usb-bot: hotplug support
[qemu/kevin.git] / hw / i386 / intel_iommu.c
blob347718f938636fe67d96b4388e70b0dc29ae1313
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "hw/sysbus.h"
24 #include "exec/address-spaces.h"
25 #include "intel_iommu_internal.h"
26 #include "hw/pci/pci.h"
28 /*#define DEBUG_INTEL_IOMMU*/
29 #ifdef DEBUG_INTEL_IOMMU
30 enum {
31 DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
32 DEBUG_CACHE,
34 #define VTD_DBGBIT(x) (1 << DEBUG_##x)
35 static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
37 #define VTD_DPRINTF(what, fmt, ...) do { \
38 if (vtd_dbgflags & VTD_DBGBIT(what)) { \
39 fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
40 ## __VA_ARGS__); } \
41 } while (0)
42 #else
43 #define VTD_DPRINTF(what, fmt, ...) do {} while (0)
44 #endif
46 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
47 uint64_t wmask, uint64_t w1cmask)
49 stq_le_p(&s->csr[addr], val);
50 stq_le_p(&s->wmask[addr], wmask);
51 stq_le_p(&s->w1cmask[addr], w1cmask);
54 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
56 stq_le_p(&s->womask[addr], mask);
59 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
60 uint32_t wmask, uint32_t w1cmask)
62 stl_le_p(&s->csr[addr], val);
63 stl_le_p(&s->wmask[addr], wmask);
64 stl_le_p(&s->w1cmask[addr], w1cmask);
67 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
69 stl_le_p(&s->womask[addr], mask);
72 /* "External" get/set operations */
73 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
75 uint64_t oldval = ldq_le_p(&s->csr[addr]);
76 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
77 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
78 stq_le_p(&s->csr[addr],
79 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
82 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
84 uint32_t oldval = ldl_le_p(&s->csr[addr]);
85 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
86 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
87 stl_le_p(&s->csr[addr],
88 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
91 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
93 uint64_t val = ldq_le_p(&s->csr[addr]);
94 uint64_t womask = ldq_le_p(&s->womask[addr]);
95 return val & ~womask;
98 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
100 uint32_t val = ldl_le_p(&s->csr[addr]);
101 uint32_t womask = ldl_le_p(&s->womask[addr]);
102 return val & ~womask;
105 /* "Internal" get/set operations */
106 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
108 return ldq_le_p(&s->csr[addr]);
111 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
113 return ldl_le_p(&s->csr[addr]);
116 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
118 stq_le_p(&s->csr[addr], val);
121 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
122 uint32_t clear, uint32_t mask)
124 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
125 stl_le_p(&s->csr[addr], new_val);
126 return new_val;
129 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
130 uint64_t clear, uint64_t mask)
132 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
133 stq_le_p(&s->csr[addr], new_val);
134 return new_val;
137 /* GHashTable functions */
138 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
140 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
143 static guint vtd_uint64_hash(gconstpointer v)
145 return (guint)*(const uint64_t *)v;
148 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
149 gpointer user_data)
151 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
152 uint16_t domain_id = *(uint16_t *)user_data;
153 return entry->domain_id == domain_id;
156 /* The shift of an addr for a certain level of paging structure */
157 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
159 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
162 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
164 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
167 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
168 gpointer user_data)
170 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
171 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
172 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
173 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
174 return (entry->domain_id == info->domain_id) &&
175 (((entry->gfn & info->mask) == gfn) ||
176 (entry->gfn == gfn_tlb));
179 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
180 * IntelIOMMUState to 1.
182 static void vtd_reset_context_cache(IntelIOMMUState *s)
184 VTDAddressSpace *vtd_as;
185 VTDBus *vtd_bus;
186 GHashTableIter bus_it;
187 uint32_t devfn_it;
189 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
191 VTD_DPRINTF(CACHE, "global context_cache_gen=1");
192 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
193 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
194 vtd_as = vtd_bus->dev_as[devfn_it];
195 if (!vtd_as) {
196 continue;
198 vtd_as->context_cache_entry.context_cache_gen = 0;
201 s->context_cache_gen = 1;
204 static void vtd_reset_iotlb(IntelIOMMUState *s)
206 assert(s->iotlb);
207 g_hash_table_remove_all(s->iotlb);
210 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
211 uint32_t level)
213 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
214 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
217 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
219 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
222 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
223 hwaddr addr)
225 VTDIOTLBEntry *entry;
226 uint64_t key;
227 int level;
229 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
230 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
231 source_id, level);
232 entry = g_hash_table_lookup(s->iotlb, &key);
233 if (entry) {
234 goto out;
238 out:
239 return entry;
242 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
243 uint16_t domain_id, hwaddr addr, uint64_t slpte,
244 bool read_flags, bool write_flags,
245 uint32_t level)
247 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
248 uint64_t *key = g_malloc(sizeof(*key));
249 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
251 VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
252 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
253 domain_id);
254 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
255 VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
256 vtd_reset_iotlb(s);
259 entry->gfn = gfn;
260 entry->domain_id = domain_id;
261 entry->slpte = slpte;
262 entry->read_flags = read_flags;
263 entry->write_flags = write_flags;
264 entry->mask = vtd_slpt_level_page_mask(level);
265 *key = vtd_get_iotlb_key(gfn, source_id, level);
266 g_hash_table_replace(s->iotlb, key, entry);
269 /* Given the reg addr of both the message data and address, generate an
270 * interrupt via MSI.
272 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
273 hwaddr mesg_data_reg)
275 hwaddr addr;
276 uint32_t data;
278 assert(mesg_data_reg < DMAR_REG_SIZE);
279 assert(mesg_addr_reg < DMAR_REG_SIZE);
281 addr = vtd_get_long_raw(s, mesg_addr_reg);
282 data = vtd_get_long_raw(s, mesg_data_reg);
284 VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
285 address_space_stl_le(&address_space_memory, addr, data,
286 MEMTXATTRS_UNSPECIFIED, NULL);
289 /* Generate a fault event to software via MSI if conditions are met.
290 * Notice that the value of FSTS_REG being passed to it should be the one
291 * before any update.
293 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
295 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
296 pre_fsts & VTD_FSTS_IQE) {
297 VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
298 "to be serviced by software, fault event is not generated "
299 "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
300 return;
302 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
303 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
304 VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
305 } else {
306 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
307 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
311 /* Check if the Fault (F) field of the Fault Recording Register referenced by
312 * @index is Set.
