block: fix deadlock in bdrv_co_flush
[qemu/kevin.git] / hw / intc / arm_gicv3_cpuif.c
blob4633172becd6f9325d5c048791b487a3fa9fd4b9
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "trace.h"
17 #include "gicv3_internal.h"
18 #include "cpu.h"
20 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
22 /* Given the CPU, find the right GICv3CPUState struct.
23 * Since we registered the CPU interface with the EL change hook as
24 * the opaque pointer, we can just directly get from the CPU to it.
26 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
29 static bool gicv3_use_ns_bank(CPUARMState *env)
31 /* Return true if we should use the NonSecure bank for a banked GIC
32 * CPU interface register. Note that this differs from the
33 * access_secure_reg() function because GICv3 banked registers are
34 * banked even for AArch64, unlike the other CPU system registers.
36 return !arm_is_secure_below_el3(env);
39 static int icc_highest_active_prio(GICv3CPUState *cs)
41 /* Calculate the current running priority based on the set bits
42 * in the Active Priority Registers.
44 int i;
46 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
47 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
48 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
50 if (!apr) {
51 continue;
53 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
55 /* No current active interrupts: return idle priority */
56 return 0xff;
59 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
61 /* Return a mask word which clears the subpriority bits from
62 * a priority value for an interrupt in the specified group.
63 * This depends on the BPR value:
64 * a BPR of 0 means the group priority bits are [7:1];
65 * a BPR of 1 means they are [7:2], and so on down to
66 * a BPR of 7 meaning no group priority bits at all.
67 * Which BPR to use depends on the group of the interrupt and
68 * the current ICC_CTLR.CBPR settings.
70 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
71 (group == GICV3_G1NS &&
72 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
73 group = GICV3_G0;
76 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
79 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
81 /* Return true if there is no pending interrupt, or the
82 * highest priority pending interrupt is in a group which has been
83 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
85 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
88 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
90 /* Return true if we have a pending interrupt of sufficient
91 * priority to preempt.
93 int rprio;
94 uint32_t mask;
96 if (icc_no_enabled_hppi(cs)) {
97 return false;
100 if (cs->hppi.prio >= cs->icc_pmr_el1) {
101 /* Priority mask masks this interrupt */
102 return false;
105 rprio = icc_highest_active_prio(cs);
106 if (rprio == 0xff) {
107 /* No currently running interrupt so we can preempt */
108 return true;
111 mask = icc_gprio_mask(cs, cs->hppi.grp);
113 /* We only preempt a running interrupt if the pending interrupt's
114 * group priority is sufficient (the subpriorities are not considered).
116 if ((cs->hppi.prio & mask) < (rprio & mask)) {
117 return true;
120 return false;
123 void gicv3_cpuif_update(GICv3CPUState *cs)
125 /* Tell the CPU about its highest priority pending interrupt */
126 int irqlevel = 0;
127 int fiqlevel = 0;
128 ARMCPU *cpu = ARM_CPU(cs->cpu);
129 CPUARMState *env = &cpu->env;
131 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
132 cs->hppi.grp, cs->hppi.prio);
134 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
135 /* If a Security-enabled GIC sends a G1S interrupt to a
136 * Security-disabled CPU, we must treat it as if it were G0.
138 cs->hppi.grp = GICV3_G0;
141 if (icc_hppi_can_preempt(cs)) {
142 /* We have an interrupt: should we signal it as IRQ or FIQ?
143 * This is described in the GICv3 spec section 4.6.2.
