Move block drivers into their own directory
[qemu/mini2440.git] / vl.c
blobb43cdd164239043a515048deeee136a4cc1e7fa2
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <pwd.h>
37 #include <sys/times.h>
38 #include <sys/wait.h>
39 #include <termios.h>
40 #include <sys/mman.h>
41 #include <sys/ioctl.h>
42 #include <sys/resource.h>
43 #include <sys/socket.h>
44 #include <netinet/in.h>
45 #include <net/if.h>
46 #if defined(__NetBSD__)
47 #include <net/if_tap.h>
48 #endif
49 #ifdef __linux__
50 #include <linux/if_tun.h>
51 #endif
52 #include <arpa/inet.h>
53 #include <dirent.h>
54 #include <netdb.h>
55 #include <sys/select.h>
56 #ifdef HOST_BSD
57 #include <sys/stat.h>
58 #if defined(__FreeBSD__) || defined(__DragonFly__)
59 #include <libutil.h>
60 #else
61 #include <util.h>
62 #endif
63 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64 #include <freebsd/stdlib.h>
65 #else
66 #ifdef __linux__
67 #include <pty.h>
68 #include <malloc.h>
69 #include <linux/rtc.h>
71 /* For the benefit of older linux systems which don't supply it,
72 we use a local copy of hpet.h. */
73 /* #include <linux/hpet.h> */
74 #include "hpet.h"
76 #include <linux/ppdev.h>
77 #include <linux/parport.h>
78 #endif
79 #ifdef __sun__
80 #include <sys/stat.h>
81 #include <sys/ethernet.h>
82 #include <sys/sockio.h>
83 #include <netinet/arp.h>
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_icmp.h> // must come after ip.h
88 #include <netinet/udp.h>
89 #include <netinet/tcp.h>
90 #include <net/if.h>
91 #include <syslog.h>
92 #include <stropts.h>
93 #endif
94 #endif
95 #endif
97 #if defined(__OpenBSD__)
98 #include <util.h>
99 #endif
101 #if defined(CONFIG_VDE)
102 #include <libvdeplug.h>
103 #endif
105 #ifdef _WIN32
106 #include <windows.h>
107 #include <malloc.h>
108 #include <sys/timeb.h>
109 #include <mmsystem.h>
110 #define getopt_long_only getopt_long
111 #define memalign(align, size) malloc(size)
112 #endif
114 #ifdef CONFIG_SDL
115 #ifdef __APPLE__
116 #include <SDL/SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "bt-host.h"
145 #include "net.h"
146 #include "monitor.h"
147 #include "console.h"
148 #include "sysemu.h"
149 #include "gdbstub.h"
150 #include "qemu-timer.h"
151 #include "qemu-char.h"
152 #include "cache-utils.h"
153 #include "block.h"
154 #include "dma.h"
155 #include "audio/audio.h"
156 #include "migration.h"
157 #include "kvm.h"
158 #include "balloon.h"
160 #include "disas.h"
162 #include "exec-all.h"
164 #include "qemu_socket.h"
166 #if defined(CONFIG_SLIRP)
167 #include "libslirp.h"
168 #endif
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 int nographic;
205 static int curses;
206 static int sdl;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
209 ram_addr_t ram_size;
210 int nb_nics;
211 NICInfo nd_table[MAX_NICS];
212 int vm_running;
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
220 #ifdef TARGET_SPARC
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
224 #else
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
228 #endif
229 static int full_screen = 0;
230 #ifdef CONFIG_SDL
231 static int no_frame = 0;
232 #endif
233 int no_quit = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
237 #ifdef TARGET_I386
238 int win2k_install_hack = 0;
239 int rtc_td_hack = 0;
240 #endif
241 int usb_enabled = 0;
242 int singlestep = 0;
243 int smp_cpus = 1;
244 const char *vnc_display;
245 int acpi_enabled = 1;
246 int no_hpet = 0;
247 int fd_bootchk = 1;
248 int no_reboot = 0;
249 int no_shutdown = 0;
250 int cursor_hide = 1;
251 int graphic_rotate = 0;
252 #ifndef _WIN32
253 int daemonize = 0;
254 #endif
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
258 int nb_option_roms;
259 int semihosting_enabled = 0;
260 #ifdef TARGET_ARM
261 int old_param = 0;
262 #endif
263 const char *qemu_name;
264 int alt_grab = 0;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
268 #endif
269 int nb_drives_opt;
270 struct drive_opt drives_opt[MAX_DRIVES];
272 int nb_numa_nodes;
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
289 uint8_t qemu_uuid[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base = 0;
295 PicState2 *isa_pic;
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300 static uint32_t ioport_read(int index, uint32_t address)
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
305 default_ioport_readl
307 IOPortReadFunc *func = ioport_read_table[index][address];
308 if (!func)
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
313 static void ioport_write(int index, uint32_t address, uint32_t data)
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
320 IOPortWriteFunc *func = ioport_write_table[index][address];
321 if (!func)
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
330 #endif
331 return 0xff;
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
338 #endif
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
344 uint32_t data;
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
348 return data;
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
362 #endif
363 return 0xffffffff;
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
370 #endif
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
377 int i, bsize;
379 if (size == 1) {
380 bsize = 0;
381 } else if (size == 2) {
382 bsize = 1;
383 } else if (size == 4) {
384 bsize = 2;
385 } else {
386 hw_error("register_ioport_read: invalid size");
387 return -1;
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
395 return 0;
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
402 int i, bsize;
404 if (size == 1) {
405 bsize = 0;
406 } else if (size == 2) {
407 bsize = 1;
408 } else if (size == 4) {
409 bsize = 2;
410 } else {
411 hw_error("register_ioport_write: invalid size");
412 return -1;
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
420 return 0;
423 void isa_unassign_ioport(int start, int length)
425 int i;
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
436 ioport_opaque[i] = NULL;
440 /***********************************************************/
442 void cpu_outb(CPUState *env, int addr, int val)
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
446 #ifdef CONFIG_KQEMU
447 if (env)
448 env->last_io_time = cpu_get_time_fast();
449 #endif
452 void cpu_outw(CPUState *env, int addr, int val)
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
456 #ifdef CONFIG_KQEMU
457 if (env)
458 env->last_io_time = cpu_get_time_fast();
459 #endif
462 void cpu_outl(CPUState *env, int addr, int val)
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
466 #ifdef CONFIG_KQEMU
467 if (env)
468 env->last_io_time = cpu_get_time_fast();
469 #endif
472 int cpu_inb(CPUState *env, int addr)
474 int val;
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
477 #ifdef CONFIG_KQEMU
478 if (env)
479 env->last_io_time = cpu_get_time_fast();
480 #endif
481 return val;
484 int cpu_inw(CPUState *env, int addr)
486 int val;
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
489 #ifdef CONFIG_KQEMU
490 if (env)
491 env->last_io_time = cpu_get_time_fast();
492 #endif
493 return val;
496 int cpu_inl(CPUState *env, int addr)
498 int val;
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
501 #ifdef CONFIG_KQEMU
502 if (env)
503 env->last_io_time = cpu_get_time_fast();
504 #endif
505 return val;
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
511 va_list ap;
512 CPUState *env;
514 va_start(ap, fmt);
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
520 #ifdef TARGET_I386
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
522 #else
523 cpu_dump_state(env, stderr, fprintf, 0);
524 #endif
526 va_end(ap);
527 abort();
530 /***************/
531 /* ballooning */
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
542 void qemu_balloon(ram_addr_t target)
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
548 ram_addr_t qemu_balloon_status(void)
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
552 return 0;
555 /***********************************************************/
556 /* keyboard/mouse */
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
571 const char *name)
573 QEMUPutMouseEntry *s, *cursor;
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
581 s->next = NULL;
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
585 return s;
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
592 cursor->next = s;
593 qemu_put_mouse_event_current = s;
595 return s;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600 QEMUPutMouseEntry *prev = NULL, *cursor;
602 if (!qemu_put_mouse_event_head || entry == NULL)
603 return;
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
607 prev = cursor;
608 cursor = cursor->next;
611 if (cursor == NULL) // does not exist or list empty
612 return;
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
618 qemu_free(entry);
619 return;
622 prev->next = entry->next;
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
627 qemu_free(entry->qemu_put_mouse_event_name);
628 qemu_free(entry);
631 void kbd_put_keycode(int keycode)
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
642 int width;
644 if (!qemu_put_mouse_event_current) {
645 return;
648 mouse_event =
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
650 mouse_event_opaque =
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
653 if (mouse_event) {
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
656 width = 0x7fff;
657 else
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
661 } else
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current)
670 return 0;
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
675 void do_info_mice(Monitor *mon)
677 QEMUPutMouseEntry *cursor;
678 int index = 0;
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
682 return;
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
691 index++;
692 cursor = cursor->next;
696 void do_mouse_set(Monitor *mon, int index)
698 QEMUPutMouseEntry *cursor;
699 int i = 0;
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
703 return;
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
708 i++;
709 cursor = cursor->next;
712 if (cursor != NULL)
713 qemu_put_mouse_event_current = cursor;
714 else
715 monitor_printf(mon, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
721 union {
722 uint64_t ll;
723 struct {
724 #ifdef WORDS_BIGENDIAN
725 uint32_t high, low;
726 #else
727 uint32_t low, high;
728 #endif
729 } l;
730 } u, res;
731 uint64_t rl, rh;
733 u.ll = a;
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
736 rh += (rl >> 32);
737 res.l.high = rh / c;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
739 return res.ll;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
747 #ifdef WIN32
749 static int64_t clock_freq;
751 static void init_get_clock(void)
753 LARGE_INTEGER freq;
754 int ret;
755 ret = QueryPerformanceFrequency(&freq);
756 if (ret == 0) {
757 fprintf(stderr, "Could not calibrate ticks\n");
758 exit(1);
760 clock_freq = freq.QuadPart;
763 static int64_t get_clock(void)
765 LARGE_INTEGER ti;
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
770 #else
772 static int use_rt_clock;
774 static void init_get_clock(void)
776 use_rt_clock = 0;
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
780 struct timespec ts;
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
782 use_rt_clock = 1;
785 #endif
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
792 if (use_rt_clock) {
793 struct timespec ts;
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
796 } else
797 #endif
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
801 struct timeval tv;
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
806 #endif
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
811 int64_t icount;
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
814 if (env) {
815 if (!can_do_io(env))
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
819 return qemu_icount_bias + (icount << icount_time_shift);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
833 if (use_icount) {
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
838 } else {
839 int64_t ticks;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
843 software suspend */
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
854 int64_t ti;
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
857 } else {
858 ti = get_clock();
859 return ti + cpu_clock_offset;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
884 /***********************************************************/
885 /* timers */
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
890 struct QEMUClock {
891 int type;
892 /* XXX: add frequency */
895 struct QEMUTimer {
896 QEMUClock *clock;
897 int64_t expire_time;
898 QEMUTimerCB *cb;
899 void *opaque;
900 struct QEMUTimer *next;
903 struct qemu_alarm_timer {
904 char const *name;
905 unsigned int flags;
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
910 void *priv;
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918 return t->flags & ALARM_FLAG_DYNTICKS;
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923 if (!alarm_has_dynticks(t))
924 return;
926 t->rearm(t);
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer *alarm_timer;
934 #ifdef _WIN32
936 struct qemu_alarm_win32 {
937 MMRESULT timerId;
938 unsigned int period;
939 } alarm_win32_data = {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
945 #else
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
950 #ifdef __linux__
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
962 #endif /* __linux__ */
964 #endif /* _WIN32 */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
969 the IO wait loop. */
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
974 int64_t cur_time;
975 int64_t cur_icount;
976 int64_t delta;
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
979 if (!vm_running)
980 return;
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
986 if (delta > 0
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
990 icount_time_shift--;
992 if (delta < 0
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
996 icount_time_shift++;
998 last_delta = delta;
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1002 static void icount_adjust_rt(void * opaque)
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1006 icount_adjust();
1009 static void icount_adjust_vm(void * opaque)
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1013 icount_adjust();
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1031 static struct qemu_alarm_timer alarm_timers[] = {
1032 #ifndef _WIN32
1033 #ifdef __linux__
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1040 #endif
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1042 #else
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1047 #endif
1048 {NULL, }
1051 static void show_available_alarms(void)
1053 int i;
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1060 static void configure_alarms(char const *opt)
1062 int i;
1063 int cur = 0;
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1065 char *arg;
1066 char *name;
1067 struct qemu_alarm_timer tmp;
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1071 exit(0);
1074 arg = strdup(opt);
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1078 while (name) {
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1081 break;
1084 if (i == count) {
1085 fprintf(stderr, "Unknown clock %s\n", name);
1086 goto next;
1089 if (i < cur)
1090 /* Ignore */
1091 goto next;
1093 /* Swap */
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1098 cur++;
1099 next:
1100 name = strtok(NULL, ",");
1103 free(arg);
1105 if (cur) {
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1109 } else {
1110 show_available_alarms();
1111 exit(1);
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1118 static QEMUTimer *active_timers[2];
1120 static QEMUClock *qemu_new_clock(int type)
1122 QEMUClock *clock;
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1124 clock->type = type;
1125 return clock;
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1130 QEMUTimer *ts;
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1133 ts->clock = clock;
1134 ts->cb = cb;
1135 ts->opaque = opaque;
1136 return ts;
1139 void qemu_free_timer(QEMUTimer *ts)
1141 qemu_free(ts);
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1147 QEMUTimer **pt, *t;
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1152 for(;;) {
1153 t = *pt;
1154 if (!t)
1155 break;
1156 if (t == ts) {
1157 *pt = t->next;
1158 break;
1160 pt = &t->next;
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1168 QEMUTimer **pt, *t;
1170 qemu_del_timer(ts);
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1176 for(;;) {
1177 t = *pt;
1178 if (!t)
1179 break;
1180 if (t->expire_time > expire_time)
1181 break;
1182 pt = &t->next;
1184 ts->expire_time = expire_time;
1185 ts->next = *pt;
1186 *pt = ts;
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1193 /* Interrupt execution to force deadline recalculation. */
1194 if (use_icount)
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer *ts)
1201 QEMUTimer *t;
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1203 if (t == ts)
1204 return 1;
1206 return 0;
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1211 if (!timer_head)
1212 return 0;
1213 return (timer_head->expire_time <= current_time);
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1218 QEMUTimer *ts;
