Unbreak out-of-tree builds
[qemu/mini2440.git] / hw / ppc4xx_devs.c
blobddee8f6338d2b022d83a11a07a8f551942dc9f67
1 /*
2 * QEMU PowerPC 4xx embedded processors shared devices emulation
4 * Copyright (c) 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "ppc4xx.h"
27 #include "sysemu.h"
28 #include "qemu-log.h"
30 //#define DEBUG_MMIO
31 //#define DEBUG_UNASSIGNED
32 #define DEBUG_UIC
35 #ifdef DEBUG_UIC
36 # define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
37 #else
38 # define LOG_UIC(...) do { } while (0)
39 #endif
41 /*****************************************************************************/
42 /* Generic PowerPC 4xx processor instanciation */
43 CPUState *ppc4xx_init (const char *cpu_model,
44 clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
45 uint32_t sysclk)
47 CPUState *env;
49 /* init CPUs */
50 env = cpu_init(cpu_model);
51 if (!env) {
52 fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
53 cpu_model);
54 exit(1);
56 cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
57 cpu_clk->opaque = env;
58 /* Set time-base frequency to sysclk */
59 tb_clk->cb = ppc_emb_timers_init(env, sysclk);
60 tb_clk->opaque = env;
61 ppc_dcr_init(env, NULL, NULL);
62 /* Register qemu callbacks */
63 qemu_register_reset(&cpu_ppc_reset, env);
65 return env;
68 /*****************************************************************************/
69 /* Fake device used to map multiple devices in a single memory page */
70 #define MMIO_AREA_BITS 8
71 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS)
72 #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS))
73 #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1))
74 struct ppc4xx_mmio_t {
75 target_phys_addr_t base;
76 CPUReadMemoryFunc **mem_read[MMIO_AREA_NB];
77 CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB];
78 void *opaque[MMIO_AREA_NB];
81 static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr)
83 #ifdef DEBUG_UNASSIGNED
84 ppc4xx_mmio_t *mmio;
86 mmio = opaque;
87 printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n",
88 addr, mmio->base);
89 #endif
91 return 0;
94 static void unassigned_mmio_writeb (void *opaque,
95 target_phys_addr_t addr, uint32_t val)
97 #ifdef DEBUG_UNASSIGNED
98 ppc4xx_mmio_t *mmio;
100 mmio = opaque;
101 printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n",
102 addr, val, mmio->base);
103 #endif
106 static CPUReadMemoryFunc *unassigned_mmio_read[3] = {
107 unassigned_mmio_readb,
108 unassigned_mmio_readb,
109 unassigned_mmio_readb,
112 static CPUWriteMemoryFunc *unassigned_mmio_write[3] = {
113 unassigned_mmio_writeb,
114 unassigned_mmio_writeb,
115 unassigned_mmio_writeb,
118 static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio,
119 target_phys_addr_t addr, int len)
121 CPUReadMemoryFunc **mem_read;
122 uint32_t ret;
123 int idx;
125 idx = MMIO_IDX(addr);
126 #if defined(DEBUG_MMIO)
127 printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__,
128 mmio, len, addr, idx);
129 #endif
130 mem_read = mmio->mem_read[idx];
131 ret = (*mem_read[len])(mmio->opaque[idx], addr);
133 return ret;
136 static void mmio_writelen (ppc4xx_mmio_t *mmio,
137 target_phys_addr_t addr, uint32_t value, int len)
139 CPUWriteMemoryFunc **mem_write;
140 int idx;
142 idx = MMIO_IDX(addr);
143 #if defined(DEBUG_MMIO)
144 printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08" PRIx32 "\n",
145 __func__, mmio, len, addr, idx, value);
146 #endif
147 mem_write = mmio->mem_write[idx];
148 (*mem_write[len])(mmio->opaque[idx], addr, value);
151 static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr)