145 bool isfiq;
147 switch (cs->hppi.grp) {
148 case GICV3_G0:
149 isfiq = true;
150 break;
151 case GICV3_G1:
152 isfiq = (!arm_is_secure(env) ||
153 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
154 break;
155 case GICV3_G1NS:
156 isfiq = arm_is_secure(env);
157 break;
158 default:
159 g_assert_not_reached();
162 if (isfiq) {
163 fiqlevel = 1;
164 } else {
165 irqlevel = 1;
169 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
171 qemu_set_irq(cs->parent_fiq, fiqlevel);
172 qemu_set_irq(cs->parent_irq, irqlevel);
175 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
177 GICv3CPUState *cs = icc_cs_from_env(env);
178 uint32_t value = cs->icc_pmr_el1;
180 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
181 (env->cp15.scr_el3 & SCR_FIQ)) {
182 /* NS access and Group 0 is inaccessible to NS: return the
183 * NS view of the current priority
185 if (value & 0x80) {
186 /* Secure priorities not visible to NS */
187 value = 0;
188 } else if (value != 0xff) {
189 value = (value << 1) & 0xff;
193 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
195 return value;
198 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
199 uint64_t value)
201 GICv3CPUState *cs = icc_cs_from_env(env);
203 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
205 value &= 0xff;
207 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
208 (env->cp15.scr_el3 & SCR_FIQ)) {
209 /* NS access and Group 0 is inaccessible to NS: return the
210 * NS view of the current priority
212 if (!(cs->icc_pmr_el1 & 0x80)) {
213 /* Current PMR in the secure range, don't allow NS to change it */
214 return;
216 value = (value >> 1) & 0x80;
218 cs->icc_pmr_el1 = value;
219 gicv3_cpuif_update(cs);
222 static void icc_activate_irq(GICv3CPUState *cs, int irq)
224 /* Move the interrupt from the Pending state to Active, and update
225 * the Active Priority Registers
227 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
228 int prio = cs->hppi.prio & mask;
229 int aprbit = prio >> 1;
230 int regno = aprbit / 32;
231 int regbit = aprbit % 32;
233 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
235 if (irq < GIC_INTERNAL) {
236 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
237 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
238 gicv3_redist_update(cs);
239 } else {
240 gicv3_gicd_active_set(cs->gic, irq);
241 gicv3_gicd_pending_clear(cs->gic, irq);
242 gicv3_update(cs->gic, irq, 1);
246 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
248 /* Return the highest priority pending interrupt register value
249 * for group 0.
251 bool irq_is_secure;
253 if (cs->hppi.prio == 0xff) {
254 return INTID_SPURIOUS;
257 /* Check whether we can return the interrupt or if we should return
258 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
259 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
260 * is always zero.)
262 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
263 (cs->hppi.grp != GICV3_G1NS));
265 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
266 return INTID_SPURIOUS;
268 if (irq_is_secure && !arm_is_secure(env)) {
269 /* Secure interrupts not visible to Nonsecure */
270 return INTID_SPURIOUS;
273 if (cs->hppi.grp != GICV3_G0) {
274 /* Indicate to EL3 that there's a Group 1 interrupt for the other
275 * state pending.
277 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
280 return cs->hppi.irq;
283 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
285 /* Return the highest priority pending interrupt register value
286 * for group 1.
288 bool irq_is_secure;
290 if (cs->hppi.prio == 0xff) {
291 return INTID_SPURIOUS;
294 /* Check whether we can return the interrupt or if we should return
295 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
296 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
297 * is always zero.)
299 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
300 (cs->hppi.grp != GICV3_G1NS));
302 if (cs->hppi.grp == GICV3_G0) {
303 /* Group 0 interrupts not visible via HPPIR1 */
304 return INTID_SPURIOUS;
306 if (irq_is_secure) {
307 if (!arm_is_secure(env)) {
308 /* Secure interrupts not visible in Non-secure */
309 return INTID_SPURIOUS;
311 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
312 /* Group 1 non-secure interrupts not visible in Secure EL1 */
313 return INTID_SPURIOUS;
316 return cs->hppi.irq;
319 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
321 GICv3CPUState *cs = icc_cs_from_env(env);
322 uint64_t intid;
324 if (!icc_hppi_can_preempt(cs)) {
325 intid = INTID_SPURIOUS;
326 } else {
327 intid = icc_hppir0_value(cs, env);
330 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
331 icc_activate_irq(cs, intid);
334 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
335 return intid;
338 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
340 GICv3CPUState *cs = icc_cs_from_env(env);
341 uint64_t intid;
343 if (!icc_hppi_can_preempt(cs)) {
344 intid = INTID_SPURIOUS;
345 } else {
346 intid = icc_hppir1_value(cs, env);
349 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
350 icc_activate_irq(cs, intid);
353 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
354 return intid;
357 static void icc_drop_prio(GICv3CPUState *cs, int grp)
359 /* Drop the priority of the currently active interrupt in
360 * the specified group.