314 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
316 /* Each reg is 128-bit */
317 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
318 addr += 8; /* Access the high 64-bit half */
320 assert(index < DMAR_FRCD_REG_NR);
322 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
325 /* Update the PPF field of Fault Status Register.
326 * Should be called whenever change the F field of any fault recording
327 * registers.
329 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
331 uint32_t i;
332 uint32_t ppf_mask = 0;
334 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
335 if (vtd_is_frcd_set(s, i)) {
336 ppf_mask = VTD_FSTS_PPF;
337 break;
340 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
341 VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
344 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
346 /* Each reg is 128-bit */
347 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
348 addr += 8; /* Access the high 64-bit half */
350 assert(index < DMAR_FRCD_REG_NR);
352 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
353 vtd_update_fsts_ppf(s);
356 /* Must not update F field now, should be done later */
357 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
358 uint16_t source_id, hwaddr addr,
359 VTDFaultReason fault, bool is_write)
361 uint64_t hi = 0, lo;
362 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
364 assert(index < DMAR_FRCD_REG_NR);
366 lo = VTD_FRCD_FI(addr);
367 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
368 if (!is_write) {
369 hi |= VTD_FRCD_T;
371 vtd_set_quad_raw(s, frcd_reg_addr, lo);
372 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
373 VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
374 ", lo 0x%"PRIx64, index, hi, lo);
377 /* Try to collapse multiple pending faults from the same requester */
378 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
380 uint32_t i;
381 uint64_t frcd_reg;
382 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
384 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
385 frcd_reg = vtd_get_quad_raw(s, addr);
386 VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
387 if ((frcd_reg & VTD_FRCD_F) &&
388 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
389 return true;
391 addr += 16; /* 128-bit for each */
393 return false;
396 /* Log and report an DMAR (address translation) fault to software */
397 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
398 hwaddr addr, VTDFaultReason fault,
399 bool is_write)
401 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
403 assert(fault < VTD_FR_MAX);
405 if (fault == VTD_FR_RESERVED_ERR) {
406 /* This is not a normal fault reason case. Drop it. */
407 return;
409 VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
410 ", is_write %d", source_id, fault, addr, is_write);
411 if (fsts_reg & VTD_FSTS_PFO) {
412 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
413 "Primary Fault Overflow");
414 return;
416 if (vtd_try_collapse_fault(s, source_id)) {
417 VTD_DPRINTF(FLOG, "new fault is not recorded due to "
418 "compression of faults");
419 return;
421 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
422 VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
423 "new fault is not recorded, set PFO field");
424 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
425 return;
428 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
430 if (fsts_reg & VTD_FSTS_PPF) {
431 VTD_DPRINTF(FLOG, "there are pending faults already, "
432 "fault event is not generated");
433 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
434 s->next_frcd_reg++;
435 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
436 s->next_frcd_reg = 0;
438 } else {
439 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
440 VTD_FSTS_FRI(s->next_frcd_reg));
441 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
442 s->next_frcd_reg++;
443 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
444 s->next_frcd_reg = 0;
446 /* This case actually cause the PPF to be Set.
447 * So generate fault event (interrupt).
449 vtd_generate_fault_event(s, fsts_reg);
453 /* Handle Invalidation Queue Errors of queued invalidation interface error
454 * conditions.
456 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
458 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
460 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
461 vtd_generate_fault_event(s, fsts_reg);
464 /* Set the IWC field and try to generate an invalidation completion interrupt */
465 static void vtd_generate_completion_event(IntelIOMMUState *s)
467 VTD_DPRINTF(INV, "completes an invalidation wait command with "
468 "Interrupt Flag");
469 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
470 VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
471 "serviced by software, "
472 "new invalidation event is not generated");
473 return;
475 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
476 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
477 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
478 VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
479 "event is not generated");
480 return;
481 } else {
482 /* Generate the interrupt event */
483 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
484 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
488 static inline bool vtd_root_entry_present(VTDRootEntry *root)
490 return root->val & VTD_ROOT_ENTRY_P;
493 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
494 VTDRootEntry *re)
496 dma_addr_t addr;
498 addr = s->root + index * sizeof(*re);
499 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
500 VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
501 " + %"PRIu8, s->root, index);
502 re->val = 0;
503 return -VTD_FR_ROOT_TABLE_INV;
505 re->val = le64_to_cpu(re->val);
506 return 0;
509 static inline bool vtd_context_entry_present(VTDContextEntry *context)
511 return context->lo & VTD_CONTEXT_ENTRY_P;
514 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
515 VTDContextEntry *ce)
517 dma_addr_t addr;
519 if (!vtd_root_entry_present(root)) {
520 VTD_DPRINTF(GENERAL, "error: root-entry is not present");
521 return -VTD_FR_ROOT_ENTRY_P;
523 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
524 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
525 VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
526 " + %"PRIu8,
527 (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
528 return -VTD_FR_CONTEXT_TABLE_INV;
530 ce->lo = le64_to_cpu(ce->lo);
531 ce->hi = le64_to_cpu(ce->hi);
532 return 0;
535 static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
537 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
540 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
542 return slpte & VTD_SL_PT_BASE_ADDR_MASK;
545 /* Whether the pte indicates the address of the page frame */
546 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
548 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
551 /* Get the content of a spte located in @base_addr[@index] */
552 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
554 uint64_t slpte;
556 assert(index < VTD_SL_PT_ENTRY_NR);
558 if (dma_memory_read(&address_space_memory,
559 base_addr + index * sizeof(slpte), &slpte,
560 sizeof(slpte))) {
561 slpte = (uint64_t)-1;
562 return slpte;
564 slpte = le64_to_cpu(slpte);
565 return slpte;
568 /* Given a gpa and the level of paging structure, return the offset of current
569 * level.
571 static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
573 return (gpa >> vtd_slpt_level_shift(level)) &
574 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
577 /* Check Capability Register to see if the @level of page-table is supported */
578 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
580 return VTD_CAP_SAGAW_MASK & s->cap &
581 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
584 /* Get the page-table level that hardware should use for the second-level
585 * page-table walk from the Address Width field of context-entry.
