Remove redundant #define
[qemu/mini2440.git] / target-sparc / op_helper.c
blob5f86b330436d1ec2a2259538aa150110cbda2d39
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #if !defined(CONFIG_USER_ONLY)
5 #include "softmmu_exec.h"
6 #endif /* !defined(CONFIG_USER_ONLY) */
8 //#define DEBUG_MMU
9 //#define DEBUG_MXCC
10 //#define DEBUG_UNALIGNED
11 //#define DEBUG_UNASSIGNED
12 //#define DEBUG_ASI
13 //#define DEBUG_PCALL
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, args...) \
17 do { printf("MMU: " fmt , ##args); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, args...) do {} while (0)
20 #endif
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, args...) \
24 do { printf("MXCC: " fmt , ##args); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, args...) do {} while (0)
27 #endif
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, args...) \
31 do { printf("ASI: " fmt , ##args); } while (0)
32 #endif
34 #ifdef TARGET_SPARC64
35 #ifndef TARGET_ABI32
36 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
37 #else
38 #define AM_CHECK(env1) (1)
39 #endif
40 #endif
42 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
43 // Calculates TSB pointer value for fault page size 8k or 64k
44 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45 uint64_t tag_access_register,
46 int page_size)
48 uint64_t tsb_base = tsb_register & ~0x1fffULL;
49 int tsb_split = (env->dmmuregs[5] & 0x1000ULL) ? 1 : 0;
50 int tsb_size = env->dmmuregs[5] & 0xf;
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
55 // now reorder bits
56 uint64_t tsb_base_mask = ~0x1fffULL;
57 uint64_t va = tag_access_va;
59 // move va bits to correct position
60 if (page_size == 8*1024) {
61 va >>= 9;
62 } else if (page_size == 64*1024) {
63 va >>= 12;
66 if (tsb_size) {
67 tsb_base_mask <<= tsb_size;
70 // calculate tsb_base mask and adjust va if split is in use
71 if (tsb_split) {
72 if (page_size == 8*1024) {
73 va &= ~(1ULL << (13 + tsb_size));
74 } else if (page_size == 64*1024) {
75 va |= (1ULL << (13 + tsb_size));
77 tsb_base_mask <<= 1;
80 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
83 // Calculates tag target register value by reordering bits
84 // in tag access register
85 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
87 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
90 #endif
92 static inline void address_mask(CPUState *env1, target_ulong *addr)
94 #ifdef TARGET_SPARC64
95 if (AM_CHECK(env1))
96 *addr &= 0xffffffffULL;
97 #endif
100 static void raise_exception(int tt)
102 env->exception_index = tt;
103 cpu_loop_exit();
106 void HELPER(raise_exception)(int tt)
108 raise_exception(tt);
111 static inline void set_cwp(int new_cwp)
113 cpu_set_cwp(env, new_cwp);
116 void helper_check_align(target_ulong addr, uint32_t align)
118 if (addr & align) {
119 #ifdef DEBUG_UNALIGNED
120 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
121 "\n", addr, env->pc);
122 #endif
123 raise_exception(TT_UNALIGNED);
127 #define F_HELPER(name, p) void helper_f##name##p(void)
129 #define F_BINOP(name) \
130 float32 helper_f ## name ## s (float32 src1, float32 src2) \
132 return float32_ ## name (src1, src2, &env->fp_status); \
134 F_HELPER(name, d) \
136 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
138 F_HELPER(name, q) \
140 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
143 F_BINOP(add);
144 F_BINOP(sub);
145 F_BINOP(mul);
146 F_BINOP(div);
147 #undef F_BINOP
149 void helper_fsmuld(float32 src1, float32 src2)
151 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
152 float32_to_float64(src2, &env->fp_status),
153 &env->fp_status);
156 void helper_fdmulq(void)
158 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
159 float64_to_float128(DT1, &env->fp_status),
160 &env->fp_status);
163 float32 helper_fnegs(float32 src)
165 return float32_chs(src);
168 #ifdef TARGET_SPARC64
169 F_HELPER(neg, d)
171 DT0 = float64_chs(DT1);
174 F_HELPER(neg, q)
176 QT0 = float128_chs(QT1);
178 #endif
180 /* Integer to float conversion. */
181 float32 helper_fitos(int32_t src)
183 return int32_to_float32(src, &env->fp_status);
186 void helper_fitod(int32_t src)
188 DT0 = int32_to_float64(src, &env->fp_status);
191 void helper_fitoq(int32_t src)
193 QT0 = int32_to_float128(src, &env->fp_status);
196 #ifdef TARGET_SPARC64
197 float32 helper_fxtos(void)
199 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
202 F_HELPER(xto, d)
204 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
207 F_HELPER(xto, q)
209 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
211 #endif
212 #undef F_HELPER
214 /* floating point conversion */
215 float32 helper_fdtos(void)
217 return float64_to_float32(DT1, &env->fp_status);
220 void helper_fstod(float32 src)
222 DT0 = float32_to_float64(src, &env->fp_status);
225 float32 helper_fqtos(void)
227 return float128_to_float32(QT1, &env->fp_status);
230 void helper_fstoq(float32 src)
232 QT0 = float32_to_float128(src, &env->fp_status);
235 void helper_fqtod(void)
237 DT0 = float128_to_float64(QT1, &env->fp_status);
240 void helper_fdtoq(void)
242 QT0 = float64_to_float128(DT1, &env->fp_status);
245 /* Float to integer conversion. */
246 int32_t helper_fstoi(float32 src)
248 return float32_to_int32_round_to_zero(src, &env->fp_status);
251 int32_t helper_fdtoi(void)
253 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
256 int32_t helper_fqtoi(void)
258 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
261 #ifdef TARGET_SPARC64
262 void helper_fstox(float32 src)
264 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
267 void helper_fdtox(void)
269 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
272 void helper_fqtox(void)
274 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
277 void helper_faligndata(void)
279 uint64_t tmp;
281 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
282 /* on many architectures a shift of 64 does nothing */
283 if ((env->gsr & 7) != 0) {
284 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
286 *((uint64_t *)&DT0) = tmp;
289 #ifdef WORDS_BIGENDIAN
290 #define VIS_B64(n) b[7 - (n)]
291 #define VIS_W64(n) w[3 - (n)]
292 #define VIS_SW64(n) sw[3 - (n)]
293 #define VIS_L64(n) l[1 - (n)]
294 #define VIS_B32(n) b[3 - (n)]
295 #define VIS_W32(n) w[1 - (n)]
296 #else
297 #define VIS_B64(n) b[n]
298 #define VIS_W64(n) w[n]
299 #define VIS_SW64(n) sw[n]
300 #define VIS_L64(n) l[n]
301 #define VIS_B32(n) b[n]
302 #define VIS_W32(n) w[n]
303 #endif
305 typedef union {
306 uint8_t b[8];
307 uint16_t w[4];
308 int16_t sw[4];
309 uint32_t l[2];
310 float64 d;
311 } vis64;
313 typedef union {
314 uint8_t b[4];
315 uint16_t w[2];
316 uint32_t l;
317 float32 f;
318 } vis32;
320 void helper_fpmerge(void)
322 vis64 s, d;
324 s.d = DT0;
325 d.d = DT1;
327 // Reverse calculation order to handle overlap
328 d.VIS_B64(7) = s.VIS_B64(3);
329 d.VIS_B64(6) = d.VIS_B64(3);
330 d.VIS_B64(5) = s.VIS_B64(2);
331 d.VIS_B64(4) = d.VIS_B64(2);
332 d.VIS_B64(3) = s.VIS_B64(1);
333 d.VIS_B64(2) = d.VIS_B64(1);
334 d.VIS_B64(1) = s.VIS_B64(0);
335 //d.VIS_B64(0) = d.VIS_B64(0);
337 DT0 = d.d;
340 void helper_fmul8x16(void)
342 vis64 s, d;
343 uint32_t tmp;
345 s.d = DT0;
346 d.d = DT1;
348 #define PMUL(r) \
349 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
350 if ((tmp & 0xff) > 0x7f) \
351 tmp += 0x100; \
352 d.VIS_W64(r) = tmp >> 8;
354 PMUL(0);
355 PMUL(1);
356 PMUL(2);
357 PMUL(3);
358 #undef PMUL
360 DT0 = d.d;
363 void helper_fmul8x16al(void)
365 vis64 s, d;
366 uint32_t tmp;
368 s.d = DT0;
369 d.d = DT1;
371 #define PMUL(r) \
372 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
373 if ((tmp & 0xff) > 0x7f) \
374 tmp += 0x100; \
375 d.VIS_W64(r) = tmp >> 8;
377 PMUL(0);
378 PMUL(1);
379 PMUL(2);
380 PMUL(3);
381 #undef PMUL
383 DT0 = d.d;
386 void helper_fmul8x16au(void)
388 vis64 s, d;
389 uint32_t tmp;
391 s.d = DT0;
392 d.d = DT1;
394 #define PMUL(r) \
395 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
396 if ((tmp & 0xff) > 0x7f) \
397 tmp += 0x100; \
398 d.VIS_W64(r) = tmp >> 8;
400 PMUL(0);
401 PMUL(1);
402 PMUL(2);
403 PMUL(3);
404 #undef PMUL
406 DT0 = d.d;
409 void helper_fmul8sux16(void)
411 vis64 s, d;
412 uint32_t tmp;
414 s.d = DT0;
415 d.d = DT1;
417 #define PMUL(r) \
418 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
419 if ((tmp & 0xff) > 0x7f) \
420 tmp += 0x100; \
421 d.VIS_W64(r) = tmp >> 8;
423 PMUL(0);
424 PMUL(1);
425 PMUL(2);
426 PMUL(3);
427 #undef PMUL
429 DT0 = d.d;
432 void helper_fmul8ulx16(void)
434 vis64 s, d;
435 uint32_t tmp;
437 s.d = DT0;
438 d.d = DT1;
440 #define PMUL(r) \
441 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
442 if ((tmp & 0xff) > 0x7f) \
443 tmp += 0x100; \
444 d.VIS_W64(r) = tmp >> 8;
446 PMUL(0);
447 PMUL(1);
448 PMUL(2);
449 PMUL(3);
450 #undef PMUL
452 DT0 = d.d;
455 void helper_fmuld8sux16(void)
457 vis64 s, d;
458 uint32_t tmp;
460 s.d = DT0;
461 d.d = DT1;
463 #define PMUL(r) \
464 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
465 if ((tmp & 0xff) > 0x7f) \
466 tmp += 0x100; \
467 d.VIS_L64(r) = tmp;
469 // Reverse calculation order to handle overlap
470 PMUL(1);