362 * Note that we can guarantee (because of the requirement to nest
363 * ICC_IAR reads [which activate an interrupt and raise priority]
364 * with ICC_EOIR writes [which drop the priority for the interrupt])
365 * that the interrupt we're being called for is the highest priority
366 * active interrupt, meaning that it has the lowest set bit in the
367 * APR registers.
369 * If the guest does not honour the ordering constraints then the
370 * behaviour of the GIC is UNPREDICTABLE, which for us means that
371 * the values of the APR registers might become incorrect and the
372 * running priority will be wrong, so interrupts that should preempt
373 * might not do so, and interrupts that should not preempt might do so.
375 int i;
377 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
378 uint64_t *papr = &cs->icc_apr[grp][i];
380 if (!*papr) {
381 continue;
383 /* Clear the lowest set bit */
384 *papr &= *papr - 1;
385 break;
388 /* running priority change means we need an update for this cpu i/f */
389 gicv3_cpuif_update(cs);
392 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
394 /* Return true if we should split priority drop and interrupt
395 * deactivation, ie whether the relevant EOIMode bit is set.
397 if (arm_is_el3_or_mon(env)) {
398 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
400 if (arm_is_secure_below_el3(env)) {
401 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
402 } else {
403 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
407 static int icc_highest_active_group(GICv3CPUState *cs)
409 /* Return the group with the highest priority active interrupt.
410 * We can do this by just comparing the APRs to see which one
411 * has the lowest set bit.
412 * (If more than one group is active at the same priority then
413 * we're in UNPREDICTABLE territory.)
415 int i;
417 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
418 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
419 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
420 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
422 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
423 return GICV3_G1NS;
425 if (g1ctz < g0ctz) {
426 return GICV3_G1;
428 if (g0ctz < 32) {
429 return GICV3_G0;
432 /* No set active bits? UNPREDICTABLE; return -1 so the caller
433 * ignores the spurious EOI attempt.
435 return -1;
438 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
440 if (irq < GIC_INTERNAL) {
441 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
442 gicv3_redist_update(cs);
443 } else {
444 gicv3_gicd_active_clear(cs->gic, irq);
445 gicv3_update(cs->gic, irq, 1);
449 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
450 uint64_t value)
452 /* End of Interrupt */
453 GICv3CPUState *cs = icc_cs_from_env(env);
454 int irq = value & 0xffffff;
455 int grp;
457 trace_gicv3_icc_eoir_write(gicv3_redist_affid(cs), value);
459 if (ri->crm == 8) {
460 /* EOIR0 */
461 grp = GICV3_G0;
462 } else {
463 /* EOIR1 */
464 if (arm_is_secure(env)) {
465 grp = GICV3_G1;
466 } else {
467 grp = GICV3_G1NS;
471 if (irq >= cs->gic->num_irq) {
472 /* This handles two cases:
473 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
474 * to the GICC_EOIR, the GIC ignores that write.
475 * 2. If software writes the number of a non-existent interrupt
476 * this must be a subcase of "value written does not match the last
477 * valid interrupt value read from the Interrupt Acknowledge
478 * register" and so this is UNPREDICTABLE. We choose to ignore it.