587 static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
589 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
592 static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
594 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
597 static const uint64_t vtd_paging_entry_rsvd_field[] = {
598 [0] = ~0ULL,
599 /* For not large page */
600 [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
601 [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
602 [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
603 [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
604 /* For large page */
605 [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
606 [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
607 [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
608 [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
611 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
613 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
614 /* Maybe large page */
615 return slpte & vtd_paging_entry_rsvd_field[level + 4];
616 } else {
617 return slpte & vtd_paging_entry_rsvd_field[level];
621 /* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
622 * of the translation, can be used for deciding the size of large page.
624 static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
625 uint64_t *slptep, uint32_t *slpte_level,
626 bool *reads, bool *writes)
628 dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
629 uint32_t level = vtd_get_level_from_context_entry(ce);
630 uint32_t offset;
631 uint64_t slpte;
632 uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
633 uint64_t access_right_check;
635 /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
636 * and AW in context-entry.
638 if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
639 VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
640 return -VTD_FR_ADDR_BEYOND_MGAW;
643 /* FIXME: what is the Atomics request here? */
644 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
646 while (true) {
647 offset = vtd_gpa_level_offset(gpa, level);
648 slpte = vtd_get_slpte(addr, offset);
650 if (slpte == (uint64_t)-1) {
651 VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
652 "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
653 level, gpa);
654 if (level == vtd_get_level_from_context_entry(ce)) {
655 /* Invalid programming of context-entry */
656 return -VTD_FR_CONTEXT_ENTRY_INV;
657 } else {
658 return -VTD_FR_PAGING_ENTRY_INV;
661 *reads = (*reads) && (slpte & VTD_SL_R);
662 *writes = (*writes) && (slpte & VTD_SL_W);
663 if (!(slpte & access_right_check)) {
664 VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
665 "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
666 (is_write ? "write" : "read"), gpa, slpte);
667 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
669 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
670 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
671 "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
672 level, slpte);
673 return -VTD_FR_PAGING_ENTRY_RSVD;
676 if (vtd_is_last_slpte(slpte, level)) {
677 *slptep = slpte;
678 *slpte_level = level;
679 return 0;
681 addr = vtd_get_slpte_addr(slpte);
682 level--;
686 /* Map a device to its corresponding domain (context-entry) */
687 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
688 uint8_t devfn, VTDContextEntry *ce)
690 VTDRootEntry re;
691 int ret_fr;
693 ret_fr = vtd_get_root_entry(s, bus_num, &re);
694 if (ret_fr) {
695 return ret_fr;
698 if (!vtd_root_entry_present(&re)) {
699 VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
700 bus_num);
701 return -VTD_FR_ROOT_ENTRY_P;
702 } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
703 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
704 "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
705 return -VTD_FR_ROOT_ENTRY_RSVD;
708 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
709 if (ret_fr) {
710 return ret_fr;
713 if (!vtd_context_entry_present(ce)) {
714 VTD_DPRINTF(GENERAL,
715 "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
716 "is not present", devfn, bus_num);
717 return -VTD_FR_CONTEXT_ENTRY_P;
718 } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
719 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
720 VTD_DPRINTF(GENERAL,
721 "error: non-zero reserved field in context-entry "
722 "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
723 return -VTD_FR_CONTEXT_ENTRY_RSVD;
725 /* Check if the programming of context-entry is valid */
726 if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
727 VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
728 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
729 ce->hi, ce->lo);
730 return -VTD_FR_CONTEXT_ENTRY_INV;
731 } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
732 VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
733 "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
734 ce->hi, ce->lo);
735 return -VTD_FR_CONTEXT_ENTRY_INV;
737 return 0;
740 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
742 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
745 static const bool vtd_qualified_faults[] = {
746 [VTD_FR_RESERVED] = false,
747 [VTD_FR_ROOT_ENTRY_P] = false,
748 [VTD_FR_CONTEXT_ENTRY_P] = true,
749 [VTD_FR_CONTEXT_ENTRY_INV] = true,
750 [VTD_FR_ADDR_BEYOND_MGAW] = true,
751 [VTD_FR_WRITE] = true,
752 [VTD_FR_READ] = true,
753 [VTD_FR_PAGING_ENTRY_INV] = true,
754 [VTD_FR_ROOT_TABLE_INV] = false,
755 [VTD_FR_CONTEXT_TABLE_INV] = false,
756 [VTD_FR_ROOT_ENTRY_RSVD] = false,
757 [VTD_FR_PAGING_ENTRY_RSVD] = true,
758 [VTD_FR_CONTEXT_ENTRY_TT] = true,
759 [VTD_FR_RESERVED_ERR] = false,
760 [VTD_FR_MAX] = false,
763 /* To see if a fault condition is "qualified", which is reported to software
764 * only if the FPD field in the context-entry used to process the faulting
765 * request is 0.
767 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
769 return vtd_qualified_faults[fault];
772 static inline bool vtd_is_interrupt_addr(hwaddr addr)
774 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
777 /* Map dev to context-entry then do a paging-structures walk to do a iommu
778 * translation.
780 * Called from RCU critical section.
782 * @bus_num: The bus number
783 * @devfn: The devfn, which is the combined of device and function number
784 * @is_write: The access is a write operation
785 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
787 static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
788 uint8_t devfn, hwaddr addr, bool is_write,
789 IOMMUTLBEntry *entry)
791 IntelIOMMUState *s = vtd_as->iommu_state;
792 VTDContextEntry ce;
793 uint8_t bus_num = pci_bus_num(bus);
794 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
795 uint64_t slpte, page_mask;
796 uint32_t level;
797 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
798 int ret_fr;
799 bool is_fpd_set = false;
800 bool reads = true;
801 bool writes = true;
802 VTDIOTLBEntry *iotlb_entry;
804 /* Check if the request is in interrupt address range */
805 if (vtd_is_interrupt_addr(addr)) {
806 if (is_write) {
807 /* FIXME: since we don't know the length of the access here, we
808 * treat Non-DWORD length write requests without PASID as
809 * interrupt requests, too. Withoud interrupt remapping support,
810 * we just use 1:1 mapping.
