Fix typo that leads to out of bounds array access on big endian systems
[qemu/mini2440.git] / hw / mips_malta.c
blob083e73290e511f20e0889c9400854801032f81a6
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39 #include "qemu-log.h"
41 //#define DEBUG_BOARD_INIT
43 #ifdef TARGET_WORDS_BIGENDIAN
44 #define BIOS_FILENAME "mips_bios.bin"
45 #else
46 #define BIOS_FILENAME "mipsel_bios.bin"
47 #endif
49 #ifdef TARGET_MIPS64
50 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
51 #else
52 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
53 #endif
55 #define ENVP_ADDR (int32_t)0x80002000
56 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
58 #define ENVP_NB_ENTRIES 16
59 #define ENVP_ENTRY_SIZE 256
61 #define MAX_IDE_BUS 2
63 typedef struct {
64 uint32_t leds;
65 uint32_t brk;
66 uint32_t gpout;
67 uint32_t i2cin;
68 uint32_t i2coe;
69 uint32_t i2cout;
70 uint32_t i2csel;
71 CharDriverState *display;
72 char display_text[9];
73 SerialState *uart;
74 } MaltaFPGAState;
76 static PITState *pit;
78 static struct _loaderparams {
79 int ram_size;
80 const char *kernel_filename;
81 const char *kernel_cmdline;
82 const char *initrd_filename;
83 } loaderparams;
85 /* Malta FPGA */
86 static void malta_fpga_update_display(void *opaque)
88 char leds_text[9];
89 int i;
90 MaltaFPGAState *s = opaque;
92 for (i = 7 ; i >= 0 ; i--) {
93 if (s->leds & (1 << i))
94 leds_text[i] = '#';
95 else
96 leds_text[i] = ' ';
98 leds_text[8] = '\0';
100 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
101 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
105 * EEPROM 24C01 / 24C02 emulation.
107 * Emulation for serial EEPROMs:
108 * 24C01 - 1024 bit (128 x 8)
109 * 24C02 - 2048 bit (256 x 8)
111 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
114 //~ #define DEBUG
116 #if defined(DEBUG)
117 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
118 #else
119 # define logout(fmt, args...) ((void)0)
120 #endif
122 struct _eeprom24c0x_t {
123 uint8_t tick;
124 uint8_t address;
125 uint8_t command;
126 uint8_t ack;
127 uint8_t scl;
128 uint8_t sda;
129 uint8_t data;
130 //~ uint16_t size;
131 uint8_t contents[256];
134 typedef struct _eeprom24c0x_t eeprom24c0x_t;
136 static eeprom24c0x_t eeprom = {
137 contents: {
138 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
139 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
140 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
141 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
142 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
143 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
146 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
157 static uint8_t eeprom24c0x_read(void)
159 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
160 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
161 return eeprom.sda;
164 static void eeprom24c0x_write(int scl, int sda)
166 if (eeprom.scl && scl && (eeprom.sda != sda)) {
167 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
168 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
169 if (!sda) {
170 eeprom.tick = 1;
171 eeprom.command = 0;
173 } else if (eeprom.tick == 0 && !eeprom.ack) {
174 /* Waiting for start. */
175 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
176 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
177 } else if (!eeprom.scl && scl) {
178 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
179 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
180 if (eeprom.ack) {