480 return;
483 if (icc_highest_active_group(cs) != grp) {
484 return;
487 icc_drop_prio(cs, grp);
489 if (!icc_eoi_split(env, cs)) {
490 /* Priority drop and deactivate not split: deactivate irq now */
491 icc_deactivate_irq(cs, irq);
495 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
497 GICv3CPUState *cs = icc_cs_from_env(env);
498 uint64_t value = icc_hppir0_value(cs, env);
500 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
501 return value;
504 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
506 GICv3CPUState *cs = icc_cs_from_env(env);
507 uint64_t value = icc_hppir1_value(cs, env);
509 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
510 return value;
513 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
515 GICv3CPUState *cs = icc_cs_from_env(env);
516 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
517 bool satinc = false;
518 uint64_t bpr;
520 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
521 grp = GICV3_G1NS;
524 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
525 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
526 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
527 * modify BPR0
529 grp = GICV3_G0;
532 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
533 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
534 /* reads return bpr0 + 1 sat to 7, writes ignored */
535 grp = GICV3_G0;
536 satinc = true;
539 bpr = cs->icc_bpr[grp];
540 if (satinc) {
541 bpr++;
542 bpr = MIN(bpr, 7);
545 trace_gicv3_icc_bpr_read(gicv3_redist_affid(cs), bpr);
547 return bpr;
550 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
551 uint64_t value)
553 GICv3CPUState *cs = icc_cs_from_env(env);
554 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
556 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
558 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
559 grp = GICV3_G1NS;
562 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
563 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
564 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
565 * modify BPR0
567 grp = GICV3_G0;
570 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
571 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
572 /* reads return bpr0 + 1 sat to 7, writes ignored */
573 return;
576 cs->icc_bpr[grp] = value & 7;
577 gicv3_cpuif_update(cs);
580 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
582 GICv3CPUState *cs = icc_cs_from_env(env);
583 uint64_t value;
585 int regno = ri->opc2 & 3;
586 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
588 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
589 grp = GICV3_G1NS;
592 value = cs->icc_apr[grp][regno];
594 trace_gicv3_icc_ap_read(regno, gicv3_redist_affid(cs), value);
595 return value;
598 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
599 uint64_t value)
601 GICv3CPUState *cs = icc_cs_from_env(env);
603 int regno = ri->opc2 & 3;
604 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
606 trace_gicv3_icc_ap_write(regno, gicv3_redist_affid(cs), value);
608 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
609 grp = GICV3_G1NS;
612 /* It's not possible to claim that a Non-secure interrupt is active
613 * at a priority outside the Non-secure range (128..255), since this
614 * would otherwise allow malicious NS code to block delivery of S interrupts
615 * by writing a bad value to these registers.
617 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
618 return;
621 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
622 gicv3_cpuif_update(cs);
625 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
626 uint64_t value)
628 /* Deactivate interrupt */
629 GICv3CPUState *cs = icc_cs_from_env(env);
630 int irq = value & 0xffffff;
631 bool irq_is_secure, single_sec_state, irq_is_grp0;
632 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
634 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
636 if (irq >= cs->gic->num_irq) {
637 /* Also catches special interrupt numbers and LPIs */
638 return;
641 if (!icc_eoi_split(env, cs)) {
642 return;
645 int grp = gicv3_irq_group(cs->gic, cs, irq);
647 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
648 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
649 irq_is_grp0 = grp == GICV3_G0;
651 /* Check whether we're allowed to deactivate this interrupt based
652 * on its group and the current CPU state.
653 * These checks are laid out to correspond to the spec's pseudocode.
655 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
656 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
657 /* No need to include !IsSecure in route_*_to_el2 as it's only
658 * tested in cases where we know !IsSecure is true.