812 VTD_DPRINTF(MMU, "write request to interrupt address "
813 "gpa 0x%"PRIx64, addr);
814 entry->iova = addr & VTD_PAGE_MASK_4K;
815 entry->translated_addr = addr & VTD_PAGE_MASK_4K;
816 entry->addr_mask = ~VTD_PAGE_MASK_4K;
817 entry->perm = IOMMU_WO;
818 return;
819 } else {
820 VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
821 "gpa 0x%"PRIx64, addr);
822 vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
823 return;
826 /* Try to fetch slpte form IOTLB */
827 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
828 if (iotlb_entry) {
829 VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
830 " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
831 iotlb_entry->slpte, iotlb_entry->domain_id);
832 slpte = iotlb_entry->slpte;
833 reads = iotlb_entry->read_flags;
834 writes = iotlb_entry->write_flags;
835 page_mask = iotlb_entry->mask;
836 goto out;
838 /* Try to fetch context-entry from cache first */
839 if (cc_entry->context_cache_gen == s->context_cache_gen) {
840 VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
841 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
842 bus_num, devfn, cc_entry->context_entry.hi,
843 cc_entry->context_entry.lo, cc_entry->context_cache_gen);
844 ce = cc_entry->context_entry;
845 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
846 } else {
847 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
848 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
849 if (ret_fr) {
850 ret_fr = -ret_fr;
851 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
852 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
853 "requests through this context-entry "
854 "(with FPD Set)");
855 } else {
856 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
858 return;
860 /* Update context-cache */
861 VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
862 "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
863 bus_num, devfn, ce.hi, ce.lo,
864 cc_entry->context_cache_gen, s->context_cache_gen);
865 cc_entry->context_entry = ce;
866 cc_entry->context_cache_gen = s->context_cache_gen;
869 ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
870 &reads, &writes);
871 if (ret_fr) {
872 ret_fr = -ret_fr;
873 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
874 VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
875 "through this context-entry (with FPD Set)");
876 } else {
877 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
879 return;
882 page_mask = vtd_slpt_level_page_mask(level);
883 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
884 reads, writes, level);
885 out:
886 entry->iova = addr & page_mask;
887 entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
888 entry->addr_mask = ~page_mask;
889 entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
892 static void vtd_root_table_setup(IntelIOMMUState *s)
894 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
895 s->root_extended = s->root & VTD_RTADDR_RTT;
896 s->root &= VTD_RTADDR_ADDR_MASK;
898 VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
899 (s->root_extended ? "(extended)" : ""));
902 static void vtd_context_global_invalidate(IntelIOMMUState *s)
904 s->context_cache_gen++;
905 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
906 vtd_reset_context_cache(s);
911 /* Find the VTD address space currently associated with a given bus number,
913 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
915 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
916 if (!vtd_bus) {
917 /* Iterate over the registered buses to find the one
918 * which currently hold this bus number, and update the bus_num lookup table:
920 GHashTableIter iter;
922 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
923 while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
924 if (pci_bus_num(vtd_bus->bus) == bus_num) {
925 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
926 return vtd_bus;
930 return vtd_bus;
933 /* Do a context-cache device-selective invalidation.
934 * @func_mask: FM field after shifting
936 static void vtd_context_device_invalidate(IntelIOMMUState *s,
937 uint16_t source_id,
938 uint16_t func_mask)
940 uint16_t mask;
941 VTDBus *vtd_bus;
942 VTDAddressSpace *vtd_as;
943 uint16_t devfn;
944 uint16_t devfn_it;
946 switch (func_mask & 3) {
947 case 0:
948 mask = 0; /* No bits in the SID field masked */
949 break;
950 case 1:
951 mask = 4; /* Mask bit 2 in the SID field */
952 break;
953 case 2:
954 mask = 6; /* Mask bit 2:1 in the SID field */
955 break;
956 case 3:
957 mask = 7; /* Mask bit 2:0 in the SID field */
958 break;
960 VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
961 " mask %"PRIu16, source_id, mask);
962 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
963 if (vtd_bus) {
964 devfn = VTD_SID_TO_DEVFN(source_id);
965 for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
966 vtd_as = vtd_bus->dev_as[devfn_it];
967 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
968 VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
969 devfn_it);
970 vtd_as->context_cache_entry.context_cache_gen = 0;
976 /* Context-cache invalidation
977 * Returns the Context Actual Invalidation Granularity.
978 * @val: the content of the CCMD_REG
980 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
982 uint64_t caig;
983 uint64_t type = val & VTD_CCMD_CIRG_MASK;
985 switch (type) {
986 case VTD_CCMD_DOMAIN_INVL:
987 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
988 (uint16_t)VTD_CCMD_DID(val));
989 /* Fall through */
990 case VTD_CCMD_GLOBAL_INVL:
991 VTD_DPRINTF(INV, "global invalidation");
992 caig = VTD_CCMD_GLOBAL_INVL_A;
993 vtd_context_global_invalidate(s);
994 break;
996 case VTD_CCMD_DEVICE_INVL:
997 caig = VTD_CCMD_DEVICE_INVL_A;
998 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
999 break;
1001 default:
1002 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1003 caig = 0;
1005 return caig;
1008 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1010 vtd_reset_iotlb(s);
1013 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1015 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1016 &domain_id);
1019 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1020 hwaddr addr, uint8_t am)
1022 VTDIOTLBPageInvInfo info;
1024 assert(am <= VTD_MAMV);
1025 info.domain_id = domain_id;
1026 info.addr = addr;
1027 info.mask = ~((1 << am) - 1);
1028 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1031 /* Flush IOTLB
1032 * Returns the IOTLB Actual Invalidation Granularity.