181 logout("\ti2c ack bit = 0\n");
182 sda = 0;
183 eeprom.ack = 0;
184 } else if (eeprom.sda == sda) {
185 uint8_t bit = (sda != 0);
186 logout("\ti2c bit = %d\n", bit);
187 if (eeprom.tick < 9) {
188 eeprom.command <<= 1;
189 eeprom.command += bit;
190 eeprom.tick++;
191 if (eeprom.tick == 9) {
192 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
193 eeprom.ack = 1;
195 } else if (eeprom.tick < 17) {
196 if (eeprom.command & 1) {
197 sda = ((eeprom.data & 0x80) != 0);
199 eeprom.address <<= 1;
200 eeprom.address += bit;
201 eeprom.tick++;
202 eeprom.data <<= 1;
203 if (eeprom.tick == 17) {
204 eeprom.data = eeprom.contents[eeprom.address];
205 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
206 eeprom.ack = 1;
207 eeprom.tick = 0;
209 } else if (eeprom.tick >= 17) {
210 sda = 0;
212 } else {
213 logout("\tsda changed with raising scl\n");
215 } else {
216 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
218 eeprom.scl = scl;
219 eeprom.sda = sda;
222 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
224 MaltaFPGAState *s = opaque;
225 uint32_t val = 0;
226 uint32_t saddr;
228 saddr = (addr & 0xfffff);
230 switch (saddr) {
232 /* SWITCH Register */
233 case 0x00200:
234 val = 0x00000000; /* All switches closed */
235 break;
237 /* STATUS Register */
238 case 0x00208:
239 #ifdef TARGET_WORDS_BIGENDIAN
240 val = 0x00000012;
241 #else
242 val = 0x00000010;
243 #endif
244 break;
246 /* JMPRS Register */
247 case 0x00210:
248 val = 0x00;
249 break;
251 /* LEDBAR Register */
252 case 0x00408:
253 val = s->leds;
254 break;
256 /* BRKRES Register */
257 case 0x00508:
258 val = s->brk;
259 break;
261 /* UART Registers are handled directly by the serial device */
263 /* GPOUT Register */
264 case 0x00a00:
265 val = s->gpout;
266 break;
268 /* XXX: implement a real I2C controller */
270 /* GPINP Register */
271 case 0x00a08:
272 /* IN = OUT until a real I2C control is implemented */
273 if (s->i2csel)
274 val = s->i2cout;
275 else
276 val = 0x00;
277 break;
279 /* I2CINP Register */
280 case 0x00b00:
281 val = ((s->i2cin & ~1) | eeprom24c0x_read());
282 break;
284 /* I2COE Register */
285 case 0x00b08:
286 val = s->i2coe;
287 break;
289 /* I2COUT Register */
290 case 0x00b10:
291 val = s->i2cout;
292 break;
294 /* I2CSEL Register */
295 case 0x00b18:
296 val = s->i2csel;
297 break;
299 default:
300 #if 0
301 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
302 addr);
303 #endif
304 break;
306 return val;
309 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
310 uint32_t val)
312 MaltaFPGAState *s = opaque;
313 uint32_t saddr;
315 saddr = (addr & 0xfffff);
317 switch (saddr) {
319 /* SWITCH Register */
320 case 0x00200:
321 break;
323 /* JMPRS Register */
324 case 0x00210:
325 break;
327 /* LEDBAR Register */
328 /* XXX: implement a 8-LED array */
329 case 0x00408:
330 s->leds = val & 0xff;
331 break;
333 /* ASCIIWORD Register */
334 case 0x00410:
335 snprintf(s->display_text, 9, "%08X", val);
336 malta_fpga_update_display(s);
337 break;
339 /* ASCIIPOS0 to ASCIIPOS7 Registers */
340 case 0x00418:
341 case 0x00420:
342 case 0x00428:
343 case 0x00430:
344 case 0x00438:
345 case 0x00440:
346 case 0x00448:
347 case 0x00450:
348 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
349 malta_fpga_update_display(s);
350 break;
352 /* SOFTRES Register */
353 case 0x00500:
354 if (val == 0x42)
355 qemu_system_reset_request ();
356 break;
358 /* BRKRES Register */
359 case 0x00508:
360 s->brk = val & 0xff;
361 break;