660 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
661 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
663 switch (arm_current_el(env)) {
664 case 3:
665 break;
666 case 2:
667 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
668 break;
670 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
671 break;
673 return;
674 case 1:
675 if (!arm_is_secure_below_el3(env)) {
676 if (single_sec_state && irq_is_grp0 &&
677 !route_fiq_to_el3 && !route_fiq_to_el2) {
678 break;
680 if (!irq_is_secure && !irq_is_grp0 &&
681 !route_irq_to_el3 && !route_irq_to_el2) {
682 break;
684 } else {
685 if (irq_is_grp0 && !route_fiq_to_el3) {
686 break;
688 if (!irq_is_grp0 &&
689 (!irq_is_secure || !single_sec_state) &&
690 !route_irq_to_el3) {
691 break;
694 return;
695 default:
696 g_assert_not_reached();
699 icc_deactivate_irq(cs, irq);
702 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
704 GICv3CPUState *cs = icc_cs_from_env(env);
705 int prio = icc_highest_active_prio(cs);
707 if (arm_feature(env, ARM_FEATURE_EL3) &&
708 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
709 /* NS GIC access and Group 0 is inaccessible to NS */
710 if (prio & 0x80) {
711 /* NS mustn't see priorities in the Secure half of the range */
712 prio = 0;
713 } else if (prio != 0xff) {
714 /* Non-idle priority: show the Non-secure view of it */
715 prio = (prio << 1) & 0xff;
719 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
720 return prio;
723 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
724 uint64_t value, int grp, bool ns)
726 GICv3State *s = cs->gic;
728 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
729 uint64_t aff = extract64(value, 48, 8) << 16 |
730 extract64(value, 32, 8) << 8 |
731 extract64(value, 16, 8);
732 uint32_t targetlist = extract64(value, 0, 16);
733 uint32_t irq = extract64(value, 24, 4);
734 bool irm = extract64(value, 40, 1);
735 int i;
737 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
738 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
739 * interrupts as Group 0 interrupts and must send Secure Group 0
740 * interrupts to the target CPUs.
742 grp = GICV3_G0;
745 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
746 aff, targetlist);
748 for (i = 0; i < s->num_cpu; i++) {
749 GICv3CPUState *ocs = &s->cpu[i];
751 if (irm) {
752 /* IRM == 1 : route to all CPUs except self */
753 if (cs == ocs) {
754 continue;
756 } else {
757 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
758 * where the corresponding bit is set in targetlist
760 int aff0;
762 if (ocs->gicr_typer >> 40 != aff) {
763 continue;
765 aff0 = extract64(ocs->gicr_typer, 32, 8);
766 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
767 continue;
771 /* The redistributor will check against its own GICR_NSACR as needed */
772 gicv3_redist_send_sgi(ocs, grp, irq, ns);
776 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
777 uint64_t value)
779 /* Generate Secure Group 0 SGI. */
780 GICv3CPUState *cs = icc_cs_from_env(env);
781 bool ns = !arm_is_secure(env);
783 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
786 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
787 uint64_t value)
789 /* Generate Group 1 SGI for the current Security state */
790 GICv3CPUState *cs = icc_cs_from_env(env);
791 int grp;
792 bool ns = !arm_is_secure(env);
794 grp = ns ? GICV3_G1NS : GICV3_G1;
795 icc_generate_sgi(env, cs, value, grp, ns);
798 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
799 uint64_t value)
801 /* Generate Group 1 SGI for the Security state that is not
802 * the current state
804 GICv3CPUState *cs = icc_cs_from_env(env);
805 int grp;
806 bool ns = !arm_is_secure(env);
808 grp = ns ? GICV3_G1 : GICV3_G1NS;
809 icc_generate_sgi(env, cs, value, grp, ns);
812 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
814 GICv3CPUState *cs = icc_cs_from_env(env);
815 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
816 uint64_t value;
818 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
819 grp = GICV3_G1NS;
822 value = cs->icc_igrpen[grp];
823 trace_gicv3_icc_igrpen_read(gicv3_redist_affid(cs), value);
824 return value;
827 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
828 uint64_t value)
830 GICv3CPUState *cs = icc_cs_from_env(env);
831 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
833 trace_gicv3_icc_igrpen_write(gicv3_redist_affid(cs), value);
835 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
836 grp = GICV3_G1NS;
839 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
840 gicv3_cpuif_update(cs);
843 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
845 GICv3CPUState *cs = icc_cs_from_env(env);
847 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
848 return cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
851 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
852 uint64_t value)
854 GICv3CPUState *cs = icc_cs_from_env(env);
856 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
858 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
859 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
860 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
861 gicv3_cpuif_update(cs);
864 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
866 GICv3CPUState *cs = icc_cs_from_env(env);
867 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
868 uint64_t value;
870 value = cs->icc_ctlr_el1[bank];
871 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
872 return value;
875 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
