Avoid clobbering input/aliased registers in !SOFTMMU+64bit+bswap case
[qemu/mini2440.git] / cpu-all.h
blobd350b30682332c3f1608df64ba2ea7fdf44a7e21
1 /*
2 * defines common to all virtual CPUs
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 #define WORDS_ALIGNED
25 #endif
27 /* some important defines:
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
40 #include "bswap.h"
41 #include "softfloat.h"
43 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
47 #ifdef BSWAP_NEEDED
49 static inline uint16_t tswap16(uint16_t s)
51 return bswap16(s);
54 static inline uint32_t tswap32(uint32_t s)
56 return bswap32(s);
59 static inline uint64_t tswap64(uint64_t s)
61 return bswap64(s);
64 static inline void tswap16s(uint16_t *s)
66 *s = bswap16(*s);
69 static inline void tswap32s(uint32_t *s)
71 *s = bswap32(*s);
74 static inline void tswap64s(uint64_t *s)
76 *s = bswap64(*s);
79 #else
81 static inline uint16_t tswap16(uint16_t s)
83 return s;
86 static inline uint32_t tswap32(uint32_t s)
88 return s;
91 static inline uint64_t tswap64(uint64_t s)
93 return s;
96 static inline void tswap16s(uint16_t *s)
100 static inline void tswap32s(uint32_t *s)
104 static inline void tswap64s(uint64_t *s)
108 #endif
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
120 typedef union {
121 float32 f;
122 uint32_t l;
123 } CPU_FloatU;
125 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
127 typedef union {
128 float64 d;
129 #if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 struct {
132 uint32_t upper;
133 uint32_t lower;
134 } l;
135 #else
136 struct {
137 uint32_t lower;
138 uint32_t upper;
139 } l;
140 #endif
141 uint64_t ll;
142 } CPU_DoubleU;
144 #ifdef TARGET_SPARC
145 typedef union {
146 float128 q;
147 #if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159 #else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170 #endif
171 } CPU_QuadU;
172 #endif
174 /* CPU memory access without any memory or io remapping */
177 * the generic syntax for the memory accesses is:
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
183 * type is:
184 * (empty): integer access
185 * f : float access
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
209 static inline int ldub_p(void *ptr)
211 return *(uint8_t *)ptr;
214 static inline int ldsb_p(void *ptr)
216 return *(int8_t *)ptr;
219 static inline void stb_p(void *ptr, int v)
221 *(uint8_t *)ptr = v;
224 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
229 /* conservative code for little endian unaligned accesses */
230 static inline int lduw_le_p(void *ptr)
232 #ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236 #elif defined(__sparc__)
237 #ifndef ASI_PRIMARY_LITTLE
238 #define ASI_PRIMARY_LITTLE 0x88
239 #endif
241 int val;
242 __asm__ __volatile__ ("lduha [%1] %2, %0" : "=r" (val) : "r" (ptr),
243 "i" (ASI_PRIMARY_LITTLE));
244 return val;
245 #else
246 uint8_t *p = ptr;
247 return p[0] | (p[1] << 8);
248 #endif
251 static inline int ldsw_le_p(void *ptr)
253 #ifdef __powerpc__
254 int val;
255 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256 return (int16_t)val;