1220 for(;;) {
1221 ts = *ptimer_head;
1222 if (!ts || ts->expire_time > current_time)
1223 break;
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1226 ts->next = NULL;
1228 /* run the callback (the timer list can be modified) */
1229 ts->cb(ts->opaque);
1233 int64_t qemu_get_clock(QEMUClock *clock)
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1238 default:
1239 case QEMU_TIMER_VIRTUAL:
1240 if (use_icount) {
1241 return cpu_get_icount();
1242 } else {
1243 return cpu_get_clock();
1248 static void init_timers(void)
1250 init_get_clock();
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1256 /* save a timer */
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259 uint64_t expire_time;
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1263 } else {
1264 expire_time = -1;
1266 qemu_put_be64(f, expire_time);
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271 uint64_t expire_time;
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1276 } else {
1277 qemu_del_timer(ts);
1281 static void timer_save(QEMUFile *f, void *opaque)
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293 if (version_id != 1 && version_id != 2)
1294 return -EINVAL;
1295 if (cpu_ticks_enabled) {
1296 return -EINVAL;
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1303 return 0;
1306 static void qemu_event_increment(void);
1308 #ifdef _WIN32
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1311 DWORD_PTR dw2)
1312 #else
1313 static void host_alarm_handler(int host_signum)
1314 #endif
1316 #if 0
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1321 static int count;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1326 delta_min = delta;
1327 if (delta > delta_max)
1328 delta_max = delta;
1329 delta_cum += delta;
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1336 count = 0;
1337 delta_min = INT64_MAX;
1338 delta_max = 0;
1339 delta_cum = 0;
1342 last_clock = ti;
1344 #endif
1345 if (alarm_has_dynticks(alarm_timer) ||
1346 (!use_icount &&
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 #ifndef CONFIG_IOTHREAD
1355 if (next_cpu) {
1356 /* stop the currently executing cpu because a timer occured */
1357 cpu_exit(next_cpu);
1358 #ifdef CONFIG_KQEMU
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1362 #endif
1364 #endif
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1372 int64_t delta;
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1377 } else {
1378 /* To avoid problems with overflow limit this to 2^32. */
1379 delta = INT32_MAX;
1382 if (delta < 0)
1383 delta = 0;
1385 return delta;
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1391 int64_t delta;
1392 int64_t rtdelta;
1394 if (use_icount)
1395 delta = INT32_MAX;
1396 else
1397 delta = (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1403 delta = rtdelta;
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1409 return delta;
1411 #endif
1413 #ifndef _WIN32
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1418 int flags;
1420 flags = fcntl(fd, F_GETFL);
1421 if (flags == -1)
1422 return -errno;
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1425 return -errno;
1427 return 0;
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd)
1436 struct sigaction act;
1438 /* timer signal */
1439 sigfillset(&act.sa_mask);
1440 act.sa_flags = 0;
1441 act.sa_handler = host_alarm_handler;
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1450 struct hpet_info info;
1451 int r, fd;
1453 fd = open("/dev/hpet", O_RDONLY);
1454 if (fd < 0)
1455 return -1;
1457 /* Set frequency */
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1459 if (r < 0) {
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1463 goto fail;
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1468 if (r < 0)
1469 goto fail;
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1474 goto fail;
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1478 if (r < 0)
1479 goto fail;
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1484 return 0;
1485 fail:
1486 close(fd);
1487 return -1;
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492 int fd = (long)t->priv;
1494 close(fd);
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1499 int rtc_fd;
1500 unsigned long current_rtc_freq = 0;
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1503 if (rtc_fd < 0)
1504 return -1;
1505 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1511 goto fail;
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1514 fail:
1515 close(rtc_fd);
1516 return -1;
1519 enable_sigio_timer(rtc_fd);
1521 t->priv = (void *)(long)rtc_fd;
1523 return 0;
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528 int rtc_fd = (long)t->priv;
1530 close(rtc_fd);
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1535 struct sigevent ev;
1536 timer_t host_timer;
1537 struct sigaction act;
1539 sigfillset(&act.sa_mask);
1540 act.sa_flags = 0;
1541 act.sa_handler = host_alarm_handler;
1543 sigaction(SIGALRM, &act, NULL);
1545 ev.sigev_value.sival_int = 0;
1546 ev.sigev_notify = SIGEV_SIGNAL;
1547 ev.sigev_signo = SIGALRM;
1549 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1550 perror("timer_create");
1552 /* disable dynticks */
1553 fprintf(stderr, "Dynamic Ticks disabled\n");
1555 return -1;
1558 t->priv = (void *)(long)host_timer;
1560 return 0;
1563 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1565 timer_t host_timer = (timer_t)(long)t->priv;
1567 timer_delete(host_timer);
1570 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1572 timer_t host_timer = (timer_t)(long)t->priv;
1573 struct itimerspec timeout;
1574 int64_t nearest_delta_us = INT64_MAX;
1575 int64_t current_us;
1577 if (!active_timers[QEMU_TIMER_REALTIME] &&
1578 !active_timers[QEMU_TIMER_VIRTUAL])
1579 return;
1581 nearest_delta_us = qemu_next_deadline_dyntick();
1583 /* check whether a timer is already running */
1584 if (timer_gettime(host_timer, &timeout)) {
1585 perror("gettime");
1586 fprintf(stderr, "Internal timer error: aborting\n");
1587 exit(1);
1589 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1590 if (current_us && current_us <= nearest_delta_us)
1591 return;
1593 timeout.it_interval.tv_sec = 0;
1594 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1595 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1596 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1597 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1598 perror("settime");
1599 fprintf(stderr, "Internal timer error: aborting\n");
1600 exit(1);
1604 #endif /* defined(__linux__) */
1606 static int unix_start_timer(struct qemu_alarm_timer *t)
1608 struct sigaction act;
1609 struct itimerval itv;
1610 int err;
1612 /* timer signal */
1613 sigfillset(&act.sa_mask);
1614 act.sa_flags = 0;
1615 act.sa_handler = host_alarm_handler;
1617 sigaction(SIGALRM, &act, NULL);
1619 itv.it_interval.tv_sec = 0;
1620 /* for i386 kernel 2.6 to get 1 ms */
1621 itv.it_interval.tv_usec = 999;
1622 itv.it_value.tv_sec = 0;
1623 itv.it_value.tv_usec = 10 * 1000;
1625 err = setitimer(ITIMER_REAL, &itv, NULL);
1626 if (err)
1627 return -1;
1629 return 0;
1632 static void unix_stop_timer(struct qemu_alarm_timer *t)
1634 struct itimerval itv;
1636 memset(&itv, 0, sizeof(itv));
1637 setitimer(ITIMER_REAL, &itv, NULL);
1640 #endif /* !defined(_WIN32) */
1643 #ifdef _WIN32
1645 static int win32_start_timer(struct qemu_alarm_timer *t)
1647 TIMECAPS tc;
1648 struct qemu_alarm_win32 *data = t->priv;
1649 UINT flags;
1651 memset(&tc, 0, sizeof(tc));
1652 timeGetDevCaps(&tc, sizeof(tc));
1654 if (data->period < tc.wPeriodMin)
1655 data->period = tc.wPeriodMin;
1657 timeBeginPeriod(data->period);
1659 flags = TIME_CALLBACK_FUNCTION;
1660 if (alarm_has_dynticks(t))
1661 flags |= TIME_ONESHOT;
1662 else
1663 flags |= TIME_PERIODIC;
1665 data->timerId = timeSetEvent(1, // interval (ms)
1666 data->period, // resolution
1667 host_alarm_handler, // function
1668 (DWORD)t, // parameter
1669 flags);
1671 if (!data->timerId) {
1672 perror("Failed to initialize win32 alarm timer");
1673 timeEndPeriod(data->period);
1674 return -1;
1677 return 0;
1680 static void win32_stop_timer(struct qemu_alarm_timer *t)
1682 struct qemu_alarm_win32 *data = t->priv;
1684 timeKillEvent(data->timerId);
1685 timeEndPeriod(data->period);
1688 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1690 struct qemu_alarm_win32 *data = t->priv;
1691 uint64_t nearest_delta_us;
1693 if (!active_timers[QEMU_TIMER_REALTIME] &&
1694 !active_timers[QEMU_TIMER_VIRTUAL])
1695 return;
1697 nearest_delta_us = qemu_next_deadline_dyntick();
1698 nearest_delta_us /= 1000;
1700 timeKillEvent(data->timerId);
1702 data->timerId = timeSetEvent(1,
1703 data->period,
1704 host_alarm_handler,
1705 (DWORD)t,
1706 TIME_ONESHOT | TIME_PERIODIC);
1708 if (!data->timerId) {
1709 perror("Failed to re-arm win32 alarm timer");
1711 timeEndPeriod(data->period);
1712 exit(1);
1716 #endif /* _WIN32 */
1718 static int init_timer_alarm(void)
1720 struct qemu_alarm_timer *t = NULL;
1721 int i, err = -1;
1723 for (i = 0; alarm_timers[i].name; i++) {
1724 t = &alarm_timers[i];
1726 err = t->start(t);
1727 if (!err)
1728 break;
1731 if (err) {
1732 err = -ENOENT;
1733 goto fail;
1736 alarm_timer = t;
1738 return 0;
1740 fail:
1741 return err;
1744 static void quit_timers(void)
1746 alarm_timer->stop(alarm_timer);
1747 alarm_timer = NULL;
1750 /***********************************************************/
1751 /* host time/date access */
1752 void qemu_get_timedate(struct tm *tm, int offset)
1754 time_t ti;
1755 struct tm *ret;
1757 time(&ti);
1758 ti += offset;
1759 if (rtc_date_offset == -1) {
1760 if (rtc_utc)
1761 ret = gmtime(&ti);
1762 else
1763 ret = localtime(&ti);
1764 } else {
1765 ti -= rtc_date_offset;
1766 ret = gmtime(&ti);
1769 memcpy(tm, ret, sizeof(struct tm));
1772 int qemu_timedate_diff(struct tm *tm)
1774 time_t seconds;
1776 if (rtc_date_offset == -1)
1777 if (rtc_utc)
1778 seconds = mktimegm(tm);
1779 else
1780 seconds = mktime(tm);
1781 else
1782 seconds = mktimegm(tm) + rtc_date_offset;
1784 return seconds - time(NULL);
1787 #ifdef _WIN32
1788 static void socket_cleanup(void)
1790 WSACleanup();
1793 static int socket_init(void)
1795 WSADATA Data;
1796 int ret, err;
1798 ret = WSAStartup(MAKEWORD(2,2), &Data);
1799 if (ret != 0) {
1800 err = WSAGetLastError();
1801 fprintf(stderr, "WSAStartup: %d\n", err);
1802 return -1;
1804 atexit(socket_cleanup);
1805 return 0;
1807 #endif
1809 const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1811 char *q;
1813 q = buf;
1814 while (*p != '\0' && *p != delim) {
1815 if (q && (q - buf) < buf_size - 1)
1816 *q++ = *p;
1817 p++;
1819 if (q)
1820 *q = '\0';
1822 return p;
1825 const char *get_opt_value(char *buf, int buf_size, const char *p)
1827 char *q;
1829 q = buf;
1830 while (*p != '\0') {
1831 if (*p == ',') {
1832 if (*(p + 1) != ',')
1833 break;
1834 p++;
1836 if (q && (q - buf) < buf_size - 1)
1837 *q++ = *p;
1838 p++;
1840 if (q)
1841 *q = '\0';
1843 return p;
1846 int get_param_value(char *buf, int buf_size,
1847 const char *tag, const char *str)
1849 const char *p;
1850 char option[128];
1852 p = str;
1853 for(;;) {
1854 p = get_opt_name(option, sizeof(option), p, '=');
1855 if (*p != '=')
1856 break;
1857 p++;
1858 if (!strcmp(tag, option)) {
1859 (void)get_opt_value(buf, buf_size, p);
1860 return strlen(buf);
1861 } else {
1862 p = get_opt_value(NULL, 0, p);
1864 if (*p != ',')
1865 break;
1866 p++;
1868 return 0;
1871 int check_params(const char * const *params, const char *str)
1873 int name_buf_size = 1;
1874 const char *p;
1875 char *name_buf;
1876 int i, len;
1877 int ret = 0;
1879 for (i = 0; params[i] != NULL; i++) {
1880 len = strlen(params[i]) + 1;
1881 if (len > name_buf_size) {
1882 name_buf_size = len;
1885 name_buf = qemu_malloc(name_buf_size);
1887 p = str;
1888 while (*p != '\0') {
1889 p = get_opt_name(name_buf, name_buf_size, p, '=');
1890 if (*p != '=') {
1891 ret = -1;
1892 break;
1894 p++;
1895 for(i = 0; params[i] != NULL; i++)
1896 if (!strcmp(params[i], name_buf))
1897 break;
1898 if (params[i] == NULL) {
1899 ret = -1;
1900 break;
1902 p = get_opt_value(NULL, 0, p);
1903 if (*p != ',')
1904 break;
1905 p++;
1908 qemu_free(name_buf);
1909 return ret;
1912 /***********************************************************/
1913 /* Bluetooth support */
1914 static int nb_hcis;
1915 static int cur_hci;
1916 static struct HCIInfo *hci_table[MAX_NICS];
1918 static struct bt_vlan_s {
1919 struct bt_scatternet_s net;
1920 int id;
1921 struct bt_vlan_s *next;
1922 } *first_bt_vlan;
1924 /* find or alloc a new bluetooth "VLAN" */
1925 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1927 struct bt_vlan_s **pvlan, *vlan;
1928 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1929 if (vlan->id == id)
1930 return &vlan->net;
1932 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1933 vlan->id = id;
1934 pvlan = &first_bt_vlan;
1935 while (*pvlan != NULL)
1936 pvlan = &(*pvlan)->next;
1937 *pvlan = vlan;
1938 return &vlan->net;
1941 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1945 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1947 return -ENOTSUP;
1950 static struct HCIInfo null_hci = {
1951 .cmd_send = null_hci_send,
1952 .sco_send = null_hci_send,
1953 .acl_send = null_hci_send,
1954 .bdaddr_set = null_hci_addr_set,
1957 struct HCIInfo *qemu_next_hci(void)
1959 if (cur_hci == nb_hcis)
1960 return &null_hci;
1962 return hci_table[cur_hci++];
1965 static struct HCIInfo *hci_init(const char *str)
1967 char *endp;
1968 struct bt_scatternet_s *vlan = 0;
1970 if (!strcmp(str, "null"))
1971 /* null */
1972 return &null_hci;
1973 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1974 /* host[:hciN] */
1975 return bt_host_hci(str[4] ? str + 5 : "hci0");
1976 else if (!strncmp(str, "hci", 3)) {
1977 /* hci[,vlan=n] */
1978 if (str[3]) {
1979 if (!strncmp(str + 3, ",vlan=", 6)) {
1980 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1981 if (*endp)
1982 vlan = 0;
1984 } else
1985 vlan = qemu_find_bt_vlan(0);
1986 if (vlan)
1987 return bt_new_hci(vlan);
1990 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1992 return 0;
1995 static int bt_hci_parse(const char *str)
1997 struct HCIInfo *hci;
1998 bdaddr_t bdaddr;
2000 if (nb_hcis >= MAX_NICS) {
2001 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2002 return -1;
2005 hci = hci_init(str);
2006 if (!hci)
2007 return -1;
2009 bdaddr.b[0] = 0x52;
2010 bdaddr.b[1] = 0x54;
2011 bdaddr.b[2] = 0x00;
2012 bdaddr.b[3] = 0x12;
2013 bdaddr.b[4] = 0x34;
2014 bdaddr.b[5] = 0x56 + nb_hcis;
2015 hci->bdaddr_set(hci, bdaddr.b);
2017 hci_table[nb_hcis++] = hci;
2019 return 0;
2022 static void bt_vhci_add(int vlan_id)
2024 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2026 if (!vlan->slave)
2027 fprintf(stderr, "qemu: warning: adding a VHCI to "
2028 "an empty scatternet %i\n", vlan_id);
2030 bt_vhci_init(bt_new_hci(vlan));
2033 static struct bt_device_s *bt_device_add(const char *opt)
2035 struct bt_scatternet_s *vlan;
2036 int vlan_id = 0;
2037 char *endp = strstr(opt, ",vlan=");
2038 int len = (endp ? endp - opt : strlen(opt)) + 1;
2039 char devname[10];
2041 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2043 if (endp) {
2044 vlan_id = strtol(endp + 6, &endp, 0);
2045 if (*endp) {
2046 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2047 return 0;
2051 vlan = qemu_find_bt_vlan(vlan_id);
2053 if (!vlan->slave)
2054 fprintf(stderr, "qemu: warning: adding a slave device to "
2055 "an empty scatternet %i\n", vlan_id);
2057 if (!strcmp(devname, "keyboard"))
2058 return bt_keyboard_init(vlan);
2060 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2061 return 0;
2064 static int bt_parse(const char *opt)
2066 const char *endp, *p;
2067 int vlan;
2069 if (strstart(opt, "hci", &endp)) {
2070 if (!*endp || *endp == ',') {
2071 if (*endp)
2072 if (!strstart(endp, ",vlan=", 0))
2073 opt = endp + 1;
2075 return bt_hci_parse(opt);
2077 } else if (strstart(opt, "vhci", &endp)) {
2078 if (!*endp || *endp == ',') {
2079 if (*endp) {
2080 if (strstart(endp, ",vlan=", &p)) {
2081 vlan = strtol(p, (char **) &endp, 0);
2082 if (*endp) {
2083 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2084 return 1;
2086 } else {
2087 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2088 return 1;
2090 } else
2091 vlan = 0;
2093 bt_vhci_add(vlan);
2094 return 0;
2096 } else if (strstart(opt, "device:", &endp))
2097 return !bt_device_add(endp);
2099 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2100 return 1;
2103 /***********************************************************/
2104 /* QEMU Block devices */
2106 #define HD_ALIAS "index=%d,media=disk"
2107 #define CDROM_ALIAS "index=2,media=cdrom"
2108 #define FD_ALIAS "index=%d,if=floppy"
2109 #define PFLASH_ALIAS "if=pflash"
2110 #define MTD_ALIAS "if=mtd"
2111 #define SD_ALIAS "index=0,if=sd"
2113 static int drive_opt_get_free_idx(void)
2115 int index;
2117 for (index = 0; index < MAX_DRIVES; index++)
2118 if (!drives_opt[index].used) {
2119 drives_opt[index].used = 1;
2120 return index;
2123 return -1;
2126 static int drive_get_free_idx(void)
2128 int index;
2130 for (index = 0; index < MAX_DRIVES; index++)
2131 if (!drives_table[index].used) {
2132 drives_table[index].used = 1;
2133 return index;
2136 return -1;
2139 int drive_add(const char *file, const char *fmt, ...)
