block: fix deadlock in bdrv_co_flush
[qemu/kevin.git] / include / exec / memory.h
blob3e4d4164cd45a159c487d930a4df04d2f4653923
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #define DIRTY_MEMORY_VGA 0
20 #define DIRTY_MEMORY_CODE 1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM 3 /* num of dirty bits */
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
47 struct MemoryRegionMmio {
48 CPUReadMemoryFunc *read[3];
49 CPUWriteMemoryFunc *write[3];
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
54 /* See address_space_translate: bit 0 is read, bit 1 is write. */
55 typedef enum {
56 IOMMU_NONE = 0,
57 IOMMU_RO = 1,
58 IOMMU_WO = 2,
59 IOMMU_RW = 3,
60 } IOMMUAccessFlags;
62 struct IOMMUTLBEntry {
63 AddressSpace *target_as;
64 hwaddr iova;
65 hwaddr translated_addr;
66 hwaddr addr_mask; /* 0xfff = 4k translation */
67 IOMMUAccessFlags perm;
70 /* New-style MMIO accessors can indicate that the transaction failed.
71 * A zero (MEMTX_OK) response means success; anything else is a failure
72 * of some kind. The memory subsystem will bitwise-OR together results
73 * if it is synthesizing an operation from multiple smaller accesses.
75 #define MEMTX_OK 0
76 #define MEMTX_ERROR (1U << 0) /* device returned an error */
77 #define MEMTX_DECODE_ERROR (1U << 1) /* nothing at that address */
78 typedef uint32_t MemTxResult;
81 * Memory region callbacks
83 struct MemoryRegionOps {
84 /* Read from the memory region. @addr is relative to @mr; @size is
85 * in bytes. */
86 uint64_t (*read)(void *opaque,
87 hwaddr addr,
88 unsigned size);
89 /* Write to the memory region. @addr is relative to @mr; @size is
90 * in bytes. */
91 void (*write)(void *opaque,
92 hwaddr addr,
93 uint64_t data,
94 unsigned size);
96 MemTxResult (*read_with_attrs)(void *opaque,
97 hwaddr addr,
98 uint64_t *data,
99 unsigned size,
100 MemTxAttrs attrs);
101 MemTxResult (*write_with_attrs)(void *opaque,
102 hwaddr addr,
103 uint64_t data,
104 unsigned size,
105 MemTxAttrs attrs);
107 enum device_endian endianness;
108 /* Guest-visible constraints: */
109 struct {
110 /* If nonzero, specify bounds on access sizes beyond which a machine
111 * check is thrown.
113 unsigned min_access_size;
114 unsigned max_access_size;
115 /* If true, unaligned accesses are supported. Otherwise unaligned
116 * accesses throw machine checks.
118 bool unaligned;
120 * If present, and returns #false, the transaction is not accepted
121 * by the device (and results in machine dependent behaviour such
122 * as a machine check exception).
124 bool (*accepts)(void *opaque, hwaddr addr,
125 unsigned size, bool is_write);
126 } valid;
127 /* Internal implementation constraints: */
128 struct {
129 /* If nonzero, specifies the minimum size implemented. Smaller sizes
130 * will be rounded upwards and a partial result will be returned.
132 unsigned min_access_size;
133 /* If nonzero, specifies the maximum size implemented. Larger sizes
134 * will be done as a series of accesses with smaller sizes.
136 unsigned max_access_size;
137 /* If true, unaligned accesses are supported. Otherwise all accesses
138 * are converted to (possibly multiple) naturally aligned accesses.
140 bool unaligned;
141 } impl;
143 /* If .read and .write are not present, old_mmio may be used for
144 * backwards compatibility with old mmio registration
146 const MemoryRegionMmio old_mmio;
149 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
151 struct MemoryRegionIOMMUOps {
152 /* Return a TLB entry that contains a given address. */
153 IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
154 /* Returns minimum supported page size */
155 uint64_t (*get_min_page_size)(MemoryRegion *iommu);
156 /* Called when the first notifier is set */
157 void (*notify_started)(MemoryRegion *iommu);
158 /* Called when the last notifier is removed */
159 void (*notify_stopped)(MemoryRegion *iommu);
162 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
163 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
165 struct MemoryRegion {
166 Object parent_obj;
168 /* All fields are private - violators will be prosecuted */
170 /* The following fields should fit in a cache line */
171 bool romd_mode;
172 bool ram;
173 bool subpage;
174 bool readonly; /* For RAM regions */
175 bool rom_device;
176 bool flush_coalesced_mmio;
177 bool global_locking;
178 uint8_t dirty_log_mask;
179 RAMBlock *ram_block;
180 Object *owner;
181 const MemoryRegionIOMMUOps *iommu_ops;
183 const MemoryRegionOps *ops;
184 void *opaque;
185 MemoryRegion *container;
186 Int128 size;
187 hwaddr addr;
188 void (*destructor)(MemoryRegion *mr);
189 uint64_t align;
190 bool terminates;
191 bool skip_dump;
192 bool enabled;
193 bool warning_printed; /* For reservations */
194 uint8_t vga_logging_count;
195 MemoryRegion *alias;
196 hwaddr alias_offset;
197 int32_t priority;
198 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
199 QTAILQ_ENTRY(MemoryRegion) subregions_link;
200 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
201 const char *name;
202 unsigned ioeventfd_nb;
203 MemoryRegionIoeventfd *ioeventfds;
204 NotifierList iommu_notify;
208 * MemoryListener: callbacks structure for updates to the physical memory map
210 * Allows a component to adjust to changes in the guest-visible memory map.