153 #if defined(DEBUG_MMIO)
154 printf("%s: addr " PADDRX "\n", __func__, addr);
155 #endif
157 return mmio_readlen(opaque, addr, 0);
160 static void mmio_writeb (void *opaque,
161 target_phys_addr_t addr, uint32_t value)
163 #if defined(DEBUG_MMIO)
164 printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
165 #endif
166 mmio_writelen(opaque, addr, value, 0);
169 static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr)
171 #if defined(DEBUG_MMIO)
172 printf("%s: addr " PADDRX "\n", __func__, addr);
173 #endif
175 return mmio_readlen(opaque, addr, 1);
178 static void mmio_writew (void *opaque,
179 target_phys_addr_t addr, uint32_t value)
181 #if defined(DEBUG_MMIO)
182 printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
183 #endif
184 mmio_writelen(opaque, addr, value, 1);
187 static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr)
189 #if defined(DEBUG_MMIO)
190 printf("%s: addr " PADDRX "\n", __func__, addr);
191 #endif
193 return mmio_readlen(opaque, addr, 2);
196 static void mmio_writel (void *opaque,
197 target_phys_addr_t addr, uint32_t value)
199 #if defined(DEBUG_MMIO)
200 printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value);
201 #endif
202 mmio_writelen(opaque, addr, value, 2);
205 static CPUReadMemoryFunc *mmio_read[] = {
206 &mmio_readb,
207 &mmio_readw,
208 &mmio_readl,
211 static CPUWriteMemoryFunc *mmio_write[] = {
212 &mmio_writeb,
213 &mmio_writew,
214 &mmio_writel,
217 int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio,
218 target_phys_addr_t offset, uint32_t len,
219 CPUReadMemoryFunc **mem_read,
220 CPUWriteMemoryFunc **mem_write, void *opaque)
222 target_phys_addr_t end;
223 int idx, eidx;
225 if ((offset + len) > TARGET_PAGE_SIZE)
226 return -1;
227 idx = MMIO_IDX(offset);
228 end = offset + len - 1;
229 eidx = MMIO_IDX(end);
230 #if defined(DEBUG_MMIO)
231 printf("%s: offset " PADDRX " len %08" PRIx32 " " PADDRX " %d %d\n",
232 __func__, offset, len, end, idx, eidx);
233 #endif
234 for (; idx <= eidx; idx++) {
235 mmio->mem_read[idx] = mem_read;
236 mmio->mem_write[idx] = mem_write;
237 mmio->opaque[idx] = opaque;
240 return 0;
243 ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base)
245 ppc4xx_mmio_t *mmio;
246 int mmio_memory;
248 mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t));
249 mmio->base = base;
250 mmio_memory = cpu_register_io_memory(0, mmio_read, mmio_write, mmio);
251 #if defined(DEBUG_MMIO)
252 printf("%s: base " PADDRX " len %08x %d\n", __func__,
253 base, TARGET_PAGE_SIZE, mmio_memory);
254 #endif
255 cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory);
256 ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE,
257 unassigned_mmio_read, unassigned_mmio_write,
258 mmio);
260 return mmio;
263 /*****************************************************************************/
264 /* "Universal" Interrupt controller */
265 enum {
266 DCR_UICSR = 0x000,
267 DCR_UICSRS = 0x001,
268 DCR_UICER = 0x002,
269 DCR_UICCR = 0x003,
270 DCR_UICPR = 0x004,
271 DCR_UICTR = 0x005,
272 DCR_UICMSR = 0x006,
273 DCR_UICVR = 0x007,
274 DCR_UICVCR = 0x008,
275 DCR_UICMAX = 0x009,
278 #define UIC_MAX_IRQ 32
279 typedef struct ppcuic_t ppcuic_t;
280 struct ppcuic_t {
281 uint32_t dcr_base;
282 int use_vectors;
283 uint32_t level; /* Remembers the state of level-triggered interrupts. */
284 uint32_t uicsr; /* Status register */
285 uint32_t uicer; /* Enable register */
286 uint32_t uiccr; /* Critical register */
287 uint32_t uicpr; /* Polarity register */
288 uint32_t uictr; /* Triggering register */
289 uint32_t uicvcr; /* Vector configuration register */