2141 va_list ap;
2142 int index = drive_opt_get_free_idx();
2144 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2145 fprintf(stderr, "qemu: too many drives\n");
2146 return -1;
2149 drives_opt[index].file = file;
2150 va_start(ap, fmt);
2151 vsnprintf(drives_opt[index].opt,
2152 sizeof(drives_opt[0].opt), fmt, ap);
2153 va_end(ap);
2155 nb_drives_opt++;
2156 return index;
2159 void drive_remove(int index)
2161 drives_opt[index].used = 0;
2162 nb_drives_opt--;
2165 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2167 int index;
2169 /* seek interface, bus and unit */
2171 for (index = 0; index < MAX_DRIVES; index++)
2172 if (drives_table[index].type == type &&
2173 drives_table[index].bus == bus &&
2174 drives_table[index].unit == unit &&
2175 drives_table[index].used)
2176 return index;
2178 return -1;
2181 int drive_get_max_bus(BlockInterfaceType type)
2183 int max_bus;
2184 int index;
2186 max_bus = -1;
2187 for (index = 0; index < nb_drives; index++) {
2188 if(drives_table[index].type == type &&
2189 drives_table[index].bus > max_bus)
2190 max_bus = drives_table[index].bus;
2192 return max_bus;
2195 const char *drive_get_serial(BlockDriverState *bdrv)
2197 int index;
2199 for (index = 0; index < nb_drives; index++)
2200 if (drives_table[index].bdrv == bdrv)
2201 return drives_table[index].serial;
2203 return "\0";
2206 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2208 int index;
2210 for (index = 0; index < nb_drives; index++)
2211 if (drives_table[index].bdrv == bdrv)
2212 return drives_table[index].onerror;
2214 return BLOCK_ERR_STOP_ENOSPC;
2217 static void bdrv_format_print(void *opaque, const char *name)
2219 fprintf(stderr, " %s", name);
2222 void drive_uninit(BlockDriverState *bdrv)
2224 int i;
2226 for (i = 0; i < MAX_DRIVES; i++)
2227 if (drives_table[i].bdrv == bdrv) {
2228 drives_table[i].bdrv = NULL;
2229 drives_table[i].used = 0;
2230 drive_remove(drives_table[i].drive_opt_idx);
2231 nb_drives--;
2232 break;
2236 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2238 char buf[128];
2239 char file[1024];
2240 char devname[128];
2241 char serial[21];
2242 const char *mediastr = "";
2243 BlockInterfaceType type;
2244 enum { MEDIA_DISK, MEDIA_CDROM } media;
2245 int bus_id, unit_id;
2246 int cyls, heads, secs, translation;
2247 BlockDriverState *bdrv;
2248 BlockDriver *drv = NULL;
2249 QEMUMachine *machine = opaque;
2250 int max_devs;
2251 int index;
2252 int cache;
2253 int bdrv_flags, onerror;
2254 int drives_table_idx;
2255 char *str = arg->opt;
2256 static const char * const params[] = { "bus", "unit", "if", "index",
2257 "cyls", "heads", "secs", "trans",
2258 "media", "snapshot", "file",
2259 "cache", "format", "serial", "werror",
2260 NULL };
2262 if (check_params(params, str) < 0) {
2263 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2264 buf, str);
2265 return -1;
2268 file[0] = 0;
2269 cyls = heads = secs = 0;
2270 bus_id = 0;
2271 unit_id = -1;
2272 translation = BIOS_ATA_TRANSLATION_AUTO;
2273 index = -1;
2274 cache = 3;
2276 if (machine->use_scsi) {
2277 type = IF_SCSI;
2278 max_devs = MAX_SCSI_DEVS;
2279 pstrcpy(devname, sizeof(devname), "scsi");
2280 } else {
2281 type = IF_IDE;
2282 max_devs = MAX_IDE_DEVS;
2283 pstrcpy(devname, sizeof(devname), "ide");
2285 media = MEDIA_DISK;
2287 /* extract parameters */
2289 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2290 bus_id = strtol(buf, NULL, 0);
2291 if (bus_id < 0) {
2292 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2293 return -1;
2297 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2298 unit_id = strtol(buf, NULL, 0);
2299 if (unit_id < 0) {
2300 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2301 return -1;
2305 if (get_param_value(buf, sizeof(buf), "if", str)) {
2306 pstrcpy(devname, sizeof(devname), buf);
2307 if (!strcmp(buf, "ide")) {
2308 type = IF_IDE;
2309 max_devs = MAX_IDE_DEVS;
2310 } else if (!strcmp(buf, "scsi")) {
2311 type = IF_SCSI;
2312 max_devs = MAX_SCSI_DEVS;
2313 } else if (!strcmp(buf, "floppy")) {
2314 type = IF_FLOPPY;
2315 max_devs = 0;
2316 } else if (!strcmp(buf, "pflash")) {
2317 type = IF_PFLASH;
2318 max_devs = 0;
2319 } else if (!strcmp(buf, "mtd")) {
2320 type = IF_MTD;
2321 max_devs = 0;
2322 } else if (!strcmp(buf, "sd")) {
2323 type = IF_SD;
2324 max_devs = 0;
2325 } else if (!strcmp(buf, "virtio")) {
2326 type = IF_VIRTIO;
2327 max_devs = 0;
2328 } else if (!strcmp(buf, "xen")) {
2329 type = IF_XEN;
2330 max_devs = 0;
2331 } else {
2332 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2333 return -1;
2337 if (get_param_value(buf, sizeof(buf), "index", str)) {
2338 index = strtol(buf, NULL, 0);
2339 if (index < 0) {
2340 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2341 return -1;
2345 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2346 cyls = strtol(buf, NULL, 0);
2349 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2350 heads = strtol(buf, NULL, 0);
2353 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2354 secs = strtol(buf, NULL, 0);
2357 if (cyls || heads || secs) {
2358 if (cyls < 1 || cyls > 16383) {
2359 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2360 return -1;
2362 if (heads < 1 || heads > 16) {
2363 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2364 return -1;
2366 if (secs < 1 || secs > 63) {
2367 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2368 return -1;
2372 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2373 if (!cyls) {
2374 fprintf(stderr,
2375 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2376 str);
2377 return -1;
2379 if (!strcmp(buf, "none"))
2380 translation = BIOS_ATA_TRANSLATION_NONE;
2381 else if (!strcmp(buf, "lba"))
2382 translation = BIOS_ATA_TRANSLATION_LBA;
2383 else if (!strcmp(buf, "auto"))
2384 translation = BIOS_ATA_TRANSLATION_AUTO;
2385 else {
2386 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2387 return -1;
2391 if (get_param_value(buf, sizeof(buf), "media", str)) {
2392 if (!strcmp(buf, "disk")) {
2393 media = MEDIA_DISK;
2394 } else if (!strcmp(buf, "cdrom")) {
2395 if (cyls || secs || heads) {
2396 fprintf(stderr,
2397 "qemu: '%s' invalid physical CHS format\n", str);
2398 return -1;
2400 media = MEDIA_CDROM;
2401 } else {
2402 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2403 return -1;
2407 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2408 if (!strcmp(buf, "on"))
2409 snapshot = 1;
2410 else if (!strcmp(buf, "off"))
2411 snapshot = 0;
2412 else {
2413 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2414 return -1;
2418 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2419 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2420 cache = 0;
2421 else if (!strcmp(buf, "writethrough"))
2422 cache = 1;
2423 else if (!strcmp(buf, "writeback"))
2424 cache = 2;
2425 else {
2426 fprintf(stderr, "qemu: invalid cache option\n");
2427 return -1;
2431 if (get_param_value(buf, sizeof(buf), "format", str)) {
2432 if (strcmp(buf, "?") == 0) {
2433 fprintf(stderr, "qemu: Supported formats:");
2434 bdrv_iterate_format(bdrv_format_print, NULL);
2435 fprintf(stderr, "\n");
2436 return -1;
2438 drv = bdrv_find_format(buf);
2439 if (!drv) {
2440 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2441 return -1;
2445 if (arg->file == NULL)
2446 get_param_value(file, sizeof(file), "file", str);
2447 else
2448 pstrcpy(file, sizeof(file), arg->file);
2450 if (!get_param_value(serial, sizeof(serial), "serial", str))
2451 memset(serial, 0, sizeof(serial));
2453 onerror = BLOCK_ERR_STOP_ENOSPC;
2454 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2455 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2456 fprintf(stderr, "werror is no supported by this format\n");
2457 return -1;
2459 if (!strcmp(buf, "ignore"))
2460 onerror = BLOCK_ERR_IGNORE;
2461 else if (!strcmp(buf, "enospc"))
2462 onerror = BLOCK_ERR_STOP_ENOSPC;
2463 else if (!strcmp(buf, "stop"))
2464 onerror = BLOCK_ERR_STOP_ANY;
2465 else if (!strcmp(buf, "report"))
2466 onerror = BLOCK_ERR_REPORT;
2467 else {
2468 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2469 return -1;
2473 /* compute bus and unit according index */
2475 if (index != -1) {
2476 if (bus_id != 0 || unit_id != -1) {
2477 fprintf(stderr,
2478 "qemu: '%s' index cannot be used with bus and unit\n", str);
2479 return -1;
2481 if (max_devs == 0)
2483 unit_id = index;
2484 bus_id = 0;
2485 } else {
2486 unit_id = index % max_devs;
2487 bus_id = index / max_devs;
2491 /* if user doesn't specify a unit_id,
2492 * try to find the first free
2495 if (unit_id == -1) {
2496 unit_id = 0;
2497 while (drive_get_index(type, bus_id, unit_id) != -1) {
2498 unit_id++;
2499 if (max_devs && unit_id >= max_devs) {
2500 unit_id -= max_devs;
2501 bus_id++;
2506 /* check unit id */
2508 if (max_devs && unit_id >= max_devs) {
2509 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2510 str, unit_id, max_devs - 1);
2511 return -1;
2515 * ignore multiple definitions
2518 if (drive_get_index(type, bus_id, unit_id) != -1)
2519 return -2;
2521 /* init */
2523 if (type == IF_IDE || type == IF_SCSI)
2524 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2525 if (max_devs)
2526 snprintf(buf, sizeof(buf), "%s%i%s%i",
2527 devname, bus_id, mediastr, unit_id);
2528 else
2529 snprintf(buf, sizeof(buf), "%s%s%i",
2530 devname, mediastr, unit_id);
2531 bdrv = bdrv_new(buf);
2532 drives_table_idx = drive_get_free_idx();
2533 drives_table[drives_table_idx].bdrv = bdrv;
2534 drives_table[drives_table_idx].type = type;
2535 drives_table[drives_table_idx].bus = bus_id;
2536 drives_table[drives_table_idx].unit = unit_id;
2537 drives_table[drives_table_idx].onerror = onerror;
2538 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2539 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2540 nb_drives++;
2542 switch(type) {
2543 case IF_IDE:
2544 case IF_SCSI:
2545 case IF_XEN:
2546 switch(media) {
2547 case MEDIA_DISK:
2548 if (cyls != 0) {
2549 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2550 bdrv_set_translation_hint(bdrv, translation);
2552 break;
2553 case MEDIA_CDROM:
2554 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2555 break;
2557 break;
2558 case IF_SD:
2559 /* FIXME: This isn't really a floppy, but it's a reasonable
2560 approximation. */
2561 case IF_FLOPPY:
2562 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2563 break;
2564 case IF_PFLASH:
2565 case IF_MTD:
2566 case IF_VIRTIO:
2567 break;
2569 if (!file[0])
2570 return -2;
2571 bdrv_flags = 0;
2572 if (snapshot) {
2573 bdrv_flags |= BDRV_O_SNAPSHOT;
2574 cache = 2; /* always use write-back with snapshot */
2576 if (cache == 0) /* no caching */
2577 bdrv_flags |= BDRV_O_NOCACHE;
2578 else if (cache == 2) /* write-back */
2579 bdrv_flags |= BDRV_O_CACHE_WB;
2580 else if (cache == 3) /* not specified */
2581 bdrv_flags |= BDRV_O_CACHE_DEF;
2582 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2583 fprintf(stderr, "qemu: could not open disk image %s\n",
2584 file);
2585 return -1;
2587 if (bdrv_key_required(bdrv))
2588 autostart = 0;
2589 return drives_table_idx;
2592 static void numa_add(const char *optarg)
2594 char option[128];
2595 char *endptr;
2596 unsigned long long value, endvalue;
2597 int nodenr;
2599 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2600 if (!strcmp(option, "node")) {
2601 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2602 nodenr = nb_numa_nodes;
2603 } else {
2604 nodenr = strtoull(option, NULL, 10);
2607 if (get_param_value(option, 128, "mem", optarg) == 0) {
2608 node_mem[nodenr] = 0;
2609 } else {
2610 value = strtoull(option, &endptr, 0);
2611 switch (*endptr) {
2612 case 0: case 'M': case 'm':
2613 value <<= 20;
2614 break;
2615 case 'G': case 'g':
2616 value <<= 30;
2617 break;
2619 node_mem[nodenr] = value;
2621 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2622 node_cpumask[nodenr] = 0;
2623 } else {
2624 value = strtoull(option, &endptr, 10);
2625 if (value >= 64) {
2626 value = 63;
2627 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2628 } else {
2629 if (*endptr == '-') {
2630 endvalue = strtoull(endptr+1, &endptr, 10);
2631 if (endvalue >= 63) {
2632 endvalue = 62;
2633 fprintf(stderr,
2634 "only 63 CPUs in NUMA mode supported.\n");
2636 value = (1 << (endvalue + 1)) - (1 << value);
2637 } else {
2638 value = 1 << value;
2641 node_cpumask[nodenr] = value;
2643 nb_numa_nodes++;
2645 return;
2648 /***********************************************************/
2649 /* USB devices */
2651 static USBPort *used_usb_ports;
2652 static USBPort *free_usb_ports;
2654 /* ??? Maybe change this to register a hub to keep track of the topology. */
2655 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2656 usb_attachfn attach)
2658 port->opaque = opaque;
2659 port->index = index;
2660 port->attach = attach;
2661 port->next = free_usb_ports;
2662 free_usb_ports = port;
2665 int usb_device_add_dev(USBDevice *dev)
2667 USBPort *port;
2669 /* Find a USB port to add the device to. */
2670 port = free_usb_ports;
2671 if (!port->next) {
2672 USBDevice *hub;
2674 /* Create a new hub and chain it on. */
2675 free_usb_ports = NULL;
2676 port->next = used_usb_ports;
2677 used_usb_ports = port;
2679 hub = usb_hub_init(VM_USB_HUB_SIZE);
2680 usb_attach(port, hub);
2681 port = free_usb_ports;
2684 free_usb_ports = port->next;
2685 port->next = used_usb_ports;
2686 used_usb_ports = port;
2687 usb_attach(port, dev);
2688 return 0;
2691 static void usb_msd_password_cb(void *opaque, int err)
2693 USBDevice *dev = opaque;
2695 if (!err)
2696 usb_device_add_dev(dev);
2697 else
2698 dev->handle_destroy(dev);
2701 static int usb_device_add(const char *devname, int is_hotplug)
2703 const char *p;
2704 USBDevice *dev;
2706 if (!free_usb_ports)
2707 return -1;
2709 if (strstart(devname, "host:", &p)) {
2710 dev = usb_host_device_open(p);
2711 } else if (!strcmp(devname, "mouse")) {
2712 dev = usb_mouse_init();
2713 } else if (!strcmp(devname, "tablet")) {
2714 dev = usb_tablet_init();
2715 } else if (!strcmp(devname, "keyboard")) {
2716 dev = usb_keyboard_init();
2717 } else if (strstart(devname, "disk:", &p)) {
2718 BlockDriverState *bs;
2720 dev = usb_msd_init(p);
2721 if (!dev)
2722 return -1;
2723 bs = usb_msd_get_bdrv(dev);
2724 if (bdrv_key_required(bs)) {
2725 autostart = 0;
2726 if (is_hotplug) {
2727 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2728 dev);
2729 return 0;
2732 } else if (!strcmp(devname, "wacom-tablet")) {
2733 dev = usb_wacom_init();
2734 } else if (strstart(devname, "serial:", &p)) {
2735 dev = usb_serial_init(p);
2736 #ifdef CONFIG_BRLAPI
2737 } else if (!strcmp(devname, "braille")) {
2738 dev = usb_baum_init();
2739 #endif
2740 } else if (strstart(devname, "net:", &p)) {