211 * Use with memory_listener_register() and memory_listener_unregister().
213 struct MemoryListener {
214 void (*begin)(MemoryListener *listener);
215 void (*commit)(MemoryListener *listener);
216 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
217 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
218 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
219 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
220 int old, int new);
221 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
222 int old, int new);
223 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
224 void (*log_global_start)(MemoryListener *listener);
225 void (*log_global_stop)(MemoryListener *listener);
226 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
227 bool match_data, uint64_t data, EventNotifier *e);
228 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
229 bool match_data, uint64_t data, EventNotifier *e);
230 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
231 hwaddr addr, hwaddr len);
232 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
233 hwaddr addr, hwaddr len);
234 /* Lower = earlier (during add), later (during del) */
235 unsigned priority;
236 AddressSpace *address_space_filter;
237 QTAILQ_ENTRY(MemoryListener) link;
241 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
243 struct AddressSpace {
244 /* All fields are private. */
245 struct rcu_head rcu;
246 char *name;
247 MemoryRegion *root;
248 int ref_count;
249 bool malloced;
251 /* Accessed via RCU. */
252 struct FlatView *current_map;
254 int ioeventfd_nb;
255 struct MemoryRegionIoeventfd *ioeventfds;
256 struct AddressSpaceDispatch *dispatch;
257 struct AddressSpaceDispatch *next_dispatch;
258 MemoryListener dispatch_listener;
260 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
264 * MemoryRegionSection: describes a fragment of a #MemoryRegion
266 * @mr: the region, or %NULL if empty
267 * @address_space: the address space the region is mapped in
268 * @offset_within_region: the beginning of the section, relative to @mr's start
269 * @size: the size of the section; will not exceed @mr's boundaries
270 * @offset_within_address_space: the address of the first byte of the section
271 * relative to the region's address space
272 * @readonly: writes to this section are ignored
274 struct MemoryRegionSection {
275 MemoryRegion *mr;
276 AddressSpace *address_space;
277 hwaddr offset_within_region;
278 Int128 size;
279 hwaddr offset_within_address_space;
280 bool readonly;
284 * memory_region_init: Initialize a memory region
286 * The region typically acts as a container for other memory regions. Use
287 * memory_region_add_subregion() to add subregions.
289 * @mr: the #MemoryRegion to be initialized
290 * @owner: the object that tracks the region's reference count
291 * @name: used for debugging; not visible to the user or ABI
292 * @size: size of the region; any subregions beyond this size will be clipped
294 void memory_region_init(MemoryRegion *mr,
295 struct Object *owner,
296 const char *name,
297 uint64_t size);
300 * memory_region_ref: Add 1 to a memory region's reference count
302 * Whenever memory regions are accessed outside the BQL, they need to be
303 * preserved against hot-unplug. MemoryRegions actually do not have their
304 * own reference count; they piggyback on a QOM object, their "owner".
305 * This function adds a reference to the owner.
307 * All MemoryRegions must have an owner if they can disappear, even if the
308 * device they belong to operates exclusively under the BQL. This is because
309 * the region could be returned at any time by memory_region_find, and this
310 * is usually under guest control.
312 * @mr: the #MemoryRegion
314 void memory_region_ref(MemoryRegion *mr);
317 * memory_region_unref: Remove 1 to a memory region's reference count
319 * Whenever memory regions are accessed outside the BQL, they need to be
320 * preserved against hot-unplug. MemoryRegions actually do not have their
321 * own reference count; they piggyback on a QOM object, their "owner".
322 * This function removes a reference to the owner and possibly destroys it.
324 * @mr: the #MemoryRegion
326 void memory_region_unref(MemoryRegion *mr);
329 * memory_region_init_io: Initialize an I/O memory region.
331 * Accesses into the region will cause the callbacks in @ops to be called.
332 * if @size is nonzero, subregions will be clipped to @size.
334 * @mr: the #MemoryRegion to be initialized.
335 * @owner: the object that tracks the region's reference count
336 * @ops: a structure containing read and write callbacks to be used when
337 * I/O is performed on the region.
338 * @opaque: passed to the read and write callbacks of the @ops structure.
339 * @name: used for debugging; not visible to the user or ABI
340 * @size: size of the region.
342 void memory_region_init_io(MemoryRegion *mr,
343 struct Object *owner,
344 const MemoryRegionOps *ops,
345 void *opaque,
346 const char *name,
347 uint64_t size);
350 * memory_region_init_ram: Initialize RAM memory region. Accesses into the
351 * region will modify memory directly.
353 * @mr: the #MemoryRegion to be initialized.
354 * @owner: the object that tracks the region's reference count
355 * @name: the name of the region.
356 * @size: size of the region.
357 * @errp: pointer to Error*, to store an error if it happens.
359 void memory_region_init_ram(MemoryRegion *mr,
360 struct Object *owner,
361 const char *name,
362 uint64_t size,
363 Error **errp);
366 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
367 * RAM. Accesses into the region will
368 * modify memory directly. Only an initial
369 * portion of this RAM is actually used.
370 * The used size can change across reboots.
372 * @mr: the #MemoryRegion to be initialized.
373 * @owner: the object that tracks the region's reference count
374 * @name: the name of the region.