363 /* UART Registers are handled directly by the serial device */
365 /* GPOUT Register */
366 case 0x00a00:
367 s->gpout = val & 0xff;
368 break;
370 /* I2COE Register */
371 case 0x00b08:
372 s->i2coe = val & 0x03;
373 break;
375 /* I2COUT Register */
376 case 0x00b10:
377 eeprom24c0x_write(val & 0x02, val & 0x01);
378 s->i2cout = val;
379 break;
381 /* I2CSEL Register */
382 case 0x00b18:
383 s->i2csel = val & 0x01;
384 break;
386 default:
387 #if 0
388 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
389 addr);
390 #endif
391 break;
395 static CPUReadMemoryFunc *malta_fpga_read[] = {
396 malta_fpga_readl,
397 malta_fpga_readl,
398 malta_fpga_readl
401 static CPUWriteMemoryFunc *malta_fpga_write[] = {
402 malta_fpga_writel,
403 malta_fpga_writel,
404 malta_fpga_writel
407 static void malta_fpga_reset(void *opaque)
409 MaltaFPGAState *s = opaque;
411 s->leds = 0x00;
412 s->brk = 0x0a;
413 s->gpout = 0x00;
414 s->i2cin = 0x3;
415 s->i2coe = 0x0;
416 s->i2cout = 0x3;
417 s->i2csel = 0x1;
419 s->display_text[8] = '\0';
420 snprintf(s->display_text, 9, " ");
423 static void malta_fpga_led_init(CharDriverState *chr)
425 qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
426 qemu_chr_printf(chr, "+--------+\r\n");
427 qemu_chr_printf(chr, "+ +\r\n");
428 qemu_chr_printf(chr, "+--------+\r\n");
429 qemu_chr_printf(chr, "\n");
430 qemu_chr_printf(chr, "Malta ASCII\r\n");
431 qemu_chr_printf(chr, "+--------+\r\n");
432 qemu_chr_printf(chr, "+ +\r\n");
433 qemu_chr_printf(chr, "+--------+\r\n");
436 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
438 MaltaFPGAState *s;
439 int malta;
441 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
443 malta = cpu_register_io_memory(0, malta_fpga_read,
444 malta_fpga_write, s);
446 cpu_register_physical_memory(base, 0x900, malta);
447 /* 0xa00 is less than a page, so will still get the right offsets. */
448 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
450 s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
452 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1);
454 malta_fpga_reset(s);
455 qemu_register_reset(malta_fpga_reset, s);
457 return s;
460 /* Audio support */
461 #ifdef HAS_AUDIO
462 static void audio_init (PCIBus *pci_bus)
464 struct soundhw *c;
465 int audio_enabled = 0;
467 for (c = soundhw; !audio_enabled && c->name; ++c) {
468 audio_enabled = c->enabled;
471 if (audio_enabled) {
472 for (c = soundhw; c->name; ++c) {
473 if (c->enabled) {
474 c->init.init_pci(pci_bus);
479 #endif
481 /* Network support */
482 static void network_init (PCIBus *pci_bus)
484 int i;
486 for(i = 0; i < nb_nics; i++) {
487 NICInfo *nd = &nd_table[i];
488 int devfn = -1;
490 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
491 /* The malta board has a PCNet card using PCI SLOT 11 */
492 devfn = 88;
494 pci_nic_init(pci_bus, nd, devfn, "pcnet");
498 /* ROM and pseudo bootloader
500 The following code implements a very very simple bootloader. It first
501 loads the registers a0 to a3 to the values expected by the OS, and
502 then jump at the kernel address.
504 The bootloader should pass the locations of the kernel arguments and
505 environment variables tables. Those tables contain the 32-bit address
506 of NULL terminated strings. The environment variables table should be
507 terminated by a NULL address.
509 For a simpler implementation, the number of kernel arguments is fixed
510 to two (the name of the kernel and the command line), and the two
511 tables are actually the same one.