1033 * @val: the content of the IOTLB_REG
1035 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1037 uint64_t iaig;
1038 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1039 uint16_t domain_id;
1040 hwaddr addr;
1041 uint8_t am;
1043 switch (type) {
1044 case VTD_TLB_GLOBAL_FLUSH:
1045 VTD_DPRINTF(INV, "global invalidation");
1046 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1047 vtd_iotlb_global_invalidate(s);
1048 break;
1050 case VTD_TLB_DSI_FLUSH:
1051 domain_id = VTD_TLB_DID(val);
1052 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1053 domain_id);
1054 iaig = VTD_TLB_DSI_FLUSH_A;
1055 vtd_iotlb_domain_invalidate(s, domain_id);
1056 break;
1058 case VTD_TLB_PSI_FLUSH:
1059 domain_id = VTD_TLB_DID(val);
1060 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1061 am = VTD_IVA_AM(addr);
1062 addr = VTD_IVA_ADDR(addr);
1063 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1064 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1065 if (am > VTD_MAMV) {
1066 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1067 "%"PRIu8, (uint8_t)VTD_MAMV);
1068 iaig = 0;
1069 break;
1071 iaig = VTD_TLB_PSI_FLUSH_A;
1072 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1073 break;
1075 default:
1076 VTD_DPRINTF(GENERAL, "error: invalid granularity");
1077 iaig = 0;
1079 return iaig;
1082 static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1084 return s->iq_tail == 0;
1087 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1089 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1090 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1093 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1095 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1097 VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1098 if (en) {
1099 if (vtd_queued_inv_enable_check(s)) {
1100 s->iq = iqa_val & VTD_IQA_IQA_MASK;
1101 /* 2^(x+8) entries */
1102 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1103 s->qi_enabled = true;
1104 VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1105 VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1106 s->iq, s->iq_size);
1107 /* Ok - report back to driver */
1108 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1109 } else {
1110 VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1111 "tail %"PRIu16, s->iq_tail);
1113 } else {
1114 if (vtd_queued_inv_disable_check(s)) {
1115 /* disable Queued Invalidation */
1116 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1117 s->iq_head = 0;
1118 s->qi_enabled = false;
1119 /* Ok - report back to driver */
1120 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1121 } else {
1122 VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1123 "head %"PRIu16 ", tail %"PRIu16
1124 ", last_descriptor %"PRIu8,
1125 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1130 /* Set Root Table Pointer */
1131 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1133 VTD_DPRINTF(CSR, "set Root Table Pointer");
1135 vtd_root_table_setup(s);
1136 /* Ok - report back to driver */
1137 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1140 /* Handle Translation Enable/Disable */
1141 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1143 VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1145 if (en) {
1146 s->dmar_enabled = true;
1147 /* Ok - report back to driver */
1148 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1149 } else {
1150 s->dmar_enabled = false;
1152 /* Clear the index of Fault Recording Register */
1153 s->next_frcd_reg = 0;
1154 /* Ok - report back to driver */
1155 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1159 /* Handle write to Global Command Register */
1160 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1162 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1163 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1164 uint32_t changed = status ^ val;
1166 VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1167 if (changed & VTD_GCMD_TE) {
1168 /* Translation enable/disable */
1169 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1171 if (val & VTD_GCMD_SRTP) {
1172 /* Set/update the root-table pointer */
1173 vtd_handle_gcmd_srtp(s);
1175 if (changed & VTD_GCMD_QIE) {
1176 /* Queued Invalidation Enable */
1177 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1181 /* Handle write to Context Command Register */
1182 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1184 uint64_t ret;
1185 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1187 /* Context-cache invalidation request */
1188 if (val & VTD_CCMD_ICC) {
1189 if (s->qi_enabled) {
1190 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1191 "should not use register-based invalidation");
1192 return;
1194 ret = vtd_context_cache_invalidate(s, val);
1195 /* Invalidation completed. Change something to show */
1196 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1197 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1198 ret);
1199 VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1203 /* Handle write to IOTLB Invalidation Register */
1204 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1206 uint64_t ret;
1207 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1209 /* IOTLB invalidation request */
1210 if (val & VTD_TLB_IVT) {
1211 if (s->qi_enabled) {
1212 VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1213 "should not use register-based invalidation");
1214 return;
1216 ret = vtd_iotlb_flush(s, val);
1217 /* Invalidation completed. Change something to show */
1218 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1219 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1220 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1221 VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1225 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1226 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1227 VTDInvDesc *inv_desc)
1229 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1230 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1231 sizeof(*inv_desc))) {
1232 VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1233 "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1234 inv_desc->lo = 0;
1235 inv_desc->hi = 0;
1237 return false;
1239 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1240 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1241 return true;
1244 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1246 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1247 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1248 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1249 "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1250 inv_desc->hi, inv_desc->lo);
1251 return false;
1253 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1254 /* Status Write */
1255 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1256 VTD_INV_DESC_WAIT_DATA_SHIFT);
1258 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1260 /* FIXME: need to be masked with HAW? */
1261 dma_addr_t status_addr = inv_desc->hi;
1262 VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1263 status_data, status_addr);
1264 status_data = cpu_to_le32(status_data);
1265 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1266 sizeof(status_data))) {
1267 VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1268 return false;
1270 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1271 /* Interrupt flag */
1272 VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1273 vtd_generate_completion_event(s);
1274 } else {
1275 VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1276 "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1277 return false;
1279 return true;
1282 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1283 VTDInvDesc *inv_desc)