257 #elif defined(__sparc__)
258 int val;
259 __asm__ __volatile__ ("ldsha [%1] %2, %0" : "=r" (val) : "r" (ptr),
260 "i" (ASI_PRIMARY_LITTLE));
261 return val;
262 #else
263 uint8_t *p = ptr;
264 return (int16_t)(p[0] | (p[1] << 8));
265 #endif
268 static inline int ldl_le_p(void *ptr)
270 #ifdef __powerpc__
271 int val;
272 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
273 return val;
274 #elif defined(__sparc__)
275 int val;
276 __asm__ __volatile__ ("lduwa [%1] %2, %0" : "=r" (val) : "r" (ptr),
277 "i" (ASI_PRIMARY_LITTLE));
278 return val;
279 #else
280 uint8_t *p = ptr;
281 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
282 #endif
285 static inline uint64_t ldq_le_p(void *ptr)
287 #if defined(__sparc__)
288 uint64_t val;
289 __asm__ __volatile__ ("ldxa [%1] %2, %0" : "=r" (val) : "r" (ptr),
290 "i" (ASI_PRIMARY_LITTLE));
291 return val;
292 #else
293 uint8_t *p = ptr;
294 uint32_t v1, v2;
295 v1 = ldl_le_p(p);
296 v2 = ldl_le_p(p + 4);
297 return v1 | ((uint64_t)v2 << 32);
298 #endif
301 static inline void stw_le_p(void *ptr, int v)
303 #ifdef __powerpc__
304 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
305 #elif defined(__sparc__)
306 __asm__ __volatile__ ("stha %1, [%2] %3" : "=m" (*(uint16_t *)ptr) : "r" (v),
307 "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
308 #else
309 uint8_t *p = ptr;
310 p[0] = v;
311 p[1] = v >> 8;
312 #endif
315 static inline void stl_le_p(void *ptr, int v)
317 #ifdef __powerpc__
318 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
319 #elif defined(__sparc__)
320 __asm__ __volatile__ ("stwa %1, [%2] %3" : "=m" (*(uint32_t *)ptr) : "r" (v),
321 "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
322 #else
323 uint8_t *p = ptr;
324 p[0] = v;
325 p[1] = v >> 8;
326 p[2] = v >> 16;
327 p[3] = v >> 24;
328 #endif
331 static inline void stq_le_p(void *ptr, uint64_t v)
333 #if defined(__sparc__)
334 __asm__ __volatile__ ("stxa %1, [%2] %3" : "=m" (*(uint64_t *)ptr) : "r" (v),
335 "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
336 #undef ASI_PRIMARY_LITTLE
337 #else
338 uint8_t *p = ptr;
339 stl_le_p(p, (uint32_t)v);
340 stl_le_p(p + 4, v >> 32);
341 #endif
344 /* float access */
346 static inline float32 ldfl_le_p(void *ptr)
348 union {
349 float32 f;
350 uint32_t i;
351 } u;
352 u.i = ldl_le_p(ptr);
353 return u.f;
356 static inline void stfl_le_p(void *ptr, float32 v)
358 union {
359 float32 f;
360 uint32_t i;
361 } u;
362 u.f = v;
363 stl_le_p(ptr, u.i);
366 static inline float64 ldfq_le_p(void *ptr)
368 CPU_DoubleU u;
369 u.l.lower = ldl_le_p(ptr);
370 u.l.upper = ldl_le_p(ptr + 4);
371 return u.d;
374 static inline void stfq_le_p(void *ptr, float64 v)
376 CPU_DoubleU u;
377 u.d = v;
378 stl_le_p(ptr, u.l.lower);
379 stl_le_p(ptr + 4, u.l.upper);
382 #else
384 static inline int lduw_le_p(void *ptr)
386 return *(uint16_t *)ptr;
389 static inline int ldsw_le_p(void *ptr)
391 return *(int16_t *)ptr;
394 static inline int ldl_le_p(void *ptr)
396 return *(uint32_t *)ptr;
399 static inline uint64_t ldq_le_p(void *ptr)
