Fix typo in comment, by Andreas Faerber.
[qemu/dscho.git] / hw / i8254.c
blobf0b41d75c96eb39f772dda2483b2ab8234a97456
1 /*
2 * QEMU 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 //#define DEBUG_PIT
28 #define RW_STATE_LSB 1
29 #define RW_STATE_MSB 2
30 #define RW_STATE_WORD0 3
31 #define RW_STATE_WORD1 4
33 typedef struct PITChannelState {
34 int count; /* can be 65536 */
35 uint16_t latched_count;
36 uint8_t count_latched;
37 uint8_t status_latched;
38 uint8_t status;
39 uint8_t read_state;
40 uint8_t write_state;
41 uint8_t write_latch;
42 uint8_t rw_mode;
43 uint8_t mode;
44 uint8_t bcd; /* not supported */
45 uint8_t gate; /* timer start */
46 int64_t count_load_time;
47 /* irq handling */
48 int64_t next_transition_time;
49 QEMUTimer *irq_timer;
50 qemu_irq irq;
51 } PITChannelState;
53 struct PITState {
54 PITChannelState channels[3];
57 static PITState pit_state;
59 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
61 static int pit_get_count(PITChannelState *s)
63 uint64_t d;
64 int counter;
66 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
67 switch(s->mode) {
68 case 0:
69 case 1:
70 case 4:
71 case 5:
72 counter = (s->count - d) & 0xffff;
73 break;
74 case 3:
75 /* XXX: may be incorrect for odd counts */
76 counter = s->count - ((2 * d) % s->count);
77 break;
78 default:
79 counter = s->count - (d % s->count);
80 break;
82 return counter;
85 /* get pit output bit */
86 static int pit_get_out1(PITChannelState *s, int64_t current_time)
88 uint64_t d;
89 int out;
91 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
92 switch(s->mode) {
93 default:
94 case 0:
95 out = (d >= s->count);
96 break;
97 case 1:
98 out = (d < s->count);
99 break;
100 case 2:
101 if ((d % s->count) == 0 && d != 0)
102 out = 1;
103 else
104 out = 0;
105 break;
106 case 3:
107 out = (d % s->count) < ((s->count + 1) >> 1);
108 break;
109 case 4:
110 case 5:
111 out = (d == s->count);
112 break;
114 return out;
117 int pit_get_out(PITState *pit, int channel, int64_t current_time)
119 PITChannelState *s = &pit->channels[channel];
120 return pit_get_out1(s, current_time);
123 /* return -1 if no transition will occur. */
124 static int64_t pit_get_next_transition_time(PITChannelState *s,
125 int64_t current_time)
127 uint64_t d, next_time, base;
128 int period2;
130 d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
131 switch(s->mode) {
132 default:
133 case 0:
134 case 1:
135 if (d < s->count)
136 next_time = s->count;
137 else
138 return -1;
139 break;
140 case 2:
141 base = (d / s->count) * s->count;
142 if ((d - base) == 0 && d != 0)
143 next_time = base + s->count;
144 else
145 next_time = base + s->count + 1;
146 break;
147 case 3:
148 base = (d / s->count) * s->count;
149 period2 = ((s->count + 1) >> 1);
150 if ((d - base) < period2)
151 next_time = base + period2;
152 else
153 next_time = base + s->count;
154 break;
155 case 4:
156 case 5:
157 if (d < s->count)
158 next_time = s->count;
159 else if (d == s->count)
160 next_time = s->count + 1;
161 else
162 return -1;
163 break;
165 /* convert to timer units */
166 next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
167 /* fix potential rounding problems */
168 /* XXX: better solution: use a clock at PIT_FREQ Hz */
169 if (next_time <= current_time)
170 next_time = current_time + 1;
171 return next_time;
174 /* val must be 0 or 1 */
175 void pit_set_gate(PITState *pit, int channel, int val)
177 PITChannelState *s = &pit->channels[channel];
179 switch(s->mode) {
180 default:
181 case 0:
182 case 4:
183 /* XXX: just disable/enable counting */
184 break;
185 case 1:
186 case 5:
187 if (s->gate < val) {
188 /* restart counting on rising edge */
189 s->count_load_time = qemu_get_clock(vm_clock);
190 pit_irq_timer_update(s, s->count_load_time);
192 break;
193 case 2:
194 case 3:
195 if (s->gate < val) {
196 /* restart counting on rising edge */
197 s->count_load_time = qemu_get_clock(vm_clock);