471 PMUL(0);
472 #undef PMUL
474 DT0 = d.d;
477 void helper_fmuld8ulx16(void)
479 vis64 s, d;
480 uint32_t tmp;
482 s.d = DT0;
483 d.d = DT1;
485 #define PMUL(r) \
486 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
487 if ((tmp & 0xff) > 0x7f) \
488 tmp += 0x100; \
489 d.VIS_L64(r) = tmp;
491 // Reverse calculation order to handle overlap
492 PMUL(1);
493 PMUL(0);
494 #undef PMUL
496 DT0 = d.d;
499 void helper_fexpand(void)
501 vis32 s;
502 vis64 d;
504 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
505 d.d = DT1;
506 d.VIS_W64(0) = s.VIS_B32(0) << 4;
507 d.VIS_W64(1) = s.VIS_B32(1) << 4;
508 d.VIS_W64(2) = s.VIS_B32(2) << 4;
509 d.VIS_W64(3) = s.VIS_B32(3) << 4;
511 DT0 = d.d;
514 #define VIS_HELPER(name, F) \
515 void name##16(void) \
517 vis64 s, d; \
519 s.d = DT0; \
520 d.d = DT1; \
522 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
523 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
524 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
525 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
527 DT0 = d.d; \
530 uint32_t name##16s(uint32_t src1, uint32_t src2) \
532 vis32 s, d; \
534 s.l = src1; \
535 d.l = src2; \
537 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
538 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
540 return d.l; \
543 void name##32(void) \
545 vis64 s, d; \
547 s.d = DT0; \
548 d.d = DT1; \
550 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
551 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
553 DT0 = d.d; \
556 uint32_t name##32s(uint32_t src1, uint32_t src2) \
558 vis32 s, d; \
560 s.l = src1; \
561 d.l = src2; \
563 d.l = F(d.l, s.l); \
565 return d.l; \
568 #define FADD(a, b) ((a) + (b))
569 #define FSUB(a, b) ((a) - (b))
570 VIS_HELPER(helper_fpadd, FADD)
571 VIS_HELPER(helper_fpsub, FSUB)
573 #define VIS_CMPHELPER(name, F) \
574 void name##16(void) \
576 vis64 s, d; \
578 s.d = DT0; \
579 d.d = DT1; \
581 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
582 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
583 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
584 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
586 DT0 = d.d; \
589 void name##32(void) \
591 vis64 s, d; \
593 s.d = DT0; \
594 d.d = DT1; \
596 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
597 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
599 DT0 = d.d; \
602 #define FCMPGT(a, b) ((a) > (b))
603 #define FCMPEQ(a, b) ((a) == (b))
604 #define FCMPLE(a, b) ((a) <= (b))
605 #define FCMPNE(a, b) ((a) != (b))
607 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
608 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
609 VIS_CMPHELPER(helper_fcmple, FCMPLE)
610 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
611 #endif
613 void helper_check_ieee_exceptions(void)
615 target_ulong status;
617 status = get_float_exception_flags(&env->fp_status);
618 if (status) {
619 /* Copy IEEE 754 flags into FSR */
620 if (status & float_flag_invalid)
621 env->fsr |= FSR_NVC;
622 if (status & float_flag_overflow)
623 env->fsr |= FSR_OFC;
624 if (status & float_flag_underflow)
625 env->fsr |= FSR_UFC;
626 if (status & float_flag_divbyzero)
627 env->fsr |= FSR_DZC;
628 if (status & float_flag_inexact)
629 env->fsr |= FSR_NXC;
631 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
632 /* Unmasked exception, generate a trap */
633 env->fsr |= FSR_FTT_IEEE_EXCP;
634 raise_exception(TT_FP_EXCP);
635 } else {
636 /* Accumulate exceptions */
637 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
642 void helper_clear_float_exceptions(void)
644 set_float_exception_flags(0, &env->fp_status);
647 float32 helper_fabss(float32 src)
649 return float32_abs(src);
652 #ifdef TARGET_SPARC64
653 void helper_fabsd(void)
655 DT0 = float64_abs(DT1);
658 void helper_fabsq(void)
660 QT0 = float128_abs(QT1);
662 #endif
664 float32 helper_fsqrts(float32 src)
666 return float32_sqrt(src, &env->fp_status);
669 void helper_fsqrtd(void)
671 DT0 = float64_sqrt(DT1, &env->fp_status);
674 void helper_fsqrtq(void)
676 QT0 = float128_sqrt(QT1, &env->fp_status);
679 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
680 void glue(helper_, name) (void) \
682 target_ulong new_fsr; \
684 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
685 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
686 case float_relation_unordered: \
687 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
688 if ((env->fsr & FSR_NVM) || TRAP) { \
689 env->fsr |= new_fsr; \
690 env->fsr |= FSR_NVC; \
691 env->fsr |= FSR_FTT_IEEE_EXCP; \
692 raise_exception(TT_FP_EXCP); \
693 } else { \
694 env->fsr |= FSR_NVA; \
696 break; \
697 case float_relation_less: \
698 new_fsr = FSR_FCC0 << FS; \
699 break; \
700 case float_relation_greater: \
701 new_fsr = FSR_FCC1 << FS; \
702 break; \
703 default: \
704 new_fsr = 0; \
705 break; \
707 env->fsr |= new_fsr; \
709 #define GEN_FCMPS(name, size, FS, TRAP) \
710 void glue(helper_, name)(float32 src1, float32 src2) \
712 target_ulong new_fsr; \
714 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
715 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
716 case float_relation_unordered: \
717 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
718 if ((env->fsr & FSR_NVM) || TRAP) { \
719 env->fsr |= new_fsr; \
720 env->fsr |= FSR_NVC; \
721 env->fsr |= FSR_FTT_IEEE_EXCP; \
722 raise_exception(TT_FP_EXCP); \
723 } else { \
724 env->fsr |= FSR_NVA; \
726 break; \
727 case float_relation_less: \
728 new_fsr = FSR_FCC0 << FS; \
729 break; \
730 case float_relation_greater: \
731 new_fsr = FSR_FCC1 << FS; \
732 break; \
733 default: \
734 new_fsr = 0; \
735 break; \
737 env->fsr |= new_fsr; \
740 GEN_FCMPS(fcmps, float32, 0, 0);
741 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
743 GEN_FCMPS(fcmpes, float32, 0, 1);
744 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
746 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
747 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
749 #ifdef TARGET_SPARC64
750 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
751 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
752 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
754 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
755 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
756 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
758 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
759 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
760 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
762 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
763 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
764 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
766 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
767 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
768 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
770 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
771 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
772 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
773 #endif
774 #undef GEN_FCMPS
776 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
777 defined(DEBUG_MXCC)
778 static void dump_mxcc(CPUState *env)
780 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
781 env->mxccdata[0], env->mxccdata[1],
782 env->mxccdata[2], env->mxccdata[3]);
783 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
784 " %016llx %016llx %016llx %016llx\n",
785 env->mxccregs[0], env->mxccregs[1],
786 env->mxccregs[2], env->mxccregs[3],
787 env->mxccregs[4], env->mxccregs[5],
788 env->mxccregs[6], env->mxccregs[7]);
790 #endif
792 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
793 && defined(DEBUG_ASI)
794 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
795 uint64_t r1)
797 switch (size)
799 case 1:
800 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
801 addr, asi, r1 & 0xff);
802 break;
803 case 2:
804 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
805 addr, asi, r1 & 0xffff);
806 break;
807 case 4:
808 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
809 addr, asi, r1 & 0xffffffff);
810 break;
811 case 8:
812 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
813 addr, asi, r1);
814 break;
817 #endif
819 #ifndef TARGET_SPARC64
820 #ifndef CONFIG_USER_ONLY
821 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
823 uint64_t ret = 0;
824 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
825 uint32_t last_addr = addr;
826 #endif
828 helper_check_align(addr, size - 1);
829 switch (asi) {
830 case 2: /* SuperSparc MXCC registers */
831 switch (addr) {
832 case 0x01c00a00: /* MXCC control register */
833 if (size == 8)
834 ret = env->mxccregs[3];
835 else
836 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
837 size);
838 break;
839 case 0x01c00a04: /* MXCC control register */
840 if (size == 4)
841 ret = env->mxccregs[3];
842 else
843 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
844 size);
845 break;
846 case 0x01c00c00: /* Module reset register */
847 if (size == 8) {
848 ret = env->mxccregs[5];
849 // should we do something here?