401 return *(uint64_t *)ptr;
404 static inline void stw_le_p(void *ptr, int v)
406 *(uint16_t *)ptr = v;
409 static inline void stl_le_p(void *ptr, int v)
411 *(uint32_t *)ptr = v;
414 static inline void stq_le_p(void *ptr, uint64_t v)
416 *(uint64_t *)ptr = v;
419 /* float access */
421 static inline float32 ldfl_le_p(void *ptr)
423 return *(float32 *)ptr;
426 static inline float64 ldfq_le_p(void *ptr)
428 return *(float64 *)ptr;
431 static inline void stfl_le_p(void *ptr, float32 v)
433 *(float32 *)ptr = v;
436 static inline void stfq_le_p(void *ptr, float64 v)
438 *(float64 *)ptr = v;
440 #endif
442 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
444 static inline int lduw_be_p(void *ptr)
446 #if defined(__i386__)
447 int val;
448 asm volatile ("movzwl %1, %0\n"
449 "xchgb %b0, %h0\n"
450 : "=q" (val)
451 : "m" (*(uint16_t *)ptr));
452 return val;
453 #else
454 uint8_t *b = (uint8_t *) ptr;
455 return ((b[0] << 8) | b[1]);
456 #endif
459 static inline int ldsw_be_p(void *ptr)
461 #if defined(__i386__)
462 int val;
463 asm volatile ("movzwl %1, %0\n"
464 "xchgb %b0, %h0\n"
465 : "=q" (val)
466 : "m" (*(uint16_t *)ptr));
467 return (int16_t)val;
468 #else
469 uint8_t *b = (uint8_t *) ptr;
470 return (int16_t)((b[0] << 8) | b[1]);
471 #endif
474 static inline int ldl_be_p(void *ptr)
476 #if defined(__i386__) || defined(__x86_64__)
477 int val;
478 asm volatile ("movl %1, %0\n"
479 "bswap %0\n"
480 : "=r" (val)
481 : "m" (*(uint32_t *)ptr));
482 return val;
483 #else
484 uint8_t *b = (uint8_t *) ptr;
485 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
486 #endif
489 static inline uint64_t ldq_be_p(void *ptr)
491 uint32_t a,b;
492 a = ldl_be_p(ptr);
493 b = ldl_be_p((uint8_t *)ptr + 4);
494 return (((uint64_t)a<<32)|b);
497 static inline void stw_be_p(void *ptr, int v)
499 #if defined(__i386__)
500 asm volatile ("xchgb %b0, %h0\n"
501 "movw %w0, %1\n"
502 : "=q" (v)
503 : "m" (*(uint16_t *)ptr), "0" (v));
504 #else
505 uint8_t *d = (uint8_t *) ptr;
506 d[0] = v >> 8;
507 d[1] = v;
508 #endif
511 static inline void stl_be_p(void *ptr, int v)
513 #if defined(__i386__) || defined(__x86_64__)
514 asm volatile ("bswap %0\n"
515 "movl %0, %1\n"
516 : "=r" (v)
517 : "m" (*(uint32_t *)ptr), "0" (v));
518 #else
519 uint8_t *d = (uint8_t *) ptr;
520 d[0] = v >> 24;
521 d[1] = v >> 16;
522 d[2] = v >> 8;
523 d[3] = v;
524 #endif
527 static inline void stq_be_p(void *ptr, uint64_t v)
529 stl_be_p(ptr, v >> 32);
530 stl_be_p((uint8_t *)ptr + 4, v);
533 /* float access */
535 static inline float32 ldfl_be_p(void *ptr)
537 union {
538 float32 f;
539 uint32_t i;
540 } u;
541 u.i = ldl_be_p(ptr);
542 return u.f;
545 static inline void stfl_be_p(void *ptr, float32 v)
547 union {
548 float32 f;
549 uint32_t i;
550 } u;
551 u.f = v;
552 stl_be_p(ptr, u.i);
555 static inline float64 ldfq_be_p(void *ptr)
557 CPU_DoubleU u;
558 u.l.upper = ldl_be_p(ptr);
559 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
560 return u.d;
563 static inline void stfq_be_p(void *ptr, float64 v)
565 CPU_DoubleU u;
566 u.d = v;
567 stl_be_p(ptr, u.l.upper);