375 * @size: used size of the region.
376 * @max_size: max size of the region.
377 * @resized: callback to notify owner about used size change.
378 * @errp: pointer to Error*, to store an error if it happens.
380 void memory_region_init_resizeable_ram(MemoryRegion *mr,
381 struct Object *owner,
382 const char *name,
383 uint64_t size,
384 uint64_t max_size,
385 void (*resized)(const char*,
386 uint64_t length,
387 void *host),
388 Error **errp);
389 #ifdef __linux__
391 * memory_region_init_ram_from_file: Initialize RAM memory region with a
392 * mmap-ed backend.
394 * @mr: the #MemoryRegion to be initialized.
395 * @owner: the object that tracks the region's reference count
396 * @name: the name of the region.
397 * @size: size of the region.
398 * @share: %true if memory must be mmaped with the MAP_SHARED flag
399 * @path: the path in which to allocate the RAM.
400 * @errp: pointer to Error*, to store an error if it happens.
402 void memory_region_init_ram_from_file(MemoryRegion *mr,
403 struct Object *owner,
404 const char *name,
405 uint64_t size,
406 bool share,
407 const char *path,
408 Error **errp);
409 #endif
412 * memory_region_init_ram_ptr: Initialize RAM memory region from a
413 * user-provided pointer. Accesses into the
414 * region will modify memory directly.
416 * @mr: the #MemoryRegion to be initialized.
417 * @owner: the object that tracks the region's reference count
418 * @name: the name of the region.
419 * @size: size of the region.
420 * @ptr: memory to be mapped; must contain at least @size bytes.
422 void memory_region_init_ram_ptr(MemoryRegion *mr,
423 struct Object *owner,
424 const char *name,
425 uint64_t size,
426 void *ptr);
429 * memory_region_init_alias: Initialize a memory region that aliases all or a
430 * part of another memory region.
432 * @mr: the #MemoryRegion to be initialized.
433 * @owner: the object that tracks the region's reference count
434 * @name: used for debugging; not visible to the user or ABI
435 * @orig: the region to be referenced; @mr will be equivalent to
436 * @orig between @offset and @offset + @size - 1.
437 * @offset: start of the section in @orig to be referenced.
438 * @size: size of the region.
440 void memory_region_init_alias(MemoryRegion *mr,
441 struct Object *owner,
442 const char *name,
443 MemoryRegion *orig,
444 hwaddr offset,
445 uint64_t size);
448 * memory_region_init_rom: Initialize a ROM memory region.
450 * This has the same effect as calling memory_region_init_ram()
451 * and then marking the resulting region read-only with
452 * memory_region_set_readonly().
454 * @mr: the #MemoryRegion to be initialized.
455 * @owner: the object that tracks the region's reference count
456 * @name: the name of the region.
457 * @size: size of the region.
458 * @errp: pointer to Error*, to store an error if it happens.
460 void memory_region_init_rom(MemoryRegion *mr,
461 struct Object *owner,
462 const char *name,
463 uint64_t size,
464 Error **errp);
467 * memory_region_init_rom_device: Initialize a ROM memory region. Writes are
468 * handled via callbacks.
470 * @mr: the #MemoryRegion to be initialized.
471 * @owner: the object that tracks the region's reference count
472 * @ops: callbacks for write access handling (must not be NULL).
473 * @name: the name of the region.
474 * @size: size of the region.
475 * @errp: pointer to Error*, to store an error if it happens.
477 void memory_region_init_rom_device(MemoryRegion *mr,
478 struct Object *owner,
479 const MemoryRegionOps *ops,
480 void *opaque,
481 const char *name,
482 uint64_t size,
483 Error **errp);
486 * memory_region_init_reservation: Initialize a memory region that reserves
487 * I/O space.
489 * A reservation region primariy serves debugging purposes. It claims I/O
490 * space that is not supposed to be handled by QEMU itself. Any access via
491 * the memory API will cause an abort().
492 * This function is deprecated. Use memory_region_init_io() with NULL
493 * callbacks instead.
495 * @mr: the #MemoryRegion to be initialized
496 * @owner: the object that tracks the region's reference count
497 * @name: used for debugging; not visible to the user or ABI
498 * @size: size of the region.
500 static inline void memory_region_init_reservation(MemoryRegion *mr,
501 Object *owner,
502 const char *name,
503 uint64_t size)
505 memory_region_init_io(mr, owner, NULL, mr, name, size);
509 * memory_region_init_iommu: Initialize a memory region that translates
510 * addresses
512 * An IOMMU region translates addresses and forwards accesses to a target
513 * memory region.
515 * @mr: the #MemoryRegion to be initialized
516 * @owner: the object that tracks the region's reference count
517 * @ops: a function that translates addresses into the @target region
518 * @name: used for debugging; not visible to the user or ABI
519 * @size: size of the region.
521 void memory_region_init_iommu(MemoryRegion *mr,
522 struct Object *owner,
523 const MemoryRegionIOMMUOps *ops,
524 const char *name,
525 uint64_t size);
528 * memory_region_owner: get a memory region's owner.
530 * @mr: the memory region being queried.
532 struct Object *memory_region_owner(MemoryRegion *mr);
535 * memory_region_size: get a memory region's size.
537 * @mr: the memory region being queried.
539 uint64_t memory_region_size(MemoryRegion *mr);
542 * memory_region_is_ram: check whether a memory region is random access
544 * Returns %true is a memory region is random access.
