Fix typo in comment, by Andreas Faerber.
[qemu/dscho.git] / hw / slavio_intctl.c
blob993c3196c8ab5308f47576e5896469d27dcfd4e1
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
25 //#define DEBUG_IRQ_COUNT
26 //#define DEBUG_IRQ
28 #ifdef DEBUG_IRQ
29 #define DPRINTF(fmt, args...) \
30 do { printf("IRQ: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
36 * Registers of interrupt controller in sun4m.
38 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * There is a system master controller and one for each cpu.
46 #define MAX_CPUS 16
47 #define MAX_PILS 16
49 typedef struct SLAVIO_INTCTLState {
50 uint32_t intreg_pending[MAX_CPUS];
51 uint32_t intregm_pending;
52 uint32_t intregm_disabled;
53 uint32_t target_cpu;
54 #ifdef DEBUG_IRQ_COUNT
55 uint64_t irq_count[32];
56 #endif
57 qemu_irq *cpu_irqs[MAX_CPUS];
58 const uint32_t *intbit_to_level;
59 uint32_t cputimer_bit;
60 uint32_t pil_out[MAX_CPUS];
61 } SLAVIO_INTCTLState;
63 #define INTCTL_MAXADDR 0xf
64 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
65 #define INTCTLM_MAXADDR 0x13
66 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
67 #define INTCTLM_MASK 0x1f
68 static void slavio_check_interrupts(void *opaque);
70 // per-cpu interrupt controller
71 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
73 SLAVIO_INTCTLState *s = opaque;
74 uint32_t saddr, ret;
75 int cpu;
77 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
78 saddr = (addr & INTCTL_MAXADDR) >> 2;
79 switch (saddr) {
80 case 0:
81 ret = s->intreg_pending[cpu];
82 break;
83 default:
84 ret = 0;
85 break;
87 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
89 return ret;
92 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
94 SLAVIO_INTCTLState *s = opaque;
95 uint32_t saddr;
96 int cpu;
98 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
99 saddr = (addr & INTCTL_MAXADDR) >> 2;
100 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
101 switch (saddr) {
102 case 1: // clear pending softints
103 if (val & 0x4000)
104 val |= 80000000;
105 val &= 0xfffe0000;
106 s->intreg_pending[cpu] &= ~val;
107 slavio_check_interrupts(s);
108 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
109 break;
110 case 2: // set softint
111 val &= 0xfffe0000;
112 s->intreg_pending[cpu] |= val;
113 slavio_check_interrupts(s);
114 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
115 break;
116 default:
117 break;
121 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
122 slavio_intctl_mem_readl,
123 slavio_intctl_mem_readl,
124 slavio_intctl_mem_readl,
127 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
128 slavio_intctl_mem_writel,
129 slavio_intctl_mem_writel,
130 slavio_intctl_mem_writel,
133 // master system interrupt controller
134 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
136 SLAVIO_INTCTLState *s = opaque;
137 uint32_t saddr, ret;
139 saddr = (addr & INTCTLM_MAXADDR) >> 2;
140 switch (saddr) {
141 case 0:
142 ret = s->intregm_pending & 0x7fffffff;
143 break;
144 case 1:
145 ret = s->intregm_disabled;
146 break;
147 case 4:
148 ret = s->target_cpu;
149 break;
150 default:
151 ret = 0;
152 break;
154 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
156 return ret;
159 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
161 SLAVIO_INTCTLState *s = opaque;
162 uint32_t saddr;
164 saddr = (addr & INTCTLM_MASK) >> 2;
165 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
166 switch (saddr) {
167 case 2: // clear (enable)
168 // Force clear unused bits
169 val &= ~0x4fb2007f;
170 s->intregm_disabled &= ~val;
171 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
172 slavio_check_interrupts(s);
173 break;
174 case 3: // set (disable, clear pending)
175 // Force clear unused bits
176 val &= ~0x4fb2007f;
177 s->intregm_disabled |= val;
178 s->intregm_pending &= ~val;
179 slavio_check_interrupts(s);
180 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
181 break;
182 case 4:
183 s->target_cpu = val & (MAX_CPUS - 1);
184 slavio_check_interrupts(s);
185 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
186 break;
187 default:
188 break;
192 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
193 slavio_intctlm_mem_readl,
194 slavio_intctlm_mem_readl,
195 slavio_intctlm_mem_readl,
198 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
199 slavio_intctlm_mem_writel,
200 slavio_intctlm_mem_writel,
201 slavio_intctlm_mem_writel,
204 void slavio_pic_info(void *opaque)
206 SLAVIO_INTCTLState *s = opaque;
