qcow2: try load bitmaps only once
[qemu/kevin.git] / hw / intc / arm_gic.c
blobea0323f9691318f29bd3b80b7baf00c79a28e95e
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
26 #include "qemu/log.h"
27 #include "trace.h"
28 #include "sysemu/kvm.h"
30 /* #define DEBUG_GIC */
32 #ifdef DEBUG_GIC
33 #define DEBUG_GIC_GATE 1
34 #else
35 #define DEBUG_GIC_GATE 0
36 #endif
38 #define DPRINTF(fmt, ...) do { \
39 if (DEBUG_GIC_GATE) { \
40 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
41 } \
42 } while (0)
44 static const uint8_t gic_id_11mpcore[] = {
45 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 static const uint8_t gic_id_gicv1[] = {
49 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
52 static const uint8_t gic_id_gicv2[] = {
53 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
56 static inline int gic_get_current_cpu(GICState *s)
58 if (s->num_cpu > 1) {
59 return current_cpu->cpu_index;
61 return 0;
64 /* Return true if this GIC config has interrupt groups, which is
65 * true if we're a GICv2, or a GICv1 with the security extensions.
67 static inline bool gic_has_groups(GICState *s)
69 return s->revision == 2 || s->security_extn;
72 /* TODO: Many places that call this routine could be optimized. */
73 /* Update interrupt status after enabled or pending bits have been changed. */
74 void gic_update(GICState *s)
76 int best_irq;
77 int best_prio;
78 int irq;
79 int irq_level, fiq_level;
80 int cpu;
81 int cm;
83 for (cpu = 0; cpu < s->num_cpu; cpu++) {
84 cm = 1 << cpu;
85 s->current_pending[cpu] = 1023;
86 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
87 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
88 qemu_irq_lower(s->parent_irq[cpu]);
89 qemu_irq_lower(s->parent_fiq[cpu]);
90 continue;
92 best_prio = 0x100;
93 best_irq = 1023;
94 for (irq = 0; irq < s->num_irq; irq++) {
95 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96 (!GIC_TEST_ACTIVE(irq, cm)) &&
97 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
98 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
99 best_prio = GIC_GET_PRIORITY(irq, cpu);
100 best_irq = irq;
105 if (best_irq != 1023) {
106 trace_gic_update_bestirq(cpu, best_irq, best_prio,
107 s->priority_mask[cpu], s->running_priority[cpu]);
110 irq_level = fiq_level = 0;
112 if (best_prio < s->priority_mask[cpu]) {
113 s->current_pending[cpu] = best_irq;
114 if (best_prio < s->running_priority[cpu]) {
115 int group = GIC_TEST_GROUP(best_irq, cm);
117 if (extract32(s->ctlr, group, 1) &&
118 extract32(s->cpu_ctlr[cpu], group, 1)) {
119 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
120 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
121 best_irq, cpu);
122 fiq_level = 1;
123 trace_gic_update_set_irq(cpu, "fiq", fiq_level);
124 } else {
125 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
126 best_irq, cpu);
127 irq_level = 1;
128 trace_gic_update_set_irq(cpu, "irq", irq_level);
134 qemu_set_irq(s->parent_irq[cpu], irq_level);
135 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
139 void gic_set_pending_private(GICState *s, int cpu, int irq)
141 int cm = 1 << cpu;
143 if (gic_test_pending(s, irq, cm)) {
144 return;
147 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
148 GIC_SET_PENDING(irq, cm);
149 gic_update(s);
152 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
153 int cm, int target)
155 if (level) {
156 GIC_SET_LEVEL(irq, cm);
157 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
158 DPRINTF("Set %d pending mask %x\n", irq, target);
159 GIC_SET_PENDING(irq, target);
161 } else {
162 GIC_CLEAR_LEVEL(irq, cm);
166 static void gic_set_irq_generic(GICState *s, int irq, int level,
167 int cm, int target)
169 if (level) {
170 GIC_SET_LEVEL(irq, cm);
171 DPRINTF("Set %d pending mask %x\n", irq, target);
172 if (GIC_TEST_EDGE_TRIGGER(irq)) {
173 GIC_SET_PENDING(irq, target);
175 } else {
176 GIC_CLEAR_LEVEL(irq, cm);
180 /* Process a change in an external IRQ input. */
181 static void gic_set_irq(void *opaque, int irq, int level)
183 /* Meaning of the 'irq' parameter:
184 * [0..N-1] : external interrupts
185 * [N..N+31] : PPI (internal) interrupts for CPU 0
186 * [N+32..N+63] : PPI (internal interrupts for CPU 1
187 * ...