546 * @mr: the memory region being queried
548 static inline bool memory_region_is_ram(MemoryRegion *mr)
550 return mr->ram;
554 * memory_region_is_skip_dump: check whether a memory region should not be
555 * dumped
557 * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
559 * @mr: the memory region being queried
561 bool memory_region_is_skip_dump(MemoryRegion *mr);
564 * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
565 * region
567 * @mr: the memory region being queried
569 void memory_region_set_skip_dump(MemoryRegion *mr);
572 * memory_region_is_romd: check whether a memory region is in ROMD mode
574 * Returns %true if a memory region is a ROM device and currently set to allow
575 * direct reads.
577 * @mr: the memory region being queried
579 static inline bool memory_region_is_romd(MemoryRegion *mr)
581 return mr->rom_device && mr->romd_mode;
585 * memory_region_is_iommu: check whether a memory region is an iommu
587 * Returns %true is a memory region is an iommu.
589 * @mr: the memory region being queried
591 static inline bool memory_region_is_iommu(MemoryRegion *mr)
593 return mr->iommu_ops;
598 * memory_region_iommu_get_min_page_size: get minimum supported page size
599 * for an iommu
601 * Returns minimum supported page size for an iommu.
603 * @mr: the memory region being queried
605 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
608 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
610 * @mr: the memory region that was changed
611 * @entry: the new entry in the IOMMU translation table. The entry
612 * replaces all old entries for the same virtual I/O address range.
613 * Deleted entries have .@perm == 0.
615 void memory_region_notify_iommu(MemoryRegion *mr,
616 IOMMUTLBEntry entry);
619 * memory_region_register_iommu_notifier: register a notifier for changes to
620 * IOMMU translation entries.
622 * @mr: the memory region to observe
623 * @n: the notifier to be added; the notifier receives a pointer to an
624 * #IOMMUTLBEntry as the opaque value; the pointer ceases to be
625 * valid on exit from the notifier.
627 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
630 * memory_region_iommu_replay: replay existing IOMMU translations to
631 * a notifier with the minimum page granularity returned by
632 * mr->iommu_ops->get_page_size().
634 * @mr: the memory region to observe
635 * @n: the notifier to which to replay iommu mappings
636 * @is_write: Whether to treat the replay as a translate "write"
637 * through the iommu
639 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, bool is_write);
642 * memory_region_unregister_iommu_notifier: unregister a notifier for
643 * changes to IOMMU translation entries.
645 * @mr: the memory region which was observed and for which notity_stopped()
646 * needs to be called
647 * @n: the notifier to be removed.
649 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, Notifier *n);
652 * memory_region_name: get a memory region's name
654 * Returns the string that was used to initialize the memory region.
656 * @mr: the memory region being queried
658 const char *memory_region_name(const MemoryRegion *mr);
661 * memory_region_is_logging: return whether a memory region is logging writes
663 * Returns %true if the memory region is logging writes for the given client
665 * @mr: the memory region being queried
666 * @client: the client being queried
668 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
671 * memory_region_get_dirty_log_mask: return the clients for which a
672 * memory region is logging writes.
674 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
675 * are the bit indices.
677 * @mr: the memory region being queried
679 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
682 * memory_region_is_rom: check whether a memory region is ROM
684 * Returns %true is a memory region is read-only memory.
686 * @mr: the memory region being queried
688 static inline bool memory_region_is_rom(MemoryRegion *mr)
690 return mr->ram && mr->readonly;
695 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
697 * Returns a file descriptor backing a file-based RAM memory region,
698 * or -1 if the region is not a file-based RAM memory region.
700 * @mr: the RAM or alias memory region being queried.
702 int memory_region_get_fd(MemoryRegion *mr);
705 * memory_region_set_fd: Mark a RAM memory region as backed by a
706 * file descriptor.
708 * This function is typically used after memory_region_init_ram_ptr().
710 * @mr: the memory region being queried.
711 * @fd: the file descriptor that backs @mr.
713 void memory_region_set_fd(MemoryRegion *mr, int fd);
716 * memory_region_from_host: Convert a pointer into a RAM memory region
717 * and an offset within it.
719 * Given a host pointer inside a RAM memory region (created with
720 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
721 * the MemoryRegion and the offset within it.
723 * Use with care; by the time this function returns, the returned pointer is
724 * not protected by RCU anymore. If the caller is not within an RCU critical
725 * section and does not hold the iothread lock, it must have other means of
726 * protecting the pointer, such as a reference to the region that includes
727 * the incoming ram_addr_t.
729 * @mr: the memory region being queried.
731 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
734 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
736 * Returns a host pointer to a RAM memory region (created with
737 * memory_region_init_ram() or memory_region_init_ram_ptr()).
739 * Use with care; by the time this function returns, the returned pointer is
740 * not protected by RCU anymore. If the caller is not within an RCU critical
741 * section and does not hold the iothread lock, it must have other means of
742 * protecting the pointer, such as a reference to the region that includes
743 * the incoming ram_addr_t.
745 * @mr: the memory region being queried.
747 void *memory_region_get_ram_ptr(MemoryRegion *mr);
749 /* memory_region_ram_resize: Resize a RAM region.
751 * Only legal before guest might have detected the memory size: e.g. on
752 * incoming migration, or right after reset.
754 * @mr: a memory region created with @memory_region_init_resizeable_ram.