290 uint32_t uicvr;
291 qemu_irq *irqs;
294 static void ppcuic_trigger_irq (ppcuic_t *uic)
296 uint32_t ir, cr;
297 int start, end, inc, i;
299 /* Trigger interrupt if any is pending */
300 ir = uic->uicsr & uic->uicer & (~uic->uiccr);
301 cr = uic->uicsr & uic->uicer & uic->uiccr;
302 LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32
303 " uiccr %08" PRIx32 "\n"
304 " %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
305 __func__, uic->uicsr, uic->uicer, uic->uiccr,
306 uic->uicsr & uic->uicer, ir, cr);
307 if (ir != 0x0000000) {
308 LOG_UIC("Raise UIC interrupt\n");
309 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
310 } else {
311 LOG_UIC("Lower UIC interrupt\n");
312 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
314 /* Trigger critical interrupt if any is pending and update vector */
315 if (cr != 0x0000000) {
316 qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
317 if (uic->use_vectors) {
318 /* Compute critical IRQ vector */
319 if (uic->uicvcr & 1) {
320 start = 31;
321 end = 0;
322 inc = -1;
323 } else {
324 start = 0;
325 end = 31;
326 inc = 1;
328 uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
329 for (i = start; i <= end; i += inc) {
330 if (cr & (1 << i)) {
331 uic->uicvr += (i - start) * 512 * inc;
332 break;
336 LOG_UIC("Raise UIC critical interrupt - "
337 "vector %08" PRIx32 "\n", uic->uicvr);
338 } else {
339 LOG_UIC("Lower UIC critical interrupt\n");
340 qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
341 uic->uicvr = 0x00000000;
345 static void ppcuic_set_irq (void *opaque, int irq_num, int level)
347 ppcuic_t *uic;
348 uint32_t mask, sr;
350 uic = opaque;
351 mask = 1 << (31-irq_num);
352 LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
353 " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
354 __func__, irq_num, level,
355 uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
356 if (irq_num < 0 || irq_num > 31)
357 return;
358 sr = uic->uicsr;
360 /* Update status register */
361 if (uic->uictr & mask) {
362 /* Edge sensitive interrupt */
363 if (level == 1)
364 uic->uicsr |= mask;
365 } else {
366 /* Level sensitive interrupt */
367 if (level == 1) {
368 uic->uicsr |= mask;
369 uic->level |= mask;
370 } else {
371 uic->uicsr &= ~mask;
372 uic->level &= ~mask;
375 LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => "
376 "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
377 if (sr != uic->uicsr)
378 ppcuic_trigger_irq(uic);
381 static target_ulong dcr_read_uic (void *opaque, int dcrn)
383 ppcuic_t *uic;
384 target_ulong ret;
386 uic = opaque;
387 dcrn -= uic->dcr_base;
388 switch (dcrn) {
389 case DCR_UICSR:
390 case DCR_UICSRS:
391 ret = uic->uicsr;
392 break;
393 case DCR_UICER:
394 ret = uic->uicer;
395 break;
396 case DCR_UICCR:
397 ret = uic->uiccr;
398 break;
399 case DCR_UICPR:
400 ret = uic->uicpr;
401 break;
402 case DCR_UICTR:
403 ret = uic->uictr;
404 break;
405 case DCR_UICMSR:
406 ret = uic->uicsr & uic->uicer;
407 break;
408 case DCR_UICVR:
409 if (!uic->use_vectors)
410 goto no_read;
411 ret = uic->uicvr;
412 break;
413 case DCR_UICVCR:
414 if (!uic->use_vectors)
415 goto no_read;
416 ret = uic->uicvcr;
417 break;
418 default:
419 no_read:
420 ret = 0x00000000;
421 break;
424 return ret;
427 static void dcr_write_uic (void *opaque, int dcrn, target_ulong val)
429 ppcuic_t *uic;
431 uic = opaque;
432 dcrn -= uic->dcr_base;
433 LOG_UIC("%s: dcr %d val " ADDRX "\n", __func__, dcrn, val);
434 switch (dcrn) {
435 case DCR_UICSR:
436 uic->uicsr &= ~val;
437 uic->uicsr |= uic->level;
438 ppcuic_trigger_irq(uic);
439 break;
