Fix typo that leads to out of bounds array access on big endian systems
[qemu/mini2440.git] / hw / musicpal.c
blobb1cece46266c1431a3536cd520971d61da2b2974
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
7 */
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
59 #define MP_TIMER1_IRQ 4
60 /* ... */
61 #define MP_TIMER4_IRQ 7
62 #define MP_EHCI_IRQ 8
63 #define MP_ETH_IRQ 9
64 #define MP_UART1_IRQ 11
65 #define MP_UART2_IRQ 11
66 #define MP_GPIO_IRQ 12
67 #define MP_RTC_IRQ 28
68 #define MP_AUDIO_IRQ 30
70 static uint32_t gpio_in_state = 0xffffffff;
71 static uint32_t gpio_isr;
72 static uint32_t gpio_out_state;
73 static ram_addr_t sram_off;
75 typedef enum i2c_state {
76 STOPPED = 0,
77 INITIALIZING,
78 SENDING_BIT7,
79 SENDING_BIT6,
80 SENDING_BIT5,
81 SENDING_BIT4,
82 SENDING_BIT3,
83 SENDING_BIT2,
84 SENDING_BIT1,
85 SENDING_BIT0,
86 WAITING_FOR_ACK,
87 RECEIVING_BIT7,
88 RECEIVING_BIT6,
89 RECEIVING_BIT5,
90 RECEIVING_BIT4,
91 RECEIVING_BIT3,
92 RECEIVING_BIT2,
93 RECEIVING_BIT1,
94 RECEIVING_BIT0,
95 SENDING_ACK
96 } i2c_state;
98 typedef struct i2c_interface {
99 i2c_bus *bus;
100 i2c_state state;
101 int last_data;
102 int last_clock;
103 uint8_t buffer;
104 int current_addr;
105 } i2c_interface;
107 static void i2c_enter_stop(i2c_interface *i2c)
109 if (i2c->current_addr >= 0)
110 i2c_end_transfer(i2c->bus);
111 i2c->current_addr = -1;
112 i2c->state = STOPPED;
115 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
117 if (!i2c)
118 return;
120 switch (i2c->state) {
121 case STOPPED:
122 if (data == 0 && i2c->last_data == 1 && clock == 1)
123 i2c->state = INITIALIZING;
124 break;
126 case INITIALIZING:
127 if (clock == 0 && i2c->last_clock == 1 && data == 0)
128 i2c->state = SENDING_BIT7;
129 else
130 i2c_enter_stop(i2c);
131 break;
133 case SENDING_BIT7 ... SENDING_BIT0:
134 if (clock == 0 && i2c->last_clock == 1) {
135 i2c->buffer = (i2c->buffer << 1) | data;
136 i2c->state++; /* will end up in WAITING_FOR_ACK */
137 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
138 i2c_enter_stop(i2c);
139 break;
141 case WAITING_FOR_ACK:
142 if (clock == 0 && i2c->last_clock == 1) {
143 if (i2c->current_addr < 0) {
144 i2c->current_addr = i2c->buffer;
145 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
146 i2c->buffer & 1);
147 } else
148 i2c_send(i2c->bus, i2c->buffer);
149 if (i2c->current_addr & 1) {
150 i2c->state = RECEIVING_BIT7;
151 i2c->buffer = i2c_recv(i2c->bus);
152 } else
153 i2c->state = SENDING_BIT7;
154 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
155 i2c_enter_stop(i2c);
156 break;
158 case RECEIVING_BIT7 ... RECEIVING_BIT0:
159 if (clock == 0 && i2c->last_clock == 1) {
160 i2c->state++; /* will end up in SENDING_ACK */
161 i2c->buffer <<= 1;
162 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
163 i2c_enter_stop(i2c);
164 break;
166 case SENDING_ACK:
167 if (clock == 0 && i2c->last_clock == 1) {
168 i2c->state = RECEIVING_BIT7;
169 if (data == 0)
170 i2c->buffer = i2c_recv(i2c->bus);
171 else
172 i2c_nack(i2c->bus);
173 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
174 i2c_enter_stop(i2c);
175 break;
178 i2c->last_data = data;
179 i2c->last_clock = clock;
182 static int i2c_get_data(i2c_interface *i2c)
184 if (!i2c)
185 return 0;
187 switch (i2c->state) {
188 case RECEIVING_BIT7 ... RECEIVING_BIT0:
189 return (i2c->buffer >> 7);
191 case WAITING_FOR_ACK:
192 default:
193 return 0;
197 static i2c_interface *mixer_i2c;
199 #ifdef HAS_AUDIO
201 /* Audio register offsets */
202 #define MP_AUDIO_PLAYBACK_MODE 0x00
203 #define MP_AUDIO_CLOCK_DIV 0x18
204 #define MP_AUDIO_IRQ_STATUS 0x20
205 #define MP_AUDIO_IRQ_ENABLE 0x24
206 #define MP_AUDIO_TX_START_LO 0x28
207 #define MP_AUDIO_TX_THRESHOLD 0x2C
208 #define MP_AUDIO_TX_STATUS 0x38
209 #define MP_AUDIO_TX_START_HI 0x40
211 /* Status register and IRQ enable bits */
212 #define MP_AUDIO_TX_HALF (1 << 6)
213 #define MP_AUDIO_TX_FULL (1 << 7)
215 /* Playback mode bits */
216 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
217 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
218 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
219 #define MP_AUDIO_MONO (1 << 14)
221 /* Wolfson 8750 I2C address */
222 #define MP_WM_ADDR 0x34
224 static const char audio_name[] = "mv88w8618";
226 typedef struct musicpal_audio_state {
227 qemu_irq irq;
228 uint32_t playback_mode;
229 uint32_t status;
230 uint32_t irq_enable;
231 unsigned long phys_buf;
232 uint32_t target_buffer;
233 unsigned int threshold;
234 unsigned int play_pos;
235 unsigned int last_free;
236 uint32_t clock_div;
237 i2c_slave *wm;
238 } musicpal_audio_state;
240 static void audio_callback(void *opaque, int free_out, int free_in)