2741 int nic = nb_nics;
2743 if (net_client_init("nic", p) < 0)
2744 return -1;
2745 nd_table[nic].model = "usb";
2746 dev = usb_net_init(&nd_table[nic]);
2747 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2748 dev = usb_bt_init(devname[2] ? hci_init(p) :
2749 bt_new_hci(qemu_find_bt_vlan(0)));
2750 } else {
2751 return -1;
2753 if (!dev)
2754 return -1;
2756 return usb_device_add_dev(dev);
2759 int usb_device_del_addr(int bus_num, int addr)
2761 USBPort *port;
2762 USBPort **lastp;
2763 USBDevice *dev;
2765 if (!used_usb_ports)
2766 return -1;
2768 if (bus_num != 0)
2769 return -1;
2771 lastp = &used_usb_ports;
2772 port = used_usb_ports;
2773 while (port && port->dev->addr != addr) {
2774 lastp = &port->next;
2775 port = port->next;
2778 if (!port)
2779 return -1;
2781 dev = port->dev;
2782 *lastp = port->next;
2783 usb_attach(port, NULL);
2784 dev->handle_destroy(dev);
2785 port->next = free_usb_ports;
2786 free_usb_ports = port;
2787 return 0;
2790 static int usb_device_del(const char *devname)
2792 int bus_num, addr;
2793 const char *p;
2795 if (strstart(devname, "host:", &p))
2796 return usb_host_device_close(p);
2798 if (!used_usb_ports)
2799 return -1;
2801 p = strchr(devname, '.');
2802 if (!p)
2803 return -1;
2804 bus_num = strtoul(devname, NULL, 0);
2805 addr = strtoul(p + 1, NULL, 0);
2807 return usb_device_del_addr(bus_num, addr);
2810 void do_usb_add(Monitor *mon, const char *devname)
2812 usb_device_add(devname, 1);
2815 void do_usb_del(Monitor *mon, const char *devname)
2817 usb_device_del(devname);
2820 void usb_info(Monitor *mon)
2822 USBDevice *dev;
2823 USBPort *port;
2824 const char *speed_str;
2826 if (!usb_enabled) {
2827 monitor_printf(mon, "USB support not enabled\n");
2828 return;
2831 for (port = used_usb_ports; port; port = port->next) {
2832 dev = port->dev;
2833 if (!dev)
2834 continue;
2835 switch(dev->speed) {
2836 case USB_SPEED_LOW:
2837 speed_str = "1.5";
2838 break;
2839 case USB_SPEED_FULL:
2840 speed_str = "12";
2841 break;
2842 case USB_SPEED_HIGH:
2843 speed_str = "480";
2844 break;
2845 default:
2846 speed_str = "?";
2847 break;
2849 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2850 0, dev->addr, speed_str, dev->devname);
2854 /***********************************************************/
2855 /* PCMCIA/Cardbus */
2857 static struct pcmcia_socket_entry_s {
2858 PCMCIASocket *socket;
2859 struct pcmcia_socket_entry_s *next;
2860 } *pcmcia_sockets = 0;
2862 void pcmcia_socket_register(PCMCIASocket *socket)
2864 struct pcmcia_socket_entry_s *entry;
2866 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2867 entry->socket = socket;
2868 entry->next = pcmcia_sockets;
2869 pcmcia_sockets = entry;
2872 void pcmcia_socket_unregister(PCMCIASocket *socket)
2874 struct pcmcia_socket_entry_s *entry, **ptr;
2876 ptr = &pcmcia_sockets;
2877 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2878 if (entry->socket == socket) {
2879 *ptr = entry->next;
2880 qemu_free(entry);
2884 void pcmcia_info(Monitor *mon)
2886 struct pcmcia_socket_entry_s *iter;
2888 if (!pcmcia_sockets)
2889 monitor_printf(mon, "No PCMCIA sockets\n");
2891 for (iter = pcmcia_sockets; iter; iter = iter->next)
2892 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2893 iter->socket->attached ? iter->socket->card_string :
2894 "Empty");
2897 /***********************************************************/
2898 /* register display */
2900 struct DisplayAllocator default_allocator = {
2901 defaultallocator_create_displaysurface,
2902 defaultallocator_resize_displaysurface,
2903 defaultallocator_free_displaysurface
2906 void register_displaystate(DisplayState *ds)
2908 DisplayState **s;
2909 s = &display_state;
2910 while (*s != NULL)
2911 s = &(*s)->next;
2912 ds->next = NULL;
2913 *s = ds;
2916 DisplayState *get_displaystate(void)
2918 return display_state;
2921 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2923 if(ds->allocator == &default_allocator) ds->allocator = da;
2924 return ds->allocator;
2927 /* dumb display */
2929 static void dumb_display_init(void)
2931 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2932 ds->allocator = &default_allocator;
2933 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2934 register_displaystate(ds);
2937 /***********************************************************/
2938 /* I/O handling */
2940 typedef struct IOHandlerRecord {
2941 int fd;
2942 IOCanRWHandler *fd_read_poll;
2943 IOHandler *fd_read;
2944 IOHandler *fd_write;
2945 int deleted;
2946 void *opaque;
2947 /* temporary data */
2948 struct pollfd *ufd;
2949 struct IOHandlerRecord *next;
2950 } IOHandlerRecord;
2952 static IOHandlerRecord *first_io_handler;
2954 /* XXX: fd_read_poll should be suppressed, but an API change is
2955 necessary in the character devices to suppress fd_can_read(). */
2956 int qemu_set_fd_handler2(int fd,
2957 IOCanRWHandler *fd_read_poll,
2958 IOHandler *fd_read,
2959 IOHandler *fd_write,
2960 void *opaque)
2962 IOHandlerRecord **pioh, *ioh;
2964 if (!fd_read && !fd_write) {
2965 pioh = &first_io_handler;
2966 for(;;) {
2967 ioh = *pioh;
2968 if (ioh == NULL)
2969 break;
2970 if (ioh->fd == fd) {
2971 ioh->deleted = 1;
2972 break;
2974 pioh = &ioh->next;
2976 } else {
2977 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2978 if (ioh->fd == fd)
2979 goto found;
2981 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2982 ioh->next = first_io_handler;
2983 first_io_handler = ioh;
2984 found:
2985 ioh->fd = fd;
2986 ioh->fd_read_poll = fd_read_poll;
2987 ioh->fd_read = fd_read;
2988 ioh->fd_write = fd_write;
2989 ioh->opaque = opaque;
2990 ioh->deleted = 0;
2992 return 0;
2995 int qemu_set_fd_handler(int fd,
2996 IOHandler *fd_read,
2997 IOHandler *fd_write,
2998 void *opaque)
3000 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3003 #ifdef _WIN32
3004 /***********************************************************/
3005 /* Polling handling */
3007 typedef struct PollingEntry {
3008 PollingFunc *func;
3009 void *opaque;
3010 struct PollingEntry *next;
3011 } PollingEntry;
3013 static PollingEntry *first_polling_entry;
3015 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3017 PollingEntry **ppe, *pe;
3018 pe = qemu_mallocz(sizeof(PollingEntry));
3019 pe->func = func;
3020 pe->opaque = opaque;
3021 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3022 *ppe = pe;
3023 return 0;
3026 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3028 PollingEntry **ppe, *pe;
3029 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3030 pe = *ppe;
3031 if (pe->func == func && pe->opaque == opaque) {
3032 *ppe = pe->next;
3033 qemu_free(pe);
3034 break;
3039 /***********************************************************/
3040 /* Wait objects support */
3041 typedef struct WaitObjects {
3042 int num;
3043 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3044 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3045 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3046 } WaitObjects;
3048 static WaitObjects wait_objects = {0};
3050 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3052 WaitObjects *w = &wait_objects;
3054 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3055 return -1;
3056 w->events[w->num] = handle;
3057 w->func[w->num] = func;
3058 w->opaque[w->num] = opaque;
3059 w->num++;
3060 return 0;
3063 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3065 int i, found;
3066 WaitObjects *w = &wait_objects;
3068 found = 0;
3069 for (i = 0; i < w->num; i++) {
3070 if (w->events[i] == handle)
3071 found = 1;
3072 if (found) {
3073 w->events[i] = w->events[i + 1];
3074 w->func[i] = w->func[i + 1];
3075 w->opaque[i] = w->opaque[i + 1];
3078 if (found)
3079 w->num--;
3081 #endif
3083 /***********************************************************/
3084 /* ram save/restore */
3086 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3088 int v;
3090 v = qemu_get_byte(f);
3091 switch(v) {
3092 case 0:
3093 if (qemu_get_buffer(f, buf, len) != len)
3094 return -EIO;
3095 break;
3096 case 1:
3097 v = qemu_get_byte(f);
3098 memset(buf, v, len);
3099 break;
3100 default:
3101 return -EINVAL;
3104 if (qemu_file_has_error(f))
3105 return -EIO;
3107 return 0;
3110 static int ram_load_v1(QEMUFile *f, void *opaque)
3112 int ret;
3113 ram_addr_t i;
3115 if (qemu_get_be32(f) != last_ram_offset)
3116 return -EINVAL;
3117 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3118 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3119 if (ret)
3120 return ret;
3122 return 0;
3125 #define BDRV_HASH_BLOCK_SIZE 1024
3126 #define IOBUF_SIZE 4096
3127 #define RAM_CBLOCK_MAGIC 0xfabe
3129 typedef struct RamDecompressState {
3130 z_stream zstream;
3131 QEMUFile *f;
3132 uint8_t buf[IOBUF_SIZE];
3133 } RamDecompressState;
3135 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3137 int ret;
3138 memset(s, 0, sizeof(*s));
3139 s->f = f;
3140 ret = inflateInit(&s->zstream);
3141 if (ret != Z_OK)
3142 return -1;
3143 return 0;
3146 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3148 int ret, clen;
3150 s->zstream.avail_out = len;
3151 s->zstream.next_out = buf;
3152 while (s->zstream.avail_out > 0) {
3153 if (s->zstream.avail_in == 0) {
3154 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3155 return -1;
3156 clen = qemu_get_be16(s->f);
3157 if (clen > IOBUF_SIZE)
3158 return -1;
3159 qemu_get_buffer(s->f, s->buf, clen);
3160 s->zstream.avail_in = clen;
3161 s->zstream.next_in = s->buf;
3163 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3164 if (ret != Z_OK && ret != Z_STREAM_END) {
3165 return -1;
3168 return 0;
3171 static void ram_decompress_close(RamDecompressState *s)
3173 inflateEnd(&s->zstream);
3176 #define RAM_SAVE_FLAG_FULL 0x01
3177 #define RAM_SAVE_FLAG_COMPRESS 0x02
3178 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3179 #define RAM_SAVE_FLAG_PAGE 0x08
3180 #define RAM_SAVE_FLAG_EOS 0x10
3182 static int is_dup_page(uint8_t *page, uint8_t ch)
3184 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3185 uint32_t *array = (uint32_t *)page;
3186 int i;
3188 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3189 if (array[i] != val)
3190 return 0;
3193 return 1;
3196 static int ram_save_block(QEMUFile *f)
3198 static ram_addr_t current_addr = 0;
3199 ram_addr_t saved_addr = current_addr;
3200 ram_addr_t addr = 0;
3201 int found = 0;
3203 while (addr < last_ram_offset) {
3204 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3205 uint8_t *p;
3207 cpu_physical_memory_reset_dirty(current_addr,
3208 current_addr + TARGET_PAGE_SIZE,
3209 MIGRATION_DIRTY_FLAG);
3211 p = qemu_get_ram_ptr(current_addr);
3213 if (is_dup_page(p, *p)) {
3214 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3215 qemu_put_byte(f, *p);
3216 } else {
3217 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3218 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3221 found = 1;
3222 break;
3224 addr += TARGET_PAGE_SIZE;
3225 current_addr = (saved_addr + addr) % last_ram_offset;
3228 return found;
3231 static ram_addr_t ram_save_threshold = 10;
3233 static ram_addr_t ram_save_remaining(void)
3235 ram_addr_t addr;
3236 ram_addr_t count = 0;
3238 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3239 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3240 count++;
3243 return count;
3246 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3248 ram_addr_t addr;
3250 if (stage == 1) {
3251 /* Make sure all dirty bits are set */
3252 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3253 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3254 cpu_physical_memory_set_dirty(addr);
3257 /* Enable dirty memory tracking */
3258 cpu_physical_memory_set_dirty_tracking(1);
3260 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3263 while (!qemu_file_rate_limit(f)) {
3264 int ret;
3266 ret = ram_save_block(f);
3267 if (ret == 0) /* no more blocks */
3268 break;
3271 /* try transferring iterative blocks of memory */
3273 if (stage == 3) {
3275 /* flush all remaining blocks regardless of rate limiting */
3276 while (ram_save_block(f) != 0);
3277 cpu_physical_memory_set_dirty_tracking(0);
3280 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3282 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3285 static int ram_load_dead(QEMUFile *f, void *opaque)
3287 RamDecompressState s1, *s = &s1;
3288 uint8_t buf[10];
3289 ram_addr_t i;
3291 if (ram_decompress_open(s, f) < 0)
3292 return -EINVAL;
3293 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3294 if (ram_decompress_buf(s, buf, 1) < 0) {
3295 fprintf(stderr, "Error while reading ram block header\n");
3296 goto error;
3298 if (buf[0] == 0) {
3299 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3300 BDRV_HASH_BLOCK_SIZE) < 0) {
3301 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3302 goto error;
3304 } else {
3305 error:
3306 printf("Error block header\n");
3307 return -EINVAL;
3310 ram_decompress_close(s);
3312 return 0;
3315 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3317 ram_addr_t addr;
3318 int flags;
3320 if (version_id == 1)
3321 return ram_load_v1(f, opaque);
3323 if (version_id == 2) {
3324 if (qemu_get_be32(f) != last_ram_offset)
3325 return -EINVAL;
3326 return ram_load_dead(f, opaque);
3329 if (version_id != 3)
3330 return -EINVAL;
3332 do {
3333 addr = qemu_get_be64(f);
3335 flags = addr & ~TARGET_PAGE_MASK;
3336 addr &= TARGET_PAGE_MASK;
3338 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3339 if (addr != last_ram_offset)
3340 return -EINVAL;
3343 if (flags & RAM_SAVE_FLAG_FULL) {
3344 if (ram_load_dead(f, opaque) < 0)
3345 return -EINVAL;
3348 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3349 uint8_t ch = qemu_get_byte(f);
3350 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3351 } else if (flags & RAM_SAVE_FLAG_PAGE)
3352 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3353 } while (!(flags & RAM_SAVE_FLAG_EOS));
3355 return 0;
3358 void qemu_service_io(void)
3360 qemu_notify_event();
3363 /***********************************************************/
3364 /* bottom halves (can be seen as timers which expire ASAP) */
3366 struct QEMUBH {
3367 QEMUBHFunc *cb;
3368 void *opaque;
3369 int scheduled;
3370 int idle;
3371 int deleted;
3372 QEMUBH *next;
3375 static QEMUBH *first_bh = NULL;
3377 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3379 QEMUBH *bh;
3380 bh = qemu_mallocz(sizeof(QEMUBH));
3381 bh->cb = cb;
3382 bh->opaque = opaque;
3383 bh->next = first_bh;
3384 first_bh = bh;
3385 return bh;
3388 int qemu_bh_poll(void)
3390 QEMUBH *bh, **bhp;
3391 int ret;
3393 ret = 0;
3394 for (bh = first_bh; bh; bh = bh->next) {
3395 if (!bh->deleted && bh->scheduled) {
3396 bh->scheduled = 0;
3397 if (!bh->idle)
3398 ret = 1;
3399 bh->idle = 0;