876 uint64_t value)
878 GICv3CPUState *cs = icc_cs_from_env(env);
879 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
880 uint64_t mask;
882 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
884 /* Only CBPR and EOIMODE can be RW;
885 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
886 * the asseciated priority-based routing of them);
887 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
889 if (arm_feature(env, ARM_FEATURE_EL3) &&
890 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
891 mask = ICC_CTLR_EL1_EOIMODE;
892 } else {
893 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
896 cs->icc_ctlr_el1[bank] &= ~mask;
897 cs->icc_ctlr_el1[bank] |= (value & mask);
898 gicv3_cpuif_update(cs);
902 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
904 GICv3CPUState *cs = icc_cs_from_env(env);
905 uint64_t value;
907 value = cs->icc_ctlr_el3;
908 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
909 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
911 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
912 value |= ICC_CTLR_EL3_CBPR_EL1NS;
914 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
915 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
917 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
918 value |= ICC_CTLR_EL3_CBPR_EL1S;
921 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
922 return value;
925 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
926 uint64_t value)
928 GICv3CPUState *cs = icc_cs_from_env(env);
929 uint64_t mask;
931 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
933 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
934 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
935 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
936 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
938 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
939 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
942 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
943 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
944 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
946 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
947 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
950 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
951 mask = ICC_CTLR_EL3_EOIMODE_EL3;
953 cs->icc_ctlr_el3 &= ~mask;
954 cs->icc_ctlr_el3 |= (value & mask);
955 gicv3_cpuif_update(cs);
958 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
959 const ARMCPRegInfo *ri, bool isread)
961 CPAccessResult r = CP_ACCESS_OK;
963 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
964 switch (arm_current_el(env)) {
965 case 1:
966 if (arm_is_secure_below_el3(env) ||
967 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
968 r = CP_ACCESS_TRAP_EL3;
970 break;
971 case 2:
972 r = CP_ACCESS_TRAP_EL3;
973 break;
974 case 3:
975 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
976 r = CP_ACCESS_TRAP_EL3;
978 break;
979 default:
980 g_assert_not_reached();
984 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
985 r = CP_ACCESS_TRAP;
987 return r;
990 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
991 const ARMCPRegInfo *ri, bool isread)
993 CPAccessResult r = CP_ACCESS_OK;
995 if (env->cp15.scr_el3 & SCR_FIQ) {
996 switch (arm_current_el(env)) {
997 case 1:
998 if (arm_is_secure_below_el3(env) ||
999 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1000 r = CP_ACCESS_TRAP_EL3;
1002 break;
1003 case 2:
1004 r = CP_ACCESS_TRAP_EL3;
1005 break;
1006 case 3:
1007 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1008 r = CP_ACCESS_TRAP_EL3;
1010 break;
1011 default:
1012 g_assert_not_reached();
1016 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1017 r = CP_ACCESS_TRAP;
1019 return r;
1022 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1023 const ARMCPRegInfo *ri, bool isread)
1025 CPAccessResult r = CP_ACCESS_OK;
1027 if (env->cp15.scr_el3 & SCR_IRQ) {
1028 switch (arm_current_el(env)) {
1029 case 1:
1030 if (arm_is_secure_below_el3(env) ||
1031 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1032 r = CP_ACCESS_TRAP_EL3;
1034 break;
1035 case 2:
1036 r = CP_ACCESS_TRAP_EL3;
1037 break;
1038 case 3:
1039 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1040 r = CP_ACCESS_TRAP_EL3;
1042 break;
1043 default:
1044 g_assert_not_reached();
1048 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1049 r = CP_ACCESS_TRAP;
1051 return r;
1054 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1056 GICv3CPUState *cs = icc_cs_from_env(env);
1058 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1059 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1060 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1061 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1062 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1063 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1064 cs->icc_pmr_el1 = 0;
1065 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
1066 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
1067 if (arm_feature(env, ARM_FEATURE_EL3)) {
1068 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
1069 } else {
1070 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
1072 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
1073 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
1074 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
1075 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
1076 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