242 musicpal_audio_state *s = opaque;
243 int16_t *codec_buffer;
244 int8_t buf[4096];
245 int8_t *mem_buffer;
246 int pos, block_size;
248 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
249 return;
251 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
252 free_out <<= 1;
254 if (!(s->playback_mode & MP_AUDIO_MONO))
255 free_out <<= 1;
257 block_size = s->threshold/2;
258 if (free_out - s->last_free < block_size)
259 return;
261 if (block_size > 4096)
262 return;
264 cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
265 block_size);
266 mem_buffer = buf;
267 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
268 if (s->playback_mode & MP_AUDIO_MONO) {
269 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
270 for (pos = 0; pos < block_size; pos += 2) {
271 *codec_buffer++ = *(int16_t *)mem_buffer;
272 *codec_buffer++ = *(int16_t *)mem_buffer;
273 mem_buffer += 2;
275 } else
276 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
277 (uint32_t *)mem_buffer, block_size);
278 } else {
279 if (s->playback_mode & MP_AUDIO_MONO) {
280 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
281 for (pos = 0; pos < block_size; pos++) {
282 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
283 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
285 } else {
286 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
287 for (pos = 0; pos < block_size; pos += 2) {
288 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
289 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
293 wm8750_dac_commit(s->wm);
295 s->last_free = free_out - block_size;
297 if (s->play_pos == 0) {
298 s->status |= MP_AUDIO_TX_HALF;
299 s->play_pos = block_size;
300 } else {
301 s->status |= MP_AUDIO_TX_FULL;
302 s->play_pos = 0;
305 if (s->status & s->irq_enable)
306 qemu_irq_raise(s->irq);
309 static void musicpal_audio_clock_update(musicpal_audio_state *s)
311 int rate;
313 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
314 rate = 24576000 / 64; /* 24.576MHz */
315 else
316 rate = 11289600 / 64; /* 11.2896MHz */
318 rate /= ((s->clock_div >> 8) & 0xff) + 1;
320 wm8750_set_bclk_in(s->wm, rate);
323 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
325 musicpal_audio_state *s = opaque;
327 switch (offset) {
328 case MP_AUDIO_PLAYBACK_MODE:
329 return s->playback_mode;
331 case MP_AUDIO_CLOCK_DIV:
332 return s->clock_div;
334 case MP_AUDIO_IRQ_STATUS:
335 return s->status;
337 case MP_AUDIO_IRQ_ENABLE:
338 return s->irq_enable;
340 case MP_AUDIO_TX_STATUS:
341 return s->play_pos >> 2;
343 default:
344 return 0;
348 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
349 uint32_t value)
351 musicpal_audio_state *s = opaque;
353 switch (offset) {
354 case MP_AUDIO_PLAYBACK_MODE:
355 if (value & MP_AUDIO_PLAYBACK_EN &&
356 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
357 s->status = 0;
358 s->last_free = 0;
359 s->play_pos = 0;
361 s->playback_mode = value;
362 musicpal_audio_clock_update(s);
363 break;
365 case MP_AUDIO_CLOCK_DIV:
366 s->clock_div = value;
367 s->last_free = 0;
368 s->play_pos = 0;
369 musicpal_audio_clock_update(s);
370 break;
372 case MP_AUDIO_IRQ_STATUS:
373 s->status &= ~value;
374 break;
376 case MP_AUDIO_IRQ_ENABLE:
377 s->irq_enable = value;
378 if (s->status & s->irq_enable)
379 qemu_irq_raise(s->irq);
380 break;
382 case MP_AUDIO_TX_START_LO:
383 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
384 s->target_buffer = s->phys_buf;
385 s->play_pos = 0;
386 s->last_free = 0;
387 break;
389 case MP_AUDIO_TX_THRESHOLD:
390 s->threshold = (value + 1) * 4;
391 break;
393 case MP_AUDIO_TX_START_HI:
394 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
395 s->target_buffer = s->phys_buf;
396 s->play_pos = 0;
397 s->last_free = 0;
398 break;
402 static void musicpal_audio_reset(void *opaque)
404 musicpal_audio_state *s = opaque;
406 s->playback_mode = 0;
407 s->status = 0;
408 s->irq_enable = 0;
411 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
412 musicpal_audio_read,
413 musicpal_audio_read,
414 musicpal_audio_read
417 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
418 musicpal_audio_write,
419 musicpal_audio_write,
420 musicpal_audio_write
423 static i2c_interface *musicpal_audio_init(qemu_irq irq)
425 musicpal_audio_state *s;
426 i2c_interface *i2c;
427 int iomemtype;
429 s = qemu_mallocz(sizeof(musicpal_audio_state));
430 s->irq = irq;
432 i2c = qemu_mallocz(sizeof(i2c_interface));
433 i2c->bus = i2c_init_bus();
434 i2c->current_addr = -1;
436 s->wm = wm8750_init(i2c->bus);
437 if (!s->wm)
438 return NULL;
439 i2c_set_slave_address(s->wm, MP_WM_ADDR);
440 wm8750_data_req_set(s->wm, audio_callback, s);