3400 bh->cb(bh->opaque);
3404 /* remove deleted bhs */
3405 bhp = &first_bh;
3406 while (*bhp) {
3407 bh = *bhp;
3408 if (bh->deleted) {
3409 *bhp = bh->next;
3410 qemu_free(bh);
3411 } else
3412 bhp = &bh->next;
3415 return ret;
3418 void qemu_bh_schedule_idle(QEMUBH *bh)
3420 if (bh->scheduled)
3421 return;
3422 bh->scheduled = 1;
3423 bh->idle = 1;
3426 void qemu_bh_schedule(QEMUBH *bh)
3428 if (bh->scheduled)
3429 return;
3430 bh->scheduled = 1;
3431 bh->idle = 0;
3432 /* stop the currently executing CPU to execute the BH ASAP */
3433 qemu_notify_event();
3436 void qemu_bh_cancel(QEMUBH *bh)
3438 bh->scheduled = 0;
3441 void qemu_bh_delete(QEMUBH *bh)
3443 bh->scheduled = 0;
3444 bh->deleted = 1;
3447 static void qemu_bh_update_timeout(int *timeout)
3449 QEMUBH *bh;
3451 for (bh = first_bh; bh; bh = bh->next) {
3452 if (!bh->deleted && bh->scheduled) {
3453 if (bh->idle) {
3454 /* idle bottom halves will be polled at least
3455 * every 10ms */
3456 *timeout = MIN(10, *timeout);
3457 } else {
3458 /* non-idle bottom halves will be executed
3459 * immediately */
3460 *timeout = 0;
3461 break;
3467 /***********************************************************/
3468 /* machine registration */
3470 static QEMUMachine *first_machine = NULL;
3471 QEMUMachine *current_machine = NULL;
3473 int qemu_register_machine(QEMUMachine *m)
3475 QEMUMachine **pm;
3476 pm = &first_machine;
3477 while (*pm != NULL)
3478 pm = &(*pm)->next;
3479 m->next = NULL;
3480 *pm = m;
3481 return 0;
3484 static QEMUMachine *find_machine(const char *name)
3486 QEMUMachine *m;
3488 for(m = first_machine; m != NULL; m = m->next) {
3489 if (!strcmp(m->name, name))
3490 return m;
3492 return NULL;
3495 /***********************************************************/
3496 /* main execution loop */
3498 static void gui_update(void *opaque)
3500 uint64_t interval = GUI_REFRESH_INTERVAL;
3501 DisplayState *ds = opaque;
3502 DisplayChangeListener *dcl = ds->listeners;
3504 dpy_refresh(ds);
3506 while (dcl != NULL) {
3507 if (dcl->gui_timer_interval &&
3508 dcl->gui_timer_interval < interval)
3509 interval = dcl->gui_timer_interval;
3510 dcl = dcl->next;
3512 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3515 static void nographic_update(void *opaque)
3517 uint64_t interval = GUI_REFRESH_INTERVAL;
3519 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3522 struct vm_change_state_entry {
3523 VMChangeStateHandler *cb;
3524 void *opaque;
3525 LIST_ENTRY (vm_change_state_entry) entries;
3528 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3530 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3531 void *opaque)
3533 VMChangeStateEntry *e;
3535 e = qemu_mallocz(sizeof (*e));
3537 e->cb = cb;
3538 e->opaque = opaque;
3539 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3540 return e;
3543 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3545 LIST_REMOVE (e, entries);
3546 qemu_free (e);
3549 static void vm_state_notify(int running, int reason)
3551 VMChangeStateEntry *e;
3553 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3554 e->cb(e->opaque, running, reason);
3558 static void resume_all_vcpus(void);
3559 static void pause_all_vcpus(void);
3561 void vm_start(void)
3563 if (!vm_running) {
3564 cpu_enable_ticks();
3565 vm_running = 1;
3566 vm_state_notify(1, 0);
3567 qemu_rearm_alarm_timer(alarm_timer);
3568 resume_all_vcpus();
3572 /* reset/shutdown handler */
3574 typedef struct QEMUResetEntry {
3575 QEMUResetHandler *func;
3576 void *opaque;
3577 struct QEMUResetEntry *next;
3578 } QEMUResetEntry;
3580 static QEMUResetEntry *first_reset_entry;
3581 static int reset_requested;
3582 static int shutdown_requested;
3583 static int powerdown_requested;
3584 static int debug_requested;
3585 static int vmstop_requested;
3587 int qemu_shutdown_requested(void)
3589 int r = shutdown_requested;
3590 shutdown_requested = 0;
3591 return r;
3594 int qemu_reset_requested(void)
3596 int r = reset_requested;
3597 reset_requested = 0;
3598 return r;
3601 int qemu_powerdown_requested(void)
3603 int r = powerdown_requested;
3604 powerdown_requested = 0;
3605 return r;
3608 static int qemu_debug_requested(void)
3610 int r = debug_requested;
3611 debug_requested = 0;
3612 return r;
3615 static int qemu_vmstop_requested(void)
3617 int r = vmstop_requested;
3618 vmstop_requested = 0;
3619 return r;
3622 static void do_vm_stop(int reason)
3624 if (vm_running) {
3625 cpu_disable_ticks();
3626 vm_running = 0;
3627 pause_all_vcpus();
3628 vm_state_notify(0, reason);
3632 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3634 QEMUResetEntry **pre, *re;
3636 pre = &first_reset_entry;
3637 while (*pre != NULL)
3638 pre = &(*pre)->next;
3639 re = qemu_mallocz(sizeof(QEMUResetEntry));
3640 re->func = func;
3641 re->opaque = opaque;
3642 re->next = NULL;
3643 *pre = re;
3646 void qemu_system_reset(void)
3648 QEMUResetEntry *re;
3650 /* reset all devices */
3651 for(re = first_reset_entry; re != NULL; re = re->next) {
3652 re->func(re->opaque);
3654 if (kvm_enabled())
3655 kvm_sync_vcpus();
3658 void qemu_system_reset_request(void)
3660 if (no_reboot) {
3661 shutdown_requested = 1;
3662 } else {
3663 reset_requested = 1;
3665 qemu_notify_event();
3668 void qemu_system_shutdown_request(void)
3670 shutdown_requested = 1;
3671 qemu_notify_event();
3674 void qemu_system_powerdown_request(void)
3676 powerdown_requested = 1;
3677 qemu_notify_event();
3680 #ifdef CONFIG_IOTHREAD
3681 static void qemu_system_vmstop_request(int reason)
3683 vmstop_requested = reason;
3684 qemu_notify_event();
3686 #endif
3688 #ifndef _WIN32
3689 static int io_thread_fd = -1;
3691 static void qemu_event_increment(void)
3693 static const char byte = 0;
3695 if (io_thread_fd == -1)
3696 return;
3698 write(io_thread_fd, &byte, sizeof(byte));
3701 static void qemu_event_read(void *opaque)
3703 int fd = (unsigned long)opaque;
3704 ssize_t len;
3706 /* Drain the notify pipe */
3707 do {
3708 char buffer[512];
3709 len = read(fd, buffer, sizeof(buffer));
3710 } while ((len == -1 && errno == EINTR) || len > 0);
3713 static int qemu_event_init(void)
3715 int err;
3716 int fds[2];
3718 err = pipe(fds);
3719 if (err == -1)
3720 return -errno;
3722 err = fcntl_setfl(fds[0], O_NONBLOCK);
3723 if (err < 0)
3724 goto fail;
3726 err = fcntl_setfl(fds[1], O_NONBLOCK);
3727 if (err < 0)
3728 goto fail;
3730 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3731 (void *)(unsigned long)fds[0]);
3733 io_thread_fd = fds[1];
3734 return 0;
3736 fail:
3737 close(fds[0]);
3738 close(fds[1]);
3739 return err;
3741 #else
3742 HANDLE qemu_event_handle;
3744 static void dummy_event_handler(void *opaque)
3748 static int qemu_event_init(void)
3750 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3751 if (!qemu_event_handle) {
3752 perror("Failed CreateEvent");
3753 return -1;
3755 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3756 return 0;
3759 static void qemu_event_increment(void)
3761 SetEvent(qemu_event_handle);
3763 #endif
3765 static int cpu_can_run(CPUState *env)
3767 if (env->stop)
3768 return 0;
3769 if (env->stopped)
3770 return 0;
3771 return 1;
3774 #ifndef CONFIG_IOTHREAD
3775 static int qemu_init_main_loop(void)
3777 return qemu_event_init();
3780 void qemu_init_vcpu(void *_env)
3782 CPUState *env = _env;
3784 if (kvm_enabled())
3785 kvm_init_vcpu(env);
3786 return;
3789 int qemu_cpu_self(void *env)
3791 return 1;
3794 static void resume_all_vcpus(void)
3798 static void pause_all_vcpus(void)
3802 void qemu_cpu_kick(void *env)
3804 return;
3807 void qemu_notify_event(void)
3809 CPUState *env = cpu_single_env;
3811 if (env) {
3812 cpu_exit(env);
3813 #ifdef USE_KQEMU
3814 if (env->kqemu_enabled)
3815 kqemu_cpu_interrupt(env);
3816 #endif
3820 #define qemu_mutex_lock_iothread() do { } while (0)
3821 #define qemu_mutex_unlock_iothread() do { } while (0)
3823 void vm_stop(int reason)
3825 do_vm_stop(reason);
3828 #else /* CONFIG_IOTHREAD */
3830 #include "qemu-thread.h"
3832 QemuMutex qemu_global_mutex;
3833 static QemuMutex qemu_fair_mutex;
3835 static QemuThread io_thread;
3837 static QemuThread *tcg_cpu_thread;
3838 static QemuCond *tcg_halt_cond;
3840 static int qemu_system_ready;
3841 /* cpu creation */
3842 static QemuCond qemu_cpu_cond;
3843 /* system init */
3844 static QemuCond qemu_system_cond;
3845 static QemuCond qemu_pause_cond;
3847 static void block_io_signals(void);
3848 static void unblock_io_signals(void);
3849 static int tcg_has_work(void);
3851 static int qemu_init_main_loop(void)
3853 int ret;
3855 ret = qemu_event_init();
3856 if (ret)
3857 return ret;
3859 qemu_cond_init(&qemu_pause_cond);
3860 qemu_mutex_init(&qemu_fair_mutex);
3861 qemu_mutex_init(&qemu_global_mutex);
3862 qemu_mutex_lock(&qemu_global_mutex);
3864 unblock_io_signals();
3865 qemu_thread_self(&io_thread);
3867 return 0;
3870 static void qemu_wait_io_event(CPUState *env)
3872 while (!tcg_has_work())
3873 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3875 qemu_mutex_unlock(&qemu_global_mutex);
3878 * Users of qemu_global_mutex can be starved, having no chance
3879 * to acquire it since this path will get to it first.
3880 * So use another lock to provide fairness.
3882 qemu_mutex_lock(&qemu_fair_mutex);
3883 qemu_mutex_unlock(&qemu_fair_mutex);
3885 qemu_mutex_lock(&qemu_global_mutex);
3886 if (env->stop) {
3887 env->stop = 0;
3888 env->stopped = 1;
3889 qemu_cond_signal(&qemu_pause_cond);
3893 static int qemu_cpu_exec(CPUState *env);
3895 static void *kvm_cpu_thread_fn(void *arg)
3897 CPUState *env = arg;
3899 block_io_signals();
3900 qemu_thread_self(env->thread);
3902 /* signal CPU creation */
3903 qemu_mutex_lock(&qemu_global_mutex);
3904 env->created = 1;
3905 qemu_cond_signal(&qemu_cpu_cond);
3907 /* and wait for machine initialization */
3908 while (!qemu_system_ready)
3909 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3911 while (1) {
3912 if (cpu_can_run(env))
3913 qemu_cpu_exec(env);
3914 qemu_wait_io_event(env);
3917 return NULL;
3920 static void tcg_cpu_exec(void);
3922 static void *tcg_cpu_thread_fn(void *arg)
3924 CPUState *env = arg;
3926 block_io_signals();
3927 qemu_thread_self(env->thread);
3929 /* signal CPU creation */
3930 qemu_mutex_lock(&qemu_global_mutex);
3931 for (env = first_cpu; env != NULL; env = env->next_cpu)
3932 env->created = 1;
3933 qemu_cond_signal(&qemu_cpu_cond);
3935 /* and wait for machine initialization */
3936 while (!qemu_system_ready)
3937 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3939 while (1) {
3940 tcg_cpu_exec();
3941 qemu_wait_io_event(cur_cpu);
3944 return NULL;
3947 void qemu_cpu_kick(void *_env)
3949 CPUState *env = _env;
3950 qemu_cond_broadcast(env->halt_cond);
3951 if (kvm_enabled())
3952 qemu_thread_signal(env->thread, SIGUSR1);
3955 int qemu_cpu_self(void *env)
3957 return (cpu_single_env != NULL);
3960 static void cpu_signal(int sig)
3962 if (cpu_single_env)
3963 cpu_exit(cpu_single_env);
3966 static void block_io_signals(void)
3968 sigset_t set;
3969 struct sigaction sigact;
3971 sigemptyset(&set);
3972 sigaddset(&set, SIGUSR2);
3973 sigaddset(&set, SIGIO);
3974 sigaddset(&set, SIGALRM);
3975 pthread_sigmask(SIG_BLOCK, &set, NULL);
3977 sigemptyset(&set);
3978 sigaddset(&set, SIGUSR1);
3979 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3981 memset(&sigact, 0, sizeof(sigact));
3982 sigact.sa_handler = cpu_signal;
3983 sigaction(SIGUSR1, &sigact, NULL);
3986 static void unblock_io_signals(void)
3988 sigset_t set;
3990 sigemptyset(&set);
3991 sigaddset(&set, SIGUSR2);
3992 sigaddset(&set, SIGIO);
3993 sigaddset(&set, SIGALRM);
3994 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3996 sigemptyset(&set);
3997 sigaddset(&set, SIGUSR1);
3998 pthread_sigmask(SIG_BLOCK, &set, NULL);
4001 static void qemu_signal_lock(unsigned int msecs)
4003 qemu_mutex_lock(&qemu_fair_mutex);
4005 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4006 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4007 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4008 break;
4010 qemu_mutex_unlock(&qemu_fair_mutex);
4013 static void qemu_mutex_lock_iothread(void)
4015 if (kvm_enabled()) {
4016 qemu_mutex_lock(&qemu_fair_mutex);
4017 qemu_mutex_lock(&qemu_global_mutex);
4018 qemu_mutex_unlock(&qemu_fair_mutex);
4019 } else
4020 qemu_signal_lock(100);
4023 static void qemu_mutex_unlock_iothread(void)
4025 qemu_mutex_unlock(&qemu_global_mutex);
4028 static int all_vcpus_paused(void)
4030 CPUState *penv = first_cpu;
4032 while (penv) {
4033 if (!penv->stopped)
4034 return 0;
4035 penv = (CPUState *)penv->next_cpu;
4038 return 1;
4041 static void pause_all_vcpus(void)
4043 CPUState *penv = first_cpu;
4045 while (penv) {
4046 penv->stop = 1;
4047 qemu_thread_signal(penv->thread, SIGUSR1);
4048 qemu_cpu_kick(penv);
4049 penv = (CPUState *)penv->next_cpu;
4052 while (!all_vcpus_paused()) {
4053 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4054 penv = first_cpu;
4055 while (penv) {
4056 qemu_thread_signal(penv->thread, SIGUSR1);
4057 penv = (CPUState *)penv->next_cpu;
4062 static void resume_all_vcpus(void)
4064 CPUState *penv = first_cpu;
4066 while (penv) {
4067 penv->stop = 0;
4068 penv->stopped = 0;
4069 qemu_thread_signal(penv->thread, SIGUSR1);
4070 qemu_cpu_kick(penv);
4071 penv = (CPUState *)penv->next_cpu;
4075 static void tcg_init_vcpu(void *_env)
4077 CPUState *env = _env;
4078 /* share a single thread for all cpus with TCG */
4079 if (!tcg_cpu_thread) {
4080 env->thread = qemu_mallocz(sizeof(QemuThread));
4081 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4082 qemu_cond_init(env->halt_cond);
4083 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4084 while (env->created == 0)
4085 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4086 tcg_cpu_thread = env->thread;
4087 tcg_halt_cond = env->halt_cond;
4088 } else {
4089 env->thread = tcg_cpu_thread;
4090 env->halt_cond = tcg_halt_cond;
4094 static void kvm_start_vcpu(CPUState *env)
4096 kvm_init_vcpu(env);
4097 env->thread = qemu_mallocz(sizeof(QemuThread));
4098 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4099 qemu_cond_init(env->halt_cond);
4100 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4101 while (env->created == 0)
4102 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4105 void qemu_init_vcpu(void *_env)
4107 CPUState *env = _env;
4109 if (kvm_enabled())
4110 kvm_start_vcpu(env);
4111 else
4112 tcg_init_vcpu(env);
4115 void qemu_notify_event(void)
4117 qemu_event_increment();
4120 void vm_stop(int reason)
4122 QemuThread me;
4123 qemu_thread_self(&me);
4125 if (!qemu_thread_equal(&me, &io_thread)) {
4126 qemu_system_vmstop_request(reason);
4128 * FIXME: should not return to device code in case
4129 * vm_stop() has been requested.