207 int i;
209 for (i = 0; i < MAX_CPUS; i++) {
210 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
212 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
215 void slavio_irq_info(void *opaque)
217 #ifndef DEBUG_IRQ_COUNT
218 term_printf("irq statistic code not compiled.\n");
219 #else
220 SLAVIO_INTCTLState *s = opaque;
221 int i;
222 int64_t count;
224 term_printf("IRQ statistics:\n");
225 for (i = 0; i < 32; i++) {
226 count = s->irq_count[i];
227 if (count > 0)
228 term_printf("%2d: %" PRId64 "\n", i, count);
230 #endif
233 static void slavio_check_interrupts(void *opaque)
235 SLAVIO_INTCTLState *s = opaque;
236 uint32_t pending = s->intregm_pending, pil_pending;
237 unsigned int i, j;
239 pending &= ~s->intregm_disabled;
241 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
242 for (i = 0; i < MAX_CPUS; i++) {
243 pil_pending = 0;
244 if (pending && !(s->intregm_disabled & 0x80000000) &&
245 (i == s->target_cpu)) {
246 for (j = 0; j < 32; j++) {
247 if (pending & (1 << j))
248 pil_pending |= 1 << s->intbit_to_level[j];
251 pil_pending |= (s->intreg_pending[i] >> 16) & 0xfffe;
253 for (j = 0; j < MAX_PILS; j++) {
254 if (pil_pending & (1 << j)) {
255 if (!(s->pil_out[i] & (1 << j)))
256 qemu_irq_raise(s->cpu_irqs[i][j]);
257 } else {
258 if (s->pil_out[i] & (1 << j))
259 qemu_irq_lower(s->cpu_irqs[i][j]);
262 s->pil_out[i] = pil_pending;
267 * "irq" here is the bit number in the system interrupt register to
268 * separate serial and keyboard interrupts sharing a level.
270 static void slavio_set_irq(void *opaque, int irq, int level)
272 SLAVIO_INTCTLState *s = opaque;
273 uint32_t mask = 1 << irq;
274 uint32_t pil = s->intbit_to_level[irq];
276 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
277 level);
278 if (pil > 0) {
279 if (level) {
280 #ifdef DEBUG_IRQ_COUNT
281 s->irq_count[pil]++;
282 #endif
283 s->intregm_pending |= mask;
284 s->intreg_pending[s->target_cpu] |= 1 << pil;
285 } else {
286 s->intregm_pending &= ~mask;
287 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
289 slavio_check_interrupts(s);
293 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
295 SLAVIO_INTCTLState *s = opaque;
297 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
299 if (level)
300 s->intreg_pending[cpu] |= s->cputimer_bit;
301 else
302 s->intreg_pending[cpu] &= ~s->cputimer_bit;
304 slavio_check_interrupts(s);
307 static void slavio_intctl_save(QEMUFile *f, void *opaque)
309 SLAVIO_INTCTLState *s = opaque;
310 int i;
312 for (i = 0; i < MAX_CPUS; i++) {
313 qemu_put_be32s(f, &s->intreg_pending[i]);
315 qemu_put_be32s(f, &s->intregm_pending);
316 qemu_put_be32s(f, &s->intregm_disabled);
317 qemu_put_be32s(f, &s->target_cpu);
320 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
322 SLAVIO_INTCTLState *s = opaque;
323 int i;
325 if (version_id != 1)
326 return -EINVAL;
328 for (i = 0; i < MAX_CPUS; i++) {
329 qemu_get_be32s(f, &s->intreg_pending[i]);
331 qemu_get_be32s(f, &s->intregm_pending);
332 qemu_get_be32s(f, &s->intregm_disabled);
333 qemu_get_be32s(f, &s->target_cpu);
334 slavio_check_interrupts(s);
335 return 0;
338 static void slavio_intctl_reset(void *opaque)
340 SLAVIO_INTCTLState *s = opaque;
341 int i;
343 for (i = 0; i < MAX_CPUS; i++) {
344 s->intreg_pending[i] = 0;
346 s->intregm_disabled = ~0xffb2007f;
347 s->intregm_pending = 0;
348 s->target_cpu = 0;
349 slavio_check_interrupts(s);
352 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
353 const uint32_t *intbit_to_level,
354 qemu_irq **irq, qemu_irq **cpu_irq,
355 qemu_irq **parent_irq, unsigned int cputimer)
357 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
358 SLAVIO_INTCTLState *s;
360 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
361 if (!s)
362 return NULL;
364 s->intbit_to_level = intbit_to_level;
365 for (i = 0; i < MAX_CPUS; i++) {
366 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
367 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
368 slavio_intctl_io_memory);
369 s->cpu_irqs[i] = parent_irq[i];
372 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
373 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
375 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
376 qemu_register_reset(slavio_intctl_reset, s);
377 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
379 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
380 s->cputimer_bit = 1 << s->intbit_to_level[cputimer];
381 slavio_intctl_reset(s);
382 return s;