough to tell. */
1099 abort();
1101 code = 15;
1103 if (xn && access_type == 2)
1104 goto do_fault;
1106 /* The simplified model uses AP[0] as an access control bit. */
1107 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1108 /* Access flag fault. */
1109 code = (code == 15) ? 6 : 3;
1110 goto do_fault;
1112 *prot = check_ap(env, ap, domain, access_type, is_user);
1113 if (!*prot) {
1114 /* Access permission fault. */
1115 goto do_fault;
1117 *phys_ptr = phys_addr;
1118 return 0;
1119 do_fault:
1120 return code | (domain << 4);
1123 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1124 int is_user, uint32_t *phys_ptr, int *prot)
1126 int n;
1127 uint32_t mask;
1128 uint32_t base;
1130 *phys_ptr = address;
1131 for (n = 7; n >= 0; n--) {
1132 base = env->cp15.c6_region[n];
1133 if ((base & 1) == 0)
1134 continue;
1135 mask = 1 << ((base >> 1) & 0x1f);
1136 /* Keep this shift separate from the above to avoid an
1137 (undefined) << 32. */
1138 mask = (mask << 1) - 1;
1139 if (((base ^ address) & ~mask) == 0)
1140 break;
1142 if (n < 0)
1143 return 2;
1145 if (access_type == 2) {
1146 mask = env->cp15.c5_insn;
1147 } else {
1148 mask = env->cp15.c5_data;
1150 mask = (mask >> (n * 4)) & 0xf;
1151 switch (mask) {
1152 case 0:
1153 return 1;
1154 case 1:
1155 if (is_user)
1156 return 1;
1157 *prot = PAGE_READ | PAGE_WRITE;
1158 break;
1159 case 2:
1160 *prot = PAGE_READ;
1161 if (!is_user)
1162 *prot |= PAGE_WRITE;
1163 break;
1164 case 3:
1165 *prot = PAGE_READ | PAGE_WRITE;
1166 break;
1167 case 5:
1168 if (is_user)
1169 return 1;
1170 *prot = PAGE_READ;
1171 break;
1172 case 6:
1173 *prot = PAGE_READ;
1174 break;
1175 default:
1176 /* Bad permission. */
1177 return 1;
1179 return 0;
1182 static inline int get_phys_addr(CPUState *env, uint32_t address,
1183 int access_type, int is_user,
1184 uint32_t *phys_ptr, int *prot)
1186 /* Fast Context Switch Extension. */
1187 if (address < 0x02000000)
1188 address += env->cp15.c13_fcse;
1190 if ((env->cp15.c1_sys & 1) == 0) {
1191 /* MMU/MPU disabled. */
1192 *phys_ptr = address;
1193 *prot = PAGE_READ | PAGE_WRITE;
1194 return 0;
1195 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1196 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1197 prot);
1198 } else if (env->cp15.c1_sys & (1 << 23)) {
1199 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1200 prot);
1201 } else {
1202 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1203 prot);
1207 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1208 int access_type, int mmu_idx, int is_softmmu)
1210 uint32_t phys_addr;
1211 int prot;
1212 int ret, is_user;
1214 is_user = mmu_idx == MMU_USER_IDX;
1215 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1216 if (ret == 0) {
1217 /* Map a single [sub]page. */
1218 phys_addr &= ~(uint32_t)0x3ff;
1219 address &= ~(uint32_t)0x3ff;
1220 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1221 is_softmmu);
1224 if (access_type == 2) {
1225 env->cp15.c5_insn = ret;
1226 env->cp15.c6_insn = address;
1227 env->exception_index = EXCP_PREFETCH_ABORT;
1228 } else {
1229 env->cp15.c5_data = ret;
1230 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1231 env->cp15.c5_data |= (1 << 11);
1232 env->cp15.c6_data = address;
1233 env->exception_index = EXCP_DATA_ABORT;
1235 return 1;
1238 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1240 uint32_t phys_addr;
1241 int prot;
1242 int ret;
1244 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1246 if (ret != 0)
1247 return -1;
1249 return phys_addr;
1252 /* Not really implemented. Need to figure out a sane way of doing this.