755 * @newsize: the new size the region
756 * @errp: pointer to Error*, to store an error if it happens.
758 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
759 Error **errp);
762 * memory_region_set_log: Turn dirty logging on or off for a region.
764 * Turns dirty logging on or off for a specified client (display, migration).
765 * Only meaningful for RAM regions.
767 * @mr: the memory region being updated.
768 * @log: whether dirty logging is to be enabled or disabled.
769 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
771 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
774 * memory_region_get_dirty: Check whether a range of bytes is dirty
775 * for a specified client.
777 * Checks whether a range of bytes has been written to since the last
778 * call to memory_region_reset_dirty() with the same @client. Dirty logging
779 * must be enabled.
781 * @mr: the memory region being queried.
782 * @addr: the address (relative to the start of the region) being queried.
783 * @size: the size of the range being queried.
784 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
785 * %DIRTY_MEMORY_VGA.
787 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
788 hwaddr size, unsigned client);
791 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
793 * Marks a range of bytes as dirty, after it has been dirtied outside
794 * guest code.
796 * @mr: the memory region being dirtied.
797 * @addr: the address (relative to the start of the region) being dirtied.
798 * @size: size of the range being dirtied.
800 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
801 hwaddr size);
804 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
805 * for a specified client. It clears them.
807 * Checks whether a range of bytes has been written to since the last
808 * call to memory_region_reset_dirty() with the same @client. Dirty logging
809 * must be enabled.
811 * @mr: the memory region being queried.
812 * @addr: the address (relative to the start of the region) being queried.
813 * @size: the size of the range being queried.
814 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
815 * %DIRTY_MEMORY_VGA.
817 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
818 hwaddr size, unsigned client);
820 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
821 * any external TLBs (e.g. kvm)
823 * Flushes dirty information from accelerators such as kvm and vhost-net
824 * and makes it available to users of the memory API.
826 * @mr: the region being flushed.
828 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
831 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
832 * client.
834 * Marks a range of pages as no longer dirty.
836 * @mr: the region being updated.
837 * @addr: the start of the subrange being cleaned.
838 * @size: the size of the subrange being cleaned.
839 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
840 * %DIRTY_MEMORY_VGA.
842 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
843 hwaddr size, unsigned client);
846 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
848 * Allows a memory region to be marked as read-only (turning it into a ROM).
849 * only useful on RAM regions.
851 * @mr: the region being updated.
852 * @readonly: whether rhe region is to be ROM or RAM.
854 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
857 * memory_region_rom_device_set_romd: enable/disable ROMD mode
859 * Allows a ROM device (initialized with memory_region_init_rom_device() to
860 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
861 * device is mapped to guest memory and satisfies read access directly.
862 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
863 * Writes are always handled by the #MemoryRegion.write function.
865 * @mr: the memory region to be updated
866 * @romd_mode: %true to put the region into ROMD mode
868 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
871 * memory_region_set_coalescing: Enable memory coalescing for the region.
873 * Enabled writes to a region to be queued for later processing. MMIO ->write
874 * callbacks may be delayed until a non-coalesced MMIO is issued.
875 * Only useful for IO regions. Roughly similar to write-combining hardware.
877 * @mr: the memory region to be write coalesced
879 void memory_region_set_coalescing(MemoryRegion *mr);
882 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
883 * a region.
885 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
886 * Multiple calls can be issued coalesced disjoint ranges.
888 * @mr: the memory region to be updated.
889 * @offset: the start of the range within the region to be coalesced.
890 * @size: the size of the subrange to be coalesced.
892 void memory_region_add_coalescing(MemoryRegion *mr,
893 hwaddr offset,
894 uint64_t size);
897 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
899 * Disables any coalescing caused by memory_region_set_coalescing() or
900 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
901 * hardware.
903 * @mr: the memory region to be updated.
905 void memory_region_clear_coalescing(MemoryRegion *mr);
908 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
909 * accesses.
911 * Ensure that pending coalesced MMIO request are flushed before the memory
912 * region is accessed. This property is automatically enabled for all regions
913 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
915 * @mr: the memory region to be updated.
917 void memory_region_set_flush_coalesced(MemoryRegion *mr);
920 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
921 * accesses.
923 * Clear the automatic coalesced MMIO flushing enabled via
924 * memory_region_set_flush_coalesced. Note that this service has no effect on
925 * memory regions that have MMIO coalescing enabled for themselves. For them,
926 * automatic flushing will stop once coalescing is disabled.
928 * @mr: the memory region to be updated.
930 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
933 * memory_region_set_global_locking: Declares the access processing requires
934 * QEMU's global lock.
936 * When this is invoked, accesses to the memory region will be processed while
937 * holding the global lock of QEMU. This is the default behavior of memory
938 * regions.
940 * @mr: the memory region to be updated.
942 void memory_region_set_global_locking(MemoryRegion *mr);
945 * memory_region_clear_global_locking: Declares that access processing does
946 * not depend on the QEMU global lock.
948 * By clearing this property, accesses to the memory region will be processed
949 * outside of QEMU's global lock (unless the lock is held on when issuing the
950 * access request). In this case, the device model implementing the access
951 * handlers is responsible for synchronization of concurrency.
953 * @mr: the memory region to be updated.
955 void memory_region_clear_global_locking(MemoryRegion *mr);
958 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
959 * is written to a location.