189 GICState *s = (GICState *)opaque;
190 int cm, target;
191 if (irq < (s->num_irq - GIC_INTERNAL)) {
192 /* The first external input line is internal interrupt 32. */
193 cm = ALL_CPU_MASK;
194 irq += GIC_INTERNAL;
195 target = GIC_TARGET(irq);
196 } else {
197 int cpu;
198 irq -= (s->num_irq - GIC_INTERNAL);
199 cpu = irq / GIC_INTERNAL;
200 irq %= GIC_INTERNAL;
201 cm = 1 << cpu;
202 target = cm;
205 assert(irq >= GIC_NR_SGIS);
207 if (level == GIC_TEST_LEVEL(irq, cm)) {
208 return;
211 if (s->revision == REV_11MPCORE) {
212 gic_set_irq_11mpcore(s, irq, level, cm, target);
213 } else {
214 gic_set_irq_generic(s, irq, level, cm, target);
216 trace_gic_set_irq(irq, level, cm, target);
218 gic_update(s);
221 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
222 MemTxAttrs attrs)
224 uint16_t pending_irq = s->current_pending[cpu];
226 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
227 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
228 /* On a GIC without the security extensions, reading this register
229 * behaves in the same way as a secure access to a GIC with them.
231 bool secure = !s->security_extn || attrs.secure;
233 if (group == 0 && !secure) {
234 /* Group0 interrupts hidden from Non-secure access */
235 return 1023;
237 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
238 /* Group1 interrupts only seen by Secure access if
239 * AckCtl bit set.
241 return 1022;
244 return pending_irq;
247 static int gic_get_group_priority(GICState *s, int cpu, int irq)
249 /* Return the group priority of the specified interrupt
250 * (which is the top bits of its priority, with the number
251 * of bits masked determined by the applicable binary point register).
253 int bpr;
254 uint32_t mask;
256 if (gic_has_groups(s) &&
257 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
258 GIC_TEST_GROUP(irq, (1 << cpu))) {
259 bpr = s->abpr[cpu] - 1;
260 assert(bpr >= 0);
261 } else {
262 bpr = s->bpr[cpu];
265 /* a BPR of 0 means the group priority bits are [7:1];
266 * a BPR of 1 means they are [7:2], and so on down to
267 * a BPR of 7 meaning no group priority bits at all.
269 mask = ~0U << ((bpr & 7) + 1);
271 return GIC_GET_PRIORITY(irq, cpu) & mask;
274 static void gic_activate_irq(GICState *s, int cpu, int irq)
276 /* Set the appropriate Active Priority Register bit for this IRQ,
277 * and update the running priority.
279 int prio = gic_get_group_priority(s, cpu, irq);
280 int preemption_level = prio >> (GIC_MIN_BPR + 1);
281 int regno = preemption_level / 32;
282 int bitno = preemption_level % 32;
284 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
285 s->nsapr[regno][cpu] |= (1 << bitno);
286 } else {
287 s->apr[regno][cpu] |= (1 << bitno);
290 s->running_priority[cpu] = prio;
291 GIC_SET_ACTIVE(irq, 1 << cpu);
294 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
296 /* Recalculate the current running priority for this CPU based
297 * on the set bits in the Active Priority Registers.
299 int i;
300 for (i = 0; i < GIC_NR_APRS; i++) {
301 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
302 if (!apr) {
303 continue;
305 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
307 return 0x100;
310 static void gic_drop_prio(GICState *s, int cpu, int group)
312 /* Drop the priority of the currently active interrupt in the
313 * specified group.
315 * Note that we can guarantee (because of the requirement to nest
316 * GICC_IAR reads [which activate an interrupt and raise priority]
317 * with GICC_EOIR writes [which drop the priority for the interrupt])
318 * that the interrupt we're being called for is the highest priority
319 * active interrupt, meaning that it has the lowest set bit in the
320 * APR registers.
322 * If the guest does not honour the ordering constraints then the
323 * behaviour of the GIC is UNPREDICTABLE, which for us means that
324 * the values of the APR registers might become incorrect and the
325 * running priority will be wrong, so interrupts that should preempt
326 * might not do so, and interrupts that should not preempt might do so.
328 int i;
330 for (i = 0; i < GIC_NR_APRS; i++) {
331 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
332 if (!*papr) {
333 continue;
335 /* Clear lowest set bit */
336 *papr &= *papr - 1;
337 break;
340 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
343 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
345 int ret, irq, src;
346 int cm = 1 << cpu;
348 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
349 * for the case where this GIC supports grouping and the pending interrupt
350 * is in the wrong group.
352 irq = gic_get_current_pending_irq(s, cpu, attrs);
353 trace_gic_acknowledge_irq(cpu, irq);
355 if (irq >= GIC_MAXIRQ) {
356 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
357 return irq;
360 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
361 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
362 return 1023;
365 if (s->revision == REV_11MPCORE) {
366 /* Clear pending flags for both level and edge triggered interrupts.
367 * Level triggered IRQs will be reasserted once they become inactive.
369 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
370 ret = irq;
371 } else {
372 if (irq < GIC_NR_SGIS) {
373 /* Lookup the source CPU for the SGI and clear this in the
374 * sgi_pending map. Return the src and clear the overall pending
375 * state on this CPU if the SGI is not pending from any CPUs.