4131 if (cpu_single_env) {
4132 cpu_exit(cpu_single_env);
4133 cpu_single_env->stop = 1;
4135 return;
4137 do_vm_stop(reason);
4140 #endif
4143 #ifdef _WIN32
4144 static void host_main_loop_wait(int *timeout)
4146 int ret, ret2, i;
4147 PollingEntry *pe;
4150 /* XXX: need to suppress polling by better using win32 events */
4151 ret = 0;
4152 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4153 ret |= pe->func(pe->opaque);
4155 if (ret == 0) {
4156 int err;
4157 WaitObjects *w = &wait_objects;
4159 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4160 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4161 if (w->func[ret - WAIT_OBJECT_0])
4162 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4164 /* Check for additional signaled events */
4165 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4167 /* Check if event is signaled */
4168 ret2 = WaitForSingleObject(w->events[i], 0);
4169 if(ret2 == WAIT_OBJECT_0) {
4170 if (w->func[i])
4171 w->func[i](w->opaque[i]);
4172 } else if (ret2 == WAIT_TIMEOUT) {
4173 } else {
4174 err = GetLastError();
4175 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4178 } else if (ret == WAIT_TIMEOUT) {
4179 } else {
4180 err = GetLastError();
4181 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4185 *timeout = 0;
4187 #else
4188 static void host_main_loop_wait(int *timeout)
4191 #endif
4193 void main_loop_wait(int timeout)
4195 IOHandlerRecord *ioh;
4196 fd_set rfds, wfds, xfds;
4197 int ret, nfds;
4198 struct timeval tv;
4200 qemu_bh_update_timeout(&timeout);
4202 host_main_loop_wait(&timeout);
4204 /* poll any events */
4205 /* XXX: separate device handlers from system ones */
4206 nfds = -1;
4207 FD_ZERO(&rfds);
4208 FD_ZERO(&wfds);
4209 FD_ZERO(&xfds);
4210 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4211 if (ioh->deleted)
4212 continue;
4213 if (ioh->fd_read &&
4214 (!ioh->fd_read_poll ||
4215 ioh->fd_read_poll(ioh->opaque) != 0)) {
4216 FD_SET(ioh->fd, &rfds);
4217 if (ioh->fd > nfds)
4218 nfds = ioh->fd;
4220 if (ioh->fd_write) {
4221 FD_SET(ioh->fd, &wfds);
4222 if (ioh->fd > nfds)
4223 nfds = ioh->fd;
4227 tv.tv_sec = timeout / 1000;
4228 tv.tv_usec = (timeout % 1000) * 1000;
4230 #if defined(CONFIG_SLIRP)
4231 if (slirp_is_inited()) {
4232 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4234 #endif
4235 qemu_mutex_unlock_iothread();
4236 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4237 qemu_mutex_lock_iothread();
4238 if (ret > 0) {
4239 IOHandlerRecord **pioh;
4241 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4242 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4243 ioh->fd_read(ioh->opaque);
4245 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4246 ioh->fd_write(ioh->opaque);
4250 /* remove deleted IO handlers */
4251 pioh = &first_io_handler;
4252 while (*pioh) {
4253 ioh = *pioh;
4254 if (ioh->deleted) {
4255 *pioh = ioh->next;
4256 qemu_free(ioh);
4257 } else
4258 pioh = &ioh->next;
4261 #if defined(CONFIG_SLIRP)
4262 if (slirp_is_inited()) {
4263 if (ret < 0) {
4264 FD_ZERO(&rfds);
4265 FD_ZERO(&wfds);
4266 FD_ZERO(&xfds);
4268 slirp_select_poll(&rfds, &wfds, &xfds);
4270 #endif
4272 /* rearm timer, if not periodic */
4273 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4274 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4275 qemu_rearm_alarm_timer(alarm_timer);
4278 /* vm time timers */
4279 if (vm_running) {
4280 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4281 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4282 qemu_get_clock(vm_clock));
4285 /* real time timers */
4286 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4287 qemu_get_clock(rt_clock));
4289 /* Check bottom-halves last in case any of the earlier events triggered
4290 them. */
4291 qemu_bh_poll();
4295 static int qemu_cpu_exec(CPUState *env)
4297 int ret;
4298 #ifdef CONFIG_PROFILER
4299 int64_t ti;
4300 #endif
4302 #ifdef CONFIG_PROFILER
4303 ti = profile_getclock();
4304 #endif
4305 if (use_icount) {
4306 int64_t count;
4307 int decr;
4308 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4309 env->icount_decr.u16.low = 0;
4310 env->icount_extra = 0;
4311 count = qemu_next_deadline();
4312 count = (count + (1 << icount_time_shift) - 1)
4313 >> icount_time_shift;
4314 qemu_icount += count;
4315 decr = (count > 0xffff) ? 0xffff : count;
4316 count -= decr;
4317 env->icount_decr.u16.low = decr;
4318 env->icount_extra = count;
4320 ret = cpu_exec(env);
4321 #ifdef CONFIG_PROFILER
4322 qemu_time += profile_getclock() - ti;
4323 #endif
4324 if (use_icount) {
4325 /* Fold pending instructions back into the
4326 instruction counter, and clear the interrupt flag. */
4327 qemu_icount -= (env->icount_decr.u16.low
4328 + env->icount_extra);
4329 env->icount_decr.u32 = 0;
4330 env->icount_extra = 0;
4332 return ret;
4335 static void tcg_cpu_exec(void)
4337 int ret = 0;
4339 if (next_cpu == NULL)
4340 next_cpu = first_cpu;
4341 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4342 CPUState *env = cur_cpu = next_cpu;
4344 if (!vm_running)
4345 break;
4346 if (timer_alarm_pending) {
4347 timer_alarm_pending = 0;
4348 break;
4350 if (cpu_can_run(env))
4351 ret = qemu_cpu_exec(env);
4352 if (ret == EXCP_DEBUG) {
4353 gdb_set_stop_cpu(env);
4354 debug_requested = 1;
4355 break;
4360 static int cpu_has_work(CPUState *env)
4362 if (env->stop)
4363 return 1;
4364 if (env->stopped)
4365 return 0;
4366 if (!env->halted)
4367 return 1;
4368 if (qemu_cpu_has_work(env))
4369 return 1;
4370 return 0;
4373 static int tcg_has_work(void)
4375 CPUState *env;
4377 for (env = first_cpu; env != NULL; env = env->next_cpu)
4378 if (cpu_has_work(env))
4379 return 1;
4380 return 0;
4383 static int qemu_calculate_timeout(void)
4385 int timeout;
4387 if (!vm_running)
4388 timeout = 5000;
4389 else if (tcg_has_work())
4390 timeout = 0;
4391 else if (!use_icount)
4392 timeout = 5000;
4393 else {
4394 /* XXX: use timeout computed from timers */
4395 int64_t add;
4396 int64_t delta;
4397 /* Advance virtual time to the next event. */
4398 if (use_icount == 1) {
4399 /* When not using an adaptive execution frequency
4400 we tend to get badly out of sync with real time,
4401 so just delay for a reasonable amount of time. */
4402 delta = 0;
4403 } else {
4404 delta = cpu_get_icount() - cpu_get_clock();
4406 if (delta > 0) {
4407 /* If virtual time is ahead of real time then just
4408 wait for IO. */
4409 timeout = (delta / 1000000) + 1;
4410 } else {
4411 /* Wait for either IO to occur or the next
4412 timer event. */
4413 add = qemu_next_deadline();
4414 /* We advance the timer before checking for IO.
4415 Limit the amount we advance so that early IO
4416 activity won't get the guest too far ahead. */
4417 if (add > 10000000)
4418 add = 10000000;
4419 delta += add;
4420 add = (add + (1 << icount_time_shift) - 1)
4421 >> icount_time_shift;
4422 qemu_icount += add;
4423 timeout = delta / 1000000;
4424 if (timeout < 0)
4425 timeout = 0;
4429 return timeout;
4432 static int vm_can_run(void)
4434 if (powerdown_requested)
4435 return 0;
4436 if (reset_requested)
4437 return 0;
4438 if (shutdown_requested)
4439 return 0;
4440 if (debug_requested)
4441 return 0;
4442 return 1;
4445 static void main_loop(void)
4447 int r;
4449 #ifdef CONFIG_IOTHREAD
4450 qemu_system_ready = 1;
4451 qemu_cond_broadcast(&qemu_system_cond);
4452 #endif
4454 for (;;) {
4455 do {
4456 #ifdef CONFIG_PROFILER
4457 int64_t ti;
4458 #endif
4459 #ifndef CONFIG_IOTHREAD
4460 tcg_cpu_exec();
4461 #endif
4462 #ifdef CONFIG_PROFILER
4463 ti = profile_getclock();
4464 #endif
4465 #ifdef CONFIG_IOTHREAD
4466 main_loop_wait(1000);
4467 #else
4468 main_loop_wait(qemu_calculate_timeout());
4469 #endif
4470 #ifdef CONFIG_PROFILER
4471 dev_time += profile_getclock() - ti;
4472 #endif
4473 } while (vm_can_run());
4475 if (qemu_debug_requested())
4476 vm_stop(EXCP_DEBUG);
4477 if (qemu_shutdown_requested()) {
4478 if (no_shutdown) {
4479 vm_stop(0);
4480 no_shutdown = 0;
4481 } else
4482 break;
4484 if (qemu_reset_requested()) {
4485 pause_all_vcpus();
4486 qemu_system_reset();
4487 resume_all_vcpus();
4489 if (qemu_powerdown_requested())
4490 qemu_system_powerdown();
4491 if ((r = qemu_vmstop_requested()))
4492 vm_stop(r);
4494 pause_all_vcpus();
4497 static void version(void)
4499 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4502 static void help(int exitcode)
4504 version();
4505 printf("usage: %s [options] [disk_image]\n"
4506 "\n"
4507 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4508 "\n"
4509 #define DEF(option, opt_arg, opt_enum, opt_help) \
4510 opt_help
4511 #define DEFHEADING(text) stringify(text) "\n"
4512 #include "qemu-options.h"
4513 #undef DEF
4514 #undef DEFHEADING
4515 #undef GEN_DOCS
4516 "\n"
4517 "During emulation, the following keys are useful:\n"
4518 "ctrl-alt-f toggle full screen\n"
4519 "ctrl-alt-n switch to virtual console 'n'\n"
4520 "ctrl-alt toggle mouse and keyboard grab\n"
4521 "\n"
4522 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4524 "qemu",
4525 DEFAULT_RAM_SIZE,
4526 #ifndef _WIN32
4527 DEFAULT_NETWORK_SCRIPT,
4528 DEFAULT_NETWORK_DOWN_SCRIPT,
4529 #endif
4530 DEFAULT_GDBSTUB_PORT,
4531 "/tmp/qemu.log");
4532 exit(exitcode);
4535 #define HAS_ARG 0x0001
4537 enum {
4538 #define DEF(option, opt_arg, opt_enum, opt_help) \
4539 opt_enum,
4540 #define DEFHEADING(text)
4541 #include "qemu-options.h"
4542 #undef DEF
4543 #undef DEFHEADING
4544 #undef GEN_DOCS
4547 typedef struct QEMUOption {
4548 const char *name;
4549 int flags;
4550 int index;
4551 } QEMUOption;
4553 static const QEMUOption qemu_options[] = {
4554 { "h", 0, QEMU_OPTION_h },
4555 #define DEF(option, opt_arg, opt_enum, opt_help) \
4556 { option, opt_arg, opt_enum },
4557 #define DEFHEADING(text)
4558 #include "qemu-options.h"
4559 #undef DEF
4560 #undef DEFHEADING
4561 #undef GEN_DOCS
4562 { NULL },
4565 #ifdef HAS_AUDIO
4566 struct soundhw soundhw[] = {
4567 #ifdef HAS_AUDIO_CHOICE
4568 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4570 "pcspk",
4571 "PC speaker",
4574 { .init_isa = pcspk_audio_init }
4576 #endif
4578 #ifdef CONFIG_SB16
4580 "sb16",
4581 "Creative Sound Blaster 16",
4584 { .init_isa = SB16_init }
4586 #endif
4588 #ifdef CONFIG_CS4231A
4590 "cs4231a",
4591 "CS4231A",
4594 { .init_isa = cs4231a_init }
4596 #endif
4598 #ifdef CONFIG_ADLIB
4600 "adlib",
4601 #ifdef HAS_YMF262
4602 "Yamaha YMF262 (OPL3)",
4603 #else
4604 "Yamaha YM3812 (OPL2)",
4605 #endif
4608 { .init_isa = Adlib_init }
4610 #endif
4612 #ifdef CONFIG_GUS
4614 "gus",
4615 "Gravis Ultrasound GF1",
4618 { .init_isa = GUS_init }
4620 #endif
4622 #ifdef CONFIG_AC97
4624 "ac97",
4625 "Intel 82801AA AC97 Audio",
4628 { .init_pci = ac97_init }
4630 #endif
4632 #ifdef CONFIG_ES1370
4634 "es1370",
4635 "ENSONIQ AudioPCI ES1370",
4638 { .init_pci = es1370_init }
4640 #endif
4642 #endif /* HAS_AUDIO_CHOICE */
4644 { NULL, NULL, 0, 0, { NULL } }
4647 static void select_soundhw (const char *optarg)
4649 struct soundhw *c;
4651 if (*optarg == '?') {
4652 show_valid_cards:
4654 printf ("Valid sound card names (comma separated):\n");
4655 for (c = soundhw; c->name; ++c) {
4656 printf ("%-11s %s\n", c->name, c->descr);
4658 printf ("\n-soundhw all will enable all of the above\n");
4659 exit (*optarg != '?');
4661 else {
4662 size_t l;
4663 const char *p;
4664 char *e;
4665 int bad_card = 0;
4667 if (!strcmp (optarg, "all")) {
4668 for (c = soundhw; c->name; ++c) {
4669 c->enabled = 1;
4671 return;
4674 p = optarg;
4675 while (*p) {
4676 e = strchr (p, ',');
4677 l = !e ? strlen (p) : (size_t) (e - p);
4679 for (c = soundhw; c->name; ++c) {
4680 if (!strncmp (c->name, p, l)) {
4681 c->enabled = 1;
4682 break;
4686 if (!c->name) {
4687 if (l > 80) {
4688 fprintf (stderr,
4689 "Unknown sound card name (too big to show)\n");
4691 else {
4692 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4693 (int) l, p);
4695 bad_card = 1;
4697 p += l + (e != NULL);
4700 if (bad_card)
4701 goto show_valid_cards;
4704 #endif
4706 static void select_vgahw (const char *p)
4708 const char *opts;
4710 cirrus_vga_enabled = 0;
4711 std_vga_enabled = 0;
4712 vmsvga_enabled = 0;
4713 xenfb_enabled = 0;
4714 if (strstart(p, "std", &opts)) {
4715 std_vga_enabled = 1;
4716 } else if (strstart(p, "cirrus", &opts)) {
4717 cirrus_vga_enabled = 1;
4718 } else if (strstart(p, "vmware", &opts)) {
4719 vmsvga_enabled = 1;
4720 } else if (strstart(p, "xenfb", &opts)) {
4721 xenfb_enabled = 1;
4722 } else if (!strstart(p, "none", &opts)) {
4723 invalid_vga:
4724 fprintf(stderr, "Unknown vga type: %s\n", p);
4725 exit(1);
4727 while (*opts) {
4728 const char *nextopt;
4730 if (strstart(opts, ",retrace=", &nextopt)) {
4731 opts = nextopt;
4732 if (strstart(opts, "dumb", &nextopt))
4733 vga_retrace_method = VGA_RETRACE_DUMB;
4734 else if (strstart(opts, "precise", &nextopt))
4735 vga_retrace_method = VGA_RETRACE_PRECISE;
4736 else goto invalid_vga;
4737 } else goto invalid_vga;
4738 opts = nextopt;
4742 #ifdef _WIN32
4743 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4745 exit(STATUS_CONTROL_C_EXIT);
4746 return TRUE;
4748 #endif
4750 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4752 int ret;
4754 if(strlen(str) != 36)
4755 return -1;
4757 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4758 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4759 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4761 if(ret != 16)
4762 return -1;
4764 #ifdef TARGET_I386
4765 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4766 #endif
4768 return 0;
4771 #define MAX_NET_CLIENTS 32
4773 #ifndef _WIN32
4775 static void termsig_handler(int signal)
4777 qemu_system_shutdown_request();
4780 static void termsig_setup(void)
4782 struct sigaction act;
4784 memset(&act, 0, sizeof(act));
4785 act.sa_handler = termsig_handler;
4786 sigaction(SIGINT, &act, NULL);
4787 sigaction(SIGHUP, &act, NULL);
4788 sigaction(SIGTERM, &act, NULL);
4791 #endif
4793 int main(int argc, char **argv, char **envp)
4795 const char *gdbstub_dev = NULL;
4796 uint32_t boot_devices_bitmap = 0;
4797 int i;
4798 int snapshot, linux_boot, net_boot;
4799 const char *initrd_filename;
4800 const char *kernel_filename, *kernel_cmdline;
4801 const char *boot_devices = "";
4802 DisplayState *ds;
4803 DisplayChangeListener *dcl;
4804 int cyls, heads, secs, translation;
4805 const char *net_clients[MAX_NET_CLIENTS];
4806 int nb_net_clients;
4807 const char *bt_opts[MAX_BT_CMDLINE];
4808 int nb_bt_opts;
4809 int hda_index;
4810 int optind;
4811 const char *r, *optarg;
4812 CharDriverState *monitor_hd = NULL;
4813 const char *monitor_device;
4814 const char *serial_devices[MAX_SERIAL_PORTS];
4815 int serial_device_index;
4816 const char *parallel_devices[MAX_PARALLEL_PORTS];
4817 int parallel_device_index;
4818 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4819 int virtio_console_index;
4820 const char *loadvm = NULL;
4821 QEMUMachine *machine;
4822 const char *cpu_model;
4823 const char *usb_devices[MAX_USB_CMDLINE];
4824 int usb_devices_index;
4825 #ifndef _WIN32
4826 int fds[2];
4827 #endif
4828 int tb_size;
4829 const char *pid_file = NULL;
4830 const char *incoming = NULL;
4831 #ifndef _WIN32
4832 int fd = 0;
4833 struct passwd *pwd = NULL;
4834 const char *chroot_dir = NULL;
4835 const char *run_as = NULL;
4836 #endif
4837 CPUState *env;
4839 qemu_cache_utils_init(envp);
4841 LIST_INIT (&vm_change_state_head);
4842 #ifndef _WIN32
4844 struct sigaction act;
4845 sigfillset(&act.sa_mask);
4846 act.sa_flags = 0;
4847 act.sa_handler = SIG_IGN;
4848 sigaction(SIGPIPE, &act, NULL);
4850 #else
4851 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4852 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4853 QEMU to run on a single CPU */
4855 HANDLE h;
4856 DWORD mask, smask;
4857 int i;
4858 h = GetCurrentProcess();
4859 if (GetProcessAffinityMask(h, &mask, &smask)) {
4860 for(i = 0; i < 32; i++) {
4861 if (mask & (1 << i))
4862 break;
4864 if (i != 32) {
4865 mask = 1 << i;
4866 SetProcessAffinityMask(h, mask);
4870 #endif
4872 register_machines();
4873 machine = first_machine;
4874 cpu_model = NULL;
4875 initrd_filename = NULL;
4876 ram_size = 0;
4877 snapshot = 0;
4878 nographic = 0;
4879 curses = 0;
4880 kernel_filename = NULL;
4881 kernel_cmdline = "";
4882 cyls = heads = secs = 0;
4883 translation = BIOS_ATA_TRANSLATION_AUTO;
4884 monitor_device = "vc:80Cx24C";
4886 serial_devices[0] = "vc:80Cx24C";
4887 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4888 serial_devices[i] = NULL;
4889 serial_device_index = 0;
4891 parallel_devices[0] = "vc:80Cx24C";
4892 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4893 parallel_devices[i] = NULL;
4894 parallel_device_index = 0;
4896 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4897 virtio_consoles[i] = NULL;
4898 virtio_console_index = 0;
4900 for (i = 0; i < MAX_NODES; i++) {
4901 node_mem[i] = 0;
4902 node_cpumask[i] = 0;
4905 usb_devices_index = 0;
4907 nb_net_clients = 0;
4908 nb_bt_opts = 0;
4909 nb_drives = 0;
4910 nb_drives_opt = 0;
4911 nb_numa_nodes = 0;
4912 hda_index = -1;
4914 nb_nics = 0;
4916 tb_size = 0;
4917 autostart= 1;
4919 register_watchdogs();
4921 optind = 1;
4922 for(;;) {
4923 if (optind >= argc)
4924 break;
4925 r = argv[optind];
4926 if (r[0] != '-') {
4927 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4928 } else {
4929 const QEMUOption *popt;
4931 optind++;
4932 /* Treat --foo the same as -foo. */
4933 if (r[1] == '-')
4934 r++;
4935 popt = qemu_options;
4936 for(;;) {
4937 if (!popt->name) {
4938 fprintf(stderr, "%s: invalid option -- '%s'\n",
4939 argv[0], r);
4940 exit(1);
4942 if (!strcmp(popt->name, r + 1))
4943 break;
4944 popt++;
4946 if (popt->flags & HAS_ARG) {
4947 if (optind >= argc) {
4948 fprintf(stderr, "%s: option '%s' requires an argument\n",
4949 argv[0], r);
4950 exit(1);
4952 optarg = argv[optind++];
4953 } else {
4954 optarg = NULL;
4957 switch(popt->index) {
4958 case QEMU_OPTION_M:
4959 machine = find_machine(optarg);
4960 if (!machine) {
4961 QEMUMachine *m;
4962 printf("Supported machines are:\n");
4963 for(m = first_machine; m != NULL; m = m->next) {
4964 printf("%-10s %s%s\n",
4965 m->name, m->desc,
4966 m == first_machine ? " (default)" : "");
4968 exit(*optarg != '?');
4970 break;
4971 case QEMU_OPTION_cpu:
4972 /* hw initialization will check this */
4973 if (*optarg == '?') {
4974 /* XXX: implement xxx_cpu_list for targets that still miss it */
4975 #if defined(cpu_list)
4976 cpu_list(stdout, &fprintf);
4977 #endif
4978 exit(0);
4979 } else {
4980 cpu_model = optarg;
4982 break;
4983 case QEMU_OPTION_initrd:
4984 initrd_filename = optarg;
4985 break;
4986 case QEMU_OPTION_hda:
4987 if (cyls == 0)
4988 hda_index = drive_add(optarg, HD_ALIAS, 0);
4989 else
4990 hda_index = drive_add(optarg, HD_ALIAS
4991 ",cyls=%d,heads=%d,secs=%d%s",
4992 0, cyls, heads, secs,
4993 translation == BIOS_ATA_TRANSLATION_LBA ?