850 } else
851 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
852 size);
853 break;
854 case 0x01c00f00: /* MBus port address register */
855 if (size == 8)
856 ret = env->mxccregs[7];
857 else
858 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
859 size);
860 break;
861 default:
862 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
863 size);
864 break;
866 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
867 "addr = %08x -> ret = %" PRIx64 ","
868 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
869 #ifdef DEBUG_MXCC
870 dump_mxcc(env);
871 #endif
872 break;
873 case 3: /* MMU probe */
875 int mmulev;
877 mmulev = (addr >> 8) & 15;
878 if (mmulev > 4)
879 ret = 0;
880 else
881 ret = mmu_probe(env, addr, mmulev);
882 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
883 addr, mmulev, ret);
885 break;
886 case 4: /* read MMU regs */
888 int reg = (addr >> 8) & 0x1f;
890 ret = env->mmuregs[reg];
891 if (reg == 3) /* Fault status cleared on read */
892 env->mmuregs[3] = 0;
893 else if (reg == 0x13) /* Fault status read */
894 ret = env->mmuregs[3];
895 else if (reg == 0x14) /* Fault address read */
896 ret = env->mmuregs[4];
897 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
899 break;
900 case 5: // Turbosparc ITLB Diagnostic
901 case 6: // Turbosparc DTLB Diagnostic
902 case 7: // Turbosparc IOTLB Diagnostic
903 break;
904 case 9: /* Supervisor code access */
905 switch(size) {
906 case 1:
907 ret = ldub_code(addr);
908 break;
909 case 2:
910 ret = lduw_code(addr);
911 break;
912 default:
913 case 4:
914 ret = ldl_code(addr);
915 break;
916 case 8:
917 ret = ldq_code(addr);
918 break;
920 break;
921 case 0xa: /* User data access */
922 switch(size) {
923 case 1:
924 ret = ldub_user(addr);
925 break;
926 case 2:
927 ret = lduw_user(addr);
928 break;
929 default:
930 case 4:
931 ret = ldl_user(addr);
932 break;
933 case 8:
934 ret = ldq_user(addr);
935 break;
937 break;
938 case 0xb: /* Supervisor data access */
939 switch(size) {
940 case 1:
941 ret = ldub_kernel(addr);
942 break;
943 case 2:
944 ret = lduw_kernel(addr);
945 break;
946 default:
947 case 4:
948 ret = ldl_kernel(addr);
949 break;
950 case 8:
951 ret = ldq_kernel(addr);
952 break;
954 break;
955 case 0xc: /* I-cache tag */
956 case 0xd: /* I-cache data */
957 case 0xe: /* D-cache tag */
958 case 0xf: /* D-cache data */
959 break;
960 case 0x20: /* MMU passthrough */
961 switch(size) {
962 case 1:
963 ret = ldub_phys(addr);
964 break;
965 case 2:
966 ret = lduw_phys(addr);
967 break;
968 default:
969 case 4:
970 ret = ldl_phys(addr);
971 break;
972 case 8:
973 ret = ldq_phys(addr);
974 break;
976 break;
977 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
978 switch(size) {
979 case 1:
980 ret = ldub_phys((target_phys_addr_t)addr
981 | ((target_phys_addr_t)(asi & 0xf) << 32));
982 break;
983 case 2:
984 ret = lduw_phys((target_phys_addr_t)addr
985 | ((target_phys_addr_t)(asi & 0xf) << 32));
986 break;
987 default:
988 case 4:
989 ret = ldl_phys((target_phys_addr_t)addr
990 | ((target_phys_addr_t)(asi & 0xf) << 32));
991 break;
992 case 8:
993 ret = ldq_phys((target_phys_addr_t)addr
994 | ((target_phys_addr_t)(asi & 0xf) << 32));
995 break;
997 break;
998 case 0x30: // Turbosparc secondary cache diagnostic
999 case 0x31: // Turbosparc RAM snoop
1000 case 0x32: // Turbosparc page table descriptor diagnostic
1001 case 0x39: /* data cache diagnostic register */
1002 ret = 0;
1003 break;
1004 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1006 int reg = (addr >> 8) & 3;
1008 switch(reg) {
1009 case 0: /* Breakpoint Value (Addr) */
1010 ret = env->mmubpregs[reg];
1011 break;
1012 case 1: /* Breakpoint Mask */
1013 ret = env->mmubpregs[reg];
1014 break;
1015 case 2: /* Breakpoint Control */
1016 ret = env->mmubpregs[reg];
1017 break;
1018 case 3: /* Breakpoint Status */
1019 ret = env->mmubpregs[reg];
1020 env->mmubpregs[reg] = 0ULL;
1021 break;
1023 DPRINTF_MMU("read breakpoint reg[%d] 0x%016llx\n", reg, ret);
1025 break;
1026 case 8: /* User code access, XXX */
1027 default:
1028 do_unassigned_access(addr, 0, 0, asi, size);
1029 ret = 0;
1030 break;
1032 if (sign) {
1033 switch(size) {
1034 case 1:
1035 ret = (int8_t) ret;
1036 break;
1037 case 2:
1038 ret = (int16_t) ret;
1039 break;
1040 case 4:
1041 ret = (int32_t) ret;
1042 break;
1043 default:
1044 break;
1047 #ifdef DEBUG_ASI
1048 dump_asi("read ", last_addr, asi, size, ret);
1049 #endif
1050 return ret;
1053 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1055 helper_check_align(addr, size - 1);
1056 switch(asi) {
1057 case 2: /* SuperSparc MXCC registers */
1058 switch (addr) {
1059 case 0x01c00000: /* MXCC stream data register 0 */
1060 if (size == 8)
1061 env->mxccdata[0] = val;
1062 else
1063 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1064 size);
1065 break;
1066 case 0x01c00008: /* MXCC stream data register 1 */
1067 if (size == 8)
1068 env->mxccdata[1] = val;
1069 else
1070 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1071 size);
1072 break;
1073 case 0x01c00010: /* MXCC stream data register 2 */
1074 if (size == 8)
1075 env->mxccdata[2] = val;
1076 else
1077 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1078 size);
1079 break;
1080 case 0x01c00018: /* MXCC stream data register 3 */
1081 if (size == 8)
1082 env->mxccdata[3] = val;
1083 else
1084 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1085 size);
1086 break;
1087 case 0x01c00100: /* MXCC stream source */
1088 if (size == 8)
1089 env->mxccregs[0] = val;
1090 else
1091 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1092 size);
1093 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1095 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1097 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1098 16);
1099 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1100 24);
1101 break;
1102 case 0x01c00200: /* MXCC stream destination */
1103 if (size == 8)
1104 env->mxccregs[1] = val;
1105 else
1106 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1107 size);
1108 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1109 env->mxccdata[0]);
1110 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1111 env->mxccdata[1]);
1112 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1113 env->mxccdata[2]);
1114 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1115 env->mxccdata[3]);
1116 break;
1117 case 0x01c00a00: /* MXCC control register */
1118 if (size == 8)
1119 env->mxccregs[3] = val;
1120 else
1121 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1122 size);
1123 break;
1124 case 0x01c00a04: /* MXCC control register */
1125 if (size == 4)
1126 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1127 | val;
1128 else
1129 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1130 size);
1131 break;
1132 case 0x01c00e00: /* MXCC error register */
1133 // writing a 1 bit clears the error
1134 if (size == 8)
1135 env->mxccregs[6] &= ~val;
1136 else
1137 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1138 size);
1139 break;
1140 case 0x01c00f00: /* MBus port address register */
1141 if (size == 8)
1142 env->mxccregs[7] = val;
1143 else
1144 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1145 size);
1146 break;
1147 default:
1148 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1149 size);
1150 break;
1152 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1153 asi, size, addr, val);
1154 #ifdef DEBUG_MXCC
1155 dump_mxcc(env);
1156 #endif
1157 break;
1158 case 3: /* MMU flush */
1160 int mmulev;
1162 mmulev = (addr >> 8) & 15;
1163 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1164 switch (mmulev) {
1165 case 0: // flush page
1166 tlb_flush_page(env, addr & 0xfffff000);
1167 break;
1168 case 1: // flush segment (256k)
1169 case 2: // flush region (16M)
1170 case 3: // flush context (4G)
1171 case 4: // flush entire
1172 tlb_flush(env, 1);
1173 break;
1174 default:
1175 break;
1177 #ifdef DEBUG_MMU
1178 dump_mmu(env);
1179 #endif
1181 break;
1182 case 4: /* write MMU regs */
1184 int reg = (addr >> 8) & 0x1f;
1185 uint32_t oldreg;
1187 oldreg = env->mmuregs[reg];
1188 switch(reg) {
1189 case 0: // Control Register
1190 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1191 (val & 0x00ffffff);
1192 // Mappings generated during no-fault mode or MMU
1193 // disabled mode are invalid in normal mode
1194 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1195 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1196 tlb_flush(env, 1);
1197 break;
1198 case 1: // Context Table Pointer Register
1199 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1200 break;
1201 case 2: // Context Register
1202 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1203 if (oldreg != env->mmuregs[reg]) {
1204 /* we flush when the MMU context changes because
1205 QEMU has no MMU context support */
1206 tlb_flush(env, 1);
1208 break;
1209 case 3: // Synchronous Fault Status Register with Clear
1210 case 4: // Synchronous Fault Address Register
1211 break;
1212 case 0x10: // TLB Replacement Control Register
1213 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1214 break;
1215 case 0x13: // Synchronous Fault Status Register with Read and Clear
1216 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1217 break;
1218 case 0x14: // Synchronous Fault Address Register
1219 env->mmuregs[4] = val;
1220 break;
1221 default:
1222 env->mmuregs[reg] = val;
1223 break;
1225 if (oldreg != env->mmuregs[reg]) {
1226 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1227 reg, oldreg, env->mmuregs[reg]);
1229 #ifdef DEBUG_MMU
1230 dump_mmu(env);
1231 #endif
1233 break;
1234 case 5: // Turbosparc ITLB Diagnostic
1235 case 6: // Turbosparc DTLB Diagnostic
1236 case 7: // Turbosparc IOTLB Diagnostic
1237 break;
1238 case 0xa: /* User data access */
1239 switch(size) {
1240 case 1:
1241 stb_user(addr, val);
1242 break;
1243 case 2:
1244 stw_user(addr, val);
1245 break;
1246 default:
1247 case 4:
1248 stl_user(addr, val);
1249 break;
1250 case 8:
1251 stq_user(addr, val);
1252 break;
1254 break;
1255 case 0xb: /* Supervisor data access */
1256 switch(size) {
1257 case 1:
1258 stb_kernel(addr, val);
1259 break;
1260 case 2:
1261 stw_kernel(addr, val);
1262 break;
1263 default:
1264 case 4:
1265 stl_kernel(addr, val);
1266 break;
1267 case 8:
1268 stq_kernel(addr, val);
1269 break;
1271 break;
1272 case 0xc: /* I-cache tag */
1273 case 0xd: /* I-cache data */
1274 case 0xe: /* D-cache tag */
1275 case 0xf: /* D-cache data */
1276 case 0x10: /* I/D-cache flush page */
1277 case 0x11: /* I/D-cache flush segment */
1278 case 0x12: /* I/D-cache flush region */
1279 case 0x13: /* I/D-cache flush context */
1280 case 0x14: /* I/D-cache flush user */
1281 break;
1282 case 0x17: /* Block copy, sta access */
1284 // val = src
1285 // addr = dst
1286 // copy 32 bytes
1287 unsigned int i;
1288 uint32_t src = val & ~3, dst = addr & ~3, temp;
1290 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1291 temp = ldl_kernel(src);
1292 stl_kernel(dst, temp);
1295 break;