377 assert(s->sgi_pending[irq][cpu] != 0);
378 src = ctz32(s->sgi_pending[irq][cpu]);
379 s->sgi_pending[irq][cpu] &= ~(1 << src);
380 if (s->sgi_pending[irq][cpu] == 0) {
381 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
383 ret = irq | ((src & 0x7) << 10);
384 } else {
385 /* Clear pending state for both level and edge triggered
386 * interrupts. (level triggered interrupts with an active line
387 * remain pending, see gic_test_pending)
389 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
390 ret = irq;
394 gic_activate_irq(s, cpu, irq);
395 gic_update(s);
396 DPRINTF("ACK %d\n", irq);
397 return ret;
400 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
401 MemTxAttrs attrs)
403 if (s->security_extn && !attrs.secure) {
404 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
405 return; /* Ignore Non-secure access of Group0 IRQ */
407 val = 0x80 | (val >> 1); /* Non-secure view */
410 if (irq < GIC_INTERNAL) {
411 s->priority1[irq][cpu] = val;
412 } else {
413 s->priority2[(irq) - GIC_INTERNAL] = val;
417 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
418 MemTxAttrs attrs)
420 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
422 if (s->security_extn && !attrs.secure) {
423 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
424 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
426 prio = (prio << 1) & 0xff; /* Non-secure view */
428 return prio;
431 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
432 MemTxAttrs attrs)
434 if (s->security_extn && !attrs.secure) {
435 if (s->priority_mask[cpu] & 0x80) {
436 /* Priority Mask in upper half */
437 pmask = 0x80 | (pmask >> 1);
438 } else {
439 /* Non-secure write ignored if priority mask is in lower half */
440 return;
443 s->priority_mask[cpu] = pmask;
446 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
448 uint32_t pmask = s->priority_mask[cpu];
450 if (s->security_extn && !attrs.secure) {
451 if (pmask & 0x80) {
452 /* Priority Mask in upper half, return Non-secure view */
453 pmask = (pmask << 1) & 0xff;
454 } else {
455 /* Priority Mask in lower half, RAZ */
456 pmask = 0;
459 return pmask;
462 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
464 uint32_t ret = s->cpu_ctlr[cpu];
466 if (s->security_extn && !attrs.secure) {
467 /* Construct the NS banked view of GICC_CTLR from the correct
468 * bits of the S banked view. We don't need to move the bypass
469 * control bits because we don't implement that (IMPDEF) part
470 * of the GIC architecture.
472 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
474 return ret;
477 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
478 MemTxAttrs attrs)
480 uint32_t mask;
482 if (s->security_extn && !attrs.secure) {
483 /* The NS view can only write certain bits in the register;
484 * the rest are unchanged
486 mask = GICC_CTLR_EN_GRP1;
487 if (s->revision == 2) {
488 mask |= GICC_CTLR_EOIMODE_NS;
490 s->cpu_ctlr[cpu] &= ~mask;
491 s->cpu_ctlr[cpu] |= (value << 1) & mask;
492 } else {
493 if (s->revision == 2) {
494 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
495 } else {
496 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
498 s->cpu_ctlr[cpu] = value & mask;
500 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
501 "Group1 Interrupts %sabled\n", cpu,
502 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
503 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
506 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
508 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
509 /* Idle priority */
510 return 0xff;
513 if (s->security_extn && !attrs.secure) {
514 if (s->running_priority[cpu] & 0x80) {
515 /* Running priority in upper half of range: return the Non-secure
516 * view of the priority.
518 return s->running_priority[cpu] << 1;
519 } else {
520 /* Running priority in lower half of range: RAZ */
521 return 0;
523 } else {
524 return s->running_priority[cpu];
528 /* Return true if we should split priority drop and interrupt deactivation,
529 * ie whether the relevant EOIMode bit is set.
531 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
533 if (s->revision != 2) {
534 /* Before GICv2 prio-drop and deactivate are not separable */
535 return false;
537 if (s->security_extn && !attrs.secure) {
538 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
540 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
543 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
545 int cm = 1 << cpu;
546 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
548 if (!gic_eoi_split(s, cpu, attrs)) {
549 /* This is UNPREDICTABLE; we choose to ignore it */
550 qemu_log_mask(LOG_GUEST_ERROR,
551 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
552 return;
555 if (s->security_extn && !attrs.secure && !group) {
556 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
557 return;
560 GIC_CLEAR_ACTIVE(irq, cm);
563 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
565 int cm = 1 << cpu;
566 int group;
568 DPRINTF("EOI %d\n", irq);
569 if (irq >= s->num_irq) {
570 /* This handles two cases:
571 * 1. If software writes the ID of a spurious interrupt [ie 1023]
572 * to the GICC_EOIR, the GIC ignores that write.
573 * 2. If software writes the number of a non-existent interrupt
574 * this must be a subcase of "value written does not match the last
575 * valid interrupt value read from the Interrupt Acknowledge
576 * register" and so this is UNPREDICTABLE. We choose to ignore it.
578 return;
580 if (s->running_priority[cpu] == 0x100) {
581 return; /* No active IRQ. */
584 if (s->revision == REV_11MPCORE) {
585 /* Mark level triggered interrupts as pending if they are still
586 raised. */
587 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
588 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
589 DPRINTF("Set %d pending mask %x\n", irq, cm);
590 GIC_SET_PENDING(irq, cm);
594 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
596 if (s->security_extn && !attrs.secure && !group) {
597 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
598 return;
601 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
602 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
603 * i.e. go ahead and complete the irq anyway.