513 The registers a0 to a3 should contain the following values:
514 a0 - number of kernel arguments
515 a1 - 32-bit address of the kernel arguments table
516 a2 - 32-bit address of the environment variables table
517 a3 - RAM size in bytes
520 static void write_bootloader (CPUState *env, uint8_t *base,
521 int64_t kernel_entry)
523 uint32_t *p;
525 /* Small bootloader */
526 p = (uint32_t *)base;
527 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
528 stl_raw(p++, 0x00000000); /* nop */
530 /* YAMON service vector */
531 stl_raw(base + 0x500, 0xbfc00580); /* start: */
532 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
533 stl_raw(base + 0x520, 0xbfc00580); /* start: */
534 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
535 stl_raw(base + 0x534, 0xbfc00808); /* print: */
536 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
537 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
538 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
539 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
540 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
541 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
542 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
543 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
546 /* Second part of the bootloader */
547 p = (uint32_t *) (base + 0x580);
548 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
549 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
550 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
551 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
552 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
553 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
554 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
555 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
556 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
558 /* Load BAR registers as done by YAMON */
559 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
561 #ifdef TARGET_WORDS_BIGENDIAN
562 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
563 #else
564 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
565 #endif
566 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
568 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
570 #ifdef TARGET_WORDS_BIGENDIAN
571 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
572 #else
573 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
574 #endif
575 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
576 #ifdef TARGET_WORDS_BIGENDIAN
577 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
578 #else
579 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
580 #endif
581 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
583 #ifdef TARGET_WORDS_BIGENDIAN
584 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
585 #else
586 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
587 #endif
588 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
589 #ifdef TARGET_WORDS_BIGENDIAN
590 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
591 #else
592 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
593 #endif
594 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
596 #ifdef TARGET_WORDS_BIGENDIAN
597 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
598 #else
599 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
600 #endif
601 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
602 #ifdef TARGET_WORDS_BIGENDIAN
603 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
604 #else
605 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
606 #endif
607 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
609 /* Jump to kernel code */
610 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
611 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
612 stl_raw(p++, 0x03e00008); /* jr ra */
613 stl_raw(p++, 0x00000000); /* nop */
615 /* YAMON subroutines */
616 p = (uint32_t *) (base + 0x800);
617 stl_raw(p++, 0x03e00008); /* jr ra */
618 stl_raw(p++, 0x24020000); /* li v0,0 */
619 /* 808 YAMON print */
620 stl_raw(p++, 0x03e06821); /* move t5,ra */
621 stl_raw(p++, 0x00805821); /* move t3,a0 */
622 stl_raw(p++, 0x00a05021); /* move t2,a1 */
623 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
624 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
625 stl_raw(p++, 0x10800005); /* beqz a0,834 */
626 stl_raw(p++, 0x00000000); /* nop */
627 stl_raw(p++, 0x0ff0021c); /* jal 870 */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x08000205); /* j 814 */
630 stl_raw(p++, 0x00000000); /* nop */
631 stl_raw(p++, 0x01a00008); /* jr t5 */
632 stl_raw(p++, 0x01602021); /* move a0,t3 */
633 /* 0x83c YAMON print_count */
634 stl_raw(p++, 0x03e06821); /* move t5,ra */
635 stl_raw(p++, 0x00805821); /* move t3,a0 */
636 stl_raw(p++, 0x00a05021); /* move t2,a1 */
637 stl_raw(p++, 0x00c06021); /* move t4,a2 */
638 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
639 stl_raw(p++, 0x0ff0021c); /* jal 870 */
640 stl_raw(p++, 0x00000000); /* nop */
641 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
642 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
643 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
644 stl_raw(p++, 0x00000000); /* nop */
645 stl_raw(p++, 0x01a00008); /* jr t5 */
646 stl_raw(p++, 0x01602021); /* move a0,t3 */
647 /* 0x870 */
648 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
649 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
650 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
651 stl_raw(p++, 0x00000000); /* nop */
652 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
653 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
654 stl_raw(p++, 0x00000000); /* nop */
655 stl_raw(p++, 0x03e00008); /* jr ra */
656 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
660 static void prom_set(int index, const char *string, ...)