442 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
443 musicpal_audio_writefn, s);
444 cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
446 qemu_register_reset(musicpal_audio_reset, s);
448 return i2c;
450 #else /* !HAS_AUDIO */
451 static i2c_interface *musicpal_audio_init(qemu_irq irq)
453 return NULL;
455 #endif /* !HAS_AUDIO */
457 /* Ethernet register offsets */
458 #define MP_ETH_SMIR 0x010
459 #define MP_ETH_PCXR 0x408
460 #define MP_ETH_SDCMR 0x448
461 #define MP_ETH_ICR 0x450
462 #define MP_ETH_IMR 0x458
463 #define MP_ETH_FRDP0 0x480
464 #define MP_ETH_FRDP1 0x484
465 #define MP_ETH_FRDP2 0x488
466 #define MP_ETH_FRDP3 0x48C
467 #define MP_ETH_CRDP0 0x4A0
468 #define MP_ETH_CRDP1 0x4A4
469 #define MP_ETH_CRDP2 0x4A8
470 #define MP_ETH_CRDP3 0x4AC
471 #define MP_ETH_CTDP0 0x4E0
472 #define MP_ETH_CTDP1 0x4E4
473 #define MP_ETH_CTDP2 0x4E8
474 #define MP_ETH_CTDP3 0x4EC
476 /* MII PHY access */
477 #define MP_ETH_SMIR_DATA 0x0000FFFF
478 #define MP_ETH_SMIR_ADDR 0x03FF0000
479 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
480 #define MP_ETH_SMIR_RDVALID (1 << 27)
482 /* PHY registers */
483 #define MP_ETH_PHY1_BMSR 0x00210000
484 #define MP_ETH_PHY1_PHYSID1 0x00410000
485 #define MP_ETH_PHY1_PHYSID2 0x00610000
487 #define MP_PHY_BMSR_LINK 0x0004
488 #define MP_PHY_BMSR_AUTONEG 0x0008
490 #define MP_PHY_88E3015 0x01410E20
492 /* TX descriptor status */
493 #define MP_ETH_TX_OWN (1 << 31)
495 /* RX descriptor status */
496 #define MP_ETH_RX_OWN (1 << 31)
498 /* Interrupt cause/mask bits */
499 #define MP_ETH_IRQ_RX_BIT 0
500 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
501 #define MP_ETH_IRQ_TXHI_BIT 2
502 #define MP_ETH_IRQ_TXLO_BIT 3
504 /* Port config bits */
505 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
507 /* SDMA command bits */
508 #define MP_ETH_CMD_TXHI (1 << 23)
509 #define MP_ETH_CMD_TXLO (1 << 22)
511 typedef struct mv88w8618_tx_desc {
512 uint32_t cmdstat;
513 uint16_t res;
514 uint16_t bytes;
515 uint32_t buffer;
516 uint32_t next;
517 } mv88w8618_tx_desc;
519 typedef struct mv88w8618_rx_desc {
520 uint32_t cmdstat;
521 uint16_t bytes;
522 uint16_t buffer_size;
523 uint32_t buffer;
524 uint32_t next;
525 } mv88w8618_rx_desc;
527 typedef struct mv88w8618_eth_state {
528 qemu_irq irq;
529 uint32_t smir;
530 uint32_t icr;
531 uint32_t imr;
532 int mmio_index;
533 int vlan_header;
534 uint32_t tx_queue[2];
535 uint32_t rx_queue[4];
536 uint32_t frx_queue[4];
537 uint32_t cur_rx[4];
538 VLANClientState *vc;
539 } mv88w8618_eth_state;
541 static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
543 cpu_to_le32s(&desc->cmdstat);
544 cpu_to_le16s(&desc->bytes);
545 cpu_to_le16s(&desc->buffer_size);
546 cpu_to_le32s(&desc->buffer);
547 cpu_to_le32s(&desc->next);
548 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
551 static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
553 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
554 le32_to_cpus(&desc->cmdstat);
555 le16_to_cpus(&desc->bytes);
556 le16_to_cpus(&desc->buffer_size);
557 le32_to_cpus(&desc->buffer);
558 le32_to_cpus(&desc->next);
561 static int eth_can_receive(void *opaque)
563 return 1;
566 static void eth_receive(void *opaque, const uint8_t *buf, int size)
568 mv88w8618_eth_state *s = opaque;
569 uint32_t desc_addr;
570 mv88w8618_rx_desc desc;
571 int i;
573 for (i = 0; i < 4; i++) {
574 desc_addr = s->cur_rx[i];
575 if (!desc_addr)
576 continue;
577 do {
578 eth_rx_desc_get(desc_addr, &desc);
579 if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
580 cpu_physical_memory_write(desc.buffer + s->vlan_header,
581 buf, size);
582 desc.bytes = size + s->vlan_header;
583 desc.cmdstat &= ~MP_ETH_RX_OWN;
584 s->cur_rx[i] = desc.next;
586 s->icr |= MP_ETH_IRQ_RX;
587 if (s->icr & s->imr)
588 qemu_irq_raise(s->irq);
589 eth_rx_desc_put(desc_addr, &desc);
590 return;
592 desc_addr = desc.next;
593 } while (desc_addr != s->rx_queue[i]);
597 static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
599 cpu_to_le32s(&desc->cmdstat);
600 cpu_to_le16s(&desc->res);
601 cpu_to_le16s(&desc->bytes);
602 cpu_to_le32s(&desc->buffer);
603 cpu_to_le32s(&desc->next);
604 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
607 static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
609 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
610 le32_to_cpus(&desc->cmdstat);
611 le16_to_cpus(&desc->res);
612 le16_to_cpus(&desc->bytes);
613 le32_to_cpus(&desc->buffer);
614 le32_to_cpus(&desc->next);
617 static void eth_send(mv88w8618_eth_state *s, int queue_index)
619 uint32_t desc_addr = s->tx_queue[queue_index];
620 mv88w8618_tx_desc desc;
621 uint8_t buf[2048];
622 int len;
625 do {