1253 Maybe add generic watchpoint support and use that. */
1255 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1257 env->mmon_addr = addr;
1260 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1262 return (env->mmon_addr != addr);
1265 void HELPER(clrex)(CPUState *env)
1267 env->mmon_addr = -1;
1270 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1272 int cp_num = (insn >> 8) & 0xf;
1273 int cp_info = (insn >> 5) & 7;
1274 int src = (insn >> 16) & 0xf;
1275 int operand = insn & 0xf;
1277 if (env->cp[cp_num].cp_write)
1278 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1279 cp_info, src, operand, val);
1282 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1284 int cp_num = (insn >> 8) & 0xf;
1285 int cp_info = (insn >> 5) & 7;
1286 int dest = (insn >> 16) & 0xf;
1287 int operand = insn & 0xf;
1289 if (env->cp[cp_num].cp_read)
1290 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1291 cp_info, dest, operand);
1292 return 0;
1295 /* Return basic MPU access permission bits. */
1296 static uint32_t simple_mpu_ap_bits(uint32_t val)
1298 uint32_t ret;
1299 uint32_t mask;
1300 int i;
1301 ret = 0;
1302 mask = 3;
1303 for (i = 0; i < 16; i += 2) {
1304 ret |= (val >> i) & mask;
1305 mask <<= 2;
1307 return ret;
1310 /* Pad basic MPU access permission bits to extended format. */
1311 static uint32_t extended_mpu_ap_bits(uint32_t val)
1313 uint32_t ret;
1314 uint32_t mask;
1315 int i;
1316 ret = 0;
1317 mask = 3;
1318 for (i = 0; i < 16; i += 2) {
1319 ret |= (val & mask) << i;
1320 mask <<= 2;
1322 return ret;
1325 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1327 int op1;
1328 int op2;
1329 int crm;
1331 op1 = (insn >> 21) & 7;
1332 op2 = (insn >> 5) & 7;
1333 crm = insn & 0xf;
1334 switch ((insn >> 16) & 0xf) {
1335 case 0:
1336 /* ID codes. */
1337 if (arm_feature(env, ARM_FEATURE_XSCALE))
1338 break;
1339 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1340 break;
1341 if (arm_feature(env, ARM_FEATURE_V7)
1342 && op1 == 2 && crm == 0 && op2 == 0) {
1343 env->cp15.c0_cssel = val & 0xf;
1344 break;
1346 goto bad_reg;
1347 case 1: /* System configuration. */
1348 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1349 op2 = 0;
1350 switch (op2) {
1351 case 0:
1352 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1353 env->cp15.c1_sys = val;
1354 /* ??? Lots of these bits are not implemented. */
1355 /* This may enable/disable the MMU, so do a TLB flush. */
1356 tlb_flush(env, 1);
1357 break;
1358 case 1: /* Auxiliary cotrol register. */
1359 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1360 env->cp15.c1_xscaleauxcr = val;
1361 break;
1363 /* Not implemented. */
1364 break;
1365 case 2:
1366 if (arm_feature(env, ARM_FEATURE_XSCALE))
1367 goto bad_reg;
1368 if (env->cp15.c1_coproc != val) {
1369 env->cp15.c1_coproc = val;
1370 /* ??? Is this safe when called from within a TB? */
1371 tb_flush(env);
1373 break;
1374 default:
1375 goto bad_reg;
1377 break;
1378 case 2: /* MMU Page table control / MPU cache control. */
1379 if (arm_feature(env, ARM_FEATURE_MPU)) {
1380 switch (op2) {
1381 case 0:
1382 env->cp15.c2_data = val;
1383 break;
1384 case 1:
1385 env->cp15.c2_insn = val;
1386 break;
1387 default:
1388 goto bad_reg;
1390 } else {
1391 switch (op2) {
1392 case 0:
1393 env->cp15.c2_base0 = val;
1394 break;
1395 case 1:
1396 env->cp15.c2_base1 = val;
1397 break;
1398 case 2:
1399 val &= 7;
1400 env->cp15.c2_control = val;
1401 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1402 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1403 break;
1404 default:
1405 goto bad_reg;
1408 break;
1409 case 3: /* MMU Domain access control / MPU write buffer control. */
1410 env->cp15.c3 = val;
1411 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1412 break;
1413 case 4: /* Reserved. */
1414 goto bad_reg;
1415 case 5: /* MMU Fault status / MPU access permission. */
1416 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1417 op2 = 0;
1418 switch (op2) {
1419 case 0:
1420 if (arm_feature(env, ARM_FEATURE_MPU))
1421 val = extended_mpu_ap_bits(val);
1422 env->cp15.c5_data = val;
1423 break;
1424 case 1:
1425 if (arm_feature(env, ARM_FEATURE_MPU))
1426 val = extended_mpu_ap_bits(val);
1427 env->cp15.c5_insn = val;
1428 break;
1429 case 2:
1430 if (!arm_feature(env, ARM_FEATURE_MPU))
1431 goto bad_reg;
1432 env->cp15.c5_data = val;
1433 break;
1434 case 3:
1435 if (!arm_feature(env, ARM_FEATURE_MPU))
1436 goto bad_reg;
1437 env->cp15.c5_insn = val;
1438 break;
1439 default:
1440 goto bad_reg;
1442 break;
1443 case 6: /* MMU Fault address / MPU base/size. */
1444 if (arm_feature(env, ARM_FEATURE_MPU)) {
1445 if (crm >= 8)
1446 goto bad_reg;
1447 env->cp15.c6_region[crm] = val;
1448 } else {
1449 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1450 op2 = 0;
1451 switch (op2) {
1452 case 0:
1453 env->cp15.c6_data = val;
1454 break;
1455 case 1: /* ??? This is WFAR on armv6 */