4994 ",trans=lba" :
4995 translation == BIOS_ATA_TRANSLATION_NONE ?
4996 ",trans=none" : "");
4997 break;
4998 case QEMU_OPTION_hdb:
4999 case QEMU_OPTION_hdc:
5000 case QEMU_OPTION_hdd:
5001 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5002 break;
5003 case QEMU_OPTION_drive:
5004 drive_add(NULL, "%s", optarg);
5005 break;
5006 case QEMU_OPTION_mtdblock:
5007 drive_add(optarg, MTD_ALIAS);
5008 break;
5009 case QEMU_OPTION_sd:
5010 drive_add(optarg, SD_ALIAS);
5011 break;
5012 case QEMU_OPTION_pflash:
5013 drive_add(optarg, PFLASH_ALIAS);
5014 break;
5015 case QEMU_OPTION_snapshot:
5016 snapshot = 1;
5017 break;
5018 case QEMU_OPTION_hdachs:
5020 const char *p;
5021 p = optarg;
5022 cyls = strtol(p, (char **)&p, 0);
5023 if (cyls < 1 || cyls > 16383)
5024 goto chs_fail;
5025 if (*p != ',')
5026 goto chs_fail;
5027 p++;
5028 heads = strtol(p, (char **)&p, 0);
5029 if (heads < 1 || heads > 16)
5030 goto chs_fail;
5031 if (*p != ',')
5032 goto chs_fail;
5033 p++;
5034 secs = strtol(p, (char **)&p, 0);
5035 if (secs < 1 || secs > 63)
5036 goto chs_fail;
5037 if (*p == ',') {
5038 p++;
5039 if (!strcmp(p, "none"))
5040 translation = BIOS_ATA_TRANSLATION_NONE;
5041 else if (!strcmp(p, "lba"))
5042 translation = BIOS_ATA_TRANSLATION_LBA;
5043 else if (!strcmp(p, "auto"))
5044 translation = BIOS_ATA_TRANSLATION_AUTO;
5045 else
5046 goto chs_fail;
5047 } else if (*p != '\0') {
5048 chs_fail:
5049 fprintf(stderr, "qemu: invalid physical CHS format\n");
5050 exit(1);
5052 if (hda_index != -1)
5053 snprintf(drives_opt[hda_index].opt,
5054 sizeof(drives_opt[hda_index].opt),
5055 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5056 0, cyls, heads, secs,
5057 translation == BIOS_ATA_TRANSLATION_LBA ?
5058 ",trans=lba" :
5059 translation == BIOS_ATA_TRANSLATION_NONE ?
5060 ",trans=none" : "");
5062 break;
5063 case QEMU_OPTION_numa:
5064 if (nb_numa_nodes >= MAX_NODES) {
5065 fprintf(stderr, "qemu: too many NUMA nodes\n");
5066 exit(1);
5068 numa_add(optarg);
5069 break;
5070 case QEMU_OPTION_nographic:
5071 nographic = 1;
5072 break;
5073 #ifdef CONFIG_CURSES
5074 case QEMU_OPTION_curses:
5075 curses = 1;
5076 break;
5077 #endif
5078 case QEMU_OPTION_portrait:
5079 graphic_rotate = 1;
5080 break;
5081 case QEMU_OPTION_kernel:
5082 kernel_filename = optarg;
5083 break;
5084 case QEMU_OPTION_append:
5085 kernel_cmdline = optarg;
5086 break;
5087 case QEMU_OPTION_cdrom:
5088 drive_add(optarg, CDROM_ALIAS);
5089 break;
5090 case QEMU_OPTION_boot:
5091 boot_devices = optarg;
5092 /* We just do some generic consistency checks */
5094 /* Could easily be extended to 64 devices if needed */
5095 const char *p;
5097 boot_devices_bitmap = 0;
5098 for (p = boot_devices; *p != '\0'; p++) {
5099 /* Allowed boot devices are:
5100 * a b : floppy disk drives
5101 * c ... f : IDE disk drives
5102 * g ... m : machine implementation dependant drives
5103 * n ... p : network devices
5104 * It's up to each machine implementation to check
5105 * if the given boot devices match the actual hardware
5106 * implementation and firmware features.
5108 if (*p < 'a' || *p > 'q') {
5109 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5110 exit(1);
5112 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5113 fprintf(stderr,
5114 "Boot device '%c' was given twice\n",*p);
5115 exit(1);
5117 boot_devices_bitmap |= 1 << (*p - 'a');
5120 break;
5121 case QEMU_OPTION_fda:
5122 case QEMU_OPTION_fdb:
5123 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5124 break;
5125 #ifdef TARGET_I386
5126 case QEMU_OPTION_no_fd_bootchk:
5127 fd_bootchk = 0;
5128 break;
5129 #endif
5130 case QEMU_OPTION_net:
5131 if (nb_net_clients >= MAX_NET_CLIENTS) {
5132 fprintf(stderr, "qemu: too many network clients\n");
5133 exit(1);
5135 net_clients[nb_net_clients] = optarg;
5136 nb_net_clients++;
5137 break;
5138 #ifdef CONFIG_SLIRP
5139 case QEMU_OPTION_tftp:
5140 tftp_prefix = optarg;
5141 break;
5142 case QEMU_OPTION_bootp:
5143 bootp_filename = optarg;
5144 break;
5145 #ifndef _WIN32
5146 case QEMU_OPTION_smb:
5147 net_slirp_smb(optarg);
5148 break;
5149 #endif
5150 case QEMU_OPTION_redir:
5151 net_slirp_redir(NULL, optarg);
5152 break;
5153 #endif
5154 case QEMU_OPTION_bt:
5155 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5156 fprintf(stderr, "qemu: too many bluetooth options\n");
5157 exit(1);
5159 bt_opts[nb_bt_opts++] = optarg;
5160 break;
5161 #ifdef HAS_AUDIO
5162 case QEMU_OPTION_audio_help:
5163 AUD_help ();
5164 exit (0);
5165 break;
5166 case QEMU_OPTION_soundhw:
5167 select_soundhw (optarg);
5168 break;
5169 #endif
5170 case QEMU_OPTION_h:
5171 help(0);
5172 break;
5173 case QEMU_OPTION_version:
5174 version();
5175 exit(0);
5176 break;
5177 case QEMU_OPTION_m: {
5178 uint64_t value;
5179 char *ptr;
5181 value = strtoul(optarg, &ptr, 10);
5182 switch (*ptr) {
5183 case 0: case 'M': case 'm':
5184 value <<= 20;
5185 break;
5186 case 'G': case 'g':
5187 value <<= 30;
5188 break;
5189 default:
5190 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5191 exit(1);
5194 /* On 32-bit hosts, QEMU is limited by virtual address space */
5195 if (value > (2047 << 20)
5196 #ifndef CONFIG_KQEMU
5197 && HOST_LONG_BITS == 32
5198 #endif
5200 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5201 exit(1);
5203 if (value != (uint64_t)(ram_addr_t)value) {
5204 fprintf(stderr, "qemu: ram size too large\n");
5205 exit(1);
5207 ram_size = value;
5208 break;
5210 case QEMU_OPTION_d:
5212 int mask;
5213 const CPULogItem *item;
5215 mask = cpu_str_to_log_mask(optarg);
5216 if (!mask) {
5217 printf("Log items (comma separated):\n");
5218 for(item = cpu_log_items; item->mask != 0; item++) {
5219 printf("%-10s %s\n", item->name, item->help);
5221 exit(1);
5223 cpu_set_log(mask);
5225 break;
5226 case QEMU_OPTION_s:
5227 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5228 break;
5229 case QEMU_OPTION_gdb:
5230 gdbstub_dev = optarg;
5231 break;
5232 case QEMU_OPTION_L:
5233 bios_dir = optarg;
5234 break;
5235 case QEMU_OPTION_bios:
5236 bios_name = optarg;
5237 break;
5238 case QEMU_OPTION_singlestep:
5239 singlestep = 1;
5240 break;
5241 case QEMU_OPTION_S:
5242 autostart = 0;
5243 break;
5244 #ifndef _WIN32
5245 case QEMU_OPTION_k:
5246 keyboard_layout = optarg;
5247 break;
5248 #endif
5249 case QEMU_OPTION_localtime:
5250 rtc_utc = 0;
5251 break;
5252 case QEMU_OPTION_vga:
5253 select_vgahw (optarg);
5254 break;
5255 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5256 case QEMU_OPTION_g:
5258 const char *p;
5259 int w, h, depth;
5260 p = optarg;
5261 w = strtol(p, (char **)&p, 10);
5262 if (w <= 0) {
5263 graphic_error:
5264 fprintf(stderr, "qemu: invalid resolution or depth\n");
5265 exit(1);
5267 if (*p != 'x')
5268 goto graphic_error;
5269 p++;
5270 h = strtol(p, (char **)&p, 10);
5271 if (h <= 0)
5272 goto graphic_error;
5273 if (*p == 'x') {
5274 p++;
5275 depth = strtol(p, (char **)&p, 10);
5276 if (depth != 8 && depth != 15 && depth != 16 &&
5277 depth != 24 && depth != 32)
5278 goto graphic_error;
5279 } else if (*p == '\0') {
5280 depth = graphic_depth;
5281 } else {
5282 goto graphic_error;
5285 graphic_width = w;
5286 graphic_height = h;
5287 graphic_depth = depth;
5289 break;
5290 #endif
5291 case QEMU_OPTION_echr:
5293 char *r;
5294 term_escape_char = strtol(optarg, &r, 0);
5295 if (r == optarg)
5296 printf("Bad argument to echr\n");
5297 break;
5299 case QEMU_OPTION_monitor:
5300 monitor_device = optarg;
5301 break;
5302 case QEMU_OPTION_serial:
5303 if (serial_device_index >= MAX_SERIAL_PORTS) {
5304 fprintf(stderr, "qemu: too many serial ports\n");
5305 exit(1);
5307 serial_devices[serial_device_index] = optarg;
5308 serial_device_index++;
5309 break;
5310 case QEMU_OPTION_watchdog:
5311 i = select_watchdog(optarg);
5312 if (i > 0)
5313 exit (i == 1 ? 1 : 0);
5314 break;
5315 case QEMU_OPTION_watchdog_action:
5316 if (select_watchdog_action(optarg) == -1) {
5317 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5318 exit(1);
5320 break;
5321 case QEMU_OPTION_virtiocon:
5322 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5323 fprintf(stderr, "qemu: too many virtio consoles\n");
5324 exit(1);
5326 virtio_consoles[virtio_console_index] = optarg;
5327 virtio_console_index++;
5328 break;
5329 case QEMU_OPTION_parallel:
5330 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5331 fprintf(stderr, "qemu: too many parallel ports\n");
5332 exit(1);
5334 parallel_devices[parallel_device_index] = optarg;
5335 parallel_device_index++;
5336 break;
5337 case QEMU_OPTION_loadvm:
5338 loadvm = optarg;
5339 break;
5340 case QEMU_OPTION_full_screen:
5341 full_screen = 1;
5342 break;
5343 #ifdef CONFIG_SDL
5344 case QEMU_OPTION_no_frame:
5345 no_frame = 1;
5346 break;
5347 case QEMU_OPTION_alt_grab:
5348 alt_grab = 1;
5349 break;
5350 case QEMU_OPTION_no_quit:
5351 no_quit = 1;
5352 break;
5353 case QEMU_OPTION_sdl:
5354 sdl = 1;
5355 break;
5356 #endif
5357 case QEMU_OPTION_pidfile:
5358 pid_file = optarg;
5359 break;
5360 #ifdef TARGET_I386
5361 case QEMU_OPTION_win2k_hack:
5362 win2k_install_hack = 1;
5363 break;
5364 case QEMU_OPTION_rtc_td_hack:
5365 rtc_td_hack = 1;
5366 break;
5367 case QEMU_OPTION_acpitable:
5368 if(acpi_table_add(optarg) < 0) {
5369 fprintf(stderr, "Wrong acpi table provided\n");
5370 exit(1);
5372 break;
5373 case QEMU_OPTION_smbios:
5374 if(smbios_entry_add(optarg) < 0) {
5375 fprintf(stderr, "Wrong smbios provided\n");
5376 exit(1);
5378 break;
5379 #endif
5380 #ifdef CONFIG_KQEMU
5381 case QEMU_OPTION_no_kqemu:
5382 kqemu_allowed = 0;
5383 break;
5384 case QEMU_OPTION_kernel_kqemu:
5385 kqemu_allowed = 2;
5386 break;
5387 #endif
5388 #ifdef CONFIG_KVM
5389 case QEMU_OPTION_enable_kvm:
5390 kvm_allowed = 1;
5391 #ifdef CONFIG_KQEMU
5392 kqemu_allowed = 0;
5393 #endif
5394 break;
5395 #endif
5396 case QEMU_OPTION_usb:
5397 usb_enabled = 1;
5398 break;
5399 case QEMU_OPTION_usbdevice:
5400 usb_enabled = 1;
5401 if (usb_devices_index >= MAX_USB_CMDLINE) {
5402 fprintf(stderr, "Too many USB devices\n");
5403 exit(1);
5405 usb_devices[usb_devices_index] = optarg;
5406 usb_devices_index++;
5407 break;
5408 case QEMU_OPTION_smp:
5409 smp_cpus = atoi(optarg);
5410 if (smp_cpus < 1) {
5411 fprintf(stderr, "Invalid number of CPUs\n");
5412 exit(1);
5414 break;
5415 case QEMU_OPTION_vnc:
5416 vnc_display = optarg;
5417 break;
5418 #ifdef TARGET_I386
5419 case QEMU_OPTION_no_acpi:
5420 acpi_enabled = 0;
5421 break;
5422 case QEMU_OPTION_no_hpet:
5423 no_hpet = 1;
5424 break;
5425 #endif
5426 case QEMU_OPTION_no_reboot:
5427 no_reboot = 1;
5428 break;
5429 case QEMU_OPTION_no_shutdown:
5430 no_shutdown = 1;
5431 break;
5432 case QEMU_OPTION_show_cursor:
5433 cursor_hide = 0;
5434 break;
5435 case QEMU_OPTION_uuid:
5436 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5437 fprintf(stderr, "Fail to parse UUID string."