1285 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1286 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1287 "Invalidate Descriptor");
1288 return false;
1290 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1291 case VTD_INV_DESC_CC_DOMAIN:
1292 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1293 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1294 /* Fall through */
1295 case VTD_INV_DESC_CC_GLOBAL:
1296 VTD_DPRINTF(INV, "global invalidation");
1297 vtd_context_global_invalidate(s);
1298 break;
1300 case VTD_INV_DESC_CC_DEVICE:
1301 vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1302 VTD_INV_DESC_CC_FM(inv_desc->lo));
1303 break;
1305 default:
1306 VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1307 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1308 inv_desc->hi, inv_desc->lo);
1309 return false;
1311 return true;
1314 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1316 uint16_t domain_id;
1317 uint8_t am;
1318 hwaddr addr;
1320 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1321 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1322 VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1323 "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1324 inv_desc->hi, inv_desc->lo);
1325 return false;
1328 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1329 case VTD_INV_DESC_IOTLB_GLOBAL:
1330 VTD_DPRINTF(INV, "global invalidation");
1331 vtd_iotlb_global_invalidate(s);
1332 break;
1334 case VTD_INV_DESC_IOTLB_DOMAIN:
1335 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1336 VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1337 domain_id);
1338 vtd_iotlb_domain_invalidate(s, domain_id);
1339 break;
1341 case VTD_INV_DESC_IOTLB_PAGE:
1342 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1343 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1344 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1345 VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1346 " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1347 if (am > VTD_MAMV) {
1348 VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1349 "%"PRIu8, (uint8_t)VTD_MAMV);
1350 return false;
1352 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1353 break;
1355 default:
1356 VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1357 "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1358 inv_desc->hi, inv_desc->lo);
1359 return false;
1361 return true;
1364 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1366 VTDInvDesc inv_desc;
1367 uint8_t desc_type;
1369 VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1370 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1371 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1372 return false;
1374 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1375 /* FIXME: should update at first or at last? */
1376 s->iq_last_desc_type = desc_type;
1378 switch (desc_type) {
1379 case VTD_INV_DESC_CC:
1380 VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1381 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1382 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1383 return false;
1385 break;
1387 case VTD_INV_DESC_IOTLB:
1388 VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1389 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1390 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1391 return false;
1393 break;
1395 case VTD_INV_DESC_WAIT:
1396 VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1397 " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1398 if (!vtd_process_wait_desc(s, &inv_desc)) {
1399 return false;
1401 break;
1403 default:
1404 VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1405 "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1406 inv_desc.hi, inv_desc.lo, desc_type);
1407 return false;
1409 s->iq_head++;
1410 if (s->iq_head == s->iq_size) {
1411 s->iq_head = 0;
1413 return true;
1416 /* Try to fetch and process more Invalidation Descriptors */
1417 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1419 VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1420 if (s->iq_tail >= s->iq_size) {
1421 /* Detects an invalid Tail pointer */
1422 VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1423 " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1424 vtd_handle_inv_queue_error(s);
1425 return;
1427 while (s->iq_head != s->iq_tail) {
1428 if (!vtd_process_inv_desc(s)) {
1429 /* Invalidation Queue Errors */
1430 vtd_handle_inv_queue_error(s);
1431 break;
1433 /* Must update the IQH_REG in time */
1434 vtd_set_quad_raw(s, DMAR_IQH_REG,
1435 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1436 VTD_IQH_QH_MASK);
1440 /* Handle write to Invalidation Queue Tail Register */
1441 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1443 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1445 s->iq_tail = VTD_IQT_QT(val);
1446 VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1447 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1448 /* Process Invalidation Queue here */
1449 vtd_fetch_inv_desc(s);
1453 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1455 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1456 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1457 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1459 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1460 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1461 VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1462 "IP field of FECTL_REG");
1464 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1465 * Descriptors if there are any when Queued Invalidation is enabled?
1469 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1471 uint32_t fectl_reg;
1472 /* FIXME: when software clears the IM field, check the IP field. But do we
1473 * need to compare the old value and the new value to conclude that
1474 * software clears the IM field? Or just check if the IM field is zero?
1476 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1477 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1478 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1479 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1480 VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1481 "fault event interrupt");
1485 static void vtd_handle_ics_write(IntelIOMMUState *s)
1487 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1488 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1490 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1491 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1492 VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1493 "clear IP field of IECTL_REG");
1497 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1499 uint32_t iectl_reg;
1500 /* FIXME: when software clears the IM field, check the IP field. But do we
1501 * need to compare the old value and the new value to conclude that
1502 * software clears the IM field? Or just check if the IM field is zero?
1504 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1505 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1506 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1507 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1508 VTD_DPRINTF(INV, "IM field is cleared, generate "
1509 "invalidation event interrupt");
1513 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1515 IntelIOMMUState *s = opaque;
1516 uint64_t val;
1518 if (addr + size > DMAR_REG_SIZE) {
1519 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1520 ", got 0x%"PRIx64 " %d",
1521 (uint64_t)DMAR_REG_SIZE, addr, size);
1522 return (uint64_t)-1;
1525 switch (addr) {
1526 /* Root Table Address Register, 64-bit */
1527 case DMAR_RTADDR_REG:
1528 if (size == 4) {
1529 val = s->root & ((1ULL << 32) - 1);
1530 } else {
1531 val = s->root;
1533 break;
1535 case DMAR_RTADDR_REG_HI:
1536 assert(size == 4);