1456 case 2:
1457 env->cp15.c6_insn = val;
1458 break;
1459 default:
1460 goto bad_reg;
1463 break;
1464 case 7: /* Cache control. */
1465 env->cp15.c15_i_max = 0x000;
1466 env->cp15.c15_i_min = 0xff0;
1467 /* No cache, so nothing to do. */
1468 /* ??? MPCore has VA to PA translation functions. */
1469 break;
1470 case 8: /* MMU TLB control. */
1471 switch (op2) {
1472 case 0: /* Invalidate all. */
1473 tlb_flush(env, 0);
1474 break;
1475 case 1: /* Invalidate single TLB entry. */
1476 #if 0
1477 /* ??? This is wrong for large pages and sections. */
1478 /* As an ugly hack to make linux work we always flush a 4K
1479 pages. */
1480 val &= 0xfffff000;
1481 tlb_flush_page(env, val);
1482 tlb_flush_page(env, val + 0x400);
1483 tlb_flush_page(env, val + 0x800);
1484 tlb_flush_page(env, val + 0xc00);
1485 #else
1486 tlb_flush(env, 1);
1487 #endif
1488 break;
1489 case 2: /* Invalidate on ASID. */
1490 tlb_flush(env, val == 0);
1491 break;
1492 case 3: /* Invalidate single entry on MVA. */
1493 /* ??? This is like case 1, but ignores ASID. */
1494 tlb_flush(env, 1);
1495 break;
1496 default:
1497 goto bad_reg;
1499 break;
1500 case 9:
1501 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1502 break;
1503 switch (crm) {
1504 case 0: /* Cache lockdown. */
1505 switch (op1) {
1506 case 0: /* L1 cache. */
1507 switch (op2) {
1508 case 0:
1509 env->cp15.c9_data = val;
1510 break;
1511 case 1:
1512 env->cp15.c9_insn = val;
1513 break;
1514 default:
1515 goto bad_reg;
1517 break;
1518 case 1: /* L2 cache. */
1519 /* Ignore writes to L2 lockdown/auxiliary registers. */
1520 break;
1521 default:
1522 goto bad_reg;
1524 break;
1525 case 1: /* TCM memory region registers. */
1526 /* Not implemented. */
1527 goto bad_reg;
1528 default:
1529 goto bad_reg;
1531 break;
1532 case 10: /* MMU TLB lockdown. */
1533 /* ??? TLB lockdown not implemented. */
1534 break;
1535 case 12: /* Reserved. */
1536 goto bad_reg;
1537 case 13: /* Process ID. */
1538 if (arm_feature(env, ARM_FEATURE_S3C))
1539 op2 = 0;
1540 switch (op2) {
1541 case 0:
1542 /* Unlike real hardware the qemu TLB uses virtual addresses,
1543 not modified virtual addresses, so this causes a TLB flush.
1545 if (env->cp15.c13_fcse != val)
1546 tlb_flush(env, 1);
1547 env->cp15.c13_fcse = val;
1548 break;
1549 case 1:
1550 /* This changes the ASID, so do a TLB flush. */
1551 if (env->cp15.c13_context != val
1552 && !arm_feature(env, ARM_FEATURE_MPU))
1553 tlb_flush(env, 0);
1554 env->cp15.c13_context = val;
1555 break;
1556 case 2:
1557 env->cp15.c13_tls1 = val;
1558 break;
1559 case 3:
1560 env->cp15.c13_tls2 = val;
1561 break;
1562 case 4:
1563 env->cp15.c13_tls3 = val;
1564 break;
1565 default:
1566 goto bad_reg;
1568 break;
1569 case 14: /* Reserved. */
1570 goto bad_reg;
1571 case 15: /* Implementation specific. */
1572 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1573 if (op2 == 0 && crm == 1) {
1574 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1575 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1576 tb_flush(env);
1577 env->cp15.c15_cpar = val & 0x3fff;
1579 break;
1581 goto bad_reg;
1583 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1584 switch (crm) {
1585 case 0:
1586 break;
1587 case 1: /* Set TI925T configuration. */
1588 env->cp15.c15_ticonfig = val & 0xe7;
1589 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1590 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1591 break;
1592 case 2: /* Set I_max. */
1593 env->cp15.c15_i_max = val;
1594 break;
1595 case 3: /* Set I_min. */
1596 env->cp15.c15_i_min = val;
1597 break;
1598 case 4: /* Set thread-ID. */
1599 env->cp15.c15_threadid = val & 0xffff;
1600 break;
1601 case 8: /* Wait-for-interrupt (deprecated). */
1602 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1603 break;
1604 default:
1605 goto bad_reg;
1608 break;
1610 return;
1611 bad_reg:
1612 /* ??? For debugging only. Should raise illegal instruction exception. */
1613 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1614 (insn >> 16) & 0xf, crm, op1, op2);
1617 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1619 int op1;
1620 int op2;
1621 int crm;
1623 op1 = (insn >> 21) & 7;
1624 op2 = (insn >> 5) & 7;
1625 crm = insn & 0xf;
1626 switch ((insn >> 16) & 0xf) {
1627 case 0: /* ID codes. */
1628 switch (op1) {
1629 case 0:
1630 switch (crm) {
1631 case 0:
1632 switch (op2) {
1633 case 0: /* Device ID. */
1634 return env->cp15.c0_cpuid;
1635 case 1: /* Cache Type. */
1636 return env->cp15.c0_cachetype;
1637 case 2: /* TCM status. */
1638 if (arm_feature(env, ARM_FEATURE_S3C))
1639 return env->cp15.c0_cpuid;
1640 return 0;
1641 case 3: /* TLB type register. */
1642 return 0; /* No lockable TLB entries. */
1643 case 5: /* CPU ID */
1644 return env->cpu_index;
1645 default:
1646 goto bad_reg;
1648 case 1:
1649 if (!arm_feature(env, ARM_FEATURE_V6))
1650 goto bad_reg;
1651 return env->cp15.c0_c1[op2];
1652 case 2:
1653 if (!arm_feature(env, ARM_FEATURE_V6))
1654 goto bad_reg;
1655 return env->cp15.c0_c2[op2];
1656 case 3: case 4: case 5: case 6: case 7:
1657 return 0;
1658 default:
1659 goto bad_reg;
1661 case 1:
1662 /* These registers aren't documented on arm11 cores. However
1663 Linux looks at them anyway. */
1664 if (!arm_feature(env, ARM_FEATURE_V6))
1665 goto bad_reg;
1666 if (crm != 0)
1667 goto bad_reg;
1668 if (!arm_feature(env, ARM_FEATURE_V7))
1669 return 0;
1671 switch (op2) {
1672 case 0:
1673 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1674 case 1:
1675 return env->cp15.c0_clid;
1676 case 7:
1677 return 0;
1679 goto bad_reg;
1680 case 2:
1681 if (op2 != 0 || crm != 0)
1682 goto bad_reg;
1683 return env->cp15.c0_cssel;
1684 default:
1685 goto bad_reg;
1687 case 1: /* System configuration. */
1688 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1689 op2 = 0;
1690 switch (op2) {
1691 case 0: /* Control register. */
1692 return env->cp15.c1_sys;
1693 case 1: /* Auxiliary control register. */
1694 if (arm_feature(env, ARM_FEATURE_XSCALE))
1695 return env->cp15.c1_xscaleauxcr;
1696 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1697 goto bad_reg;
1698 switch (ARM_CPUID(env)) {
1699 case ARM_CPUID_ARM1026:
1700 return 1;
1701 case ARM_CPUID_ARM1136:
1702 case ARM_CPUID_ARM1136_R2:
1703 return 7;
1704 case ARM_CPUID_ARM11MPCORE:
1705 return 1;
1706 case ARM_CPUID_CORTEXA8:
1707 return 2;
1708 default:
1709 goto bad_reg;
1711 case 2: /* Coprocessor access register. */
1712 if (arm_feature(env, ARM_FEATURE_XSCALE))
1713 goto bad_reg;
1714 return env->cp15.c1_coproc;
1715 default:
1716 goto bad_reg;
1718 case 2: /* MMU Page table control / MPU cache control. */
1719 if (arm_feature(env, ARM_FEATURE_MPU)) {
1720 switch (op2) {
1721 case 0:
1722 return env->cp15.c2_data;
1723 break;
1724 case 1:
1725 return env->cp15.c2_insn;
1726 break;
1727 default:
1728 goto bad_reg;
1730 } else {
1731 switch (op2) {
1732 case 0:
1733 return env->cp15.c2_base0;
1734 case 1:
1735 return env->cp15.c2_base1;
1736 case 2:
1737 return env->cp15.c2_control;
1738 default:
1739 goto bad_reg;
1742 case 3: /* MMU Domain access control / MPU write buffer control. */
1743 return env->cp15.c3;
1744 case 4: /* Reserved. */
1745 goto bad_reg;
1746 case 5: /* MMU Fault status / MPU access permission. */
1747 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1748 op2 = 0;
1749 switch (op2) {
1750 case 0:
1751 if (arm_feature(env, ARM_FEATURE_MPU))
1752 return simple_mpu_ap_bits(env->cp15.c5_data);
1753 return env->cp15.c5_data;
1754 case 1:
1755 if (arm_feature(env, ARM_FEATURE_MPU))
1756 return simple_mpu_ap_bits(env->cp15.c5_data);
1757 return env->cp15.c5_insn;
1758 case 2:
1759 if (!arm_feature(env, ARM_FEATURE_MPU))
1760 goto bad_reg;
1761 return env->cp15.c5_data;
1762 case 3:
1763 if (!arm_feature(env, ARM_FEATURE_MPU))
1764 goto bad_reg;
1765 return env->cp15.c5_insn;
1766 default:
1767 goto bad_reg;
1769 case 6: /* MMU Fault address. */
1770 if (arm_feature(env, ARM_FEATURE_MPU)) {
1771 if (crm >= 8)
1772 goto bad_reg;
1773 return env->cp15.c6_region[crm];
1774 } else {
1775 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1776 op2 = 0;
1777 switch (op2) {
1778 case 0:
1779 return env->cp15.c6_data;
1780 case 1:
1781 if (arm_feature(env, ARM_FEATURE_V6)) {
1782 /* Watchpoint Fault Adrress. */
1783 return 0; /* Not implemented. */
1784 } else {
1785 /* Instruction Fault Adrress. */
1786 /* Arm9 doesn't have an IFAR, but implementing it anyway
1787 shouldn't do any harm. */
1788 return env->cp15.c6_insn;
1790 case 2:
1791 if (arm_feature(env, ARM_FEATURE_V6)) {
1792 /* Instruction Fault Adrress. */
1793 return env->cp15.c6_insn;
1794 } else {
1795 goto bad_reg;
1797 default:
1798 goto bad_reg;
1801 case 7: /* Cache control. */
1802 /* FIXME: Should only clear Z flag if destination is r15. */
1803 env->ZF = 0;
1804 return 0;
1805 case 8: /* MMU TLB control. */
1806 goto bad_reg;
1807 case 9: /* Cache lockdown. */
1808 switch (op1) {
1809 case 0: /* L1 cache. */
1810 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1811 return 0;
1812 switch (op2) {
1813 case 0:
1814 return env->cp15.c9_data;
1815 case 1:
1816 return env->cp15.c9_insn;
1817 default:
1818 goto bad_reg;
1820 case 1: /* L2 cache */
1821 if (crm != 0)
1822 goto bad_reg;
1823 /* L2 Lockdown and Auxiliary control. */
1824 return 0;
1825 default:
1826 goto bad_reg;
1828 case 10: /* MMU TLB lockdown. */
1829 /* ??? TLB lockdown not implemented. */
1830 return 0;
1831 case 11: /* TCM DMA control. */
1832 case 12: /* Reserved. */
1833 goto bad_reg;
1834 case 13: /* Process ID. */
1835 switch (op2) {
1836 case 0:
1837 return env->cp15.c13_fcse;
1838 case 1:
1839 return env->cp15.c13_context;
1840 case 2:
1841 return env->cp15.c13_tls1;
1842 case 3:
1843 return env->cp15.c13_tls2;
1844 case 4:
1845 return env->cp15.c13_tls3;
1846 default:
1847 goto bad_reg;
1849 case 14: /* Reserved. */