606 gic_drop_prio(s, cpu, group);
608 /* In GICv2 the guest can choose to split priority-drop and deactivate */
609 if (!gic_eoi_split(s, cpu, attrs)) {
610 GIC_CLEAR_ACTIVE(irq, cm);
612 gic_update(s);
615 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
617 GICState *s = (GICState *)opaque;
618 uint32_t res;
619 int irq;
620 int i;
621 int cpu;
622 int cm;
623 int mask;
625 cpu = gic_get_current_cpu(s);
626 cm = 1 << cpu;
627 if (offset < 0x100) {
628 if (offset == 0) { /* GICD_CTLR */
629 if (s->security_extn && !attrs.secure) {
630 /* The NS bank of this register is just an alias of the
631 * EnableGrp1 bit in the S bank version.
633 return extract32(s->ctlr, 1, 1);
634 } else {
635 return s->ctlr;
638 if (offset == 4)
639 /* Interrupt Controller Type Register */
640 return ((s->num_irq / 32) - 1)
641 | ((s->num_cpu - 1) << 5)
642 | (s->security_extn << 10);
643 if (offset < 0x08)
644 return 0;
645 if (offset >= 0x80) {
646 /* Interrupt Group Registers: these RAZ/WI if this is an NS
647 * access to a GIC with the security extensions, or if the GIC
648 * doesn't have groups at all.
650 res = 0;
651 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
652 /* Every byte offset holds 8 group status bits */
653 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
654 if (irq >= s->num_irq) {
655 goto bad_reg;
657 for (i = 0; i < 8; i++) {
658 if (GIC_TEST_GROUP(irq + i, cm)) {
659 res |= (1 << i);
663 return res;
665 goto bad_reg;
666 } else if (offset < 0x200) {
667 /* Interrupt Set/Clear Enable. */
668 if (offset < 0x180)
669 irq = (offset - 0x100) * 8;
670 else
671 irq = (offset - 0x180) * 8;
672 irq += GIC_BASE_IRQ;
673 if (irq >= s->num_irq)
674 goto bad_reg;
675 res = 0;
676 for (i = 0; i < 8; i++) {
677 if (s->security_extn && !attrs.secure &&
678 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
679 continue; /* Ignore Non-secure access of Group0 IRQ */
682 if (GIC_TEST_ENABLED(irq + i, cm)) {
683 res |= (1 << i);
686 } else if (offset < 0x300) {
687 /* Interrupt Set/Clear Pending. */
688 if (offset < 0x280)
689 irq = (offset - 0x200) * 8;
690 else
691 irq = (offset - 0x280) * 8;
692 irq += GIC_BASE_IRQ;
693 if (irq >= s->num_irq)
694 goto bad_reg;
695 res = 0;
696 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
697 for (i = 0; i < 8; i++) {
698 if (s->security_extn && !attrs.secure &&
699 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
700 continue; /* Ignore Non-secure access of Group0 IRQ */
703 if (gic_test_pending(s, irq + i, mask)) {
704 res |= (1 << i);
707 } else if (offset < 0x400) {
708 /* Interrupt Active. */
709 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
710 if (irq >= s->num_irq)
711 goto bad_reg;
712 res = 0;
713 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
714 for (i = 0; i < 8; i++) {
715 if (s->security_extn && !attrs.secure &&
716 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
717 continue; /* Ignore Non-secure access of Group0 IRQ */
720 if (GIC_TEST_ACTIVE(irq + i, mask)) {
721 res |= (1 << i);
724 } else if (offset < 0x800) {
725 /* Interrupt Priority. */
726 irq = (offset - 0x400) + GIC_BASE_IRQ;
727 if (irq >= s->num_irq)
728 goto bad_reg;
729 res = gic_get_priority(s, cpu, irq, attrs);
730 } else if (offset < 0xc00) {
731 /* Interrupt CPU Target. */
732 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
733 /* For uniprocessor GICs these RAZ/WI */
734 res = 0;
735 } else {
736 irq = (offset - 0x800) + GIC_BASE_IRQ;
737 if (irq >= s->num_irq) {
738 goto bad_reg;
740 if (irq >= 29 && irq <= 31) {
741 res = cm;
742 } else {
743 res = GIC_TARGET(irq);
746 } else if (offset < 0xf00) {
747 /* Interrupt Configuration. */
748 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
749 if (irq >= s->num_irq)
750 goto bad_reg;
751 res = 0;
752 for (i = 0; i < 4; i++) {
753 if (s->security_extn && !attrs.secure &&
754 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
755 continue; /* Ignore Non-secure access of Group0 IRQ */
758 if (GIC_TEST_MODEL(irq + i))
759 res |= (1 << (i * 2));
760 if (GIC_TEST_EDGE_TRIGGER(irq + i))
761 res |= (2 << (i * 2));
763 } else if (offset < 0xf10) {
764 goto bad_reg;
765 } else if (offset < 0xf30) {
766 if (s->revision == REV_11MPCORE) {
767 goto bad_reg;
770 if (offset < 0xf20) {
771 /* GICD_CPENDSGIRn */
772 irq = (offset - 0xf10);
773 } else {
774 irq = (offset - 0xf20);
775 /* GICD_SPENDSGIRn */
778 if (s->security_extn && !attrs.secure &&
779 !GIC_TEST_GROUP(irq, 1 << cpu)) {
780 res = 0; /* Ignore Non-secure access of Group0 IRQ */
781 } else {
782 res = s->sgi_pending[irq][cpu];
784 } else if (offset < 0xfd0) {
785 goto bad_reg;
786 } else if (offset < 0x1000) {
787 if (offset & 3) {
788 res = 0;
789 } else {
790 switch (s->revision) {
791 case REV_11MPCORE:
792 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
793 break;
794 case 1:
795 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
796 break;
797 case 2:
798 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
799 break;
800 default:
801 res = 0;
804 } else {
805 g_assert_not_reached();
807 return res;
808 bad_reg:
809 qemu_log_mask(LOG_GUEST_ERROR,
810 "gic_dist_readb: Bad offset %x\n", (int)offset);
811 return 0;
814 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