440 case DCR_UICSRS:
441 uic->uicsr |= val;
442 ppcuic_trigger_irq(uic);
443 break;
444 case DCR_UICER:
445 uic->uicer = val;
446 ppcuic_trigger_irq(uic);
447 break;
448 case DCR_UICCR:
449 uic->uiccr = val;
450 ppcuic_trigger_irq(uic);
451 break;
452 case DCR_UICPR:
453 uic->uicpr = val;
454 break;
455 case DCR_UICTR:
456 uic->uictr = val;
457 ppcuic_trigger_irq(uic);
458 break;
459 case DCR_UICMSR:
460 break;
461 case DCR_UICVR:
462 break;
463 case DCR_UICVCR:
464 uic->uicvcr = val & 0xFFFFFFFD;
465 ppcuic_trigger_irq(uic);
466 break;
470 static void ppcuic_reset (void *opaque)
472 ppcuic_t *uic;
474 uic = opaque;
475 uic->uiccr = 0x00000000;
476 uic->uicer = 0x00000000;
477 uic->uicpr = 0x00000000;
478 uic->uicsr = 0x00000000;
479 uic->uictr = 0x00000000;
480 if (uic->use_vectors) {
481 uic->uicvcr = 0x00000000;
482 uic->uicvr = 0x0000000;
486 qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs,
487 uint32_t dcr_base, int has_ssr, int has_vr)
489 ppcuic_t *uic;
490 int i;
492 uic = qemu_mallocz(sizeof(ppcuic_t));
493 uic->dcr_base = dcr_base;
494 uic->irqs = irqs;
495 if (has_vr)
496 uic->use_vectors = 1;
497 for (i = 0; i < DCR_UICMAX; i++) {
498 ppc_dcr_register(env, dcr_base + i, uic,
499 &dcr_read_uic, &dcr_write_uic);
501 qemu_register_reset(ppcuic_reset, uic);
502 ppcuic_reset(uic);
504 return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
507 /*****************************************************************************/
508 /* SDRAM controller */
509 typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
510 struct ppc4xx_sdram_t {
511 uint32_t addr;
512 int nbanks;
513 target_phys_addr_t ram_bases[4];
514 target_phys_addr_t ram_sizes[4];
515 uint32_t besr0;
516 uint32_t besr1;
517 uint32_t bear;
518 uint32_t cfg;
519 uint32_t status;
520 uint32_t rtr;
521 uint32_t pmit;
522 uint32_t bcr[4];
523 uint32_t tr;
524 uint32_t ecccfg;
525 uint32_t eccesr;
526 qemu_irq irq;
529 enum {
530 SDRAM0_CFGADDR = 0x010,
531 SDRAM0_CFGDATA = 0x011,
534 /* XXX: TOFIX: some patches have made this code become inconsistent:
535 * there are type inconsistencies, mixing target_phys_addr_t, target_ulong
536 * and uint32_t
538 static uint32_t sdram_bcr (target_phys_addr_t ram_base,
539 target_phys_addr_t ram_size)
541 uint32_t bcr;
543 switch (ram_size) {
544 case (4 * 1024 * 1024):
545 bcr = 0x00000000;
546 break;
547 case (8 * 1024 * 1024):
548 bcr = 0x00020000;
549 break;
550 case (16 * 1024 * 1024):
551 bcr = 0x00040000;
552 break;
553 case (32 * 1024 * 1024):
554 bcr = 0x00060000;
555 break;
556 case (64 * 1024 * 1024):
557 bcr = 0x00080000;
558 break;
559 case (128 * 1024 * 1024):
560 bcr = 0x000A0000;
561 break;
562 case (256 * 1024 * 1024):
563 bcr = 0x000C0000;
564 break;
565 default:
566 printf("%s: invalid RAM size " PADDRX "\n", __func__, ram_size);
567 return 0x00000000;
569 bcr |= ram_base & 0xFF800000;
570 bcr |= 1;
572 return bcr;
575 static always_inline target_phys_addr_t sdram_base (uint32_t bcr)
577 return bcr & 0xFF800000;
580 static target_ulong sdram_size (uint32_t bcr)
582 target_ulong size;
583 int sh;
585 sh = (bcr >> 17) & 0x7;
586 if (sh == 7)
587 size = -1;
588 else
589 size = (4 * 1024 * 1024) << sh;
591 return size;
594 static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled)
596 if (*bcrp & 0x00000001) {
597 /* Unmap RAM */
598 #ifdef DEBUG_SDRAM
599 printf("%s: unmap RAM area " PADDRX " " ADDRX "\n",
600 __func__, sdram_base(*bcrp), sdram_size(*bcrp));
601 #endif
602 cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp),
603 IO_MEM_UNASSIGNED);
605 *bcrp = bcr & 0xFFDEE001;