626 eth_tx_desc_get(desc_addr, &desc);
627 if (desc.cmdstat & MP_ETH_TX_OWN) {
628 len = desc.bytes;
629 if (len < 2048) {
630 cpu_physical_memory_read(desc.buffer, buf, len);
631 qemu_send_packet(s->vc, buf, len);
633 desc.cmdstat &= ~MP_ETH_TX_OWN;
634 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
635 eth_tx_desc_put(desc_addr, &desc);
637 desc_addr = desc.next;
638 } while (desc_addr != s->tx_queue[queue_index]);
641 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
643 mv88w8618_eth_state *s = opaque;
645 switch (offset) {
646 case MP_ETH_SMIR:
647 if (s->smir & MP_ETH_SMIR_OPCODE) {
648 switch (s->smir & MP_ETH_SMIR_ADDR) {
649 case MP_ETH_PHY1_BMSR:
650 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
651 MP_ETH_SMIR_RDVALID;
652 case MP_ETH_PHY1_PHYSID1:
653 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
654 case MP_ETH_PHY1_PHYSID2:
655 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
656 default:
657 return MP_ETH_SMIR_RDVALID;
660 return 0;
662 case MP_ETH_ICR:
663 return s->icr;
665 case MP_ETH_IMR:
666 return s->imr;
668 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
669 return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
671 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
672 return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
674 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
675 return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
677 default:
678 return 0;
682 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
683 uint32_t value)
685 mv88w8618_eth_state *s = opaque;
687 switch (offset) {
688 case MP_ETH_SMIR:
689 s->smir = value;
690 break;
692 case MP_ETH_PCXR:
693 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
694 break;
696 case MP_ETH_SDCMR:
697 if (value & MP_ETH_CMD_TXHI)
698 eth_send(s, 1);
699 if (value & MP_ETH_CMD_TXLO)
700 eth_send(s, 0);
701 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
702 qemu_irq_raise(s->irq);
703 break;
705 case MP_ETH_ICR:
706 s->icr &= value;
707 break;
709 case MP_ETH_IMR:
710 s->imr = value;
711 if (s->icr & s->imr)
712 qemu_irq_raise(s->irq);
713 break;
715 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
716 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
717 break;
719 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
720 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
721 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
722 break;
724 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
725 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
726 break;
730 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
731 mv88w8618_eth_read,
732 mv88w8618_eth_read,
733 mv88w8618_eth_read
736 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
737 mv88w8618_eth_write,
738 mv88w8618_eth_write,
739 mv88w8618_eth_write
742 static void eth_cleanup(VLANClientState *vc)
744 mv88w8618_eth_state *s = vc->opaque;
746 cpu_unregister_io_memory(s->mmio_index);
748 qemu_free(s);
751 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
753 mv88w8618_eth_state *s;
755 qemu_check_nic_model(nd, "mv88w8618");
757 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
758 s->irq = irq;
759 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
760 eth_receive, eth_can_receive,
761 eth_cleanup, s);
762 s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
763 mv88w8618_eth_writefn, s);
764 cpu_register_physical_memory(base, MP_ETH_SIZE, s->mmio_index);
767 /* LCD register offsets */
768 #define MP_LCD_IRQCTRL 0x180
769 #define MP_LCD_IRQSTAT 0x184
770 #define MP_LCD_SPICTRL 0x1ac
771 #define MP_LCD_INST 0x1bc
772 #define MP_LCD_DATA 0x1c0
774 /* Mode magics */
775 #define MP_LCD_SPI_DATA 0x00100011
776 #define MP_LCD_SPI_CMD 0x00104011
777 #define MP_LCD_SPI_INVALID 0x00000000
779 /* Commmands */
780 #define MP_LCD_INST_SETPAGE0 0xB0
781 /* ... */
782 #define MP_LCD_INST_SETPAGE7 0xB7
784 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
786 typedef struct musicpal_lcd_state {
787 uint32_t mode;
788 uint32_t irqctrl;
789 int page;
790 int page_off;
791 DisplayState *ds;
792 uint8_t video_ram[128*64/8];
793 } musicpal_lcd_state;
795 static uint32_t lcd_brightness;
797 static uint8_t scale_lcd_color(uint8_t col)
799 int tmp = col;
801 switch (lcd_brightness) {
802 case 0x00000007: /* 0 */
803 return 0;
805 case 0x00020000: /* 1 */
806 return (tmp * 1) / 7;
808 case 0x00020001: /* 2 */
809 return (tmp * 2) / 7;
811 case 0x00040000: /* 3 */
812 return (tmp * 3) / 7;
814 case 0x00010006: /* 4 */
815 return (tmp * 4) / 7;
817 case 0x00020005: /* 5 */
818 return (tmp * 5) / 7;
820 case 0x00040003: /* 6 */
821 return (tmp * 6) / 7;
823 case 0x00030004: /* 7 */
824 default:
825 return col;
829 #define SET_LCD_PIXEL(depth, type) \
830 static inline void glue(set_lcd_pixel, depth) \
831 (musicpal_lcd_state *s, int x, int y, type col) \
833 int dx, dy; \
834 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
836 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
837 for (dx = 0; dx < 3; dx++, pixel++) \
838 *pixel = col; \
840 SET_LCD_PIXEL(8, uint8_t)
841 SET_LCD_PIXEL(16, uint16_t)
842 SET_LCD_PIXEL(32, uint32_t)
844 #include "pixel_ops.h"
846 static void lcd_refresh(void *opaque)
848 musicpal_lcd_state *s = opaque;
849 int x, y, col;
851 switch (ds_get_bits_per_pixel(s->ds)) {
852 case 0:
853 return;
854 #define LCD_REFRESH(depth, func) \
855 case depth: \
856 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
857 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
858 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
859 for (x = 0; x < 128; x++) \
860 for (y = 0; y < 64; y++) \
861 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
862 glue(set_lcd_pixel, depth)(s, x, y, col); \
863 else \
864 glue(set_lcd_pixel, depth)(s, x, y, 0); \
865 break;
866 LCD_REFRESH(8, rgb_to_pixel8)
867 LCD_REFRESH(16, rgb_to_pixel16)
868 LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
869 rgb_to_pixel32bgr : rgb_to_pixel32))
870 default:
871 hw_error("unsupported colour depth %i\n",
872 ds_get_bits_per_pixel(s->ds));
875 dpy_update(s->ds, 0, 0, 128*3, 64*3);
878 static void lcd_invalidate(void *opaque)
882 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
884 musicpal_lcd_state *s = opaque;
886 switch (offset) {
887 case MP_LCD_IRQCTRL:
888 return s->irqctrl;
890 default:
891 return 0;
895 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
896 uint32_t value)
898 musicpal_lcd_state *s = opaque;
900 switch (offset) {
901 case MP_LCD_IRQCTRL:
902 s->irqctrl = value;
903 break;
905 case MP_LCD_SPICTRL:
906 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
907 s->mode = value;
908 else
909 s->mode = MP_LCD_SPI_INVALID;
910 break;
912 case MP_LCD_INST:
913 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
914 s->page = value - MP_LCD_INST_SETPAGE0;
915 s->page_off = 0;
917 break;
919 case MP_LCD_DATA:
920 if (s->mode == MP_LCD_SPI_CMD) {
921 if (value >= MP_LCD_INST_SETPAGE0 &&
922 value <= MP_LCD_INST_SETPAGE7) {
923 s->page = value - MP_LCD_INST_SETPAGE0;
924 s->page_off = 0;
926 } else if (s->mode == MP_LCD_SPI_DATA) {
927 s->video_ram[s->page*128 + s->page_off] = value;
928 s->page_off = (s->page_off + 1) & 127;
930 break;
934 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
935 musicpal_lcd_read,
936 musicpal_lcd_read,
937 musicpal_lcd_read
940 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
941 musicpal_lcd_write,
942 musicpal_lcd_write,
943 musicpal_lcd_write
946 static void musicpal_lcd_init(void)
948 musicpal_lcd_state *s;
949 int iomemtype;
951 s = qemu_mallocz(sizeof(musicpal_lcd_state));
952 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
953 musicpal_lcd_writefn, s);
954 cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
956 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
957 NULL, NULL, s);
958 qemu_console_resize(s->ds, 128*3, 64*3);
961 /* PIC register offsets */
962 #define MP_PIC_STATUS 0x00
963 #define MP_PIC_ENABLE_SET 0x08
964 #define MP_PIC_ENABLE_CLR 0x0C
966 typedef struct mv88w8618_pic_state
968 uint32_t level;
969 uint32_t enabled;
970 qemu_irq parent_irq;
971 } mv88w8618_pic_state;
973 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
975 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
978 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
980 mv88w8618_pic_state *s = opaque;
982 if (level)
983 s->level |= 1 << irq;
984 else
985 s->level &= ~(1 << irq);
986 mv88w8618_pic_update(s);
989 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
991 mv88w8618_pic_state *s = opaque;
993 switch (offset) {
994 case MP_PIC_STATUS:
995 return s->level & s->enabled;
997 default:
998 return 0;
1002 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1003 uint32_t value)
1005 mv88w8618_pic_state *s = opaque;
1007 switch (offset) {
1008 case MP_PIC_ENABLE_SET:
1009 s->enabled |= value;
1010 break;
1012 case MP_PIC_ENABLE_CLR:
1013 s->enabled &= ~value;
1014 s->level &= ~value;
1015 break;
1017 mv88w8618_pic_update(s);
1020 static void mv88w8618_pic_reset(void *opaque)
1022 mv88w8618_pic_state *s = opaque;
1024 s->level = 0;
1025 s->enabled = 0;
1028 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1029 mv88w8618_pic_read,
1030 mv88w8618_pic_read,
1031 mv88w8618_pic_read
1034 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1035 mv88w8618_pic_write,
1036 mv88w8618_pic_write,