568 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
571 #else
573 static inline int lduw_be_p(void *ptr)
575 return *(uint16_t *)ptr;
578 static inline int ldsw_be_p(void *ptr)
580 return *(int16_t *)ptr;
583 static inline int ldl_be_p(void *ptr)
585 return *(uint32_t *)ptr;
588 static inline uint64_t ldq_be_p(void *ptr)
590 return *(uint64_t *)ptr;
593 static inline void stw_be_p(void *ptr, int v)
595 *(uint16_t *)ptr = v;
598 static inline void stl_be_p(void *ptr, int v)
600 *(uint32_t *)ptr = v;
603 static inline void stq_be_p(void *ptr, uint64_t v)
605 *(uint64_t *)ptr = v;
608 /* float access */
610 static inline float32 ldfl_be_p(void *ptr)
612 return *(float32 *)ptr;
615 static inline float64 ldfq_be_p(void *ptr)
617 return *(float64 *)ptr;
620 static inline void stfl_be_p(void *ptr, float32 v)
622 *(float32 *)ptr = v;
625 static inline void stfq_be_p(void *ptr, float64 v)
627 *(float64 *)ptr = v;
630 #endif
632 /* target CPU memory access functions */
633 #if defined(TARGET_WORDS_BIGENDIAN)
634 #define lduw_p(p) lduw_be_p(p)
635 #define ldsw_p(p) ldsw_be_p(p)
636 #define ldl_p(p) ldl_be_p(p)
637 #define ldq_p(p) ldq_be_p(p)
638 #define ldfl_p(p) ldfl_be_p(p)
639 #define ldfq_p(p) ldfq_be_p(p)
640 #define stw_p(p, v) stw_be_p(p, v)
641 #define stl_p(p, v) stl_be_p(p, v)
642 #define stq_p(p, v) stq_be_p(p, v)
643 #define stfl_p(p, v) stfl_be_p(p, v)
644 #define stfq_p(p, v) stfq_be_p(p, v)
645 #else
646 #define lduw_p(p) lduw_le_p(p)
647 #define ldsw_p(p) ldsw_le_p(p)
648 #define ldl_p(p) ldl_le_p(p)
649 #define ldq_p(p) ldq_le_p(p)
650 #define ldfl_p(p) ldfl_le_p(p)
651 #define ldfq_p(p) ldfq_le_p(p)
652 #define stw_p(p, v) stw_le_p(p, v)
653 #define stl_p(p, v) stl_le_p(p, v)
654 #define stq_p(p, v) stq_le_p(p, v)
655 #define stfl_p(p, v) stfl_le_p(p, v)
656 #define stfq_p(p, v) stfq_le_p(p, v)
657 #endif
659 /* MMU memory access macros */
661 #if defined(CONFIG_USER_ONLY)
662 /* On some host systems the guest address space is reserved on the host.
663 * This allows the guest address space to be offset to a convenient location.
665 //#define GUEST_BASE 0x20000000
666 #define GUEST_BASE 0
668 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
669 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
670 #define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
672 #define saddr(x) g2h(x)
673 #define laddr(x) g2h(x)
675 #else /* !CONFIG_USER_ONLY */
676 /* NOTE: we use double casts if pointers and target_ulong have
677 different sizes */
678 #define saddr(x) (uint8_t *)(long)(x)
679 #define laddr(x) (uint8_t *)(long)(x)
680 #endif
682 #define ldub_raw(p) ldub_p(laddr((p)))
683 #define ldsb_raw(p) ldsb_p(laddr((p)))
684 #define lduw_raw(p) lduw_p(laddr((p)))
685 #define ldsw_raw(p) ldsw_p(laddr((p)))
686 #define ldl_raw(p) ldl_p(laddr((p)))
687 #define ldq_raw(p) ldq_p(laddr((p)))
688 #define ldfl_raw(p) ldfl_p(laddr((p)))
689 #define ldfq_raw(p) ldfq_p(laddr((p)))
690 #define stb_raw(p, v) stb_p(saddr((p)), v)
691 #define stw_raw(p, v) stw_p(saddr((p)), v)
692 #define stl_raw(p, v) stl_p(saddr((p)), v)