1296 case 0x1f: /* Block fill, stda access */
1298 // addr = dst
1299 // fill 32 bytes with val
1300 unsigned int i;
1301 uint32_t dst = addr & 7;
1303 for (i = 0; i < 32; i += 8, dst += 8)
1304 stq_kernel(dst, val);
1306 break;
1307 case 0x20: /* MMU passthrough */
1309 switch(size) {
1310 case 1:
1311 stb_phys(addr, val);
1312 break;
1313 case 2:
1314 stw_phys(addr, val);
1315 break;
1316 case 4:
1317 default:
1318 stl_phys(addr, val);
1319 break;
1320 case 8:
1321 stq_phys(addr, val);
1322 break;
1325 break;
1326 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1328 switch(size) {
1329 case 1:
1330 stb_phys((target_phys_addr_t)addr
1331 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1332 break;
1333 case 2:
1334 stw_phys((target_phys_addr_t)addr
1335 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1336 break;
1337 case 4:
1338 default:
1339 stl_phys((target_phys_addr_t)addr
1340 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1341 break;
1342 case 8:
1343 stq_phys((target_phys_addr_t)addr
1344 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
1345 break;
1348 break;
1349 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1350 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1351 // Turbosparc snoop RAM
1352 case 0x32: // store buffer control or Turbosparc page table
1353 // descriptor diagnostic
1354 case 0x36: /* I-cache flash clear */
1355 case 0x37: /* D-cache flash clear */
1356 case 0x4c: /* breakpoint action */
1357 break;
1358 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1360 int reg = (addr >> 8) & 3;
1362 switch(reg) {
1363 case 0: /* Breakpoint Value (Addr) */
1364 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1365 break;
1366 case 1: /* Breakpoint Mask */
1367 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1368 break;
1369 case 2: /* Breakpoint Control */
1370 env->mmubpregs[reg] = (val & 0x7fULL);
1371 break;
1372 case 3: /* Breakpoint Status */
1373 env->mmubpregs[reg] = (val & 0xfULL);
1374 break;
1376 DPRINTF_MMU("write breakpoint reg[%d] 0x%016llx\n", reg,
1377 env->mmuregs[reg]);
1379 break;
1380 case 8: /* User code access, XXX */
1381 case 9: /* Supervisor code access, XXX */
1382 default:
1383 do_unassigned_access(addr, 1, 0, asi, size);
1384 break;
1386 #ifdef DEBUG_ASI
1387 dump_asi("write", addr, asi, size, val);
1388 #endif
1391 #endif /* CONFIG_USER_ONLY */
1392 #else /* TARGET_SPARC64 */
1394 #ifdef CONFIG_USER_ONLY
1395 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1397 uint64_t ret = 0;
1398 #if defined(DEBUG_ASI)
1399 target_ulong last_addr = addr;
1400 #endif
1402 if (asi < 0x80)
1403 raise_exception(TT_PRIV_ACT);
1405 helper_check_align(addr, size - 1);
1406 address_mask(env, &addr);
1408 switch (asi) {
1409 case 0x82: // Primary no-fault
1410 case 0x8a: // Primary no-fault LE
1411 if (page_check_range(addr, size, PAGE_READ) == -1) {
1412 #ifdef DEBUG_ASI
1413 dump_asi("read ", last_addr, asi, size, ret);
1414 #endif
1415 return 0;
1417 // Fall through
1418 case 0x80: // Primary
1419 case 0x88: // Primary LE
1421 switch(size) {
1422 case 1:
1423 ret = ldub_raw(addr);
1424 break;
1425 case 2:
1426 ret = lduw_raw(addr);
1427 break;
1428 case 4:
1429 ret = ldl_raw(addr);
1430 break;
1431 default:
1432 case 8:
1433 ret = ldq_raw(addr);
1434 break;
1437 break;
1438 case 0x83: // Secondary no-fault
1439 case 0x8b: // Secondary no-fault LE
1440 if (page_check_range(addr, size, PAGE_READ) == -1) {
1441 #ifdef DEBUG_ASI
1442 dump_asi("read ", last_addr, asi, size, ret);
1443 #endif
1444 return 0;
1446 // Fall through
1447 case 0x81: // Secondary
1448 case 0x89: // Secondary LE
1449 // XXX
1450 break;
1451 default:
1452 break;
1455 /* Convert from little endian */
1456 switch (asi) {
1457 case 0x88: // Primary LE
1458 case 0x89: // Secondary LE
1459 case 0x8a: // Primary no-fault LE
1460 case 0x8b: // Secondary no-fault LE
1461 switch(size) {
1462 case 2:
1463 ret = bswap16(ret);
1464 break;
1465 case 4:
1466 ret = bswap32(ret);
1467 break;
1468 case 8:
1469 ret = bswap64(ret);
1470 break;
1471 default:
1472 break;
1474 default:
1475 break;
1478 /* Convert to signed number */
1479 if (sign) {
1480 switch(size) {
1481 case 1:
1482 ret = (int8_t) ret;
1483 break;
1484 case 2:
1485 ret = (int16_t) ret;
1486 break;
1487 case 4:
1488 ret = (int32_t) ret;
1489 break;
1490 default:
1491 break;
1494 #ifdef DEBUG_ASI
1495 dump_asi("read ", last_addr, asi, size, ret);
1496 #endif
1497 return ret;
1500 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1502 #ifdef DEBUG_ASI
1503 dump_asi("write", addr, asi, size, val);
1504 #endif
1505 if (asi < 0x80)
1506 raise_exception(TT_PRIV_ACT);
1508 helper_check_align(addr, size - 1);
1509 address_mask(env, &addr);
1511 /* Convert to little endian */
1512 switch (asi) {
1513 case 0x88: // Primary LE
1514 case 0x89: // Secondary LE
1515 switch(size) {
1516 case 2:
1517 addr = bswap16(addr);
1518 break;
1519 case 4:
1520 addr = bswap32(addr);
1521 break;
1522 case 8:
1523 addr = bswap64(addr);
1524 break;
1525 default:
1526 break;
1528 default:
1529 break;
1532 switch(asi) {
1533 case 0x80: // Primary
1534 case 0x88: // Primary LE
1536 switch(size) {
1537 case 1:
1538 stb_raw(addr, val);
1539 break;
1540 case 2:
1541 stw_raw(addr, val);
1542 break;
1543 case 4:
1544 stl_raw(addr, val);
1545 break;
1546 case 8:
1547 default:
1548 stq_raw(addr, val);
1549 break;
1552 break;
1553 case 0x81: // Secondary
1554 case 0x89: // Secondary LE
1555 // XXX
1556 return;
1558 case 0x82: // Primary no-fault, RO
1559 case 0x83: // Secondary no-fault, RO
1560 case 0x8a: // Primary no-fault LE, RO
1561 case 0x8b: // Secondary no-fault LE, RO
1562 default:
1563 do_unassigned_access(addr, 1, 0, 1, size);
1564 return;
1568 #else /* CONFIG_USER_ONLY */
1570 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1572 uint64_t ret = 0;
1573 #if defined(DEBUG_ASI)
1574 target_ulong last_addr = addr;
1575 #endif
1577 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1578 || ((env->def->features & CPU_FEATURE_HYPV)
1579 && asi >= 0x30 && asi < 0x80
1580 && !(env->hpstate & HS_PRIV)))
1581 raise_exception(TT_PRIV_ACT);
1583 helper_check_align(addr, size - 1);
1584 switch (asi) {
1585 case 0x82: // Primary no-fault
1586 case 0x8a: // Primary no-fault LE
1587 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1588 #ifdef DEBUG_ASI
1589 dump_asi("read ", last_addr, asi, size, ret);
1590 #endif
1591 return 0;
1593 // Fall through
1594 case 0x10: // As if user primary
1595 case 0x18: // As if user primary LE
1596 case 0x80: // Primary
1597 case 0x88: // Primary LE
1598 case 0xe2: // UA2007 Primary block init
1599 case 0xe3: // UA2007 Secondary block init
1600 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1601 if ((env->def->features & CPU_FEATURE_HYPV)
1602 && env->hpstate & HS_PRIV) {
1603 switch(size) {
1604 case 1:
1605 ret = ldub_hypv(addr);
1606 break;
1607 case 2:
1608 ret = lduw_hypv(addr);
1609 break;
1610 case 4:
1611 ret = ldl_hypv(addr);
1612 break;
1613 default:
1614 case 8:
1615 ret = ldq_hypv(addr);
1616 break;
1618 } else {
1619 switch(size) {
1620 case 1:
1621 ret = ldub_kernel(addr);
1622 break;
1623 case 2:
1624 ret = lduw_kernel(addr);
1625 break;
1626 case 4:
1627 ret = ldl_kernel(addr);
1628 break;
1629 default:
1630 case 8:
1631 ret = ldq_kernel(addr);
1632 break;
1635 } else {
1636 switch(size) {
1637 case 1:
1638 ret = ldub_user(addr);
1639 break;
1640 case 2:
1641 ret = lduw_user(addr);
1642 break;
1643 case 4:
1644 ret = ldl_user(addr);
1645 break;
1646 default:
1647 case 8:
1648 ret = ldq_user(addr);
1649 break;
1652 break;
1653 case 0x14: // Bypass
1654 case 0x15: // Bypass, non-cacheable
1655 case 0x1c: // Bypass LE
1656 case 0x1d: // Bypass, non-cacheable LE
1658 switch(size) {
1659 case 1:
1660 ret = ldub_phys(addr);
1661 break;
1662 case 2:
1663 ret = lduw_phys(addr);
1664 break;
1665 case 4:
1666 ret = ldl_phys(addr);
1667 break;
1668 default:
1669 case 8:
1670 ret = ldq_phys(addr);
1671 break;
1673 break;
1675 case 0x24: // Nucleus quad LDD 128 bit atomic
1676 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1677 // Only ldda allowed
1678 raise_exception(TT_ILL_INSN);
1679 return 0;
1680 case 0x83: // Secondary no-fault
1681 case 0x8b: // Secondary no-fault LE
1682 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
1683 #ifdef DEBUG_ASI
1684 dump_asi("read ", last_addr, asi, size, ret);
1685 #endif
1686 return 0;
1688 // Fall through
1689 case 0x04: // Nucleus
1690 case 0x0c: // Nucleus Little Endian (LE)
1691 case 0x11: // As if user secondary
1692 case 0x19: // As if user secondary LE
1693 case 0x4a: // UPA config
1694 case 0x81: // Secondary
1695 case 0x89: // Secondary LE
1696 // XXX
1697 break;
1698 case 0x45: // LSU
1699 ret = env->lsu;
1700 break;
1701 case 0x50: // I-MMU regs
1703 int reg = (addr >> 3) & 0xf;
1705 if (reg == 0) {
1706 // I-TSB Tag Target register
1707 ret = ultrasparc_tag_target(env->immuregs[6]);
1708 } else {
1709 ret = env->immuregs[reg];
1712 break;
1714 case 0x51: // I-MMU 8k TSB pointer
1716 // env->immuregs[5] holds I-MMU TSB register value
1717 // env->immuregs[6] holds I-MMU Tag Access register value
1718 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
1719 8*1024);
1720 break;
1722 case 0x52: // I-MMU 64k TSB pointer
1724 // env->immuregs[5] holds I-MMU TSB register value
1725 // env->immuregs[6] holds I-MMU Tag Access register value
1726 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
1727 64*1024);
1728 break;
1730 case 0x55: // I-MMU data access
1732 int reg = (addr >> 3) & 0x3f;
1734 ret = env->itlb_tte[reg];
1735 break;
1737 case 0x56: // I-MMU tag read
1739 int reg = (addr >> 3) & 0x3f;
1741 ret = env->itlb_tag[reg];
1742 break;
1744 case 0x58: // D-MMU regs
1746 int reg = (addr >> 3) & 0xf;
1748 if (reg == 0) {
1749 // D-TSB Tag Target register
1750 ret = ultrasparc_tag_target(env->dmmuregs[6]);
1751 } else {
1752 ret = env->dmmuregs[reg];
1754 break;
1756 case 0x59: // D-MMU 8k TSB pointer
1758 // env->dmmuregs[5] holds D-MMU TSB register value
1759 // env->dmmuregs[6] holds D-MMU Tag Access register value
1760 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
1761 8*1024);
1762 break;
1764 case 0x5a: // D-MMU 64k TSB pointer
1766 // env->dmmuregs[5] holds D-MMU TSB register value
1767 // env->dmmuregs[6] holds D-MMU Tag Access register value
1768 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
1769 64*1024);
1770 break;
1772 case 0x5d: // D-MMU data access
1774 int reg = (addr >> 3) & 0x3f;
1776 ret = env->dtlb_tte[reg];
1777 break;
1779 case 0x5e: // D-MMU tag read
1781 int reg = (addr >> 3) & 0x3f;
1783 ret = env->dtlb_tag[reg];
1784 break;
1786 case 0x46: // D-cache data
1787 case 0x47: // D-cache tag access
1788 case 0x4b: // E-cache error enable
1789 case 0x4c: // E-cache asynchronous fault status
1790 case 0x4d: // E-cache asynchronous fault address
1791 case 0x4e: // E-cache tag data
1792 case 0x66: // I-cache instruction access
1793 case 0x67: // I-cache tag access
1794 case 0x6e: // I-cache predecode
1795 case 0x6f: // I-cache LRU etc.