1037 mv88w8618_pic_write
1040 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1042 mv88w8618_pic_state *s;
1043 int iomemtype;
1044 qemu_irq *qi;
1046 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1047 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1048 s->parent_irq = parent_irq;
1049 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1050 mv88w8618_pic_writefn, s);
1051 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1053 qemu_register_reset(mv88w8618_pic_reset, s);
1055 return qi;
1058 /* PIT register offsets */
1059 #define MP_PIT_TIMER1_LENGTH 0x00
1060 /* ... */
1061 #define MP_PIT_TIMER4_LENGTH 0x0C
1062 #define MP_PIT_CONTROL 0x10
1063 #define MP_PIT_TIMER1_VALUE 0x14
1064 /* ... */
1065 #define MP_PIT_TIMER4_VALUE 0x20
1066 #define MP_BOARD_RESET 0x34
1068 /* Magic board reset value (probably some watchdog behind it) */
1069 #define MP_BOARD_RESET_MAGIC 0x10000
1071 typedef struct mv88w8618_timer_state {
1072 ptimer_state *timer;
1073 uint32_t limit;
1074 int freq;
1075 qemu_irq irq;
1076 } mv88w8618_timer_state;
1078 typedef struct mv88w8618_pit_state {
1079 void *timer[4];
1080 uint32_t control;
1081 } mv88w8618_pit_state;
1083 static void mv88w8618_timer_tick(void *opaque)
1085 mv88w8618_timer_state *s = opaque;
1087 qemu_irq_raise(s->irq);
1090 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1092 mv88w8618_timer_state *s;
1093 QEMUBH *bh;
1095 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1096 s->irq = irq;
1097 s->freq = freq;
1099 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1100 s->timer = ptimer_init(bh);
1102 return s;
1105 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1107 mv88w8618_pit_state *s = opaque;
1108 mv88w8618_timer_state *t;
1110 switch (offset) {
1111 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1112 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1113 return ptimer_get_count(t->timer);
1115 default:
1116 return 0;
1120 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1121 uint32_t value)
1123 mv88w8618_pit_state *s = opaque;
1124 mv88w8618_timer_state *t;
1125 int i;
1127 switch (offset) {
1128 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1129 t = s->timer[offset >> 2];
1130 t->limit = value;
1131 ptimer_set_limit(t->timer, t->limit, 1);
1132 break;
1134 case MP_PIT_CONTROL:
1135 for (i = 0; i < 4; i++) {
1136 if (value & 0xf) {
1137 t = s->timer[i];
1138 ptimer_set_limit(t->timer, t->limit, 0);
1139 ptimer_set_freq(t->timer, t->freq);
1140 ptimer_run(t->timer, 0);
1142 value >>= 4;
1144 break;
1146 case MP_BOARD_RESET:
1147 if (value == MP_BOARD_RESET_MAGIC)
1148 qemu_system_reset_request();
1149 break;
1153 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1154 mv88w8618_pit_read,
1155 mv88w8618_pit_read,
1156 mv88w8618_pit_read
1159 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1160 mv88w8618_pit_write,
1161 mv88w8618_pit_write,
1162 mv88w8618_pit_write
1165 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1167 int iomemtype;
1168 mv88w8618_pit_state *s;
1170 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1172 /* Letting them all run at 1 MHz is likely just a pragmatic
1173 * simplification. */
1174 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1175 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1176 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1177 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1179 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1180 mv88w8618_pit_writefn, s);
1181 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1184 /* Flash config register offsets */
1185 #define MP_FLASHCFG_CFGR0 0x04
1187 typedef struct mv88w8618_flashcfg_state {
1188 uint32_t cfgr0;
1189 } mv88w8618_flashcfg_state;
1191 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1192 target_phys_addr_t offset)
1194 mv88w8618_flashcfg_state *s = opaque;
1196 switch (offset) {
1197 case MP_FLASHCFG_CFGR0:
1198 return s->cfgr0;
1200 default:
1201 return 0;
1205 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1206 uint32_t value)
1208 mv88w8618_flashcfg_state *s = opaque;
1210 switch (offset) {
1211 case MP_FLASHCFG_CFGR0:
1212 s->cfgr0 = value;
1213 break;
1217 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1218 mv88w8618_flashcfg_read,
1219 mv88w8618_flashcfg_read,
1220 mv88w8618_flashcfg_read
1223 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1224 mv88w8618_flashcfg_write,
1225 mv88w8618_flashcfg_write,
1226 mv88w8618_flashcfg_write
1229 static void mv88w8618_flashcfg_init(uint32_t base)
1231 int iomemtype;
1232 mv88w8618_flashcfg_state *s;