1537 val = s->root >> 32;
1538 break;
1540 /* Invalidation Queue Address Register, 64-bit */
1541 case DMAR_IQA_REG:
1542 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1543 if (size == 4) {
1544 val = val & ((1ULL << 32) - 1);
1546 break;
1548 case DMAR_IQA_REG_HI:
1549 assert(size == 4);
1550 val = s->iq >> 32;
1551 break;
1553 default:
1554 if (size == 4) {
1555 val = vtd_get_long(s, addr);
1556 } else {
1557 val = vtd_get_quad(s, addr);
1560 VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1561 addr, size, val);
1562 return val;
1565 static void vtd_mem_write(void *opaque, hwaddr addr,
1566 uint64_t val, unsigned size)
1568 IntelIOMMUState *s = opaque;
1570 if (addr + size > DMAR_REG_SIZE) {
1571 VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1572 ", got 0x%"PRIx64 " %d",
1573 (uint64_t)DMAR_REG_SIZE, addr, size);
1574 return;
1577 switch (addr) {
1578 /* Global Command Register, 32-bit */
1579 case DMAR_GCMD_REG:
1580 VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1581 ", size %d, val 0x%"PRIx64, addr, size, val);
1582 vtd_set_long(s, addr, val);
1583 vtd_handle_gcmd_write(s);
1584 break;
1586 /* Context Command Register, 64-bit */
1587 case DMAR_CCMD_REG:
1588 VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1589 ", size %d, val 0x%"PRIx64, addr, size, val);
1590 if (size == 4) {
1591 vtd_set_long(s, addr, val);
1592 } else {
1593 vtd_set_quad(s, addr, val);
1594 vtd_handle_ccmd_write(s);
1596 break;
1598 case DMAR_CCMD_REG_HI:
1599 VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1600 ", size %d, val 0x%"PRIx64, addr, size, val);
1601 assert(size == 4);
1602 vtd_set_long(s, addr, val);
1603 vtd_handle_ccmd_write(s);
1604 break;
1606 /* IOTLB Invalidation Register, 64-bit */
1607 case DMAR_IOTLB_REG:
1608 VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1609 ", size %d, val 0x%"PRIx64, addr, size, val);
1610 if (size == 4) {
1611 vtd_set_long(s, addr, val);
1612 } else {
1613 vtd_set_quad(s, addr, val);
1614 vtd_handle_iotlb_write(s);
1616 break;
1618 case DMAR_IOTLB_REG_HI:
1619 VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1620 ", size %d, val 0x%"PRIx64, addr, size, val);
1621 assert(size == 4);
1622 vtd_set_long(s, addr, val);
1623 vtd_handle_iotlb_write(s);
1624 break;
1626 /* Invalidate Address Register, 64-bit */
1627 case DMAR_IVA_REG:
1628 VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1629 ", size %d, val 0x%"PRIx64, addr, size, val);
1630 if (size == 4) {
1631 vtd_set_long(s, addr, val);
1632 } else {
1633 vtd_set_quad(s, addr, val);
1635 break;
1637 case DMAR_IVA_REG_HI:
1638 VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1639 ", size %d, val 0x%"PRIx64, addr, size, val);
1640 assert(size == 4);
1641 vtd_set_long(s, addr, val);
1642 break;
1644 /* Fault Status Register, 32-bit */
1645 case DMAR_FSTS_REG:
1646 VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1647 ", size %d, val 0x%"PRIx64, addr, size, val);
1648 assert(size == 4);
1649 vtd_set_long(s, addr, val);
1650 vtd_handle_fsts_write(s);
1651 break;
1653 /* Fault Event Control Register, 32-bit */
1654 case DMAR_FECTL_REG:
1655 VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1656 ", size %d, val 0x%"PRIx64, addr, size, val);
1657 assert(size == 4);
1658 vtd_set_long(s, addr, val);
1659 vtd_handle_fectl_write(s);
1660 break;
1662 /* Fault Event Data Register, 32-bit */
1663 case DMAR_FEDATA_REG:
1664 VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1665 ", size %d, val 0x%"PRIx64, addr, size, val);
1666 assert(size == 4);
1667 vtd_set_long(s, addr, val);
1668 break;
1670 /* Fault Event Address Register, 32-bit */
1671 case DMAR_FEADDR_REG:
1672 VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1673 ", size %d, val 0x%"PRIx64, addr, size, val);
1674 assert(size == 4);
1675 vtd_set_long(s, addr, val);
1676 break;
1678 /* Fault Event Upper Address Register, 32-bit */
1679 case DMAR_FEUADDR_REG:
1680 VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1681 ", size %d, val 0x%"PRIx64, addr, size, val);
1682 assert(size == 4);
1683 vtd_set_long(s, addr, val);
1684 break;
1686 /* Protected Memory Enable Register, 32-bit */
1687 case DMAR_PMEN_REG:
1688 VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1689 ", size %d, val 0x%"PRIx64, addr, size, val);
1690 assert(size == 4);
1691 vtd_set_long(s, addr, val);
1692 break;
1694 /* Root Table Address Register, 64-bit */
1695 case DMAR_RTADDR_REG:
1696 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1697 ", size %d, val 0x%"PRIx64, addr, size, val);
1698 if (size == 4) {
1699 vtd_set_long(s, addr, val);
1700 } else {
1701 vtd_set_quad(s, addr, val);
1703 break;
1705 case DMAR_RTADDR_REG_HI:
1706 VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1707 ", size %d, val 0x%"PRIx64, addr, size, val);
1708 assert(size == 4);
1709 vtd_set_long(s, addr, val);
1710 break;
1712 /* Invalidation Queue Tail Register, 64-bit */
1713 case DMAR_IQT_REG:
1714 VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1715 ", size %d, val 0x%"PRIx64, addr, size, val);
1716 if (size == 4) {
1717 vtd_set_long(s, addr, val);
1718 } else {
1719 vtd_set_quad(s, addr, val);
1721 vtd_handle_iqt_write(s);
1722 break;
1724 case DMAR_IQT_REG_HI:
1725 VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1726 ", size %d, val 0x%"PRIx64, addr, size, val);
1727 assert(size == 4);
1728 vtd_set_long(s, addr, val);
1729 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1730 break;
1732 /* Invalidation Queue Address Register, 64-bit */
1733 case DMAR_IQA_REG:
1734 VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1735 ", size %d, val 0x%"PRIx64, addr, size, val);
1736 if (size == 4) {
1737 vtd_set_long(s, addr, val);
1738 } else {
1739 vtd_set_quad(s, addr, val);
1741 break;
1743 case DMAR_IQA_REG_HI:
1744 VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1745 ", size %d, val 0x%"PRIx64, addr, size, val);
1746 assert(size == 4);
1747 vtd_set_long(s, addr, val);
1748 break;
1750 /* Invalidation Completion Status Register, 32-bit */
1751 case DMAR_ICS_REG:
1752 VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1753 ", size %d, val 0x%"PRIx64, addr, size, val);
1754 assert(size == 4);
1755 vtd_set_long(s, addr, val);
1756 vtd_handle_ics_write(s);
1757 break;
1759 /* Invalidation Event Control Register, 32-bit */
1760 case DMAR_IECTL_REG:
1761 VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1762 ", size %d, val 0x%"PRIx64, addr, size, val);
1763 assert(size == 4);
1764 vtd_set_long(s, addr, val);
1765 vtd_handle_iectl_write(s);
1766 break;
1768 /* Invalidation Event Data Register, 32-bit */
1769 case DMAR_IEDATA_REG:
1770 VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1771 ", size %d, val 0x%"PRIx64, addr, size, val);
1772 assert(size == 4);
1773 vtd_set_long(s, addr, val);
1774 break;
1776 /* Invalidation Event Address Register, 32-bit */
1777 case DMAR_IEADDR_REG:
1778 VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1779 ", size %d, val 0x%"PRIx64, addr, size, val);
1780 assert(size == 4);
1781 vtd_set_long(s, addr, val);
1782 break;
1784 /* Invalidation Event Upper Address Register, 32-bit */
1785 case DMAR_IEUADDR_REG:
1786 VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1787 ", size %d, val 0x%"PRIx64, addr, size, val);
1788 assert(size == 4);
1789 vtd_set_long(s, addr, val);
1790 break;
1792 /* Fault Recording Registers, 128-bit */
1793 case DMAR_FRCD_REG_0_0:
1794 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1795 ", size %d, val 0x%"PRIx64, addr, size, val);
1796 if (size == 4) {
1797 vtd_set_long(s, addr, val);
1798 } else {
1799 vtd_set_quad(s, addr, val);
1801 break;
1803 case DMAR_FRCD_REG_0_1:
1804 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1805 ", size %d, val 0x%"PRIx64, addr, size, val);
1806 assert(size == 4);