1079 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
1080 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
1081 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
1082 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1083 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1084 .readfn = icc_pmr_read,
1085 .writefn = icc_pmr_write,
1086 /* We hang the whole cpu interface reset routine off here
1087 * rather than parcelling it out into one little function
1088 * per register
1090 .resetfn = icc_reset,
1092 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
1093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
1094 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1095 .access = PL1_R, .accessfn = gicv3_fiq_access,
1096 .readfn = icc_iar0_read,
1098 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
1099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
1100 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1101 .access = PL1_W, .accessfn = gicv3_fiq_access,
1102 .writefn = icc_eoir_write,
1104 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
1105 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
1106 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1107 .access = PL1_R, .accessfn = gicv3_fiq_access,
1108 .readfn = icc_hppir0_read,
1110 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
1111 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
1112 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1113 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1114 .fieldoffset = offsetof(GICv3CPUState, icc_bpr[GICV3_G0]),
1115 .writefn = icc_bpr_write,
1117 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
1118 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
1119 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1120 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1121 .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][0]),
1122 .writefn = icc_ap_write,
1124 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
1125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
1126 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1127 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1128 .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][1]),
1129 .writefn = icc_ap_write,
1131 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
1132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
1133 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1134 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1135 .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][2]),
1136 .writefn = icc_ap_write,
1138 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
1139 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
1140 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1141 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1142 .fieldoffset = offsetof(GICv3CPUState, icc_apr[GICV3_G0][3]),
1143 .writefn = icc_ap_write,
1145 /* All the ICC_AP1R*_EL1 registers are banked */
1146 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
1147 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
1148 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1149 .access = PL1_RW, .accessfn = gicv3_irq_access,
1150 .readfn = icc_ap_read,
1151 .writefn = icc_ap_write,
1153 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
1154 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
1155 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1156 .access = PL1_RW, .accessfn = gicv3_irq_access,
1157 .readfn = icc_ap_read,
1158 .writefn = icc_ap_write,
1160 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
1161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
1162 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1163 .access = PL1_RW, .accessfn = gicv3_irq_access,
1164 .readfn = icc_ap_read,
1165 .writefn = icc_ap_write,
1167 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
1168 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
1169 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1170 .access = PL1_RW, .accessfn = gicv3_irq_access,
1171 .readfn = icc_ap_read,
1172 .writefn = icc_ap_write,
1174 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
1175 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
1176 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1177 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1178 .writefn = icc_dir_write,
1180 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
1181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
1182 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1183 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
1184 .readfn = icc_rpr_read,
1186 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
1187 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
1188 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1189 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1190 .writefn = icc_sgi1r_write,
1192 { .name = "ICC_SGI1R",
1193 .cp = 15, .opc1 = 0, .crm = 12,
1194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1195 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1196 .writefn = icc_sgi1r_write,
1198 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
1199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
1200 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1201 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1202 .writefn = icc_asgi1r_write,
1204 { .name = "ICC_ASGI1R",
1205 .cp = 15, .opc1 = 1, .crm = 12,