1850 goto bad_reg;
1851 case 15: /* Implementation specific. */
1852 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1853 if (op2 == 0 && crm == 1)
1854 return env->cp15.c15_cpar;
1856 goto bad_reg;
1858 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1859 switch (crm) {
1860 case 0:
1861 return 0;
1862 case 1: /* Read TI925T configuration. */
1863 return env->cp15.c15_ticonfig;
1864 case 2: /* Read I_max. */
1865 return env->cp15.c15_i_max;
1866 case 3: /* Read I_min. */
1867 return env->cp15.c15_i_min;
1868 case 4: /* Read thread-ID. */
1869 return env->cp15.c15_threadid;
1870 case 8: /* TI925T_status */
1871 return 0;
1873 /* TODO: Peripheral port remap register:
1874 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1875 * controller base address at $rn & ~0xfff and map size of
1876 * 0x200 << ($rn & 0xfff), when MMU is off. */
1877 goto bad_reg;
1879 return 0;
1881 bad_reg:
1882 /* ??? For debugging only. Should raise illegal instruction exception. */
1883 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1884 (insn >> 16) & 0xf, crm, op1, op2);
1885 return 0;
1888 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1890 env->banked_r13[bank_number(mode)] = val;
1893 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1895 return env->banked_r13[bank_number(mode)];
1898 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1900 switch (reg) {
1901 case 0: /* APSR */
1902 return xpsr_read(env) & 0xf8000000;
1903 case 1: /* IAPSR */
1904 return xpsr_read(env) & 0xf80001ff;
1905 case 2: /* EAPSR */
1906 return xpsr_read(env) & 0xff00fc00;
1907 case 3: /* xPSR */
1908 return xpsr_read(env) & 0xff00fdff;
1909 case 5: /* IPSR */
1910 return xpsr_read(env) & 0x000001ff;
1911 case 6: /* EPSR */
1912 return xpsr_read(env) & 0x0700fc00;
1913 case 7: /* IEPSR */
1914 return xpsr_read(env) & 0x0700edff;
1915 case 8: /* MSP */
1916 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1917 case 9: /* PSP */
1918 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1919 case 16: /* PRIMASK */
1920 return (env->uncached_cpsr & CPSR_I) != 0;
1921 case 17: /* FAULTMASK */
1922 return (env->uncached_cpsr & CPSR_F) != 0;
1923 case 18: /* BASEPRI */
1924 case 19: /* BASEPRI_MAX */
1925 return env->v7m.basepri;
1926 case 20: /* CONTROL */
1927 return env->v7m.control;
1928 default:
1929 /* ??? For debugging only. */
1930 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1931 return 0;
1935 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1937 switch (reg) {
1938 case 0: /* APSR */
1939 xpsr_write(env, val, 0xf8000000);
1940 break;
1941 case 1: /* IAPSR */
1942 xpsr_write(env, val, 0xf8000000);
1943 break;
1944 case 2: /* EAPSR */
1945 xpsr_write(env, val, 0xfe00fc00);
1946 break;
1947 case 3: /* xPSR */
1948 xpsr_write(env, val, 0xfe00fc00);
1949 break;
1950 case 5: /* IPSR */
1951 /* IPSR bits are readonly. */
1952 break;
1953 case 6: /* EPSR */
1954 xpsr_write(env, val, 0x0600fc00);
1955 break;
1956 case 7: /* IEPSR */
1957 xpsr_write(env, val, 0x0600fc00);
1958 break;
1959 case 8: /* MSP */
1960 if (env->v7m.current_sp)
1961 env->v7m.other_sp = val;
1962 else
1963 env->regs[13] = val;
1964 break;
1965 case 9: /* PSP */
1966 if (env->v7m.current_sp)
1967 env->regs[13] = val;
1968 else
1969 env->v7m.other_sp = val;
1970 break;
1971 case 16: /* PRIMASK */
1972 if (val & 1)
1973 env->uncached_cpsr |= CPSR_I;
1974 else
1975 env->uncached_cpsr &= ~CPSR_I;
1976 break;
1977 case 17: /* FAULTMASK */
1978 if (val & 1)
1979 env->uncached_cpsr |= CPSR_F;
1980 else
1981 env->uncached_cpsr &= ~CPSR_F;
1982 break;
1983 case 18: /* BASEPRI */
1984 env->v7m.basepri = val & 0xff;
1985 break;
1986 case 19: /* BASEPRI_MAX */
1987 val &= 0xff;
1988 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1989 env->v7m.basepri = val;
1990 break;
1991 case 20: /* CONTROL */
1992 env->v7m.control = val & 3;
1993 switch_v7m_sp(env, (val & 2) != 0);
1994 break;
1995 default:
1996 /* ??? For debugging only. */
1997 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1998 return;
2002 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2003 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2004 void *opaque)
2006 if (cpnum < 0 || cpnum > 14) {
2007 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2008 return;
2011 env->cp[cpnum].cp_read = cp_read;
2012 env->cp[cpnum].cp_write = cp_write;
2013 env->cp[cpnum].opaque = opaque;
2016 #endif
2018 /* Note that signed overflow is undefined in C. The following routines are
2019 careful to use unsigned types where modulo arithmetic is required.
2020 Failure to do so _will_ break on newer gcc. */
2022 /* Signed saturating arithmetic. */
2024 /* Perform 16-bit signed saturating addition. */
2025 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2027 uint16_t res;
2029 res = a + b;
2030 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2031 if (a & 0x8000)
2032 res = 0x8000;
2033 else
2034 res = 0x7fff;