606 if (enabled && (bcr & 0x00000001)) {
607 #ifdef DEBUG_SDRAM
608 printf("%s: Map RAM area " PADDRX " " ADDRX "\n",
609 __func__, sdram_base(bcr), sdram_size(bcr));
610 #endif
611 cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr),
612 sdram_base(bcr) | IO_MEM_RAM);
616 static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
618 int i;
620 for (i = 0; i < sdram->nbanks; i++) {
621 if (sdram->ram_sizes[i] != 0) {
622 sdram_set_bcr(&sdram->bcr[i],
623 sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]),
625 } else {
626 sdram_set_bcr(&sdram->bcr[i], 0x00000000, 0);
631 static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
633 int i;
635 for (i = 0; i < sdram->nbanks; i++) {
636 #ifdef DEBUG_SDRAM
637 printf("%s: Unmap RAM area " PADDRX " " ADDRX "\n",
638 __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
639 #endif
640 cpu_register_physical_memory(sdram_base(sdram->bcr[i]),
641 sdram_size(sdram->bcr[i]),
642 IO_MEM_UNASSIGNED);
646 static target_ulong dcr_read_sdram (void *opaque, int dcrn)
648 ppc4xx_sdram_t *sdram;
649 target_ulong ret;
651 sdram = opaque;
652 switch (dcrn) {
653 case SDRAM0_CFGADDR:
654 ret = sdram->addr;
655 break;
656 case SDRAM0_CFGDATA:
657 switch (sdram->addr) {
658 case 0x00: /* SDRAM_BESR0 */
659 ret = sdram->besr0;
660 break;
661 case 0x08: /* SDRAM_BESR1 */
662 ret = sdram->besr1;
663 break;
664 case 0x10: /* SDRAM_BEAR */
665 ret = sdram->bear;
666 break;
667 case 0x20: /* SDRAM_CFG */
668 ret = sdram->cfg;
669 break;
670 case 0x24: /* SDRAM_STATUS */
671 ret = sdram->status;
672 break;
673 case 0x30: /* SDRAM_RTR */
674 ret = sdram->rtr;
675 break;
676 case 0x34: /* SDRAM_PMIT */
677 ret = sdram->pmit;
678 break;
679 case 0x40: /* SDRAM_B0CR */
680 ret = sdram->bcr[0];
681 break;
682 case 0x44: /* SDRAM_B1CR */
683 ret = sdram->bcr[1];
684 break;
685 case 0x48: /* SDRAM_B2CR */
686 ret = sdram->bcr[2];
687 break;
688 case 0x4C: /* SDRAM_B3CR */
689 ret = sdram->bcr[3];
690 break;
691 case 0x80: /* SDRAM_TR */
692 ret = -1; /* ? */
693 break;
694 case 0x94: /* SDRAM_ECCCFG */
695 ret = sdram->ecccfg;
696 break;
697 case 0x98: /* SDRAM_ECCESR */
698 ret = sdram->eccesr;
699 break;
700 default: /* Error */
701 ret = -1;
702 break;
704 break;
705 default:
706 /* Avoid gcc warning */
707 ret = 0x00000000;
708 break;
711 return ret;
714 static void dcr_write_sdram (void *opaque, int dcrn, target_ulong val)
716 ppc4xx_sdram_t *sdram;
718 sdram = opaque;
719 switch (dcrn) {
720 case SDRAM0_CFGADDR:
721 sdram->addr = val;
722 break;
723 case SDRAM0_CFGDATA:
724 switch (sdram->addr) {
725 case 0x00: /* SDRAM_BESR0 */
726 sdram->besr0 &= ~val;
727 break;
728 case 0x08: /* SDRAM_BESR1 */
729 sdram->besr1 &= ~val;
730 break;
731 case 0x10: /* SDRAM_BEAR */
732 sdram->bear = val;
733 break;
734 case 0x20: /* SDRAM_CFG */
735 val &= 0xFFE00000;
736 if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
737 #ifdef DEBUG_SDRAM
738 printf("%s: enable SDRAM controller\n", __func__);
739 #endif
740 /* validate all RAM mappings */
741 sdram_map_bcr(sdram);
742 sdram->status &= ~0x80000000;
743 } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
744 #ifdef DEBUG_SDRAM
745 printf("%s: disable SDRAM controller\n", __func__);
746 #endif
747 /* invalidate all RAM mappings */
748 sdram_unmap_bcr(sdram);
749 sdram->status |= 0x80000000;
751 if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
752 sdram->status |= 0x40000000;
753 else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
754 sdram->status &= ~0x40000000;
755 sdram->cfg = val;
756 break;
757 case 0x24: /* SDRAM_STATUS */