815 unsigned size, MemTxAttrs attrs)
817 switch (size) {
818 case 1:
819 *data = gic_dist_readb(opaque, offset, attrs);
820 return MEMTX_OK;
821 case 2:
822 *data = gic_dist_readb(opaque, offset, attrs);
823 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
824 return MEMTX_OK;
825 case 4:
826 *data = gic_dist_readb(opaque, offset, attrs);
827 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
828 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
829 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
830 return MEMTX_OK;
831 default:
832 return MEMTX_ERROR;
836 static void gic_dist_writeb(void *opaque, hwaddr offset,
837 uint32_t value, MemTxAttrs attrs)
839 GICState *s = (GICState *)opaque;
840 int irq;
841 int i;
842 int cpu;
844 cpu = gic_get_current_cpu(s);
845 if (offset < 0x100) {
846 if (offset == 0) {
847 if (s->security_extn && !attrs.secure) {
848 /* NS version is just an alias of the S version's bit 1 */
849 s->ctlr = deposit32(s->ctlr, 1, 1, value);
850 } else if (gic_has_groups(s)) {
851 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
852 } else {
853 s->ctlr = value & GICD_CTLR_EN_GRP0;
855 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
856 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
857 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
858 } else if (offset < 4) {
859 /* ignored. */
860 } else if (offset >= 0x80) {
861 /* Interrupt Group Registers: RAZ/WI for NS access to secure
862 * GIC, or for GICs without groups.
864 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
865 /* Every byte offset holds 8 group status bits */
866 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
867 if (irq >= s->num_irq) {
868 goto bad_reg;
870 for (i = 0; i < 8; i++) {
871 /* Group bits are banked for private interrupts */
872 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
873 if (value & (1 << i)) {
874 /* Group1 (Non-secure) */
875 GIC_SET_GROUP(irq + i, cm);
876 } else {
877 /* Group0 (Secure) */
878 GIC_CLEAR_GROUP(irq + i, cm);
882 } else {
883 goto bad_reg;
885 } else if (offset < 0x180) {
886 /* Interrupt Set Enable. */
887 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
888 if (irq >= s->num_irq)
889 goto bad_reg;
890 if (irq < GIC_NR_SGIS) {
891 value = 0xff;
894 for (i = 0; i < 8; i++) {
895 if (value & (1 << i)) {
896 int mask =
897 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
898 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
900 if (s->security_extn && !attrs.secure &&
901 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
902 continue; /* Ignore Non-secure access of Group0 IRQ */
905 if (!GIC_TEST_ENABLED(irq + i, cm)) {
906 DPRINTF("Enabled IRQ %d\n", irq + i);
907 trace_gic_enable_irq(irq + i);
909 GIC_SET_ENABLED(irq + i, cm);
910 /* If a raised level triggered IRQ enabled then mark
911 is as pending. */
912 if (GIC_TEST_LEVEL(irq + i, mask)
913 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
914 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
915 GIC_SET_PENDING(irq + i, mask);
919 } else if (offset < 0x200) {
920 /* Interrupt Clear Enable. */
921 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
922 if (irq >= s->num_irq)
923 goto bad_reg;
924 if (irq < GIC_NR_SGIS) {
925 value = 0;
928 for (i = 0; i < 8; i++) {
929 if (value & (1 << i)) {
930 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
932 if (s->security_extn && !attrs.secure &&
933 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
934 continue; /* Ignore Non-secure access of Group0 IRQ */
937 if (GIC_TEST_ENABLED(irq + i, cm)) {
938 DPRINTF("Disabled IRQ %d\n", irq + i);
939 trace_gic_disable_irq(irq + i);
941 GIC_CLEAR_ENABLED(irq + i, cm);
944 } else if (offset < 0x280) {
945 /* Interrupt Set Pending. */
946 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
947 if (irq >= s->num_irq)
948 goto bad_reg;
949 if (irq < GIC_NR_SGIS) {
950 value = 0;
953 for (i = 0; i < 8; i++) {
954 if (value & (1 << i)) {
955 if (s->security_extn && !attrs.secure &&
956 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
957 continue; /* Ignore Non-secure access of Group0 IRQ */
960 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
963 } else if (offset < 0x300) {
964 /* Interrupt Clear Pending. */
965 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
966 if (irq >= s->num_irq)
967 goto bad_reg;
968 if (irq < GIC_NR_SGIS) {
969 value = 0;
972 for (i = 0; i < 8; i++) {
973 if (s->security_extn && !attrs.secure &&
974 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
975 continue; /* Ignore Non-secure access of Group0 IRQ */
978 /* ??? This currently clears the pending bit for all CPUs, even
979 for per-CPU interrupts. It's unclear whether this is the
980 corect behavior. */
981 if (value & (1 << i)) {
982 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
985 } else if (offset < 0x400) {
986 /* Interrupt Active. */
987 goto bad_reg;
988 } else if (offset < 0x800) {
989 /* Interrupt Priority. */
990 irq = (offset - 0x400) + GIC_BASE_IRQ;
991 if (irq >= s->num_irq)
992 goto bad_reg;
993 gic_set_priority(s, cpu, irq, value, attrs);
994 } else if (offset < 0xc00) {
995 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
996 * annoying exception of the 11MPCore's GIC.