1234 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1236 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1237 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1238 mv88w8618_flashcfg_writefn, s);
1239 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1242 /* Misc register offsets */
1243 #define MP_MISC_BOARD_REVISION 0x18
1245 #define MP_BOARD_REVISION 0x31
1247 static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1249 switch (offset) {
1250 case MP_MISC_BOARD_REVISION:
1251 return MP_BOARD_REVISION;
1253 default:
1254 return 0;
1258 static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1259 uint32_t value)
1263 static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1264 musicpal_misc_read,
1265 musicpal_misc_read,
1266 musicpal_misc_read,
1269 static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1270 musicpal_misc_write,
1271 musicpal_misc_write,
1272 musicpal_misc_write,
1275 static void musicpal_misc_init(void)
1277 int iomemtype;
1279 iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1280 musicpal_misc_writefn, NULL);
1281 cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1284 /* WLAN register offsets */
1285 #define MP_WLAN_MAGIC1 0x11c
1286 #define MP_WLAN_MAGIC2 0x124
1288 static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1290 switch (offset) {
1291 /* Workaround to allow loading the binary-only wlandrv.ko crap
1292 * from the original Freecom firmware. */
1293 case MP_WLAN_MAGIC1:
1294 return ~3;
1295 case MP_WLAN_MAGIC2:
1296 return -1;
1298 default:
1299 return 0;
1303 static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1304 uint32_t value)
1308 static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1309 mv88w8618_wlan_read,
1310 mv88w8618_wlan_read,
1311 mv88w8618_wlan_read,
1314 static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1315 mv88w8618_wlan_write,
1316 mv88w8618_wlan_write,
1317 mv88w8618_wlan_write,
1320 static void mv88w8618_wlan_init(uint32_t base)
1322 int iomemtype;
1324 iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1325 mv88w8618_wlan_writefn, NULL);
1326 cpu_register_physical_memory(base, MP_WLAN_SIZE, iomemtype);
1329 /* GPIO register offsets */
1330 #define MP_GPIO_OE_LO 0x008
1331 #define MP_GPIO_OUT_LO 0x00c
1332 #define MP_GPIO_IN_LO 0x010
1333 #define MP_GPIO_ISR_LO 0x020
1334 #define MP_GPIO_OE_HI 0x508
1335 #define MP_GPIO_OUT_HI 0x50c
1336 #define MP_GPIO_IN_HI 0x510
1337 #define MP_GPIO_ISR_HI 0x520
1339 /* GPIO bits & masks */
1340 #define MP_GPIO_WHEEL_VOL (1 << 8)
1341 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1342 #define MP_GPIO_WHEEL_NAV (1 << 10)
1343 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1344 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1345 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1346 #define MP_GPIO_BTN_MENU (1 << 20)
1347 #define MP_GPIO_BTN_VOLUME (1 << 21)
1348 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1349 #define MP_GPIO_I2C_DATA_BIT 29
1350 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1351 #define MP_GPIO_I2C_CLOCK_BIT 30
1353 /* LCD brightness bits in GPIO_OE_HI */
1354 #define MP_OE_LCD_BRIGHTNESS 0x0007
1356 static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1358 switch (offset) {
1359 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1360 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1362 case MP_GPIO_OUT_LO:
1363 return gpio_out_state & 0xFFFF;
1364 case MP_GPIO_OUT_HI:
1365 return gpio_out_state >> 16;
1367 case MP_GPIO_IN_LO:
1368 return gpio_in_state & 0xFFFF;
1369 case MP_GPIO_IN_HI:
1370 /* Update received I2C data */
1371 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1372 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1373 return gpio_in_state >> 16;
1375 case MP_GPIO_ISR_LO:
1376 return gpio_isr & 0xFFFF;
1377 case MP_GPIO_ISR_HI:
1378 return gpio_isr >> 16;
1380 default:
1381 return 0;
1385 static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1386 uint32_t value)
1388 switch (offset) {
1389 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1390 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1391 (value & MP_OE_LCD_BRIGHTNESS);
1392 break;
1394 case MP_GPIO_OUT_LO:
1395 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1396 break;
1397 case MP_GPIO_OUT_HI:
1398 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1399 lcd_brightness = (lcd_brightness & 0xFFFF) |
1400 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1401 i2c_state_update(mixer_i2c,
1402 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1403 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1404 break;
1409 static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1410 musicpal_gpio_read,
1411 musicpal_gpio_read,
1412 musicpal_gpio_read,