693 #define stq_raw(p, v) stq_p(saddr((p)), v)
694 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
695 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
698 #if defined(CONFIG_USER_ONLY)
700 /* if user mode, no other memory access functions */
701 #define ldub(p) ldub_raw(p)
702 #define ldsb(p) ldsb_raw(p)
703 #define lduw(p) lduw_raw(p)
704 #define ldsw(p) ldsw_raw(p)
705 #define ldl(p) ldl_raw(p)
706 #define ldq(p) ldq_raw(p)
707 #define ldfl(p) ldfl_raw(p)
708 #define ldfq(p) ldfq_raw(p)
709 #define stb(p, v) stb_raw(p, v)
710 #define stw(p, v) stw_raw(p, v)
711 #define stl(p, v) stl_raw(p, v)
712 #define stq(p, v) stq_raw(p, v)
713 #define stfl(p, v) stfl_raw(p, v)
714 #define stfq(p, v) stfq_raw(p, v)
716 #define ldub_code(p) ldub_raw(p)
717 #define ldsb_code(p) ldsb_raw(p)
718 #define lduw_code(p) lduw_raw(p)
719 #define ldsw_code(p) ldsw_raw(p)
720 #define ldl_code(p) ldl_raw(p)
721 #define ldq_code(p) ldq_raw(p)
723 #define ldub_kernel(p) ldub_raw(p)
724 #define ldsb_kernel(p) ldsb_raw(p)
725 #define lduw_kernel(p) lduw_raw(p)
726 #define ldsw_kernel(p) ldsw_raw(p)
727 #define ldl_kernel(p) ldl_raw(p)
728 #define ldq_kernel(p) ldq_raw(p)
729 #define ldfl_kernel(p) ldfl_raw(p)
730 #define ldfq_kernel(p) ldfq_raw(p)
731 #define stb_kernel(p, v) stb_raw(p, v)
732 #define stw_kernel(p, v) stw_raw(p, v)
733 #define stl_kernel(p, v) stl_raw(p, v)
734 #define stq_kernel(p, v) stq_raw(p, v)
735 #define stfl_kernel(p, v) stfl_raw(p, v)
736 #define stfq_kernel(p, vt) stfq_raw(p, v)
738 #endif /* defined(CONFIG_USER_ONLY) */
740 /* page related stuff */
742 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
743 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
744 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
746 /* ??? These should be the larger of unsigned long and target_ulong. */
747 extern unsigned long qemu_real_host_page_size;
748 extern unsigned long qemu_host_page_bits;
749 extern unsigned long qemu_host_page_size;
750 extern unsigned long qemu_host_page_mask;
752 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
754 /* same as PROT_xxx */
755 #define PAGE_READ 0x0001
756 #define PAGE_WRITE 0x0002
757 #define PAGE_EXEC 0x0004
758 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
759 #define PAGE_VALID 0x0008
760 /* original state of the write flag (used when tracking self-modifying
761 code */
762 #define PAGE_WRITE_ORG 0x0010
763 #define PAGE_RESERVED 0x0020
765 void page_dump(FILE *f);
766 int page_get_flags(target_ulong address);
767 void page_set_flags(target_ulong start, target_ulong end, int flags);
768 int page_check_range(target_ulong start, target_ulong len, int flags);
770 void cpu_exec_init_all(unsigned long tb_size);
771 CPUState *cpu_copy(CPUState *env);
773 void cpu_dump_state(CPUState *env, FILE *f,
774 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
775 int flags);
776 void cpu_dump_statistics (CPUState *env, FILE *f,
777 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
778 int flags);
780 void cpu_abort(CPUState *env, const char *fmt, ...)