1807 vtd_set_long(s, addr, val);
1808 break;
1810 case DMAR_FRCD_REG_0_2:
1811 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1812 ", size %d, val 0x%"PRIx64, addr, size, val);
1813 if (size == 4) {
1814 vtd_set_long(s, addr, val);
1815 } else {
1816 vtd_set_quad(s, addr, val);
1817 /* May clear bit 127 (Fault), update PPF */
1818 vtd_update_fsts_ppf(s);
1820 break;
1822 case DMAR_FRCD_REG_0_3:
1823 VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1824 ", size %d, val 0x%"PRIx64, addr, size, val);
1825 assert(size == 4);
1826 vtd_set_long(s, addr, val);
1827 /* May clear bit 127 (Fault), update PPF */
1828 vtd_update_fsts_ppf(s);
1829 break;
1831 default:
1832 VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1833 ", size %d, val 0x%"PRIx64, addr, size, val);
1834 if (size == 4) {
1835 vtd_set_long(s, addr, val);
1836 } else {
1837 vtd_set_quad(s, addr, val);
1842 static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1843 bool is_write)
1845 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1846 IntelIOMMUState *s = vtd_as->iommu_state;
1847 IOMMUTLBEntry ret = {
1848 .target_as = &address_space_memory,
1849 .iova = addr,
1850 .translated_addr = 0,
1851 .addr_mask = ~(hwaddr)0,
1852 .perm = IOMMU_NONE,
1855 if (!s->dmar_enabled) {
1856 /* DMAR disabled, passthrough, use 4k-page*/
1857 ret.iova = addr & VTD_PAGE_MASK_4K;
1858 ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1859 ret.addr_mask = ~VTD_PAGE_MASK_4K;
1860 ret.perm = IOMMU_RW;
1861 return ret;
1864 vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1865 is_write, &ret);
1866 VTD_DPRINTF(MMU,
1867 "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1868 " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1869 VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1870 vtd_as->devfn, addr, ret.translated_addr);
1871 return ret;
1874 static const VMStateDescription vtd_vmstate = {
1875 .name = "iommu-intel",
1876 .unmigratable = 1,
1879 static const MemoryRegionOps vtd_mem_ops = {
1880 .read = vtd_mem_read,
1881 .write = vtd_mem_write,
1882 .endianness = DEVICE_LITTLE_ENDIAN,
1883 .impl = {
1884 .min_access_size = 4,
1885 .max_access_size = 8,
1887 .valid = {
1888 .min_access_size = 4,
1889 .max_access_size = 8,
1893 static Property vtd_properties[] = {
1894 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1895 DEFINE_PROP_END_OF_LIST(),
1899 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1901 uintptr_t key = (uintptr_t)bus;
1902 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1903 VTDAddressSpace *vtd_dev_as;
1905 if (!vtd_bus) {
1906 /* No corresponding free() */
1907 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * VTD_PCI_DEVFN_MAX);
1908 vtd_bus->bus = bus;
1909 key = (uintptr_t)bus;
1910 g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1913 vtd_dev_as = vtd_bus->dev_as[devfn];
1915 if (!vtd_dev_as) {
1916 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1918 vtd_dev_as->bus = bus;
1919 vtd_dev_as->devfn = (uint8_t)devfn;
1920 vtd_dev_as->iommu_state = s;
1921 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1922 memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1923 &s->iommu_ops, "intel_iommu", UINT64_MAX);
1924 address_space_init(&vtd_dev_as->as,
1925 &vtd_dev_as->iommu, "intel_iommu");
1927 return vtd_dev_as;
1930 /* Do the initialization. It will also be called when reset, so pay
1931 * attention when adding new initialization stuff.
1933 static void vtd_init(IntelIOMMUState *s)
1935 memset(s->csr, 0, DMAR_REG_SIZE);
1936 memset(s->wmask, 0, DMAR_REG_SIZE);
1937 memset(s->w1cmask, 0, DMAR_REG_SIZE);
1938 memset(s->womask, 0, DMAR_REG_SIZE);
1940 s->iommu_ops.translate = vtd_iommu_translate;
1941 s->root = 0;
1942 s->root_extended = false;
1943 s->dmar_enabled = false;
1944 s->iq_head = 0;
1945 s->iq_tail = 0;
1946 s->iq = 0;
1947 s->iq_size = 0;
1948 s->qi_enabled = false;
1949 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1950 s->next_frcd_reg = 0;
1951 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1952 VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
1953 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1955 vtd_reset_context_cache(s);
1956 vtd_reset_iotlb(s);
1958 /* Define registers with default values and bit semantics */
1959 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1960 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1961 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1962 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1963 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1964 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1965 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1966 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1967 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1969 /* Advanced Fault Logging not supported */
1970 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1971 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1972 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1973 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1975 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1976 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1978 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1980 /* Treated as RO for implementations that PLMR and PHMR fields reported
1981 * as Clear in the CAP_REG.
1982 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1984 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1986 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1987 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1988 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1989 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1990 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1991 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1992 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1993 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1994 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1996 /* IOTLB registers */
1997 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1998 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1999 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2001 /* Fault Recording Registers, 128-bit */
2002 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2003 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2006 /* Should not reset address_spaces when reset because devices will still use
2007 * the address space they got at first (won't ask the bus again).
2009 static void vtd_reset(DeviceState *dev)
2011 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2013 VTD_DPRINTF(GENERAL, "");
2014 vtd_init(s);
2017 static void vtd_realize(DeviceState *dev, Error **errp)
2019 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2021 VTD_DPRINTF(GENERAL, "");
2022 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2023 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2024 "intel_iommu", DMAR_REG_SIZE);
2025 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2026 /* No corresponding destroy */
2027 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2028 g_free, g_free);
2029 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2030 g_free, g_free);
2031 vtd_init(s);
2034 static void vtd_class_init(ObjectClass *klass, void *data)
2036 DeviceClass *dc = DEVICE_CLASS(klass);
2038 dc->reset = vtd_reset;
2039 dc->realize = vtd_realize;
2040 dc->vmsd = &vtd_vmstate;
2041 dc->props = vtd_properties;
2044 static const TypeInfo vtd_info = {
2045 .name = TYPE_INTEL_IOMMU_DEVICE,
2046 .parent = TYPE_SYS_BUS_DEVICE,
2047 .instance_size = sizeof(IntelIOMMUState),
2048 .class_init = vtd_class_init,
2051 static void vtd_register_types(void)
2053 VTD_DPRINTF(GENERAL, "");
2054 type_register_static(&vtd_info);
2057 type_init(vtd_register_types)