998 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
999 irq = (offset - 0x800) + GIC_BASE_IRQ;
1000 if (irq >= s->num_irq) {
1001 goto bad_reg;
1003 if (irq < 29) {
1004 value = 0;
1005 } else if (irq < GIC_INTERNAL) {
1006 value = ALL_CPU_MASK;
1008 s->irq_target[irq] = value & ALL_CPU_MASK;
1010 } else if (offset < 0xf00) {
1011 /* Interrupt Configuration. */
1012 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
1013 if (irq >= s->num_irq)
1014 goto bad_reg;
1015 if (irq < GIC_NR_SGIS)
1016 value |= 0xaa;
1017 for (i = 0; i < 4; i++) {
1018 if (s->security_extn && !attrs.secure &&
1019 !GIC_TEST_GROUP(irq + i, 1 << cpu)) {
1020 continue; /* Ignore Non-secure access of Group0 IRQ */
1023 if (s->revision == REV_11MPCORE) {
1024 if (value & (1 << (i * 2))) {
1025 GIC_SET_MODEL(irq + i);
1026 } else {
1027 GIC_CLEAR_MODEL(irq + i);
1030 if (value & (2 << (i * 2))) {
1031 GIC_SET_EDGE_TRIGGER(irq + i);
1032 } else {
1033 GIC_CLEAR_EDGE_TRIGGER(irq + i);
1036 } else if (offset < 0xf10) {
1037 /* 0xf00 is only handled for 32-bit writes. */
1038 goto bad_reg;
1039 } else if (offset < 0xf20) {
1040 /* GICD_CPENDSGIRn */
1041 if (s->revision == REV_11MPCORE) {
1042 goto bad_reg;
1044 irq = (offset - 0xf10);
1046 if (!s->security_extn || attrs.secure ||
1047 GIC_TEST_GROUP(irq, 1 << cpu)) {
1048 s->sgi_pending[irq][cpu] &= ~value;
1049 if (s->sgi_pending[irq][cpu] == 0) {
1050 GIC_CLEAR_PENDING(irq, 1 << cpu);
1053 } else if (offset < 0xf30) {
1054 /* GICD_SPENDSGIRn */
1055 if (s->revision == REV_11MPCORE) {
1056 goto bad_reg;
1058 irq = (offset - 0xf20);
1060 if (!s->security_extn || attrs.secure ||
1061 GIC_TEST_GROUP(irq, 1 << cpu)) {
1062 GIC_SET_PENDING(irq, 1 << cpu);
1063 s->sgi_pending[irq][cpu] |= value;
1065 } else {
1066 goto bad_reg;
1068 gic_update(s);
1069 return;
1070 bad_reg:
1071 qemu_log_mask(LOG_GUEST_ERROR,
1072 "gic_dist_writeb: Bad offset %x\n", (int)offset);
1075 static void gic_dist_writew(void *opaque, hwaddr offset,
1076 uint32_t value, MemTxAttrs attrs)
1078 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1079 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1082 static void gic_dist_writel(void *opaque, hwaddr offset,
1083 uint32_t value, MemTxAttrs attrs)
1085 GICState *s = (GICState *)opaque;
1086 if (offset == 0xf00) {
1087 int cpu;
1088 int irq;
1089 int mask;
1090 int target_cpu;
1092 cpu = gic_get_current_cpu(s);
1093 irq = value & 0x3ff;
1094 switch ((value >> 24) & 3) {
1095 case 0:
1096 mask = (value >> 16) & ALL_CPU_MASK;
1097 break;
1098 case 1:
1099 mask = ALL_CPU_MASK ^ (1 << cpu);
1100 break;
1101 case 2:
1102 mask = 1 << cpu;
1103 break;
1104 default:
1105 DPRINTF("Bad Soft Int target filter\n");
1106 mask = ALL_CPU_MASK;
1107 break;
1109 GIC_SET_PENDING(irq, mask);
1110 target_cpu = ctz32(mask);
1111 while (target_cpu < GIC_NCPU) {
1112 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1113 mask &= ~(1 << target_cpu);
1114 target_cpu = ctz32(mask);
1116 gic_update(s);
1117 return;
1119 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1120 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1123 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1124 unsigned size, MemTxAttrs attrs)
1126 switch (size) {
1127 case 1:
1128 gic_dist_writeb(opaque, offset, data, attrs);
1129 return MEMTX_OK;
1130 case 2:
1131 gic_dist_writew(opaque, offset, data, attrs);
1132 return MEMTX_OK;
1133 case 4:
1134 gic_dist_writel(opaque, offset, data, attrs);
1135 return MEMTX_OK;
1136 default:
1137 return MEMTX_ERROR;
1141 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1143 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1144 * second half of GICC_NSAPR.