758 /* Read-only register */
759 break;
760 case 0x30: /* SDRAM_RTR */
761 sdram->rtr = val & 0x3FF80000;
762 break;
763 case 0x34: /* SDRAM_PMIT */
764 sdram->pmit = (val & 0xF8000000) | 0x07C00000;
765 break;
766 case 0x40: /* SDRAM_B0CR */
767 sdram_set_bcr(&sdram->bcr[0], val, sdram->cfg & 0x80000000);
768 break;
769 case 0x44: /* SDRAM_B1CR */
770 sdram_set_bcr(&sdram->bcr[1], val, sdram->cfg & 0x80000000);
771 break;
772 case 0x48: /* SDRAM_B2CR */
773 sdram_set_bcr(&sdram->bcr[2], val, sdram->cfg & 0x80000000);
774 break;
775 case 0x4C: /* SDRAM_B3CR */
776 sdram_set_bcr(&sdram->bcr[3], val, sdram->cfg & 0x80000000);
777 break;
778 case 0x80: /* SDRAM_TR */
779 sdram->tr = val & 0x018FC01F;
780 break;
781 case 0x94: /* SDRAM_ECCCFG */
782 sdram->ecccfg = val & 0x00F00000;
783 break;
784 case 0x98: /* SDRAM_ECCESR */
785 val &= 0xFFF0F000;
786 if (sdram->eccesr == 0 && val != 0)
787 qemu_irq_raise(sdram->irq);
788 else if (sdram->eccesr != 0 && val == 0)
789 qemu_irq_lower(sdram->irq);
790 sdram->eccesr = val;
791 break;
792 default: /* Error */
793 break;
795 break;
799 static void sdram_reset (void *opaque)
801 ppc4xx_sdram_t *sdram;
803 sdram = opaque;
804 sdram->addr = 0x00000000;
805 sdram->bear = 0x00000000;
806 sdram->besr0 = 0x00000000; /* No error */
807 sdram->besr1 = 0x00000000; /* No error */
808 sdram->cfg = 0x00000000;
809 sdram->ecccfg = 0x00000000; /* No ECC */
810 sdram->eccesr = 0x00000000; /* No error */
811 sdram->pmit = 0x07C00000;
812 sdram->rtr = 0x05F00000;
813 sdram->tr = 0x00854009;
814 /* We pre-initialize RAM banks */
815 sdram->status = 0x00000000;
816 sdram->cfg = 0x00800000;
817 sdram_unmap_bcr(sdram);
820 void ppc4xx_sdram_init (CPUState *env, qemu_irq irq, int nbanks,
821 target_phys_addr_t *ram_bases,
822 target_phys_addr_t *ram_sizes,
823 int do_init)
825 ppc4xx_sdram_t *sdram;
827 sdram = qemu_mallocz(sizeof(ppc4xx_sdram_t));
828 sdram->irq = irq;
829 sdram->nbanks = nbanks;
830 memset(sdram->ram_bases, 0, 4 * sizeof(target_phys_addr_t));
831 memcpy(sdram->ram_bases, ram_bases,
832 nbanks * sizeof(target_phys_addr_t));
833 memset(sdram->ram_sizes, 0, 4 * sizeof(target_phys_addr_t));
834 memcpy(sdram->ram_sizes, ram_sizes,
835 nbanks * sizeof(target_phys_addr_t));
836 sdram_reset(sdram);
837 qemu_register_reset(&sdram_reset, sdram);
838 ppc_dcr_register(env, SDRAM0_CFGADDR,
839 sdram, &dcr_read_sdram, &dcr_write_sdram);
840 ppc_dcr_register(env, SDRAM0_CFGDATA,
841 sdram, &dcr_read_sdram, &dcr_write_sdram);
842 if (do_init)
843 sdram_map_bcr(sdram);
846 /* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
848 * sdram_bank_sizes[] must be 0-terminated.
850 * The 4xx SDRAM controller supports a small number of banks, and each bank
851 * must be one of a small set of sizes. The number of banks and the supported
852 * sizes varies by SoC. */
853 ram_addr_t ppc4xx_sdram_adjust(ram_addr_t ram_size, int nr_banks,
854 target_phys_addr_t ram_bases[],
855 target_phys_addr_t ram_sizes[],
856 const unsigned int sdram_bank_sizes[])
858 ram_addr_t size_left = ram_size;
859 int i;
860 int j;
862 for (i = 0; i < nr_banks; i++) {
863 for (j = 0; sdram_bank_sizes[j] != 0; j++) {
864 unsigned int bank_size = sdram_bank_sizes[j];
866 if (bank_size <= size_left) {
867 ram_bases[i] = qemu_ram_alloc(bank_size);
868 ram_sizes[i] = bank_size;
869 size_left -= bank_size;
870 break;
874 if (!size_left) {
875 /* No need to use the remaining banks. */
876 break;
880 ram_size -= size_left;
881 if (ram_size)
882 printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
883 (int)(ram_size >> 20));
885 return ram_size;