2036 return res;
2039 /* Perform 8-bit signed saturating addition. */
2040 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2042 uint8_t res;
2044 res = a + b;
2045 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2046 if (a & 0x80)
2047 res = 0x80;
2048 else
2049 res = 0x7f;
2051 return res;
2054 /* Perform 16-bit signed saturating subtraction. */
2055 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2057 uint16_t res;
2059 res = a - b;
2060 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2061 if (a & 0x8000)
2062 res = 0x8000;
2063 else
2064 res = 0x7fff;
2066 return res;
2069 /* Perform 8-bit signed saturating subtraction. */
2070 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2072 uint8_t res;
2074 res = a - b;
2075 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2076 if (a & 0x80)
2077 res = 0x80;
2078 else
2079 res = 0x7f;
2081 return res;
2084 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2085 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2086 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2087 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2088 #define PFX q
2090 #include "op_addsub.h"
2092 /* Unsigned saturating arithmetic. */
2093 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2095 uint16_t res;
2096 res = a + b;
2097 if (res < a)
2098 res = 0xffff;
2099 return res;
2102 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2104 if (a < b)
2105 return a - b;
2106 else
2107 return 0;
2110 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2112 uint8_t res;
2113 res = a + b;
2114 if (res < a)
2115 res = 0xff;
2116 return res;
2119 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2121 if (a < b)
2122 return a - b;
2123 else
2124 return 0;
2127 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2128 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2129 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2130 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2131 #define PFX uq
2133 #include "op_addsub.h"
2135 /* Signed modulo arithmetic. */
2136 #define SARITH16(a, b, n, op) do { \
2137 int32_t sum; \
2138 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2139 RESULT(sum, n, 16); \
2140 if (sum >= 0) \
2141 ge |= 3 << (n * 2); \
2142 } while(0)
2144 #define SARITH8(a, b, n, op) do { \
2145 int32_t sum; \
2146 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2147 RESULT(sum, n, 8); \
2148 if (sum >= 0) \
2149 ge |= 1 << n; \
2150 } while(0)
2153 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2154 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2155 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2156 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2157 #define PFX s
2158 #define ARITH_GE
2160 #include "op_addsub.h"
2162 /* Unsigned modulo arithmetic. */
2163 #define ADD16(a, b, n) do { \
2164 uint32_t sum; \
2165 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2166 RESULT(sum, n, 16); \
2167 if ((sum >> 16) == 1) \
2168 ge |= 3 << (n * 2); \
2169 } while(0)
2171 #define ADD8(a, b, n) do { \
2172 uint32_t sum; \
2173 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2174 RESULT(sum, n, 8); \
2175 if ((sum >> 8) == 1) \
2176 ge |= 1 << n; \
2177 } while(0)
2179 #define SUB16(a, b, n) do { \
2180 uint32_t sum; \
2181 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2182 RESULT(sum, n, 16); \
2183 if ((sum >> 16) == 0) \
2184 ge |= 3 << (n * 2); \
2185 } while(0)
2187 #define SUB8(a, b, n) do { \
2188 uint32_t sum; \
2189 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2190 RESULT(sum, n, 8); \
2191 if ((sum >> 8) == 0) \
2192 ge |= 1 << n; \
2193 } while(0)
2195 #define PFX u
2196 #define ARITH_GE
2198 #include "op_addsub.h"
2200 /* Halved signed arithmetic. */
2201 #define ADD16(a, b, n) \
2202 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2203 #define SUB16(a, b, n) \
2204 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2205 #define ADD8(a, b, n) \
2206 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2207 #define SUB8(a, b, n) \
2208 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2209 #define PFX sh
2211 #include "op_addsub.h"
2213 /* Halved unsigned arithmetic. */
2214 #define ADD16(a, b, n) \
2215 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2216 #define SUB16(a, b, n) \
2217 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2218 #define ADD8(a, b, n) \
2219 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2220 #define SUB8(a, b, n) \
2221 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2222 #define PFX uh
2224 #include "op_addsub.h"
2226 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2228 if (a > b)
2229 return a - b;
2230 else
2231 return b - a;
2234 /* Unsigned sum of absolute byte differences. */
2235 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2237 uint32_t sum;
2238 sum = do_usad(a, b);
2239 sum += do_usad(a >> 8, b >> 8);