781 __attribute__ ((__format__ (__printf__, 2, 3)))
782 __attribute__ ((__noreturn__));
783 extern CPUState *first_cpu;
784 extern CPUState *cpu_single_env;
785 extern int64_t qemu_icount;
786 extern int use_icount;
788 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
789 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
790 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
791 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
792 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
793 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
794 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
795 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
796 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
797 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
799 void cpu_interrupt(CPUState *s, int mask);
800 void cpu_reset_interrupt(CPUState *env, int mask);
802 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type);
803 int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
804 void cpu_watchpoint_remove_all(CPUState *env);
805 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
806 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
807 void cpu_breakpoint_remove_all(CPUState *env);
809 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
810 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
811 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
813 void cpu_single_step(CPUState *env, int enabled);
814 void cpu_reset(CPUState *s);
816 /* Return the physical page corresponding to a virtual one. Use it
817 only for debugging because no protection checks are done. Return -1
818 if no page found. */
819 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
821 #define CPU_LOG_TB_OUT_ASM (1 << 0)
822 #define CPU_LOG_TB_IN_ASM (1 << 1)
823 #define CPU_LOG_TB_OP (1 << 2)
824 #define CPU_LOG_TB_OP_OPT (1 << 3)
825 #define CPU_LOG_INT (1 << 4)
826 #define CPU_LOG_EXEC (1 << 5)
827 #define CPU_LOG_PCALL (1 << 6)
828 #define CPU_LOG_IOPORT (1 << 7)
829 #define CPU_LOG_TB_CPU (1 << 8)
831 /* define log items */
832 typedef struct CPULogItem {
833 int mask;
834 const char *name;
835 const char *help;
836 } CPULogItem;
838 extern CPULogItem cpu_log_items[];
840 void cpu_set_log(int log_flags);
841 void cpu_set_log_filename(const char *filename);
842 int cpu_str_to_log_mask(const char *str);
844 /* IO ports API */
846 /* NOTE: as these functions may be even used when there is an isa
847 brige on non x86 targets, we always defined them */
848 #ifndef NO_CPU_IO_DEFS
849 void cpu_outb(CPUState *env, int addr, int val);
850 void cpu_outw(CPUState *env, int addr, int val);
851 void cpu_outl(CPUState *env, int addr, int val);
852 int cpu_inb(CPUState *env, int addr);
853 int cpu_inw(CPUState *env, int addr);
854 int cpu_inl(CPUState *env, int addr);
855 #endif
857 /* address in the RAM (different from a physical address) */
858 #ifdef USE_KQEMU
859 typedef uint32_t ram_addr_t;
860 #else
861 typedef unsigned long ram_addr_t;
862 #endif
864 /* memory API */
866 extern ram_addr_t phys_ram_size;
867 extern int phys_ram_fd;
868 extern uint8_t *phys_ram_base;
869 extern uint8_t *phys_ram_dirty;
870 extern ram_addr_t ram_size;
872 /* physical memory access */
874 /* MMIO pages are identified by a combination of an IO device index and
875 3 flags. The ROMD code stores the page ram offset in iotlb entry,
876 so only a limited number of ids are avaiable. */
878 #define IO_MEM_SHIFT 3
879 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
881 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
882 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
883 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
884 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
886 /* Acts like a ROM when read and like a device when written. */
887 #define IO_MEM_ROMD (1)
888 #define IO_MEM_SUBPAGE (2)
889 #define IO_MEM_SUBWIDTH (4)
891 /* Flags stored in the low bits of the TLB virtual address. These are
892 defined so that fast path ram access is all zeros. */
893 /* Zero if TLB entry is valid. */
894 #define TLB_INVALID_MASK (1 << 3)
895 /* Set if TLB entry references a clean RAM page. The iotlb entry will
896 contain the page physical address. */
897 #define TLB_NOTDIRTY (1 << 4)
898 /* Set if TLB entry is an IO callback. */
899 #define TLB_MMIO (1 << 5)
901 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
902 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
904 void cpu_register_physical_memory(target_phys_addr_t start_addr,
905 ram_addr_t size,
906 ram_addr_t phys_offset);
907 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
908 ram_addr_t qemu_ram_alloc(ram_addr_t);
909 void qemu_ram_free(ram_addr_t addr);
910 int cpu_register_io_memory(int io_index,
911 CPUReadMemoryFunc **mem_read,
912 CPUWriteMemoryFunc **mem_write,
913 void *opaque);
914 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
915 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
917 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