5438 " Wrong format.\n");
5439 exit(1);
5441 break;
5442 #ifndef _WIN32
5443 case QEMU_OPTION_daemonize:
5444 daemonize = 1;
5445 break;
5446 #endif
5447 case QEMU_OPTION_option_rom:
5448 if (nb_option_roms >= MAX_OPTION_ROMS) {
5449 fprintf(stderr, "Too many option ROMs\n");
5450 exit(1);
5452 option_rom[nb_option_roms] = optarg;
5453 nb_option_roms++;
5454 break;
5455 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5456 case QEMU_OPTION_semihosting:
5457 semihosting_enabled = 1;
5458 break;
5459 #endif
5460 case QEMU_OPTION_name:
5461 qemu_name = optarg;
5462 break;
5463 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5464 case QEMU_OPTION_prom_env:
5465 if (nb_prom_envs >= MAX_PROM_ENVS) {
5466 fprintf(stderr, "Too many prom variables\n");
5467 exit(1);
5469 prom_envs[nb_prom_envs] = optarg;
5470 nb_prom_envs++;
5471 break;
5472 #endif
5473 #ifdef TARGET_ARM
5474 case QEMU_OPTION_old_param:
5475 old_param = 1;
5476 break;
5477 #endif
5478 case QEMU_OPTION_clock:
5479 configure_alarms(optarg);
5480 break;
5481 case QEMU_OPTION_startdate:
5483 struct tm tm;
5484 time_t rtc_start_date;
5485 if (!strcmp(optarg, "now")) {
5486 rtc_date_offset = -1;
5487 } else {
5488 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5489 &tm.tm_year,
5490 &tm.tm_mon,
5491 &tm.tm_mday,
5492 &tm.tm_hour,
5493 &tm.tm_min,
5494 &tm.tm_sec) == 6) {
5495 /* OK */
5496 } else if (sscanf(optarg, "%d-%d-%d",
5497 &tm.tm_year,
5498 &tm.tm_mon,
5499 &tm.tm_mday) == 3) {
5500 tm.tm_hour = 0;
5501 tm.tm_min = 0;
5502 tm.tm_sec = 0;
5503 } else {
5504 goto date_fail;
5506 tm.tm_year -= 1900;
5507 tm.tm_mon--;
5508 rtc_start_date = mktimegm(&tm);
5509 if (rtc_start_date == -1) {
5510 date_fail:
5511 fprintf(stderr, "Invalid date format. Valid format are:\n"
5512 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5513 exit(1);
5515 rtc_date_offset = time(NULL) - rtc_start_date;
5518 break;
5519 case QEMU_OPTION_tb_size:
5520 tb_size = strtol(optarg, NULL, 0);
5521 if (tb_size < 0)
5522 tb_size = 0;
5523 break;
5524 case QEMU_OPTION_icount:
5525 use_icount = 1;
5526 if (strcmp(optarg, "auto") == 0) {
5527 icount_time_shift = -1;
5528 } else {
5529 icount_time_shift = strtol(optarg, NULL, 0);
5531 break;
5532 case QEMU_OPTION_incoming:
5533 incoming = optarg;
5534 break;
5535 #ifndef _WIN32
5536 case QEMU_OPTION_chroot:
5537 chroot_dir = optarg;
5538 break;
5539 case QEMU_OPTION_runas:
5540 run_as = optarg;
5541 break;
5542 #endif
5543 #ifdef CONFIG_XEN
5544 case QEMU_OPTION_xen_domid:
5545 xen_domid = atoi(optarg);
5546 break;
5547 case QEMU_OPTION_xen_create:
5548 xen_mode = XEN_CREATE;
5549 break;
5550 case QEMU_OPTION_xen_attach:
5551 xen_mode = XEN_ATTACH;
5552 break;
5553 #endif
5558 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5559 if (kvm_allowed && kqemu_allowed) {
5560 fprintf(stderr,
5561 "You can not enable both KVM and kqemu at the same time\n");
5562 exit(1);
5564 #endif
5566 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5567 if (smp_cpus > machine->max_cpus) {
5568 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5569 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5570 machine->max_cpus);
5571 exit(1);
5574 if (nographic) {
5575 if (serial_device_index == 0)
5576 serial_devices[0] = "stdio";
5577 if (parallel_device_index == 0)
5578 parallel_devices[0] = "null";
5579 if (strncmp(monitor_device, "vc", 2) == 0)
5580 monitor_device = "stdio";
5583 #ifndef _WIN32
5584 if (daemonize) {
5585 pid_t pid;
5587 if (pipe(fds) == -1)
5588 exit(1);
5590 pid = fork();
5591 if (pid > 0) {
5592 uint8_t status;
5593 ssize_t len;
5595 close(fds[1]);
5597 again:
5598 len = read(fds[0], &status, 1);
5599 if (len == -1 && (errno == EINTR))
5600 goto again;
5602 if (len != 1)
5603 exit(1);
5604 else if (status == 1) {
5605 fprintf(stderr, "Could not acquire pidfile\n");
5606 exit(1);
5607 } else
5608 exit(0);
5609 } else if (pid < 0)
5610 exit(1);
5612 setsid();
5614 pid = fork();
5615 if (pid > 0)
5616 exit(0);
5617 else if (pid < 0)
5618 exit(1);
5620 umask(027);
5622 signal(SIGTSTP, SIG_IGN);
5623 signal(SIGTTOU, SIG_IGN);
5624 signal(SIGTTIN, SIG_IGN);
5627 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5628 if (daemonize) {
5629 uint8_t status = 1;
5630 write(fds[1], &status, 1);
5631 } else
5632 fprintf(stderr, "Could not acquire pid file\n");
5633 exit(1);
5635 #endif
5637 #ifdef CONFIG_KQEMU
5638 if (smp_cpus > 1)
5639 kqemu_allowed = 0;
5640 #endif
5641 if (qemu_init_main_loop()) {
5642 fprintf(stderr, "qemu_init_main_loop failed\n");
5643 exit(1);
5645 linux_boot = (kernel_filename != NULL);
5646 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5648 if (!linux_boot && *kernel_cmdline != '\0') {
5649 fprintf(stderr, "-append only allowed with -kernel option\n");
5650 exit(1);
5653 if (!linux_boot && initrd_filename != NULL) {
5654 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5655 exit(1);
5658 /* boot to floppy or the default cd if no hard disk defined yet */
5659 if (!boot_devices[0]) {
5660 boot_devices = "cad";
5662 setvbuf(stdout, NULL, _IOLBF, 0);
5664 init_timers();
5665 if (init_timer_alarm() < 0) {
5666 fprintf(stderr, "could not initialize alarm timer\n");
5667 exit(1);
5669 if (use_icount && icount_time_shift < 0) {
5670 use_icount = 2;
5671 /* 125MIPS seems a reasonable initial guess at the guest speed.
5672 It will be corrected fairly quickly anyway. */
5673 icount_time_shift = 3;
5674 init_icount_adjust();
5677 #ifdef _WIN32
5678 socket_init();
5679 #endif
5681 /* init network clients */
5682 if (nb_net_clients == 0) {
5683 /* if no clients, we use a default config */
5684 net_clients[nb_net_clients++] = "nic";
5685 #ifdef CONFIG_SLIRP
5686 net_clients[nb_net_clients++] = "user";
5687 #endif
5690 for(i = 0;i < nb_net_clients; i++) {
5691 if (net_client_parse(net_clients[i]) < 0)
5692 exit(1);
5694 net_client_check();
5696 #ifdef TARGET_I386
5697 /* XXX: this should be moved in the PC machine instantiation code */
5698 if (net_boot != 0) {
5699 int netroms = 0;
5700 for (i = 0; i < nb_nics && i < 4; i++) {
5701 const char *model = nd_table[i].model;
5702 char buf[1024];
5703 if (net_boot & (1 << i)) {
5704 if (model == NULL)
5705 model = "ne2k_pci";
5706 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5707 if (get_image_size(buf) > 0) {
5708 if (nb_option_roms >= MAX_OPTION_ROMS) {
5709 fprintf(stderr, "Too many option ROMs\n");
5710 exit(1);
5712 option_rom[nb_option_roms] = strdup(buf);
5713 nb_option_roms++;
5714 netroms++;
5718 if (netroms == 0) {
5719 fprintf(stderr, "No valid PXE rom found for network device\n");
5720 exit(1);
5723 #endif
5725 /* init the bluetooth world */
5726 for (i = 0; i < nb_bt_opts; i++)
5727 if (bt_parse(bt_opts[i]))
5728 exit(1);
5730 /* init the memory */
5731 if (ram_size == 0)
5732 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5734 #ifdef CONFIG_KQEMU
5735 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5736 guest ram allocation. It needs to go away. */
5737 if (kqemu_allowed) {
5738 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5739 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5740 if (!kqemu_phys_ram_base) {
5741 fprintf(stderr, "Could not allocate physical memory\n");
5742 exit(1);
5745 #endif
5747 /* init the dynamic translator */
5748 cpu_exec_init_all(tb_size * 1024 * 1024);
5750 bdrv_init();
5751 dma_helper_init();
5753 /* we always create the cdrom drive, even if no disk is there */
5755 if (nb_drives_opt < MAX_DRIVES)
5756 drive_add(NULL, CDROM_ALIAS);
5758 /* we always create at least one floppy */
5760 if (nb_drives_opt < MAX_DRIVES)
5761 drive_add(NULL, FD_ALIAS, 0);
5763 /* we always create one sd slot, even if no card is in it */
5765 if (nb_drives_opt < MAX_DRIVES)
5766 drive_add(NULL, SD_ALIAS);
5768 /* open the virtual block devices */
5770 for(i = 0; i < nb_drives_opt; i++)
5771 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5772 exit(1);
5774 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5775 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5777 #ifndef _WIN32
5778 /* must be after terminal init, SDL library changes signal handlers */
5779 termsig_setup();
5780 #endif
5782 /* Maintain compatibility with multiple stdio monitors */
5783 if (!strcmp(monitor_device,"stdio")) {
5784 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5785 const char *devname = serial_devices[i];
5786 if (devname && !strcmp(devname,"mon:stdio")) {
5787 monitor_device = NULL;
5788 break;
5789 } else if (devname && !strcmp(devname,"stdio")) {
5790 monitor_device = NULL;
5791 serial_devices[i] = "mon:stdio";
5792 break;
5797 if (nb_numa_nodes > 0) {
5798 int i;
5800 if (nb_numa_nodes > smp_cpus) {
5801 nb_numa_nodes = smp_cpus;
5804 /* If no memory size if given for any node, assume the default case
5805 * and distribute the available memory equally across all nodes
5807 for (i = 0; i < nb_numa_nodes; i++) {
5808 if (node_mem[i] != 0)
5809 break;
5811 if (i == nb_numa_nodes) {
5812 uint64_t usedmem = 0;
5814 /* On Linux, the each node's border has to be 8MB aligned,
5815 * the final node gets the rest.
5817 for (i = 0; i < nb_numa_nodes - 1; i++) {
5818 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5819 usedmem += node_mem[i];
5821 node_mem[i] = ram_size - usedmem;
5824 for (i = 0; i < nb_numa_nodes; i++) {
5825 if (node_cpumask[i] != 0)
5826 break;
5828 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5829 * must cope with this anyway, because there are BIOSes out there in
5830 * real machines which also use this scheme.
5832 if (i == nb_numa_nodes) {
5833 for (i = 0; i < smp_cpus; i++) {
5834 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5839 if (kvm_enabled()) {
5840 int ret;
5842 ret = kvm_init(smp_cpus);
5843 if (ret < 0) {
5844 fprintf(stderr, "failed to initialize KVM\n");
5845 exit(1);
5849 if (monitor_device) {
5850 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5851 if (!monitor_hd) {
5852 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5853 exit(1);
5857 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5858 const char *devname = serial_devices[i];
5859 if (devname && strcmp(devname, "none")) {
5860 char label[32];
5861 snprintf(label, sizeof(label), "serial%d", i);
5862 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5863 if (!serial_hds[i]) {
5864 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5865 devname);
5866 exit(1);
5871 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5872 const char *devname = parallel_devices[i];
5873 if (devname && strcmp(devname, "none")) {
5874 char label[32];
5875 snprintf(label, sizeof(label), "parallel%d", i);
5876 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5877 if (!parallel_hds[i]) {
5878 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5879 devname);
5880 exit(1);
5885 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5886 const char *devname = virtio_consoles[i];
5887 if (devname && strcmp(devname, "none")) {
5888 char label[32];
5889 snprintf(label, sizeof(label), "virtcon%d", i);
5890 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5891 if (!virtcon_hds[i]) {
5892 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5893 devname);
5894 exit(1);
5899 machine->init(ram_size, boot_devices,
5900 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5903 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5904 for (i = 0; i < nb_numa_nodes; i++) {
5905 if (node_cpumask[i] & (1 << env->cpu_index)) {
5906 env->numa_node = i;
5911 current_machine = machine;
5913 /* Set KVM's vcpu state to qemu's initial CPUState. */
5914 if (kvm_enabled()) {
5915 int ret;
5917 ret = kvm_sync_vcpus();
5918 if (ret < 0) {
5919 fprintf(stderr, "failed to initialize vcpus\n");
5920 exit(1);
5924 /* init USB devices */
5925 if (usb_enabled) {
5926 for(i = 0; i < usb_devices_index; i++) {
5927 if (usb_device_add(usb_devices[i], 0) < 0) {
5928 fprintf(stderr, "Warning: could not add USB device %s\n",
5929 usb_devices[i]);
5934 if (!display_state)
5935 dumb_display_init();
5936 /* just use the first displaystate for the moment */
5937 ds = display_state;
5938 /* terminal init */
5939 if (nographic) {
5940 if (curses) {
5941 fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5942 exit(1);
5944 } else {
5945 #if defined(CONFIG_CURSES)
5946 if (curses) {
5947 /* At the moment curses cannot be used with other displays */
5948 curses_display_init(ds, full_screen);
5949 } else
5950 #endif
5952 if (vnc_display != NULL) {
5953 vnc_display_init(ds);
5954 if (vnc_display_open(ds, vnc_display) < 0)
5955 exit(1);
5957 #if defined(CONFIG_SDL)
5958 if (sdl || !vnc_display)
5959 sdl_display_init(ds, full_screen, no_frame);
5960 #elif defined(CONFIG_COCOA)
5961 if (sdl || !vnc_display)
5962 cocoa_display_init(ds, full_screen);
5963 #endif
5966 dpy_resize(ds);
5968 dcl = ds->listeners;
5969 while (dcl != NULL) {
5970 if (dcl->dpy_refresh != NULL) {
5971 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5972 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5974 dcl = dcl->next;
5977 if (nographic || (vnc_display && !sdl)) {
5978 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5979 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5982 text_consoles_set_display(display_state);
5983 qemu_chr_initial_reset();
5985 if (monitor_device && monitor_hd)
5986 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5988 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5989 const char *devname = serial_devices[i];
5990 if (devname && strcmp(devname, "none")) {
5991 char label[32];
5992 snprintf(label, sizeof(label), "serial%d", i);
5993 if (strstart(devname, "vc", 0))
5994 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5998 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5999 const char *devname = parallel_devices[i];
6000 if (devname && strcmp(devname, "none")) {
6001 char label[32];
6002 snprintf(label, sizeof(label), "parallel%d", i);
6003 if (strstart(devname, "vc", 0))
6004 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6008 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6009 const char *devname = virtio_consoles[i];
6010 if (virtcon_hds[i] && devname) {
6011 char label[32];
6012 snprintf(label, sizeof(label), "virtcon%d", i);
6013 if (strstart(devname, "vc", 0))
6014 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6018 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6019 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6020 gdbstub_dev);
6021 exit(1);
6024 if (loadvm)
6025 do_loadvm(cur_mon, loadvm);
6027 if (incoming) {
6028 autostart = 0; /* fixme how to deal with -daemonize */
6029 qemu_start_incoming_migration(incoming);
6032 if (autostart)
6033 vm_start();
6035 #ifndef _WIN32
6036 if (daemonize) {
6037 uint8_t status = 0;
6038 ssize_t len;
6040 again1:
6041 len = write(fds[1], &status, 1);
6042 if (len == -1 && (errno == EINTR))
6043 goto again1;
6045 if (len != 1)
6046 exit(1);
6048 chdir("/");
6049 TFR(fd = open("/dev/null", O_RDWR));
6050 if (fd == -1)
6051 exit(1);
6054 if (run_as) {
6055 pwd = getpwnam(run_as);
6056 if (!pwd) {
6057 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6058 exit(1);
6062 if (chroot_dir) {
6063 if (chroot(chroot_dir) < 0) {
6064 fprintf(stderr, "chroot failed\n");
6065 exit(1);
6067 chdir("/");
6070 if (run_as) {
6071 if (setgid(pwd->pw_gid) < 0) {
6072 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6073 exit(1);
6075 if (setuid(pwd->pw_uid) < 0) {
6076 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6077 exit(1);
6079 if (setuid(0) != -1) {
6080 fprintf(stderr, "Dropping privileges failed\n");
6081 exit(1);
6085 if (daemonize) {
6086 dup2(fd, 0);
6087 dup2(fd, 1);
6088 dup2(fd, 2);
6090 close(fd);
6092 #endif
6094 main_loop();
6095 quit_timers();
6096 net_cleanup();
6098 return 0;