2240 sum += do_usad(a >> 16, b >>16);
2241 sum += do_usad(a >> 24, b >> 24);
2242 return sum;
2245 /* For ARMv6 SEL instruction. */
2246 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2248 uint32_t mask;
2250 mask = 0;
2251 if (flags & 1)
2252 mask |= 0xff;
2253 if (flags & 2)
2254 mask |= 0xff00;
2255 if (flags & 4)
2256 mask |= 0xff0000;
2257 if (flags & 8)
2258 mask |= 0xff000000;
2259 return (a & mask) | (b & ~mask);
2262 uint32_t HELPER(logicq_cc)(uint64_t val)
2264 return (val >> 32) | (val != 0);
2267 /* VFP support. We follow the convention used for VFP instrunctions:
2268 Single precition routines have a "s" suffix, double precision a
2269 "d" suffix. */
2271 /* Convert host exception flags to vfp form. */
2272 static inline int vfp_exceptbits_from_host(int host_bits)
2274 int target_bits = 0;
2276 if (host_bits & float_flag_invalid)
2277 target_bits |= 1;
2278 if (host_bits & float_flag_divbyzero)
2279 target_bits |= 2;
2280 if (host_bits & float_flag_overflow)
2281 target_bits |= 4;
2282 if (host_bits & float_flag_underflow)
2283 target_bits |= 8;
2284 if (host_bits & float_flag_inexact)
2285 target_bits |= 0x10;
2286 return target_bits;
2289 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2291 int i;
2292 uint32_t fpscr;
2294 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2295 | (env->vfp.vec_len << 16)
2296 | (env->vfp.vec_stride << 20);
2297 i = get_float_exception_flags(&env->vfp.fp_status);
2298 fpscr |= vfp_exceptbits_from_host(i);
2299 return fpscr;
2302 /* Convert vfp exception flags to target form. */
2303 static inline int vfp_exceptbits_to_host(int target_bits)
2305 int host_bits = 0;
2307 if (target_bits & 1)
2308 host_bits |= float_flag_invalid;
2309 if (target_bits & 2)
2310 host_bits |= float_flag_divbyzero;
2311 if (target_bits & 4)
2312 host_bits |= float_flag_overflow;
2313 if (target_bits & 8)
2314 host_bits |= float_flag_underflow;
2315 if (target_bits & 0x10)
2316 host_bits |= float_flag_inexact;
2317 return host_bits;
2320 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2322 int i;
2323 uint32_t changed;
2325 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2326 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2327 env->vfp.vec_len = (val >> 16) & 7;
2328 env->vfp.vec_stride = (val >> 20) & 3;
2330 changed ^= val;
2331 if (changed & (3 << 22)) {
2332 i = (val >> 22) & 3;
2333 switch (i) {
2334 case 0:
2335 i = float_round_nearest_even;
2336 break;
2337 case 1:
2338 i = float_round_up;
2339 break;
2340 case 2:
2341 i = float_round_down;
2342 break;
2343 case 3:
2344 i = float_round_to_zero;
2345 break;
2347 set_float_rounding_mode(i, &env->vfp.fp_status);
2349 if (changed & (1 << 24))
2350 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2351 if (changed & (1 << 25))
2352 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2354 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2355 set_float_exception_flags(i, &env->vfp.fp_status);
2358 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2360 #define VFP_BINOP(name) \
2361 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2363 return float32_ ## name (a, b, &env->vfp.fp_status); \
2365 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2367 return float64_ ## name (a, b, &env->vfp.fp_status); \
2369 VFP_BINOP(add)
2370 VFP_BINOP(sub)
2371 VFP_BINOP(mul)
2372 VFP_BINOP(div)
2373 #undef VFP_BINOP
2375 float32 VFP_HELPER(neg, s)(float32 a)
2377 return float32_chs(a);
2380 float64 VFP_HELPER(neg, d)(float64 a)
2382 return float64_chs(a);
2385 float32 VFP_HELPER(abs, s)(float32 a)
2387 return float32_abs(a);
2390 float64 VFP_HELPER(abs, d)(float64 a)
2392 return float64_abs(a);
2395 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2397 return float32_sqrt(a, &env->vfp.fp_status);
2400 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2402 return float64_sqrt(a, &env->vfp.fp_status);
2405 /* XXX: check quiet/signaling case */
2406 #define DO_VFP_cmp(p, type) \
2407 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2409 uint32_t flags; \
2410 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2411 case 0: flags = 0x6; break; \
2412 case -1: flags = 0x8; break; \
2413 case 1: flags = 0x2; break; \
2414 default: case 2: flags = 0x3; break; \
2416 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2417 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2419 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2421 uint32_t flags; \
2422 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2423 case 0: flags = 0x6; break; \
2424 case -1: flags = 0x8; break; \
2425 case 1: flags = 0x2; break; \
2426 default: case 2: flags = 0x3; break; \
2428 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2429 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2431 DO_VFP_cmp(s, float32)
2432 DO_VFP_cmp(d, float64)
2433 #undef DO_VFP_cmp
2435 /* Helper routines to perform bitwise copies between float and int. */