961 * Marks a word in an IO region (initialized with memory_region_init_io())
962 * as a trigger for an eventfd event. The I/O callback will not be called.
963 * The caller must be prepared to handle failure (that is, take the required
964 * action if the callback _is_ called).
966 * @mr: the memory region being updated.
967 * @addr: the address within @mr that is to be monitored
968 * @size: the size of the access to trigger the eventfd
969 * @match_data: whether to match against @data, instead of just @addr
970 * @data: the data to match against the guest write
971 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
973 void memory_region_add_eventfd(MemoryRegion *mr,
974 hwaddr addr,
975 unsigned size,
976 bool match_data,
977 uint64_t data,
978 EventNotifier *e);
981 * memory_region_del_eventfd: Cancel an eventfd.
983 * Cancels an eventfd trigger requested by a previous
984 * memory_region_add_eventfd() call.
986 * @mr: the memory region being updated.
987 * @addr: the address within @mr that is to be monitored
988 * @size: the size of the access to trigger the eventfd
989 * @match_data: whether to match against @data, instead of just @addr
990 * @data: the data to match against the guest write
991 * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
993 void memory_region_del_eventfd(MemoryRegion *mr,
994 hwaddr addr,
995 unsigned size,
996 bool match_data,
997 uint64_t data,
998 EventNotifier *e);
1001 * memory_region_add_subregion: Add a subregion to a container.
1003 * Adds a subregion at @offset. The subregion may not overlap with other
1004 * subregions (except for those explicitly marked as overlapping). A region
1005 * may only be added once as a subregion (unless removed with
1006 * memory_region_del_subregion()); use memory_region_init_alias() if you
1007 * want a region to be a subregion in multiple locations.
1009 * @mr: the region to contain the new subregion; must be a container
1010 * initialized with memory_region_init().
1011 * @offset: the offset relative to @mr where @subregion is added.
1012 * @subregion: the subregion to be added.
1014 void memory_region_add_subregion(MemoryRegion *mr,
1015 hwaddr offset,
1016 MemoryRegion *subregion);
1018 * memory_region_add_subregion_overlap: Add a subregion to a container
1019 * with overlap.
1021 * Adds a subregion at @offset. The subregion may overlap with other
1022 * subregions. Conflicts are resolved by having a higher @priority hide a
1023 * lower @priority. Subregions without priority are taken as @priority 0.
1024 * A region may only be added once as a subregion (unless removed with
1025 * memory_region_del_subregion()); use memory_region_init_alias() if you
1026 * want a region to be a subregion in multiple locations.
1028 * @mr: the region to contain the new subregion; must be a container
1029 * initialized with memory_region_init().
1030 * @offset: the offset relative to @mr where @subregion is added.
1031 * @subregion: the subregion to be added.
1032 * @priority: used for resolving overlaps; highest priority wins.
1034 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1035 hwaddr offset,
1036 MemoryRegion *subregion,
1037 int priority);
1040 * memory_region_get_ram_addr: Get the ram address associated with a memory
1041 * region
1043 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1045 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1047 * memory_region_del_subregion: Remove a subregion.
1049 * Removes a subregion from its container.
1051 * @mr: the container to be updated.
1052 * @subregion: the region being removed; must be a current subregion of @mr.
1054 void memory_region_del_subregion(MemoryRegion *mr,
1055 MemoryRegion *subregion);
1058 * memory_region_set_enabled: dynamically enable or disable a region
1060 * Enables or disables a memory region. A disabled memory region
1061 * ignores all accesses to itself and its subregions. It does not
1062 * obscure sibling subregions with lower priority - it simply behaves as
1063 * if it was removed from the hierarchy.
1065 * Regions default to being enabled.
1067 * @mr: the region to be updated
1068 * @enabled: whether to enable or disable the region
1070 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1073 * memory_region_set_address: dynamically update the address of a region
1075 * Dynamically updates the address of a region, relative to its container.
1076 * May be used on regions are currently part of a memory hierarchy.
1078 * @mr: the region to be updated
1079 * @addr: new address, relative to container region
1081 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1084 * memory_region_set_size: dynamically update the size of a region.
1086 * Dynamically updates the size of a region.
1088 * @mr: the region to be updated
1089 * @size: used size of the region.
1091 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1094 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1096 * Dynamically updates the offset into the target region that an alias points
1097 * to, as if the fourth argument to memory_region_init_alias() has changed.
1099 * @mr: the #MemoryRegion to be updated; should be an alias.
1100 * @offset: the new offset into the target memory region
1102 void memory_region_set_alias_offset(MemoryRegion *mr,
1103 hwaddr offset);
1106 * memory_region_present: checks if an address relative to a @container
1107 * translates into #MemoryRegion within @container
1109 * Answer whether a #MemoryRegion within @container covers the address
1110 * @addr.
1112 * @container: a #MemoryRegion within which @addr is a relative address
1113 * @addr: the area within @container to be searched
1115 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1118 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1119 * into any address space.
1121 * @mr: a #MemoryRegion which should be checked if it's mapped
1123 bool memory_region_is_mapped(MemoryRegion *mr);
1126 * memory_region_find: translate an address/size relative to a
1127 * MemoryRegion into a #MemoryRegionSection.
1129 * Locates the first #MemoryRegion within @mr that overlaps the range
1130 * given by @addr and @size.