1206 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1207 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1208 .writefn = icc_asgi1r_write,
1210 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
1211 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
1212 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1213 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1214 .writefn = icc_sgi0r_write,
1216 { .name = "ICC_SGI0R",
1217 .cp = 15, .opc1 = 2, .crm = 12,
1218 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
1219 .access = PL1_W, .accessfn = gicv3_irqfiq_access,
1220 .writefn = icc_sgi0r_write,
1222 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
1223 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
1224 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1225 .access = PL1_R, .accessfn = gicv3_irq_access,
1226 .readfn = icc_iar1_read,
1228 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
1229 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
1230 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1231 .access = PL1_W, .accessfn = gicv3_irq_access,
1232 .writefn = icc_eoir_write,
1234 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
1235 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
1236 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1237 .access = PL1_R, .accessfn = gicv3_irq_access,
1238 .readfn = icc_hppir1_read,
1240 /* This register is banked */
1241 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
1242 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
1243 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1244 .access = PL1_RW, .accessfn = gicv3_irq_access,
1245 .readfn = icc_bpr_read,
1246 .writefn = icc_bpr_write,
1248 /* This register is banked */
1249 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
1250 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
1251 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1252 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
1253 .readfn = icc_ctlr_el1_read,
1254 .writefn = icc_ctlr_el1_write,
1256 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
1257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
1258 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1259 .access = PL1_RW,
1260 /* We don't support IRQ/FIQ bypass and system registers are
1261 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1262 * This register is banked but since it's constant we don't
1263 * need to do anything special.
1265 .resetvalue = 0x7,
1267 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
1268 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
1269 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1270 .access = PL1_RW, .accessfn = gicv3_fiq_access,
1271 .fieldoffset = offsetof(GICv3CPUState, icc_igrpen[GICV3_G0]),
1272 .writefn = icc_igrpen_write,
1274 /* This register is banked */
1275 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
1276 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
1277 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1278 .access = PL1_RW, .accessfn = gicv3_irq_access,
1279 .readfn = icc_igrpen_read,
1280 .writefn = icc_igrpen_write,
1282 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
1283 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
1284 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1285 .access = PL2_RW,
1286 /* We don't support IRQ/FIQ bypass and system registers are
1287 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1289 .resetvalue = 0xf,
1291 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
1292 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
1293 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1294 .access = PL3_RW,
1295 .fieldoffset = offsetof(GICv3CPUState, icc_ctlr_el3),
1296 .readfn = icc_ctlr_el3_read,
1297 .writefn = icc_ctlr_el3_write,
1299 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
1300 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
1301 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
1302 .access = PL3_RW,
1303 /* We don't support IRQ/FIQ bypass and system registers are
1304 * always enabled, so all our bits are RAZ/WI or RAO/WI.
1306 .resetvalue = 0xf,
1308 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
1309 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
1310 .type = ARM_CP_IO | ARM_CP_NO_RAW,
1311 .access = PL3_RW,
1312 .readfn = icc_igrpen1_el3_read,
1313 .writefn = icc_igrpen1_el3_write,
1315 REGINFO_SENTINEL
1318 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
1320 GICv3CPUState *cs = opaque;
1322 gicv3_cpuif_update(cs);
1325 void gicv3_init_cpuif(GICv3State *s)
1327 /* Called from the GICv3 realize function; register our system
1328 * registers with the CPU
1330 int i;
1332 for (i = 0; i < s->num_cpu; i++) {
1333 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
1334 GICv3CPUState *cs = &s->cpu[i];
1336 /* Note that we can't just use the GICv3CPUState as an opaque pointer
1337 * in define_arm_cp_regs_with_opaque(), because when we're called back
1338 * it might be with code translated by CPU 0 but run by CPU 1, in
1339 * which case we'd get the wrong value.
1340 * So instead we define the regs with no ri->opaque info, and
1341 * get back to the GICv3CPUState from the ARMCPU by reading back
1342 * the opaque pointer from the el_change_hook, which we're going
1343 * to need to register anyway.
1345 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
1346 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);