2436 static inline float32 vfp_itos(uint32_t i)
2438 union {
2439 uint32_t i;
2440 float32 s;
2441 } v;
2443 v.i = i;
2444 return v.s;
2447 static inline uint32_t vfp_stoi(float32 s)
2449 union {
2450 uint32_t i;
2451 float32 s;
2452 } v;
2454 v.s = s;
2455 return v.i;
2458 static inline float64 vfp_itod(uint64_t i)
2460 union {
2461 uint64_t i;
2462 float64 d;
2463 } v;
2465 v.i = i;
2466 return v.d;
2469 static inline uint64_t vfp_dtoi(float64 d)
2471 union {
2472 uint64_t i;
2473 float64 d;
2474 } v;
2476 v.d = d;
2477 return v.i;
2480 /* Integer to float conversion. */
2481 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2483 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2486 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2488 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2491 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2493 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2496 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2498 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2501 /* Float to integer conversion. */
2502 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2504 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2507 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2509 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2512 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2514 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2517 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2519 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2522 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2524 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2527 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2529 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2532 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2534 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2537 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2539 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2542 /* floating point conversion */
2543 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2545 return float32_to_float64(x, &env->vfp.fp_status);
2548 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2550 return float64_to_float32(x, &env->vfp.fp_status);
2553 /* VFP3 fixed point conversion. */
2554 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2555 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2557 ftype tmp; \
2558 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2559 &env->vfp.fp_status); \
2560 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2562 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2564 ftype tmp; \
2565 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2566 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2567 &env->vfp.fp_status)); \
2570 VFP_CONV_FIX(sh, d, float64, int16, )
2571 VFP_CONV_FIX(sl, d, float64, int32, )
2572 VFP_CONV_FIX(uh, d, float64, uint16, u)
2573 VFP_CONV_FIX(ul, d, float64, uint32, u)
2574 VFP_CONV_FIX(sh, s, float32, int16, )
2575 VFP_CONV_FIX(sl, s, float32, int32, )
2576 VFP_CONV_FIX(uh, s, float32, uint16, u)
2577 VFP_CONV_FIX(ul, s, float32, uint32, u)
2578 #undef VFP_CONV_FIX
2580 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2582 float_status *s = &env->vfp.fp_status;
2583 float32 two = int32_to_float32(2, s);
2584 return float32_sub(two, float32_mul(a, b, s), s);
2587 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2589 float_status *s = &env->vfp.fp_status;
2590 float32 three = int32_to_float32(3, s);
2591 return float32_sub(three, float32_mul(a, b, s), s);
2594 /* NEON helpers. */
2596 /* TODO: The architecture specifies the value that the estimate functions
2597 should return. We return the exact reciprocal/root instead. */
2598 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2600 float_status *s = &env->vfp.fp_status;
2601 float32 one = int32_to_float32(1, s);
2602 return float32_div(one, a, s);
2605 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2607 float_status *s = &env->vfp.fp_status;
2608 float32 one = int32_to_float32(1, s);
2609 return float32_div(one, float32_sqrt(a, s), s);
2612 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2614 float_status *s = &env->vfp.fp_status;
2615 float32 tmp;
2616 tmp = int32_to_float32(a, s);
2617 tmp = float32_scalbn(tmp, -32, s);
2618 tmp = helper_recpe_f32(tmp, env);
2619 tmp = float32_scalbn(tmp, 31, s);
2620 return float32_to_int32(tmp, s);
2623 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2625 float_status *s = &env->vfp.fp_status;
2626 float32 tmp;
2627 tmp = int32_to_float32(a, s);
2628 tmp = float32_scalbn(tmp, -32, s);
2629 tmp = helper_rsqrte_f32(tmp, env);
2630 tmp = float32_scalbn(tmp, 31, s);
2631 return float32_to_int32(tmp, s);
2634 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2636 val &= 1;
2637 if (env->teecr != val) {
2638 env->teecr = val;
2639 tb_flush(env);