1132 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1133 * It will have the following characteristics:
1134 * .@size = 0 iff no overlap was found
1135 * .@mr is non-%NULL iff an overlap was found
1137 * Remember that in the return value the @offset_within_region is
1138 * relative to the returned region (in the .@mr field), not to the
1139 * @mr argument.
1141 * Similarly, the .@offset_within_address_space is relative to the
1142 * address space that contains both regions, the passed and the
1143 * returned one. However, in the special case where the @mr argument
1144 * has no container (and thus is the root of the address space), the
1145 * following will hold:
1146 * .@offset_within_address_space >= @addr
1147 * .@offset_within_address_space + .@size <= @addr + @size
1149 * @mr: a MemoryRegion within which @addr is a relative address
1150 * @addr: start of the area within @as to be searched
1151 * @size: size of the area to be searched
1153 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1154 hwaddr addr, uint64_t size);
1157 * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1159 * Synchronizes the dirty page log for an entire address space.
1160 * @as: the address space that contains the memory being synchronized
1162 void address_space_sync_dirty_bitmap(AddressSpace *as);
1165 * memory_region_transaction_begin: Start a transaction.
1167 * During a transaction, changes will be accumulated and made visible
1168 * only when the transaction ends (is committed).
1170 void memory_region_transaction_begin(void);
1173 * memory_region_transaction_commit: Commit a transaction and make changes
1174 * visible to the guest.
1176 void memory_region_transaction_commit(void);
1179 * memory_listener_register: register callbacks to be called when memory
1180 * sections are mapped or unmapped into an address
1181 * space
1183 * @listener: an object containing the callbacks to be called
1184 * @filter: if non-%NULL, only regions in this address space will be observed
1186 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1189 * memory_listener_unregister: undo the effect of memory_listener_register()
1191 * @listener: an object containing the callbacks to be removed
1193 void memory_listener_unregister(MemoryListener *listener);
1196 * memory_global_dirty_log_start: begin dirty logging for all regions
1198 void memory_global_dirty_log_start(void);
1201 * memory_global_dirty_log_stop: end dirty logging for all regions
1203 void memory_global_dirty_log_stop(void);
1205 void mtree_info(fprintf_function mon_printf, void *f);
1208 * memory_region_dispatch_read: perform a read directly to the specified
1209 * MemoryRegion.
1211 * @mr: #MemoryRegion to access
1212 * @addr: address within that region
1213 * @pval: pointer to uint64_t which the data is written to
1214 * @size: size of the access in bytes
1215 * @attrs: memory transaction attributes to use for the access
1217 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1218 hwaddr addr,
1219 uint64_t *pval,
1220 unsigned size,
1221 MemTxAttrs attrs);
1223 * memory_region_dispatch_write: perform a write directly to the specified
1224 * MemoryRegion.
1226 * @mr: #MemoryRegion to access
1227 * @addr: address within that region
1228 * @data: data to write
1229 * @size: size of the access in bytes
1230 * @attrs: memory transaction attributes to use for the access
1232 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1233 hwaddr addr,
1234 uint64_t data,
1235 unsigned size,
1236 MemTxAttrs attrs);
1239 * address_space_init: initializes an address space
1241 * @as: an uninitialized #AddressSpace
1242 * @root: a #MemoryRegion that routes addresses for the address space
1243 * @name: an address space name. The name is only used for debugging
1244 * output.
1246 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1249 * address_space_init_shareable: return an address space for a memory region,
1250 * creating it if it does not already exist
1252 * @root: a #MemoryRegion that routes addresses for the address space
1253 * @name: an address space name. The name is only used for debugging
1254 * output.
1256 * This function will return a pointer to an existing AddressSpace
1257 * which was initialized with the specified MemoryRegion, or it will
1258 * create and initialize one if it does not already exist. The ASes
1259 * are reference-counted, so the memory will be freed automatically
1260 * when the AddressSpace is destroyed via address_space_destroy.
1262 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1263 const char *name);
1266 * address_space_destroy: destroy an address space
1268 * Releases all resources associated with an address space. After an address space
1269 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1270 * as well.
1272 * @as: address space to be destroyed
1274 void address_space_destroy(AddressSpace *as);
1277 * address_space_rw: read from or write to an address space.
1279 * Return a MemTxResult indicating whether the operation succeeded
1280 * or failed (eg unassigned memory, device rejected the transaction,
1281 * IOMMU fault).
1283 * @as: #AddressSpace to be accessed
1284 * @addr: address within that address space
1285 * @attrs: memory transaction attributes
1286 * @buf: buffer with the data transferred
1287 * @is_write: indicates the transfer direction
1289 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1290 MemTxAttrs attrs, uint8_t *buf,
1291 int len, bool is_write);
1294 * address_space_write: write to address space.
1296 * Return a MemTxResult indicating whether the operation succeeded
1297 * or failed (eg unassigned memory, device rejected the transaction,
1298 * IOMMU fault).
1300 * @as: #AddressSpace to be accessed
1301 * @addr: address within that address space
1302 * @attrs: memory transaction attributes
1303 * @buf: buffer with the data transferred
1305 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1306 MemTxAttrs attrs,
1307 const uint8_t *buf, int len);
1309 /* address_space_ld*: load from an address space
1310 * address_space_st*: store to an address space
1312 * These functions perform a load or store of the byte, word,
1313 * longword or quad to the specified address within the AddressSpace.