1796 case 0x76: // E-cache tag
1797 case 0x7e: // E-cache tag
1798 break;
1799 case 0x5b: // D-MMU data pointer
1800 case 0x48: // Interrupt dispatch, RO
1801 case 0x49: // Interrupt data receive
1802 case 0x7f: // Incoming interrupt vector, RO
1803 // XXX
1804 break;
1805 case 0x54: // I-MMU data in, WO
1806 case 0x57: // I-MMU demap, WO
1807 case 0x5c: // D-MMU data in, WO
1808 case 0x5f: // D-MMU demap, WO
1809 case 0x77: // Interrupt vector, WO
1810 default:
1811 do_unassigned_access(addr, 0, 0, 1, size);
1812 ret = 0;
1813 break;
1816 /* Convert from little endian */
1817 switch (asi) {
1818 case 0x0c: // Nucleus Little Endian (LE)
1819 case 0x18: // As if user primary LE
1820 case 0x19: // As if user secondary LE
1821 case 0x1c: // Bypass LE
1822 case 0x1d: // Bypass, non-cacheable LE
1823 case 0x88: // Primary LE
1824 case 0x89: // Secondary LE
1825 case 0x8a: // Primary no-fault LE
1826 case 0x8b: // Secondary no-fault LE
1827 switch(size) {
1828 case 2:
1829 ret = bswap16(ret);
1830 break;
1831 case 4:
1832 ret = bswap32(ret);
1833 break;
1834 case 8:
1835 ret = bswap64(ret);
1836 break;
1837 default:
1838 break;
1840 default:
1841 break;
1844 /* Convert to signed number */
1845 if (sign) {
1846 switch(size) {
1847 case 1:
1848 ret = (int8_t) ret;
1849 break;
1850 case 2:
1851 ret = (int16_t) ret;
1852 break;
1853 case 4:
1854 ret = (int32_t) ret;
1855 break;
1856 default:
1857 break;
1860 #ifdef DEBUG_ASI
1861 dump_asi("read ", last_addr, asi, size, ret);
1862 #endif
1863 return ret;
1866 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1868 #ifdef DEBUG_ASI
1869 dump_asi("write", addr, asi, size, val);
1870 #endif
1871 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1872 || ((env->def->features & CPU_FEATURE_HYPV)
1873 && asi >= 0x30 && asi < 0x80
1874 && !(env->hpstate & HS_PRIV)))
1875 raise_exception(TT_PRIV_ACT);
1877 helper_check_align(addr, size - 1);
1878 /* Convert to little endian */
1879 switch (asi) {
1880 case 0x0c: // Nucleus Little Endian (LE)
1881 case 0x18: // As if user primary LE
1882 case 0x19: // As if user secondary LE
1883 case 0x1c: // Bypass LE
1884 case 0x1d: // Bypass, non-cacheable LE
1885 case 0x88: // Primary LE
1886 case 0x89: // Secondary LE
1887 switch(size) {
1888 case 2:
1889 addr = bswap16(addr);
1890 break;
1891 case 4:
1892 addr = bswap32(addr);
1893 break;
1894 case 8:
1895 addr = bswap64(addr);
1896 break;
1897 default:
1898 break;
1900 default:
1901 break;
1904 switch(asi) {
1905 case 0x10: // As if user primary
1906 case 0x18: // As if user primary LE
1907 case 0x80: // Primary
1908 case 0x88: // Primary LE
1909 case 0xe2: // UA2007 Primary block init
1910 case 0xe3: // UA2007 Secondary block init
1911 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1912 if ((env->def->features & CPU_FEATURE_HYPV)
1913 && env->hpstate & HS_PRIV) {
1914 switch(size) {
1915 case 1:
1916 stb_hypv(addr, val);
1917 break;
1918 case 2:
1919 stw_hypv(addr, val);
1920 break;
1921 case 4:
1922 stl_hypv(addr, val);
1923 break;
1924 case 8:
1925 default:
1926 stq_hypv(addr, val);
1927 break;
1929 } else {
1930 switch(size) {
1931 case 1:
1932 stb_kernel(addr, val);
1933 break;
1934 case 2:
1935 stw_kernel(addr, val);
1936 break;
1937 case 4:
1938 stl_kernel(addr, val);
1939 break;
1940 case 8:
1941 default:
1942 stq_kernel(addr, val);
1943 break;
1946 } else {
1947 switch(size) {
1948 case 1:
1949 stb_user(addr, val);
1950 break;
1951 case 2:
1952 stw_user(addr, val);
1953 break;
1954 case 4:
1955 stl_user(addr, val);
1956 break;
1957 case 8:
1958 default:
1959 stq_user(addr, val);
1960 break;
1963 break;
1964 case 0x14: // Bypass
1965 case 0x15: // Bypass, non-cacheable
1966 case 0x1c: // Bypass LE
1967 case 0x1d: // Bypass, non-cacheable LE
1969 switch(size) {
1970 case 1:
1971 stb_phys(addr, val);
1972 break;
1973 case 2:
1974 stw_phys(addr, val);
1975 break;
1976 case 4:
1977 stl_phys(addr, val);
1978 break;
1979 case 8:
1980 default:
1981 stq_phys(addr, val);
1982 break;
1985 return;
1986 case 0x24: // Nucleus quad LDD 128 bit atomic
1987 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1988 // Only ldda allowed
1989 raise_exception(TT_ILL_INSN);
1990 return;
1991 case 0x04: // Nucleus
1992 case 0x0c: // Nucleus Little Endian (LE)
1993 case 0x11: // As if user secondary
1994 case 0x19: // As if user secondary LE
1995 case 0x4a: // UPA config
1996 case 0x81: // Secondary
1997 case 0x89: // Secondary LE
1998 // XXX
1999 return;
2000 case 0x45: // LSU
2002 uint64_t oldreg;
2004 oldreg = env->lsu;
2005 env->lsu = val & (DMMU_E | IMMU_E);
2006 // Mappings generated during D/I MMU disabled mode are
2007 // invalid in normal mode
2008 if (oldreg != env->lsu) {
2009 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2010 oldreg, env->lsu);
2011 #ifdef DEBUG_MMU
2012 dump_mmu(env);
2013 #endif
2014 tlb_flush(env, 1);
2016 return;
2018 case 0x50: // I-MMU regs
2020 int reg = (addr >> 3) & 0xf;
2021 uint64_t oldreg;
2023 oldreg = env->immuregs[reg];
2024 switch(reg) {
2025 case 0: // RO
2026 case 4:
2027 return;
2028 case 1: // Not in I-MMU
2029 case 2:
2030 case 7:
2031 case 8:
2032 return;
2033 case 3: // SFSR
2034 if ((val & 1) == 0)
2035 val = 0; // Clear SFSR
2036 break;
2037 case 5: // TSB access
2038 case 6: // Tag access
2039 default:
2040 break;
2042 env->immuregs[reg] = val;
2043 if (oldreg != env->immuregs[reg]) {
2044 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2045 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2047 #ifdef DEBUG_MMU
2048 dump_mmu(env);
2049 #endif
2050 return;
2052 case 0x54: // I-MMU data in
2054 unsigned int i;
2056 // Try finding an invalid entry
2057 for (i = 0; i < 64; i++) {
2058 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2059 env->itlb_tag[i] = env->immuregs[6];
2060 env->itlb_tte[i] = val;
2061 return;
2064 // Try finding an unlocked entry
2065 for (i = 0; i < 64; i++) {
2066 if ((env->itlb_tte[i] & 0x40) == 0) {
2067 env->itlb_tag[i] = env->immuregs[6];
2068 env->itlb_tte[i] = val;
2069 return;
2072 // error state?
2073 return;
2075 case 0x55: // I-MMU data access
2077 // TODO: auto demap
2079 unsigned int i = (addr >> 3) & 0x3f;
2081 env->itlb_tag[i] = env->immuregs[6];
2082 env->itlb_tte[i] = val;
2083 return;
2085 case 0x57: // I-MMU demap
2087 unsigned int i;
2089 for (i = 0; i < 64; i++) {
2090 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
2091 target_ulong mask = 0xffffffffffffe000ULL;
2093 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
2094 if ((val & mask) == (env->itlb_tag[i] & mask)) {
2095 env->itlb_tag[i] = 0;
2096 env->itlb_tte[i] = 0;
2098 return;
2102 return;
2103 case 0x58: // D-MMU regs
2105 int reg = (addr >> 3) & 0xf;
2106 uint64_t oldreg;
2108 oldreg = env->dmmuregs[reg];
2109 switch(reg) {
2110 case 0: // RO
2111 case 4:
2112 return;
2113 case 3: // SFSR
2114 if ((val & 1) == 0) {
2115 val = 0; // Clear SFSR, Fault address
2116 env->dmmuregs[4] = 0;
2118 env->dmmuregs[reg] = val;
2119 break;
2120 case 1: // Primary context
2121 case 2: // Secondary context
2122 case 5: // TSB access
2123 case 6: // Tag access
2124 case 7: // Virtual Watchpoint
2125 case 8: // Physical Watchpoint
2126 default:
2127 break;
2129 env->dmmuregs[reg] = val;
2130 if (oldreg != env->dmmuregs[reg]) {
2131 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2132 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2134 #ifdef DEBUG_MMU
2135 dump_mmu(env);
2136 #endif
2137 return;
2139 case 0x5c: // D-MMU data in
2141 unsigned int i;
2143 // Try finding an invalid entry
2144 for (i = 0; i < 64; i++) {
2145 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2146 env->dtlb_tag[i] = env->dmmuregs[6];
2147 env->dtlb_tte[i] = val;
2148 return;
2151 // Try finding an unlocked entry
2152 for (i = 0; i < 64; i++) {
2153 if ((env->dtlb_tte[i] & 0x40) == 0) {
2154 env->dtlb_tag[i] = env->dmmuregs[6];
2155 env->dtlb_tte[i] = val;
2156 return;
2159 // error state?