1415 static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1416 musicpal_gpio_write,
1417 musicpal_gpio_write,
1418 musicpal_gpio_write,
1421 static void musicpal_gpio_init(void)
1423 int iomemtype;
1425 iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1426 musicpal_gpio_writefn, NULL);
1427 cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1430 /* Keyboard codes & masks */
1431 #define KEY_RELEASED 0x80
1432 #define KEY_CODE 0x7f
1434 #define KEYCODE_TAB 0x0f
1435 #define KEYCODE_ENTER 0x1c
1436 #define KEYCODE_F 0x21
1437 #define KEYCODE_M 0x32
1439 #define KEYCODE_EXTENDED 0xe0
1440 #define KEYCODE_UP 0x48
1441 #define KEYCODE_DOWN 0x50
1442 #define KEYCODE_LEFT 0x4b
1443 #define KEYCODE_RIGHT 0x4d
1445 static void musicpal_key_event(void *opaque, int keycode)
1447 qemu_irq irq = opaque;
1448 uint32_t event = 0;
1449 static int kbd_extended;
1451 if (keycode == KEYCODE_EXTENDED) {
1452 kbd_extended = 1;
1453 return;
1456 if (kbd_extended)
1457 switch (keycode & KEY_CODE) {
1458 case KEYCODE_UP:
1459 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1460 break;
1462 case KEYCODE_DOWN:
1463 event = MP_GPIO_WHEEL_NAV;
1464 break;
1466 case KEYCODE_LEFT:
1467 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1468 break;
1470 case KEYCODE_RIGHT:
1471 event = MP_GPIO_WHEEL_VOL;
1472 break;
1474 else {
1475 switch (keycode & KEY_CODE) {
1476 case KEYCODE_F:
1477 event = MP_GPIO_BTN_FAVORITS;
1478 break;
1480 case KEYCODE_TAB:
1481 event = MP_GPIO_BTN_VOLUME;
1482 break;
1484 case KEYCODE_ENTER:
1485 event = MP_GPIO_BTN_NAVIGATION;
1486 break;
1488 case KEYCODE_M:
1489 event = MP_GPIO_BTN_MENU;
1490 break;
1492 /* Do not repeat already pressed buttons */
1493 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1494 event = 0;
1497 if (event) {
1498 if (keycode & KEY_RELEASED) {
1499 gpio_in_state |= event;
1500 } else {
1501 gpio_in_state &= ~event;
1502 gpio_isr = event;
1503 qemu_irq_raise(irq);
1507 kbd_extended = 0;
1510 static struct arm_boot_info musicpal_binfo = {
1511 .loader_start = 0x0,
1512 .board_id = 0x20e,
1515 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1516 const char *boot_device,
1517 const char *kernel_filename, const char *kernel_cmdline,
1518 const char *initrd_filename, const char *cpu_model)
1520 CPUState *env;
1521 qemu_irq *pic;
1522 int index;
1523 unsigned long flash_size;
1525 if (!cpu_model)
1526 cpu_model = "arm926";
1528 env = cpu_init(cpu_model);
1529 if (!env) {
1530 fprintf(stderr, "Unable to find CPU definition\n");
1531 exit(1);
1533 pic = arm_pic_init_cpu(env);
1535 /* For now we use a fixed - the original - RAM size */
1536 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1537 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1539 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1540 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1542 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1543 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1545 if (serial_hds[0])
1546 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1547 serial_hds[0], 1);
1548 if (serial_hds[1])
1549 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1550 serial_hds[1], 1);
1552 /* Register flash */
1553 index = drive_get_index(IF_PFLASH, 0, 0);
1554 if (index != -1) {
1555 flash_size = bdrv_getlength(drives_table[index].bdrv);
1556 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1557 flash_size != 32*1024*1024) {
1558 fprintf(stderr, "Invalid flash image size\n");
1559 exit(1);
1563 * The original U-Boot accesses the flash at 0xFE000000 instead of
1564 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1565 * image is smaller than 32 MB.
1567 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1568 drives_table[index].bdrv, 0x10000,
1569 (flash_size + 0xffff) >> 16,
1570 MP_FLASH_SIZE_MAX / flash_size,
1571 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1572 0x5555, 0x2AAA);
1574 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1576 musicpal_lcd_init();
1578 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1580 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1582 mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1584 mv88w8618_wlan_init(MP_WLAN_BASE);
1586 musicpal_misc_init();
1587 musicpal_gpio_init();
1589 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1590 musicpal_binfo.kernel_filename = kernel_filename;
1591 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1592 musicpal_binfo.initrd_filename = initrd_filename;
1593 arm_load_kernel(env, &musicpal_binfo);
1596 QEMUMachine musicpal_machine = {
1597 .name = "musicpal",
1598 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1599 .init = musicpal_init,