1146 switch (GIC_MIN_BPR) {
1147 case 0:
1148 if (regno < 2) {
1149 return s->nsapr[regno + 2][cpu];
1151 break;
1152 case 1:
1153 if (regno == 0) {
1154 return s->nsapr[regno + 1][cpu];
1156 break;
1157 case 2:
1158 if (regno == 0) {
1159 return extract32(s->nsapr[0][cpu], 16, 16);
1161 break;
1162 case 3:
1163 if (regno == 0) {
1164 return extract32(s->nsapr[0][cpu], 8, 8);
1166 break;
1167 default:
1168 g_assert_not_reached();
1170 return 0;
1173 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1174 uint32_t value)
1176 /* Write the Nonsecure view of GICC_APR<regno>. */
1177 switch (GIC_MIN_BPR) {
1178 case 0:
1179 if (regno < 2) {
1180 s->nsapr[regno + 2][cpu] = value;
1182 break;
1183 case 1:
1184 if (regno == 0) {
1185 s->nsapr[regno + 1][cpu] = value;
1187 break;
1188 case 2:
1189 if (regno == 0) {
1190 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1192 break;
1193 case 3:
1194 if (regno == 0) {
1195 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1197 break;
1198 default:
1199 g_assert_not_reached();
1203 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1204 uint64_t *data, MemTxAttrs attrs)
1206 switch (offset) {
1207 case 0x00: /* Control */
1208 *data = gic_get_cpu_control(s, cpu, attrs);
1209 break;
1210 case 0x04: /* Priority mask */
1211 *data = gic_get_priority_mask(s, cpu, attrs);
1212 break;
1213 case 0x08: /* Binary Point */
1214 if (s->security_extn && !attrs.secure) {
1215 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1216 /* NS view of BPR when CBPR is 1 */
1217 *data = MIN(s->bpr[cpu] + 1, 7);
1218 } else {
1219 /* BPR is banked. Non-secure copy stored in ABPR. */
1220 *data = s->abpr[cpu];
1222 } else {
1223 *data = s->bpr[cpu];
1225 break;
1226 case 0x0c: /* Acknowledge */
1227 *data = gic_acknowledge_irq(s, cpu, attrs);
1228 break;
1229 case 0x14: /* Running Priority */
1230 *data = gic_get_running_priority(s, cpu, attrs);
1231 break;
1232 case 0x18: /* Highest Pending Interrupt */
1233 *data = gic_get_current_pending_irq(s, cpu, attrs);
1234 break;
1235 case 0x1c: /* Aliased Binary Point */
1236 /* GIC v2, no security: ABPR
1237 * GIC v1, no security: not implemented (RAZ/WI)
1238 * With security extensions, secure access: ABPR (alias of NS BPR)
1239 * With security extensions, nonsecure access: RAZ/WI
1241 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1242 *data = 0;
1243 } else {
1244 *data = s->abpr[cpu];
1246 break;
1247 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1249 int regno = (offset - 0xd0) / 4;
1251 if (regno >= GIC_NR_APRS || s->revision != 2) {
1252 *data = 0;
1253 } else if (s->security_extn && !attrs.secure) {
1254 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1255 *data = gic_apr_ns_view(s, regno, cpu);
1256 } else {
1257 *data = s->apr[regno][cpu];
1259 break;
1261 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1263 int regno = (offset - 0xe0) / 4;
1265 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1266 (s->security_extn && !attrs.secure)) {
1267 *data = 0;
1268 } else {
1269 *data = s->nsapr[regno][cpu];
1271 break;
1273 default:
1274 qemu_log_mask(LOG_GUEST_ERROR,
1275 "gic_cpu_read: Bad offset %x\n", (int)offset);
1276 *data = 0;
1277 break;
1279 return MEMTX_OK;
1282 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1283 uint32_t value, MemTxAttrs attrs)
1285 switch (offset) {
1286 case 0x00: /* Control */
1287 gic_set_cpu_control(s, cpu, value, attrs);
1288 break;
1289 case 0x04: /* Priority mask */
1290 gic_set_priority_mask(s, cpu, value, attrs);
1291 break;
1292 case 0x08: /* Binary Point */
1293 if (s->security_extn && !attrs.secure) {
1294 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1295 /* WI when CBPR is 1 */
1296 return MEMTX_OK;
1297 } else {
1298 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1300 } else {
1301 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1303 break;
1304 case 0x10: /* End Of Interrupt */
1305 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1306 return MEMTX_OK;
1307 case 0x1c: /* Aliased Binary Point */
1308 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1309 /* unimplemented, or NS access: RAZ/WI */
1310 return MEMTX_OK;
1311 } else {
1312 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1314 break;
1315 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1317 int regno = (offset - 0xd0) / 4;
1319 if (regno >= GIC_NR_APRS || s->revision != 2) {
1320 return MEMTX_OK;
1322 if (s->security_extn && !attrs.secure) {