2160 return;
2162 case 0x5d: // D-MMU data access
2164 unsigned int i = (addr >> 3) & 0x3f;
2166 env->dtlb_tag[i] = env->dmmuregs[6];
2167 env->dtlb_tte[i] = val;
2168 return;
2170 case 0x5f: // D-MMU demap
2172 unsigned int i;
2174 for (i = 0; i < 64; i++) {
2175 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2176 target_ulong mask = 0xffffffffffffe000ULL;
2178 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2179 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2180 env->dtlb_tag[i] = 0;
2181 env->dtlb_tte[i] = 0;
2183 return;
2187 return;
2188 case 0x49: // Interrupt data receive
2189 // XXX
2190 return;
2191 case 0x46: // D-cache data
2192 case 0x47: // D-cache tag access
2193 case 0x4b: // E-cache error enable
2194 case 0x4c: // E-cache asynchronous fault status
2195 case 0x4d: // E-cache asynchronous fault address
2196 case 0x4e: // E-cache tag data
2197 case 0x66: // I-cache instruction access
2198 case 0x67: // I-cache tag access
2199 case 0x6e: // I-cache predecode
2200 case 0x6f: // I-cache LRU etc.
2201 case 0x76: // E-cache tag
2202 case 0x7e: // E-cache tag
2203 return;
2204 case 0x51: // I-MMU 8k TSB pointer, RO
2205 case 0x52: // I-MMU 64k TSB pointer, RO
2206 case 0x56: // I-MMU tag read, RO
2207 case 0x59: // D-MMU 8k TSB pointer, RO
2208 case 0x5a: // D-MMU 64k TSB pointer, RO
2209 case 0x5b: // D-MMU data pointer, RO
2210 case 0x5e: // D-MMU tag read, RO
2211 case 0x48: // Interrupt dispatch, RO
2212 case 0x7f: // Incoming interrupt vector, RO
2213 case 0x82: // Primary no-fault, RO
2214 case 0x83: // Secondary no-fault, RO
2215 case 0x8a: // Primary no-fault LE, RO
2216 case 0x8b: // Secondary no-fault LE, RO
2217 default:
2218 do_unassigned_access(addr, 1, 0, 1, size);
2219 return;
2222 #endif /* CONFIG_USER_ONLY */
2224 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2226 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2227 || ((env->def->features & CPU_FEATURE_HYPV)
2228 && asi >= 0x30 && asi < 0x80
2229 && !(env->hpstate & HS_PRIV)))
2230 raise_exception(TT_PRIV_ACT);
2232 switch (asi) {
2233 case 0x24: // Nucleus quad LDD 128 bit atomic
2234 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2235 helper_check_align(addr, 0xf);
2236 if (rd == 0) {
2237 env->gregs[1] = ldq_kernel(addr + 8);
2238 if (asi == 0x2c)
2239 bswap64s(&env->gregs[1]);
2240 } else if (rd < 8) {
2241 env->gregs[rd] = ldq_kernel(addr);
2242 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2243 if (asi == 0x2c) {
2244 bswap64s(&env->gregs[rd]);
2245 bswap64s(&env->gregs[rd + 1]);
2247 } else {
2248 env->regwptr[rd] = ldq_kernel(addr);
2249 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2250 if (asi == 0x2c) {
2251 bswap64s(&env->regwptr[rd]);
2252 bswap64s(&env->regwptr[rd + 1]);
2255 break;
2256 default:
2257 helper_check_align(addr, 0x3);
2258 if (rd == 0)
2259 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2260 else if (rd < 8) {
2261 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2262 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2263 } else {
2264 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2265 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2267 break;
2271 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
2273 unsigned int i;
2274 target_ulong val;
2276 helper_check_align(addr, 3);
2277 switch (asi) {
2278 case 0xf0: // Block load primary
2279 case 0xf1: // Block load secondary
2280 case 0xf8: // Block load primary LE
2281 case 0xf9: // Block load secondary LE
2282 if (rd & 7) {
2283 raise_exception(TT_ILL_INSN);
2284 return;
2286 helper_check_align(addr, 0x3f);
2287 for (i = 0; i < 16; i++) {
2288 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2290 addr += 4;
2293 return;
2294 default:
2295 break;
2298 val = helper_ld_asi(addr, asi, size, 0);
2299 switch(size) {
2300 default:
2301 case 4:
2302 *((uint32_t *)&env->fpr[rd]) = val;
2303 break;
2304 case 8:
2305 *((int64_t *)&DT0) = val;
2306 break;
2307 case 16:
2308 // XXX
2309 break;
2313 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
2315 unsigned int i;
2316 target_ulong val = 0;
2318 helper_check_align(addr, 3);
2319 switch (asi) {
2320 case 0xe0: // UA2007 Block commit store primary (cache flush)
2321 case 0xe1: // UA2007 Block commit store secondary (cache flush)
2322 case 0xf0: // Block store primary
2323 case 0xf1: // Block store secondary
2324 case 0xf8: // Block store primary LE
2325 case 0xf9: // Block store secondary LE
2326 if (rd & 7) {
2327 raise_exception(TT_ILL_INSN);
2328 return;
2330 helper_check_align(addr, 0x3f);
2331 for (i = 0; i < 16; i++) {
2332 val = *(uint32_t *)&env->fpr[rd++];
2333 helper_st_asi(addr, val, asi & 0x8f, 4);
2334 addr += 4;
2337 return;
2338 default:
2339 break;
2342 switch(size) {
2343 default:
2344 case 4:
2345 val = *((uint32_t *)&env->fpr[rd]);
2346 break;
2347 case 8:
2348 val = *((int64_t *)&DT0);
2349 break;
2350 case 16:
2351 // XXX
2352 break;
2354 helper_st_asi(addr, val, asi, size);
2357 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2358 target_ulong val2, uint32_t asi)
2360 target_ulong ret;
2362 val2 &= 0xffffffffUL;
2363 ret = helper_ld_asi(addr, asi, 4, 0);
2364 ret &= 0xffffffffUL;
2365 if (val2 == ret)
2366 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
2367 return ret;
2370 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2371 target_ulong val2, uint32_t asi)
2373 target_ulong ret;
2375 ret = helper_ld_asi(addr, asi, 8, 0);
2376 if (val2 == ret)
2377 helper_st_asi(addr, val1, asi, 8);
2378 return ret;
2380 #endif /* TARGET_SPARC64 */
2382 #ifndef TARGET_SPARC64
2383 void helper_rett(void)
2385 unsigned int cwp;
2387 if (env->psret == 1)
2388 raise_exception(TT_ILL_INSN);
2390 env->psret = 1;
2391 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
2392 if (env->wim & (1 << cwp)) {
2393 raise_exception(TT_WIN_UNF);
2395 set_cwp(cwp);
2396 env->psrs = env->psrps;
2398 #endif
2400 target_ulong helper_udiv(target_ulong a, target_ulong b)
2402 uint64_t x0;
2403 uint32_t x1;
2405 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2406 x1 = b;
2408 if (x1 == 0) {
2409 raise_exception(TT_DIV_ZERO);
2412 x0 = x0 / x1;
2413 if (x0 > 0xffffffff) {
2414 env->cc_src2 = 1;
2415 return 0xffffffff;
2416 } else {
2417 env->cc_src2 = 0;
2418 return x0;
2422 target_ulong helper_sdiv(target_ulong a, target_ulong b)
2424 int64_t x0;
2425 int32_t x1;
2427 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
2428 x1 = b;
2430 if (x1 == 0) {
2431 raise_exception(TT_DIV_ZERO);
2434 x0 = x0 / x1;
2435 if ((int32_t) x0 != x0) {
2436 env->cc_src2 = 1;
2437 return x0 < 0? 0x80000000: 0x7fffffff;
2438 } else {
2439 env->cc_src2 = 0;
2440 return x0;
2444 void helper_stdf(target_ulong addr, int mem_idx)
2446 helper_check_align(addr, 7);
2447 #if !defined(CONFIG_USER_ONLY)
2448 switch (mem_idx) {
2449 case 0:
2450 stfq_user(addr, DT0);
2451 break;
2452 case 1:
2453 stfq_kernel(addr, DT0);
2454 break;
2455 #ifdef TARGET_SPARC64
2456 case 2:
2457 stfq_hypv(addr, DT0);
2458 break;
2459 #endif
2460 default:
2461 break;
2463 #else
2464 address_mask(env, &addr);
2465 stfq_raw(addr, DT0);
2466 #endif
2469 void helper_lddf(target_ulong addr, int mem_idx)
2471 helper_check_align(addr, 7);
2472 #if !defined(CONFIG_USER_ONLY)
2473 switch (mem_idx) {
2474 case 0:
2475 DT0 = ldfq_user(addr);
2476 break;
2477 case 1:
2478 DT0 = ldfq_kernel(addr);
2479 break;
2480 #ifdef TARGET_SPARC64
2481 case 2:
2482 DT0 = ldfq_hypv(addr);
2483 break;
2484 #endif
2485 default:
2486 break;
2488 #else
2489 address_mask(env, &addr);
2490 DT0 = ldfq_raw(addr);
2491 #endif
2494 void helper_ldqf(target_ulong addr, int mem_idx)
2496 // XXX add 128 bit load
2497 CPU_QuadU u;
2499 helper_check_align(addr, 7);
2500 #if !defined(CONFIG_USER_ONLY)
2501 switch (mem_idx) {
2502 case 0:
2503 u.ll.upper = ldq_user(addr);
2504 u.ll.lower = ldq_user(addr + 8);
2505 QT0 = u.q;
2506 break;
2507 case 1:
2508 u.ll.upper = ldq_kernel(addr);
2509 u.ll.lower = ldq_kernel(addr + 8);
2510 QT0 = u.q;
2511 break;
2512 #ifdef TARGET_SPARC64
2513 case 2:
2514 u.ll.upper = ldq_hypv(addr);
2515 u.ll.lower = ldq_hypv(addr + 8);
2516 QT0 = u.q;
2517 break;
2518 #endif
2519 default:
2520 break;
2522 #else
2523 address_mask(env, &addr);
2524 u.ll.upper = ldq_raw(addr);
2525 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
2526 QT0 = u.q;
2527 #endif
2530 void helper_stqf(target_ulong addr, int mem_idx)
2532 // XXX add 128 bit store
2533 CPU_QuadU u;
2535 helper_check_align(addr, 7);
2536 #if !defined(CONFIG_USER_ONLY)
2537 switch (mem_idx) {
2538 case 0:
2539 u.q = QT0;
2540 stq_user(addr, u.ll.upper);
2541 stq_user(addr + 8, u.ll.lower);
2542 break;
2543 case 1:
2544 u.q = QT0;
2545 stq_kernel(addr, u.ll.upper);
2546 stq_kernel(addr + 8, u.ll.lower);
2547 break;
2548 #ifdef TARGET_SPARC64
2549 case 2:
2550 u.q = QT0;
2551 stq_hypv(addr, u.ll.upper);