662 char buf[ENVP_ENTRY_SIZE];
663 target_phys_addr_t p;
664 va_list ap;
665 int32_t table_addr;
667 if (index >= ENVP_NB_ENTRIES)
668 return;
670 p = ENVP_ADDR + VIRT_TO_PHYS_ADDEND + index * 4;
672 if (string == NULL) {
673 stl_phys(p, 0);
674 return;
677 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES
678 + index * ENVP_ENTRY_SIZE;
679 stl_phys(p, table_addr);
681 va_start(ap, string);
682 vsnprintf(buf, ENVP_ENTRY_SIZE, string, ap);
683 va_end(ap);
684 pstrcpy_targphys(table_addr + VIRT_TO_PHYS_ADDEND, ENVP_ENTRY_SIZE, buf);
687 /* Kernel */
688 static int64_t load_kernel (CPUState *env)
690 int64_t kernel_entry, kernel_low, kernel_high;
691 int index = 0;
692 long initrd_size;
693 ram_addr_t initrd_offset;
695 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
696 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
697 (uint64_t *)&kernel_high) < 0) {
698 fprintf(stderr, "qemu: could not load kernel '%s'\n",
699 loaderparams.kernel_filename);
700 exit(1);
703 /* load initrd */
704 initrd_size = 0;
705 initrd_offset = 0;
706 if (loaderparams.initrd_filename) {
707 initrd_size = get_image_size (loaderparams.initrd_filename);
708 if (initrd_size > 0) {
709 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
710 if (initrd_offset + initrd_size > ram_size) {
711 fprintf(stderr,
712 "qemu: memory too small for initial ram disk '%s'\n",
713 loaderparams.initrd_filename);
714 exit(1);
716 initrd_size = load_image_targphys(loaderparams.initrd_filename,
717 initrd_offset,
718 ram_size - initrd_offset);
720 if (initrd_size == (target_ulong) -1) {
721 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
722 loaderparams.initrd_filename);
723 exit(1);
727 /* Store command line. */
728 prom_set(index++, loaderparams.kernel_filename);
729 if (initrd_size > 0)
730 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
731 PHYS_TO_VIRT(initrd_offset), initrd_size,
732 loaderparams.kernel_cmdline);
733 else
734 prom_set(index++, loaderparams.kernel_cmdline);
736 /* Setup minimum environment variables */
737 prom_set(index++, "memsize");
738 prom_set(index++, "%i", loaderparams.ram_size);
739 prom_set(index++, "modetty0");
740 prom_set(index++, "38400n8r");
741 prom_set(index++, NULL);
743 return kernel_entry;
746 static void main_cpu_reset(void *opaque)
748 CPUState *env = opaque;
749 cpu_reset(env);
751 /* The bootload does not need to be rewritten as it is located in a
752 read only location. The kernel location and the arguments table
753 location does not change. */
754 if (loaderparams.kernel_filename) {
755 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
756 load_kernel (env);
760 static
761 void mips_malta_init (ram_addr_t ram_size, int vga_ram_size,
762 const char *boot_device,
763 const char *kernel_filename, const char *kernel_cmdline,
764 const char *initrd_filename, const char *cpu_model)
766 char buf[1024];
767 ram_addr_t ram_offset;
768 ram_addr_t bios_offset;
769 target_long bios_size;
770 int64_t kernel_entry;
771 PCIBus *pci_bus;
772 CPUState *env;
773 RTCState *rtc_state;
774 fdctrl_t *floppy_controller;
775 MaltaFPGAState *malta_fpga;
776 qemu_irq *i8259;
777 int piix4_devfn;
778 uint8_t *eeprom_buf;
779 i2c_bus *smbus;
780 int i;
781 int index;
782 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
783 BlockDriverState *fd[MAX_FD];
784 int fl_idx = 0;
785 int fl_sectors = 0;
787 /* init CPUs */
788 if (cpu_model == NULL) {
789 #ifdef TARGET_MIPS64
790 cpu_model = "20Kc";
791 #else
792 cpu_model = "24Kf";
793 #endif
795 env = cpu_init(cpu_model);
796 if (!env) {
797 fprintf(stderr, "Unable to find CPU definition\n");
798 exit(1);
800 qemu_register_reset(main_cpu_reset, env);
802 /* allocate RAM */
803 if (ram_size > (256 << 20)) {
804 fprintf(stderr,
805 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
806 ((unsigned int)ram_size / (1 << 20)));
807 exit(1);
809 ram_offset = qemu_ram_alloc(ram_size);
810 bios_offset = qemu_ram_alloc(BIOS_SIZE);
813 cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
815 /* Map the bios at two physical locations, as on the real board. */
816 cpu_register_physical_memory(0x1e000000LL,
817 BIOS_SIZE, bios_offset | IO_MEM_ROM);
818 cpu_register_physical_memory(0x1fc00000LL,
