block: fix deadlock in bdrv_co_flush
[qemu/kevin.git] / include / qemu / coroutine.h
blobac8d4c9cc824ec020e6bdb1cfe28c97af4d2b217
1 /*
2 * QEMU coroutine implementation
4 * Copyright IBM, Corp. 2011
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Kevin Wolf <kwolf@redhat.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
18 #include "qemu/queue.h"
19 #include "qemu/timer.h"
21 /**
22 * Coroutines are a mechanism for stack switching and can be used for
23 * cooperative userspace threading. These functions provide a simple but
24 * useful flavor of coroutines that is suitable for writing sequential code,
25 * rather than callbacks, for operations that need to give up control while
26 * waiting for events to complete.
28 * These functions are re-entrant and may be used outside the global mutex.
31 /**
32 * Mark a function that executes in coroutine context
34 * Functions that execute in coroutine context cannot be called directly from
35 * normal functions. In the future it would be nice to enable compiler or
36 * static checker support for catching such errors. This annotation might make
37 * it possible and in the meantime it serves as documentation.
39 * For example:
41 * static void coroutine_fn foo(void) {
42 * ....
43 * }
45 #define coroutine_fn
47 typedef struct Coroutine Coroutine;
49 /**
50 * Coroutine entry point
52 * When the coroutine is entered for the first time, opaque is passed in as an
53 * argument.
55 * When this function returns, the coroutine is destroyed automatically and
56 * execution continues in the caller who last entered the coroutine.
58 typedef void coroutine_fn CoroutineEntry(void *opaque);
60 /**
61 * Create a new coroutine
63 * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
64 * The opaque argument is passed as the argument to the entry point.
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque);
68 /**
69 * Transfer control to a coroutine
71 void qemu_coroutine_enter(Coroutine *coroutine);
73 /**
74 * Transfer control back to a coroutine's caller
76 * This function does not return until the coroutine is re-entered using
77 * qemu_coroutine_enter().
79 void coroutine_fn qemu_coroutine_yield(void);
81 /**
82 * Get the currently executing coroutine
84 Coroutine *coroutine_fn qemu_coroutine_self(void);
86 /**
87 * Return whether or not currently inside a coroutine
89 * This can be used to write functions that work both when in coroutine context
90 * and when not in coroutine context. Note that such functions cannot use the
91 * coroutine_fn annotation since they work outside coroutine context.
93 bool qemu_in_coroutine(void);
97 /**
98 * CoQueues are a mechanism to queue coroutines in order to continue executing
99 * them later. They provide the fundamental primitives on which coroutine locks
100 * are built.
102 typedef struct CoQueue {
103 QSIMPLEQ_HEAD(, Coroutine) entries;
104 } CoQueue;
107 * Initialise a CoQueue. This must be called before any other operation is used
108 * on the CoQueue.
110 void qemu_co_queue_init(CoQueue *queue);
113 * Adds the current coroutine to the CoQueue and transfers control to the
114 * caller of the coroutine.
116 void coroutine_fn qemu_co_queue_wait(CoQueue *queue);
119 * Restarts the next coroutine in the CoQueue and removes it from the queue.
121 * Returns true if a coroutine was restarted, false if the queue is empty.
123 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
126 * Restarts all coroutines in the CoQueue and leaves the queue empty.
128 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
131 * Enter the next coroutine in the queue
133 bool qemu_co_enter_next(CoQueue *queue);
136 * Checks if the CoQueue is empty.
138 bool qemu_co_queue_empty(CoQueue *queue);
142 * Provides a mutex that can be used to synchronise coroutines
144 typedef struct CoMutex {
145 bool locked;
146 CoQueue queue;
147 } CoMutex;
150 * Initialises a CoMutex. This must be called before any other operation is used
151 * on the CoMutex.
153 void qemu_co_mutex_init(CoMutex *mutex);
156 * Locks the mutex. If the lock cannot be taken immediately, control is
157 * transferred to the caller of the current coroutine.
159 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
162 * Unlocks the mutex and schedules the next coroutine that was waiting for this
163 * lock to be run.
165 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
167 typedef struct CoRwlock {
168 bool writer;
169 int reader;
170 CoQueue queue;
171 } CoRwlock;
174 * Initialises a CoRwlock. This must be called before any other operation
175 * is used on the CoRwlock
177 void qemu_co_rwlock_init(CoRwlock *lock);
180 * Read locks the CoRwlock. If the lock cannot be taken immediately because
181 * of a parallel writer, control is transferred to the caller of the current
182 * coroutine.
184 void qemu_co_rwlock_rdlock(CoRwlock *lock);
187 * Write Locks the mutex. If the lock cannot be taken immediately because
188 * of a parallel reader, control is transferred to the caller of the current
189 * coroutine.
191 void qemu_co_rwlock_wrlock(CoRwlock *lock);
194 * Unlocks the read/write lock and schedules the next coroutine that was
195 * waiting for this lock to be run.
197 void qemu_co_rwlock_unlock(CoRwlock *lock);
200 * Yield the coroutine for a given duration
202 * Behaves similarly to co_sleep_ns(), but the sleeping coroutine will be
203 * resumed when using aio_poll().
205 void coroutine_fn co_aio_sleep_ns(AioContext *ctx, QEMUClockType type,
206 int64_t ns);
209 * Yield until a file descriptor becomes readable
211 * Note that this function clobbers the handlers for the file descriptor.
213 void coroutine_fn yield_until_fd_readable(int fd);
215 #endif /* QEMU_COROUTINE_H */