2552 stq_hypv(addr + 8, u.ll.lower);
2553 break;
2554 #endif
2555 default:
2556 break;
2558 #else
2559 u.q = QT0;
2560 address_mask(env, &addr);
2561 stq_raw(addr, u.ll.upper);
2562 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
2563 #endif
2566 static inline void set_fsr(void)
2568 int rnd_mode;
2570 switch (env->fsr & FSR_RD_MASK) {
2571 case FSR_RD_NEAREST:
2572 rnd_mode = float_round_nearest_even;
2573 break;
2574 default:
2575 case FSR_RD_ZERO:
2576 rnd_mode = float_round_to_zero;
2577 break;
2578 case FSR_RD_POS:
2579 rnd_mode = float_round_up;
2580 break;
2581 case FSR_RD_NEG:
2582 rnd_mode = float_round_down;
2583 break;
2585 set_float_rounding_mode(rnd_mode, &env->fp_status);
2588 void helper_ldfsr(uint32_t new_fsr)
2590 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
2591 set_fsr();
2594 #ifdef TARGET_SPARC64
2595 void helper_ldxfsr(uint64_t new_fsr)
2597 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
2598 set_fsr();
2600 #endif
2602 void helper_debug(void)
2604 env->exception_index = EXCP_DEBUG;
2605 cpu_loop_exit();
2608 #ifndef TARGET_SPARC64
2609 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2610 handling ? */
2611 void helper_save(void)
2613 uint32_t cwp;
2615 cwp = cpu_cwp_dec(env, env->cwp - 1);
2616 if (env->wim & (1 << cwp)) {
2617 raise_exception(TT_WIN_OVF);
2619 set_cwp(cwp);
2622 void helper_restore(void)
2624 uint32_t cwp;
2626 cwp = cpu_cwp_inc(env, env->cwp + 1);
2627 if (env->wim & (1 << cwp)) {
2628 raise_exception(TT_WIN_UNF);
2630 set_cwp(cwp);
2633 void helper_wrpsr(target_ulong new_psr)
2635 if ((new_psr & PSR_CWP) >= env->nwindows)
2636 raise_exception(TT_ILL_INSN);
2637 else
2638 PUT_PSR(env, new_psr);
2641 target_ulong helper_rdpsr(void)
2643 return GET_PSR(env);
2646 #else
2647 /* XXX: use another pointer for %iN registers to avoid slow wrapping
2648 handling ? */
2649 void helper_save(void)
2651 uint32_t cwp;
2653 cwp = cpu_cwp_dec(env, env->cwp - 1);
2654 if (env->cansave == 0) {
2655 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2656 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2657 ((env->wstate & 0x7) << 2)));
2658 } else {
2659 if (env->cleanwin - env->canrestore == 0) {
2660 // XXX Clean windows without trap
2661 raise_exception(TT_CLRWIN);
2662 } else {
2663 env->cansave--;
2664 env->canrestore++;
2665 set_cwp(cwp);
2670 void helper_restore(void)
2672 uint32_t cwp;
2674 cwp = cpu_cwp_inc(env, env->cwp + 1);
2675 if (env->canrestore == 0) {
2676 raise_exception(TT_FILL | (env->otherwin != 0 ?
2677 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2678 ((env->wstate & 0x7) << 2)));
2679 } else {
2680 env->cansave++;
2681 env->canrestore--;
2682 set_cwp(cwp);
2686 void helper_flushw(void)
2688 if (env->cansave != env->nwindows - 2) {
2689 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2690 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2691 ((env->wstate & 0x7) << 2)));
2695 void helper_saved(void)
2697 env->cansave++;
2698 if (env->otherwin == 0)
2699 env->canrestore--;
2700 else
2701 env->otherwin--;
2704 void helper_restored(void)
2706 env->canrestore++;
2707 if (env->cleanwin < env->nwindows - 1)
2708 env->cleanwin++;
2709 if (env->otherwin == 0)
2710 env->cansave--;
2711 else
2712 env->otherwin--;
2715 target_ulong helper_rdccr(void)
2717 return GET_CCR(env);
2720 void helper_wrccr(target_ulong new_ccr)
2722 PUT_CCR(env, new_ccr);
2725 // CWP handling is reversed in V9, but we still use the V8 register
2726 // order.
2727 target_ulong helper_rdcwp(void)
2729 return GET_CWP64(env);
2732 void helper_wrcwp(target_ulong new_cwp)
2734 PUT_CWP64(env, new_cwp);
2737 // This function uses non-native bit order
2738 #define GET_FIELD(X, FROM, TO) \
2739 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2741 // This function uses the order in the manuals, i.e. bit 0 is 2^0
2742 #define GET_FIELD_SP(X, FROM, TO) \
2743 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2745 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2747 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2748 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2749 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2750 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2751 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2752 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2753 (((pixel_addr >> 55) & 1) << 4) |
2754 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2755 GET_FIELD_SP(pixel_addr, 11, 12);
2758 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2760 uint64_t tmp;
2762 tmp = addr + offset;
2763 env->gsr &= ~7ULL;
2764 env->gsr |= tmp & 7ULL;
2765 return tmp & ~7ULL;
2768 target_ulong helper_popc(target_ulong val)
2770 return ctpop64(val);
2773 static inline uint64_t *get_gregset(uint64_t pstate)
2775 switch (pstate) {
2776 default:
2777 case 0:
2778 return env->bgregs;
2779 case PS_AG:
2780 return env->agregs;
2781 case PS_MG:
2782 return env->mgregs;
2783 case PS_IG:
2784 return env->igregs;
2788 static inline void change_pstate(uint64_t new_pstate)
2790 uint64_t pstate_regs, new_pstate_regs;
2791 uint64_t *src, *dst;
2793 pstate_regs = env->pstate & 0xc01;
2794 new_pstate_regs = new_pstate & 0xc01;
2795 if (new_pstate_regs != pstate_regs) {
2796 // Switch global register bank
2797 src = get_gregset(new_pstate_regs);
2798 dst = get_gregset(pstate_regs);
2799 memcpy32(dst, env->gregs);
2800 memcpy32(env->gregs, src);
2802 env->pstate = new_pstate;
2805 void helper_wrpstate(target_ulong new_state)
2807 if (!(env->def->features & CPU_FEATURE_GL))
2808 change_pstate(new_state & 0xf3f);
2811 void helper_done(void)
2813 env->pc = env->tsptr->tpc;
2814 env->npc = env->tsptr->tnpc + 4;
2815 PUT_CCR(env, env->tsptr->tstate >> 32);
2816 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2817 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2818 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2819 env->tl--;
2820 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2823 void helper_retry(void)
2825 env->pc = env->tsptr->tpc;
2826 env->npc = env->tsptr->tnpc;
2827 PUT_CCR(env, env->tsptr->tstate >> 32);
2828 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2829 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2830 PUT_CWP64(env, env->tsptr->tstate & 0xff);
2831 env->tl--;
2832 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2835 void helper_set_softint(uint64_t value)
2837 env->softint |= (uint32_t)value;
2840 void helper_clear_softint(uint64_t value)
2842 env->softint &= (uint32_t)~value;
2845 void helper_write_softint(uint64_t value)
2847 env->softint = (uint32_t)value;
2849 #endif
2851 void helper_flush(target_ulong addr)
2853 addr &= ~7;
2854 tb_invalidate_page_range(addr, addr + 8);
2857 #ifdef TARGET_SPARC64
2858 #ifdef DEBUG_PCALL
2859 static const char * const excp_names[0x80] = {
2860 [TT_TFAULT] = "Instruction Access Fault",
2861 [TT_TMISS] = "Instruction Access MMU Miss",
2862 [TT_CODE_ACCESS] = "Instruction Access Error",
2863 [TT_ILL_INSN] = "Illegal Instruction",
2864 [TT_PRIV_INSN] = "Privileged Instruction",
2865 [TT_NFPU_INSN] = "FPU Disabled",
2866 [TT_FP_EXCP] = "FPU Exception",
2867 [TT_TOVF] = "Tag Overflow",
2868 [TT_CLRWIN] = "Clean Windows",
2869 [TT_DIV_ZERO] = "Division By Zero",
2870 [TT_DFAULT] = "Data Access Fault",
2871 [TT_DMISS] = "Data Access MMU Miss",
2872 [TT_DATA_ACCESS] = "Data Access Error",
2873 [TT_DPROT] = "Data Protection Error",
2874 [TT_UNALIGNED] = "Unaligned Memory Access",
2875 [TT_PRIV_ACT] = "Privileged Action",
2876 [TT_EXTINT | 0x1] = "External Interrupt 1",
2877 [TT_EXTINT | 0x2] = "External Interrupt 2",
2878 [TT_EXTINT | 0x3] = "External Interrupt 3",
2879 [TT_EXTINT | 0x4] = "External Interrupt 4",
2880 [TT_EXTINT | 0x5] = "External Interrupt 5",
2881 [TT_EXTINT | 0x6] = "External Interrupt 6",
2882 [TT_EXTINT | 0x7] = "External Interrupt 7",
2883 [TT_EXTINT | 0x8] = "External Interrupt 8",
2884 [TT_EXTINT | 0x9] = "External Interrupt 9",
2885 [TT_EXTINT | 0xa] = "External Interrupt 10",
2886 [TT_EXTINT | 0xb] = "External Interrupt 11",
2887 [TT_EXTINT | 0xc] = "External Interrupt 12",
2888 [TT_EXTINT | 0xd] = "External Interrupt 13",
2889 [TT_EXTINT | 0xe] = "External Interrupt 14",
2890 [TT_EXTINT | 0xf] = "External Interrupt 15",
2892 #endif
2894 void do_interrupt(CPUState *env)
2896 int intno = env->exception_index;
2898 #ifdef DEBUG_PCALL
2899 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2900 static int count;
2901 const char *name;
2903 if (intno < 0 || intno >= 0x180)
2904 name = "Unknown";
2905 else if (intno >= 0x100)
2906 name = "Trap Instruction";
2907 else if (intno >= 0xc0)
2908 name = "Window Fill";
2909 else if (intno >= 0x80)
2910 name = "Window Spill";
2911 else {
2912 name = excp_names[intno];
2913 if (!name)
2914 name = "Unknown";