918 int len, int is_write);
919 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
920 uint8_t *buf, int len)
922 cpu_physical_memory_rw(addr, buf, len, 0);
924 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
925 const uint8_t *buf, int len)
927 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
929 uint32_t ldub_phys(target_phys_addr_t addr);
930 uint32_t lduw_phys(target_phys_addr_t addr);
931 uint32_t ldl_phys(target_phys_addr_t addr);
932 uint64_t ldq_phys(target_phys_addr_t addr);
933 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
934 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
935 void stb_phys(target_phys_addr_t addr, uint32_t val);
936 void stw_phys(target_phys_addr_t addr, uint32_t val);
937 void stl_phys(target_phys_addr_t addr, uint32_t val);
938 void stq_phys(target_phys_addr_t addr, uint64_t val);
940 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
941 const uint8_t *buf, int len);
942 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
943 uint8_t *buf, int len, int is_write);
945 #define VGA_DIRTY_FLAG 0x01
946 #define CODE_DIRTY_FLAG 0x02
948 /* read dirty bit (return 0 or 1) */
949 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
951 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
954 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
955 int dirty_flags)
957 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
960 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
962 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
965 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
966 int dirty_flags);
967 void cpu_tlb_update_dirty(CPUState *env);
969 void dump_exec_info(FILE *f,
970 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
972 /*******************************************/
973 /* host CPU ticks (if available) */
975 #if defined(__powerpc__)
977 static inline uint32_t get_tbl(void)
979 uint32_t tbl;
980 asm volatile("mftb %0" : "=r" (tbl));
981 return tbl;
984 static inline uint32_t get_tbu(void)
986 uint32_t tbl;
987 asm volatile("mftbu %0" : "=r" (tbl));
988 return tbl;
991 static inline int64_t cpu_get_real_ticks(void)
993 uint32_t l, h, h1;
994 /* NOTE: we test if wrapping has occurred */
995 do {
996 h = get_tbu();
997 l = get_tbl();
998 h1 = get_tbu();
999 } while (h != h1);
1000 return ((int64_t)h << 32) | l;
1003 #elif defined(__i386__)
1005 static inline int64_t cpu_get_real_ticks(void)
1007 int64_t val;
1008 asm volatile ("rdtsc" : "=A" (val));
1009 return val;
1012 #elif defined(__x86_64__)
1014 static inline int64_t cpu_get_real_ticks(void)
1016 uint32_t low,high;
1017 int64_t val;
1018 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1019 val = high;
1020 val <<= 32;
1021 val |= low;
1022 return val;
1025 #elif defined(__hppa__)
1027 static inline int64_t cpu_get_real_ticks(void)
1029 int val;
1030 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1031 return val;
1034 #elif defined(__ia64)
1036 static inline int64_t cpu_get_real_ticks(void)
1038 int64_t val;
1039 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1040 return val;
1043 #elif defined(__s390__)
1045 static inline int64_t cpu_get_real_ticks(void)
1047 int64_t val;
1048 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1049 return val;
1052 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1054 static inline int64_t cpu_get_real_ticks (void)
1056 #if defined(_LP64)
1057 uint64_t rval;
1058 asm volatile("rd %%tick,%0" : "=r"(rval));
1059 return rval;
1060 #else
1061 union {
1062 uint64_t i64;
1063 struct {
1064 uint32_t high;
1065 uint32_t low;
1066 } i32;
1067 } rval;
1068 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1069 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1070 return rval.i64;
1071 #endif
1074 #elif defined(__mips__)
1076 static inline int64_t cpu_get_real_ticks(void)
1078 #if __mips_isa_rev >= 2
1079 uint32_t count;
1080 static uint32_t cyc_per_count = 0;
1082 if (!cyc_per_count)
1083 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1085 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1086 return (int64_t)(count * cyc_per_count);
1087 #else
1088 /* FIXME */
1089 static int64_t ticks = 0;
1090 return ticks++;
1091 #endif
1094 #else
1095 /* The host CPU doesn't have an easily accessible cycle counter.
1096 Just return a monotonically increasing value. This will be
1097 totally wrong, but hopefully better than nothing. */
1098 static inline int64_t cpu_get_real_ticks (void)
1100 static int64_t ticks = 0;
1101 return ticks++;
1103 #endif
1105 /* profiling */
1106 #ifdef CONFIG_PROFILER
1107 static inline int64_t profile_getclock(void)
1109 return cpu_get_real_ticks();
1112 extern int64_t kqemu_time, kqemu_time_start;
1113 extern int64_t qemu_time, qemu_time_start;
1114 extern int64_t tlb_flush_time;
1115 extern int64_t kqemu_exec_count;
1116 extern int64_t dev_time;
1117 extern int64_t kqemu_ret_int_count;
1118 extern int64_t kqemu_ret_excp_count;
1119 extern int64_t kqemu_ret_intr_count;
1120 #endif
1122 #endif /* CPU_ALL_H */