1314 * The _le suffixed functions treat the data as little endian;
1315 * _be indicates big endian; no suffix indicates "same endianness
1316 * as guest CPU".
1318 * The "guest CPU endianness" accessors are deprecated for use outside
1319 * target-* code; devices should be CPU-agnostic and use either the LE
1320 * or the BE accessors.
1322 * @as #AddressSpace to be accessed
1323 * @addr: address within that address space
1324 * @val: data value, for stores
1325 * @attrs: memory transaction attributes
1326 * @result: location to write the success/failure of the transaction;
1327 * if NULL, this information is discarded
1329 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1330 MemTxAttrs attrs, MemTxResult *result);
1331 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1332 MemTxAttrs attrs, MemTxResult *result);
1333 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1334 MemTxAttrs attrs, MemTxResult *result);
1335 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1336 MemTxAttrs attrs, MemTxResult *result);
1337 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1338 MemTxAttrs attrs, MemTxResult *result);
1339 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1340 MemTxAttrs attrs, MemTxResult *result);
1341 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1342 MemTxAttrs attrs, MemTxResult *result);
1343 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1344 MemTxAttrs attrs, MemTxResult *result);
1345 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1346 MemTxAttrs attrs, MemTxResult *result);
1347 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1348 MemTxAttrs attrs, MemTxResult *result);
1349 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1350 MemTxAttrs attrs, MemTxResult *result);
1351 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1352 MemTxAttrs attrs, MemTxResult *result);
1353 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1354 MemTxAttrs attrs, MemTxResult *result);
1355 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1356 MemTxAttrs attrs, MemTxResult *result);
1358 /* address_space_translate: translate an address range into an address space
1359 * into a MemoryRegion and an address range into that section. Should be
1360 * called from an RCU critical section, to avoid that the last reference
1361 * to the returned region disappears after address_space_translate returns.
1363 * @as: #AddressSpace to be accessed
1364 * @addr: address within that address space
1365 * @xlat: pointer to address within the returned memory region section's
1366 * #MemoryRegion.
1367 * @len: pointer to length
1368 * @is_write: indicates the transfer direction
1370 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1371 hwaddr *xlat, hwaddr *len,
1372 bool is_write);
1374 /* address_space_access_valid: check for validity of accessing an address
1375 * space range
1377 * Check whether memory is assigned to the given address space range, and
1378 * access is permitted by any IOMMU regions that are active for the address
1379 * space.
1381 * For now, addr and len should be aligned to a page size. This limitation
1382 * will be lifted in the future.
1384 * @as: #AddressSpace to be accessed
1385 * @addr: address within that address space
1386 * @len: length of the area to be checked
1387 * @is_write: indicates the transfer direction
1389 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1391 /* address_space_map: map a physical memory region into a host virtual address
1393 * May map a subset of the requested range, given by and returned in @plen.
1394 * May return %NULL if resources needed to perform the mapping are exhausted.
1395 * Use only for reads OR writes - not for read-modify-write operations.
1396 * Use cpu_register_map_client() to know when retrying the map operation is
1397 * likely to succeed.
1399 * @as: #AddressSpace to be accessed
1400 * @addr: address within that address space
1401 * @plen: pointer to length of buffer; updated on return
1402 * @is_write: indicates the transfer direction
1404 void *address_space_map(AddressSpace *as, hwaddr addr,
1405 hwaddr *plen, bool is_write);
1407 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1409 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1410 * the amount of memory that was actually read or written by the caller.
1412 * @as: #AddressSpace used
1413 * @addr: address within that address space
1414 * @len: buffer length as returned by address_space_map()
1415 * @access_len: amount of data actually transferred
1416 * @is_write: indicates the transfer direction
1418 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1419 int is_write, hwaddr access_len);
1422 /* Internal functions, part of the implementation of address_space_read. */
1423 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1424 MemTxAttrs attrs, uint8_t *buf,
1425 int len, hwaddr addr1, hwaddr l,
1426 MemoryRegion *mr);
1427 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1428 MemTxAttrs attrs, uint8_t *buf, int len);
1429 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1431 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1433 if (is_write) {
1434 return memory_region_is_ram(mr) && !mr->readonly;
1435 } else {
1436 return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1441 * address_space_read: read from an address space.
1443 * Return a MemTxResult indicating whether the operation succeeded
1444 * or failed (eg unassigned memory, device rejected the transaction,
1445 * IOMMU fault).
1447 * @as: #AddressSpace to be accessed
1448 * @addr: address within that address space
1449 * @attrs: memory transaction attributes
1450 * @buf: buffer with the data transferred
1452 static inline __attribute__((__always_inline__))
1453 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1454 uint8_t *buf, int len)
1456 MemTxResult result = MEMTX_OK;
1457 hwaddr l, addr1;
1458 void *ptr;
1459 MemoryRegion *mr;
1461 if (__builtin_constant_p(len)) {
1462 if (len) {
1463 rcu_read_lock();
1464 l = len;
1465 mr = address_space_translate(as, addr, &addr1, &l, false);
1466 if (len == l && memory_access_is_direct(mr, false)) {
1467 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1468 memcpy(buf, ptr, len);
1469 } else {
1470 result = address_space_read_continue(as, addr, attrs, buf, len,
1471 addr1, l, mr);
1473 rcu_read_unlock();
1475 } else {
1476 result = address_space_read_full(as, addr, attrs, buf, len);
1478 return result;
1481 #endif
1483 #endif