2917 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2918 " SP=%016" PRIx64 "\n",
2919 count, name, intno,
2920 env->pc,
2921 env->npc, env->regwptr[6]);
2922 log_cpu_state(env, 0);
2923 #if 0
2925 int i;
2926 uint8_t *ptr;
2928 qemu_log(" code=");
2929 ptr = (uint8_t *)env->pc;
2930 for(i = 0; i < 16; i++) {
2931 qemu_log(" %02x", ldub(ptr + i));
2933 qemu_log("\n");
2935 #endif
2936 count++;
2938 #endif
2939 #if !defined(CONFIG_USER_ONLY)
2940 if (env->tl >= env->maxtl) {
2941 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2942 " Error state", env->exception_index, env->tl, env->maxtl);
2943 return;
2945 #endif
2946 if (env->tl < env->maxtl - 1) {
2947 env->tl++;
2948 } else {
2949 env->pstate |= PS_RED;
2950 if (env->tl < env->maxtl)
2951 env->tl++;
2953 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2954 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2955 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2956 GET_CWP64(env);
2957 env->tsptr->tpc = env->pc;
2958 env->tsptr->tnpc = env->npc;
2959 env->tsptr->tt = intno;
2960 if (!(env->def->features & CPU_FEATURE_GL)) {
2961 switch (intno) {
2962 case TT_IVEC:
2963 change_pstate(PS_PEF | PS_PRIV | PS_IG);
2964 break;
2965 case TT_TFAULT:
2966 case TT_TMISS:
2967 case TT_DFAULT:
2968 case TT_DMISS:
2969 case TT_DPROT:
2970 change_pstate(PS_PEF | PS_PRIV | PS_MG);
2971 break;
2972 default:
2973 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2974 break;
2977 if (intno == TT_CLRWIN)
2978 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2979 else if ((intno & 0x1c0) == TT_SPILL)
2980 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2981 else if ((intno & 0x1c0) == TT_FILL)
2982 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2983 env->tbr &= ~0x7fffULL;
2984 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2985 env->pc = env->tbr;
2986 env->npc = env->pc + 4;
2987 env->exception_index = 0;
2989 #else
2990 #ifdef DEBUG_PCALL
2991 static const char * const excp_names[0x80] = {
2992 [TT_TFAULT] = "Instruction Access Fault",
2993 [TT_ILL_INSN] = "Illegal Instruction",
2994 [TT_PRIV_INSN] = "Privileged Instruction",
2995 [TT_NFPU_INSN] = "FPU Disabled",
2996 [TT_WIN_OVF] = "Window Overflow",
2997 [TT_WIN_UNF] = "Window Underflow",
2998 [TT_UNALIGNED] = "Unaligned Memory Access",
2999 [TT_FP_EXCP] = "FPU Exception",
3000 [TT_DFAULT] = "Data Access Fault",
3001 [TT_TOVF] = "Tag Overflow",
3002 [TT_EXTINT | 0x1] = "External Interrupt 1",
3003 [TT_EXTINT | 0x2] = "External Interrupt 2",
3004 [TT_EXTINT | 0x3] = "External Interrupt 3",
3005 [TT_EXTINT | 0x4] = "External Interrupt 4",
3006 [TT_EXTINT | 0x5] = "External Interrupt 5",
3007 [TT_EXTINT | 0x6] = "External Interrupt 6",
3008 [TT_EXTINT | 0x7] = "External Interrupt 7",
3009 [TT_EXTINT | 0x8] = "External Interrupt 8",
3010 [TT_EXTINT | 0x9] = "External Interrupt 9",
3011 [TT_EXTINT | 0xa] = "External Interrupt 10",
3012 [TT_EXTINT | 0xb] = "External Interrupt 11",
3013 [TT_EXTINT | 0xc] = "External Interrupt 12",
3014 [TT_EXTINT | 0xd] = "External Interrupt 13",
3015 [TT_EXTINT | 0xe] = "External Interrupt 14",
3016 [TT_EXTINT | 0xf] = "External Interrupt 15",
3017 [TT_TOVF] = "Tag Overflow",
3018 [TT_CODE_ACCESS] = "Instruction Access Error",
3019 [TT_DATA_ACCESS] = "Data Access Error",
3020 [TT_DIV_ZERO] = "Division By Zero",
3021 [TT_NCP_INSN] = "Coprocessor Disabled",
3023 #endif
3025 void do_interrupt(CPUState *env)
3027 int cwp, intno = env->exception_index;
3029 #ifdef DEBUG_PCALL
3030 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3031 static int count;
3032 const char *name;
3034 if (intno < 0 || intno >= 0x100)
3035 name = "Unknown";
3036 else if (intno >= 0x80)
3037 name = "Trap Instruction";
3038 else {
3039 name = excp_names[intno];
3040 if (!name)
3041 name = "Unknown";
3044 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3045 count, name, intno,
3046 env->pc,
3047 env->npc, env->regwptr[6]);
3048 log_cpu_state(env, 0);
3049 #if 0
3051 int i;
3052 uint8_t *ptr;
3054 qemu_log(" code=");
3055 ptr = (uint8_t *)env->pc;
3056 for(i = 0; i < 16; i++) {
3057 qemu_log(" %02x", ldub(ptr + i));
3059 qemu_log("\n");
3061 #endif
3062 count++;
3064 #endif
3065 #if !defined(CONFIG_USER_ONLY)
3066 if (env->psret == 0) {
3067 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3068 env->exception_index);
3069 return;
3071 #endif
3072 env->psret = 0;
3073 cwp = cpu_cwp_dec(env, env->cwp - 1);
3074 cpu_set_cwp(env, cwp);
3075 env->regwptr[9] = env->pc;
3076 env->regwptr[10] = env->npc;
3077 env->psrps = env->psrs;
3078 env->psrs = 1;
3079 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3080 env->pc = env->tbr;
3081 env->npc = env->pc + 4;
3082 env->exception_index = 0;
3084 #endif
3086 #if !defined(CONFIG_USER_ONLY)
3088 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3089 void *retaddr);
3091 #define MMUSUFFIX _mmu
3092 #define ALIGNED_ONLY
3094 #define SHIFT 0
3095 #include "softmmu_template.h"
3097 #define SHIFT 1
3098 #include "softmmu_template.h"
3100 #define SHIFT 2
3101 #include "softmmu_template.h"
3103 #define SHIFT 3
3104 #include "softmmu_template.h"
3106 /* XXX: make it generic ? */
3107 static void cpu_restore_state2(void *retaddr)
3109 TranslationBlock *tb;
3110 unsigned long pc;
3112 if (retaddr) {
3113 /* now we have a real cpu fault */
3114 pc = (unsigned long)retaddr;
3115 tb = tb_find_pc(pc);
3116 if (tb) {
3117 /* the PC is inside the translated code. It means that we have
3118 a virtual CPU fault */
3119 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3124 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3125 void *retaddr)
3127 #ifdef DEBUG_UNALIGNED
3128 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3129 "\n", addr, env->pc);
3130 #endif
3131 cpu_restore_state2(retaddr);
3132 raise_exception(TT_UNALIGNED);
3135 /* try to fill the TLB and return an exception if error. If retaddr is
3136 NULL, it means that the function was called in C code (i.e. not
3137 from generated code or from helper.c) */
3138 /* XXX: fix it to restore all registers */
3139 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3141 int ret;
3142 CPUState *saved_env;
3144 /* XXX: hack to restore env in all cases, even if not called from
3145 generated code */
3146 saved_env = env;
3147 env = cpu_single_env;
3149 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3150 if (ret) {
3151 cpu_restore_state2(retaddr);
3152 cpu_loop_exit();
3154 env = saved_env;
3157 #endif
3159 #ifndef TARGET_SPARC64
3160 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3161 int is_asi, int size)
3163 CPUState *saved_env;
3165 /* XXX: hack to restore env in all cases, even if not called from
3166 generated code */
3167 saved_env = env;
3168 env = cpu_single_env;
3169 #ifdef DEBUG_UNASSIGNED
3170 if (is_asi)
3171 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3172 " asi 0x%02x from " TARGET_FMT_lx "\n",
3173 is_exec ? "exec" : is_write ? "write" : "read", size,
3174 size == 1 ? "" : "s", addr, is_asi, env->pc);
3175 else
3176 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3177 " from " TARGET_FMT_lx "\n",
3178 is_exec ? "exec" : is_write ? "write" : "read", size,
3179 size == 1 ? "" : "s", addr, env->pc);
3180 #endif
3181 if (env->mmuregs[3]) /* Fault status register */
3182 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
3183 if (is_asi)
3184 env->mmuregs[3] |= 1 << 16;
3185 if (env->psrs)
3186 env->mmuregs[3] |= 1 << 5;
3187 if (is_exec)
3188 env->mmuregs[3] |= 1 << 6;
3189 if (is_write)
3190 env->mmuregs[3] |= 1 << 7;
3191 env->mmuregs[3] |= (5 << 2) | 2;
3192 env->mmuregs[4] = addr; /* Fault address register */
3193 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
3194 if (is_exec)
3195 raise_exception(TT_CODE_ACCESS);
3196 else
3197 raise_exception(TT_DATA_ACCESS);
3199 env = saved_env;
3201 #else
3202 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
3203 int is_asi, int size)
3205 #ifdef DEBUG_UNASSIGNED
3206 CPUState *saved_env;
3208 /* XXX: hack to restore env in all cases, even if not called from
3209 generated code */
3210 saved_env = env;
3211 env = cpu_single_env;
3212 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3213 "\n", addr, env->pc);
3214 env = saved_env;
3215 #endif
3216 if (is_exec)
3217 raise_exception(TT_CODE_ACCESS);
3218 else
3219 raise_exception(TT_DATA_ACCESS);
3221 #endif
3223 #ifdef TARGET_SPARC64
3224 void helper_tick_set_count(void *opaque, uint64_t count)
3226 #if !defined(CONFIG_USER_ONLY)
3227 cpu_tick_set_count(opaque, count);
3228 #endif
3231 uint64_t helper_tick_get_count(void *opaque)
3233 #if !defined(CONFIG_USER_ONLY)
3234 return cpu_tick_get_count(opaque);
3235 #else
3236 return 0;
3237 #endif
3240 void helper_tick_set_limit(void *opaque, uint64_t limit)
3242 #if !defined(CONFIG_USER_ONLY)
3243 cpu_tick_set_limit(opaque, limit);
3244 #endif
3246 #endif