819 BIOS_SIZE, bios_offset | IO_MEM_ROM);
821 /* FPGA */
822 malta_fpga = malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
824 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
825 if (kernel_filename) {
826 /* Write a small bootloader to the flash location. */
827 loaderparams.ram_size = ram_size;
828 loaderparams.kernel_filename = kernel_filename;
829 loaderparams.kernel_cmdline = kernel_cmdline;
830 loaderparams.initrd_filename = initrd_filename;
831 kernel_entry = load_kernel(env);
832 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
833 write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
834 } else {
835 index = drive_get_index(IF_PFLASH, 0, fl_idx);
836 if (index != -1) {
837 /* Load firmware from flash. */
838 bios_size = 0x400000;
839 fl_sectors = bios_size >> 16;
840 #ifdef DEBUG_BOARD_INIT
841 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
842 "offset %08lx addr %08llx '%s' %x\n",
843 fl_idx, bios_size, bios_offset, 0x1e000000LL,
844 bdrv_get_device_name(drives_table[index].bdrv), fl_sectors);
845 #endif
846 pflash_cfi01_register(0x1e000000LL, bios_offset,
847 drives_table[index].bdrv, 65536, fl_sectors,
848 4, 0x0000, 0x0000, 0x0000, 0x0000);
849 fl_idx++;
850 } else {
851 /* Load a BIOS image. */
852 if (bios_name == NULL)
853 bios_name = BIOS_FILENAME;
854 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
855 bios_size = load_image_targphys(buf, 0x1fc00000LL, BIOS_SIZE);
856 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
857 fprintf(stderr,
858 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
859 buf);
860 exit(1);
863 /* In little endian mode the 32bit words in the bios are swapped,
864 a neat trick which allows bi-endian firmware. */
865 #ifndef TARGET_WORDS_BIGENDIAN
867 uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
868 uint32_t *end = addr + bios_size;
869 while (addr < end) {
870 bswap32s(addr);
873 #endif
876 /* Board ID = 0x420 (Malta Board with CoreLV)
877 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
878 map to the board ID. */
879 stl_phys(0x1fc00010LL, 0x00000420);
881 /* Init internal devices */
882 cpu_mips_irq_init_cpu(env);
883 cpu_mips_clock_init(env);
885 /* Interrupt controller */
886 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
887 i8259 = i8259_init(env->irq[2]);
889 /* Northbridge */
890 pci_bus = pci_gt64120_init(i8259);
892 /* Southbridge */
894 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
895 fprintf(stderr, "qemu: too many IDE bus\n");
896 exit(1);
899 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
900 index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
901 if (index != -1)
902 hd[i] = drives_table[index].bdrv;
903 else
904 hd[i] = NULL;
907 piix4_devfn = piix4_init(pci_bus, 80);
908 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
909 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
910 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
911 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
912 for (i = 0; i < 8; i++) {
913 /* TODO: Populate SPD eeprom data. */
914 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
916 pit = pit_init(0x40, i8259[0]);
917 DMA_init(0);
919 /* Super I/O */
920 i8042_init(i8259[1], i8259[12], 0x60);
921 rtc_state = rtc_init(0x70, i8259[8], 2000);
922 serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
923 serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
924 if (parallel_hds[0])
925 parallel_init(0x378, i8259[7], parallel_hds[0]);
926 for(i = 0; i < MAX_FD; i++) {
927 index = drive_get_index(IF_FLOPPY, 0, i);
928 if (index != -1)
929 fd[i] = drives_table[index].bdrv;
930 else
931 fd[i] = NULL;
933 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
935 /* Sound card */
936 #ifdef HAS_AUDIO
937 audio_init(pci_bus);
938 #endif
940 /* Network card */
941 network_init(pci_bus);
943 /* Optional PCI video card */
944 if (cirrus_vga_enabled) {
945 pci_cirrus_vga_init(pci_bus, vga_ram_size);
946 } else if (vmsvga_enabled) {
947 pci_vmsvga_init(pci_bus, vga_ram_size);
948 } else if (std_vga_enabled) {
949 pci_vga_init(pci_bus, vga_ram_size, 0, 0);
953 QEMUMachine mips_malta_machine = {
954 .name = "malta",
955 .desc = "MIPS Malta Core LV",
956 .init = mips_malta_init,