block: fix deadlock in bdrv_co_flush
[qemu/kevin.git] / target-i386 / smm_helper.c
blob4dd6a2c5445db2cd502473df0be729e165d351b2
1 /*
2 * x86 SMM helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "exec/log.h"
25 /* SMM support */
27 #if defined(CONFIG_USER_ONLY)
29 void do_smm_enter(X86CPU *cpu)
33 void helper_rsm(CPUX86State *env)
37 #else
39 #ifdef TARGET_X86_64
40 #define SMM_REVISION_ID 0x00020064
41 #else
42 #define SMM_REVISION_ID 0x00020000
43 #endif
45 void cpu_smm_update(X86CPU *cpu)
47 CPUX86State *env = &cpu->env;
48 bool smm_enabled = (env->hflags & HF_SMM_MASK);
50 if (cpu->smram) {
51 memory_region_set_enabled(cpu->smram, smm_enabled);
55 void do_smm_enter(X86CPU *cpu)
57 CPUX86State *env = &cpu->env;
58 CPUState *cs = CPU(cpu);
59 target_ulong sm_state;
60 SegmentCache *dt;
61 int i, offset;
63 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
64 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
66 env->hflags |= HF_SMM_MASK;
67 if (env->hflags2 & HF2_NMI_MASK) {
68 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
69 } else {
70 env->hflags2 |= HF2_NMI_MASK;
72 cpu_smm_update(cpu);
74 sm_state = env->smbase + 0x8000;
76 #ifdef TARGET_X86_64
77 for (i = 0; i < 6; i++) {
78 dt = &env->segs[i];
79 offset = 0x7e00 + i * 16;
80 x86_stw_phys(cs, sm_state + offset, dt->selector);
81 x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
82 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
83 x86_stq_phys(cs, sm_state + offset + 8, dt->base);
86 x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
87 x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
89 x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
90 x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
91 x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
92 x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
94 x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
95 x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
97 x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
98 x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
99 x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
100 x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
102 /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
103 is saved at offset 7ED0. Vol 3, 34.4.1.1, Table 32-2, has
104 7EA0-7ED7 as "reserved". What's this, and what's really
105 supposed to happen? */
106 x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
108 x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
109 x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
110 x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
111 x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
112 x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
113 x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
114 x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
115 x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
116 for (i = 8; i < 16; i++) {
117 x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
119 x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
120 x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
121 x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
122 x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
124 x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
125 x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
126 x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
128 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
129 x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
130 #else
131 x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
132 x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
133 x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
134 x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
135 x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
136 x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
137 x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
138 x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
139 x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
140 x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
141 x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
142 x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
143 x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
144 x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
146 x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
147 x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
148 x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
149 x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
151 x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
152 x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
153 x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
154 x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
156 x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
157 x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
159 x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
160 x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
162 for (i = 0; i < 6; i++) {
163 dt = &env->segs[i];
164 if (i < 3) {
165 offset = 0x7f84 + i * 12;
166 } else {
167 offset = 0x7f2c + (i - 3) * 12;
169 x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
170 x86_stl_phys(cs, sm_state + offset + 8, dt->base);
171 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
172 x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
174 x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
176 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
177 x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
178 #endif
179 /* init SMM cpu state */
181 #ifdef TARGET_X86_64
182 cpu_load_efer(env, 0);
183 #endif
184 cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
185 DF_MASK));
186 env->eip = 0x00008000;
187 cpu_x86_update_cr0(env,
188 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
189 CR0_PG_MASK));
190 cpu_x86_update_cr4(env, 0);
191 env->dr[7] = 0x00000400;
193 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
194 0xffffffff,
195 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
196 DESC_G_MASK | DESC_A_MASK);
197 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
198 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
199 DESC_G_MASK | DESC_A_MASK);
200 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
201 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
202 DESC_G_MASK | DESC_A_MASK);
203 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
204 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
205 DESC_G_MASK | DESC_A_MASK);
206 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
207 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
208 DESC_G_MASK | DESC_A_MASK);
209 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
210 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
211 DESC_G_MASK | DESC_A_MASK);
214 void helper_rsm(CPUX86State *env)
216 X86CPU *cpu = x86_env_get_cpu(env);
217 CPUState *cs = CPU(cpu);
218 target_ulong sm_state;
219 int i, offset;
220 uint32_t val;
222 sm_state = env->smbase + 0x8000;
223 #ifdef TARGET_X86_64
224 cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
226 env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
227 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
229 env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
230 env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
231 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
232 env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
234 env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
235 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
237 env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
238 env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
239 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
240 env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
242 env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
243 env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
244 env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
245 env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
246 env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
247 env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
248 env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
249 env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
250 for (i = 8; i < 16; i++) {
251 env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
253 env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
254 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
255 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
256 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
257 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
259 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
260 cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
261 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
263 for (i = 0; i < 6; i++) {
264 offset = 0x7e00 + i * 16;
265 cpu_x86_load_seg_cache(env, i,
266 x86_lduw_phys(cs, sm_state + offset),
267 x86_ldq_phys(cs, sm_state + offset + 8),
268 x86_ldl_phys(cs, sm_state + offset + 4),
269 (x86_lduw_phys(cs, sm_state + offset + 2) &
270 0xf0ff) << 8);
273 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
274 if (val & 0x20000) {
275 env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
277 #else
278 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
279 cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
280 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
281 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
282 env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
283 env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
284 env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
285 env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
286 env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
287 env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
288 env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
289 env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
290 env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
291 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
292 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
294 env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
295 env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
296 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
297 env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
299 env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
300 env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
301 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
302 env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
304 env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
305 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
307 env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
308 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
310 for (i = 0; i < 6; i++) {
311 if (i < 3) {
312 offset = 0x7f84 + i * 12;
313 } else {
314 offset = 0x7f2c + (i - 3) * 12;
316 cpu_x86_load_seg_cache(env, i,
317 x86_ldl_phys(cs,
318 sm_state + 0x7fa8 + i * 4) & 0xffff,
319 x86_ldl_phys(cs, sm_state + offset + 8),
320 x86_ldl_phys(cs, sm_state + offset + 4),
321 (x86_ldl_phys(cs,
322 sm_state + offset) & 0xf0ff) << 8);
324 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
326 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
327 if (val & 0x20000) {
328 env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
330 #endif
331 if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
332 env->hflags2 &= ~HF2_NMI_MASK;
334 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
335 env->hflags &= ~HF_SMM_MASK;
336 cpu_smm_update(cpu);
338 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
339 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
342 #endif /* !CONFIG_USER_ONLY */