1323 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1324 gic_apr_write_ns_view(s, regno, cpu, value);
1325 } else {
1326 s->apr[regno][cpu] = value;
1328 break;
1330 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1332 int regno = (offset - 0xe0) / 4;
1334 if (regno >= GIC_NR_APRS || s->revision != 2) {
1335 return MEMTX_OK;
1337 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1338 return MEMTX_OK;
1340 s->nsapr[regno][cpu] = value;
1341 break;
1343 case 0x1000:
1344 /* GICC_DIR */
1345 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1346 break;
1347 default:
1348 qemu_log_mask(LOG_GUEST_ERROR,
1349 "gic_cpu_write: Bad offset %x\n", (int)offset);
1350 return MEMTX_OK;
1352 gic_update(s);
1353 return MEMTX_OK;
1356 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1357 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1358 unsigned size, MemTxAttrs attrs)
1360 GICState *s = (GICState *)opaque;
1361 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1364 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1365 uint64_t value, unsigned size,
1366 MemTxAttrs attrs)
1368 GICState *s = (GICState *)opaque;
1369 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1372 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1373 * These just decode the opaque pointer into GICState* + cpu id.
1375 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1376 unsigned size, MemTxAttrs attrs)
1378 GICState **backref = (GICState **)opaque;
1379 GICState *s = *backref;
1380 int id = (backref - s->backref);
1381 return gic_cpu_read(s, id, addr, data, attrs);
1384 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1385 uint64_t value, unsigned size,
1386 MemTxAttrs attrs)
1388 GICState **backref = (GICState **)opaque;
1389 GICState *s = *backref;
1390 int id = (backref - s->backref);
1391 return gic_cpu_write(s, id, addr, value, attrs);
1394 static const MemoryRegionOps gic_ops[2] = {
1396 .read_with_attrs = gic_dist_read,
1397 .write_with_attrs = gic_dist_write,
1398 .endianness = DEVICE_NATIVE_ENDIAN,
1401 .read_with_attrs = gic_thiscpu_read,
1402 .write_with_attrs = gic_thiscpu_write,
1403 .endianness = DEVICE_NATIVE_ENDIAN,
1407 static const MemoryRegionOps gic_cpu_ops = {
1408 .read_with_attrs = gic_do_cpu_read,
1409 .write_with_attrs = gic_do_cpu_write,
1410 .endianness = DEVICE_NATIVE_ENDIAN,
1413 /* This function is used by nvic model */
1414 void gic_init_irqs_and_distributor(GICState *s)
1416 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1419 static void arm_gic_realize(DeviceState *dev, Error **errp)
1421 /* Device instance realize function for the GIC sysbus device */
1422 int i;
1423 GICState *s = ARM_GIC(dev);
1424 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1425 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1426 Error *local_err = NULL;
1428 agc->parent_realize(dev, &local_err);
1429 if (local_err) {
1430 error_propagate(errp, local_err);
1431 return;
1434 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
1435 error_setg(errp, "KVM with user space irqchip only works when the "
1436 "host kernel supports KVM_CAP_ARM_USER_IRQ");
1437 return;
1440 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1441 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1443 /* Extra core-specific regions for the CPU interfaces. This is
1444 * necessary for "franken-GIC" implementations, for example on
1445 * Exynos 4.
1446 * NB that the memory region size of 0x100 applies for the 11MPCore
1447 * and also cores following the GIC v1 spec (ie A9).
1448 * GIC v2 defines a larger memory region (0x1000) so this will need
1449 * to be extended when we implement A15.
1451 for (i = 0; i < s->num_cpu; i++) {
1452 s->backref[i] = s;
1453 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1454 &s->backref[i], "gic_cpu", 0x100);
1455 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1459 static void arm_gic_class_init(ObjectClass *klass, void *data)
1461 DeviceClass *dc = DEVICE_CLASS(klass);
1462 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1464 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
1467 static const TypeInfo arm_gic_info = {
1468 .name = TYPE_ARM_GIC,
1469 .parent = TYPE_ARM_GIC_COMMON,
1470 .instance_size = sizeof(GICState),
1471 .class_init = arm_gic_class_init,
1472 .class_size = sizeof(ARMGICClass),
1475 static void arm_gic_register_types(void)
1477 type_register_static(&arm_gic_info);
1480 type_init(arm_gic_register_types)