198 pit_irq_timer_update(s, s->count_load_time);
200 /* XXX: disable/enable counting */
201 break;
203 s->gate = val;
206 int pit_get_gate(PITState *pit, int channel)
208 PITChannelState *s = &pit->channels[channel];
209 return s->gate;
212 int pit_get_initial_count(PITState *pit, int channel)
214 PITChannelState *s = &pit->channels[channel];
215 return s->count;
218 int pit_get_mode(PITState *pit, int channel)
220 PITChannelState *s = &pit->channels[channel];
221 return s->mode;
224 static inline void pit_load_count(PITChannelState *s, int val)
226 if (val == 0)
227 val = 0x10000;
228 s->count_load_time = qemu_get_clock(vm_clock);
229 s->count = val;
230 pit_irq_timer_update(s, s->count_load_time);
233 /* if already latched, do not latch again */
234 static void pit_latch_count(PITChannelState *s)
236 if (!s->count_latched) {
237 s->latched_count = pit_get_count(s);
238 s->count_latched = s->rw_mode;
242 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
244 PITState *pit = opaque;
245 int channel, access;
246 PITChannelState *s;
248 addr &= 3;
249 if (addr == 3) {
250 channel = val >> 6;
251 if (channel == 3) {
252 /* read back command */
253 for(channel = 0; channel < 3; channel++) {
254 s = &pit->channels[channel];
255 if (val & (2 << channel)) {
256 if (!(val & 0x20)) {
257 pit_latch_count(s);
259 if (!(val & 0x10) && !s->status_latched) {
260 /* status latch */
261 /* XXX: add BCD and null count */
262 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
263 (s->rw_mode << 4) |
264 (s->mode << 1) |
265 s->bcd;
266 s->status_latched = 1;
270 } else {
271 s = &pit->channels[channel];
272 access = (val >> 4) & 3;
273 if (access == 0) {
274 pit_latch_count(s);
275 } else {
276 s->rw_mode = access;
277 s->read_state = access;
278 s->write_state = access;
280 s->mode = (val >> 1) & 7;
281 s->bcd = val & 1;
282 /* XXX: update irq timer ? */
285 } else {
286 s = &pit->channels[addr];
287 switch(s->write_state) {
288 default:
289 case RW_STATE_LSB:
290 pit_load_count(s, val);
291 break;
292 case RW_STATE_MSB:
293 pit_load_count(s, val << 8);
294 break;
295 case RW_STATE_WORD0:
296 s->write_latch = val;
297 s->write_state = RW_STATE_WORD1;
298 break;
299 case RW_STATE_WORD1:
300 pit_load_count(s, s->write_latch | (val << 8));
301 s->write_state = RW_STATE_WORD0;
302 break;
307 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
309 PITState *pit = opaque;
310 int ret, count;
311 PITChannelState *s;
313 addr &= 3;
314 s = &pit->channels[addr];
315 if (s->status_latched) {
316 s->status_latched = 0;
317 ret = s->status;
318 } else if (s->count_latched) {
319 switch(s->count_latched) {
320 default:
321 case RW_STATE_LSB:
322 ret = s->latched_count & 0xff;
323 s->count_latched = 0;
324 break;
325 case RW_STATE_MSB:
326 ret = s->latched_count >> 8;
327 s->count_latched = 0;
328 break;
329 case RW_STATE_WORD0:
330 ret = s->latched_count & 0xff;
331 s->count_latched = RW_STATE_MSB;
332 break;
334 } else {
335 switch(s->read_state) {
336 default:
337 case RW_STATE_LSB:
338 count = pit_get_count(s);
339 ret = count & 0xff;
340 break;
341 case RW_STATE_MSB:
342 count = pit_get_count(s);
343 ret = (count >> 8) & 0xff;
344 break;
345 case RW_STATE_WORD0:
346 count = pit_get_count(s);
347 ret = count & 0xff;
348 s->read_state = RW_STATE_WORD1;
349 break;
350 case RW_STATE_WORD1:
351 count = pit_get_count(s);
352 ret = (count >> 8) & 0xff;
353 s->read_state = RW_STATE_WORD0;
354 break;
357 return ret;
360 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
362 int64_t expire_time;
363 int irq_level;
365 if (!s->irq_timer)
366 return;
367 expire_time = pit_get_next_transition_time(s, current_time);
368 irq_level = pit_get_out1(s, current_time);
369 qemu_set_irq(s->irq, irq_level);
370 #ifdef DEBUG_PIT
371 printf("irq_level=%d next_delay=%f\n",
372 irq_level,
373 (double)(expire_time - current_time) / ticks_per_sec);
374 #endif
375 s->next_transition_time = expire_time;
376 if (expire_time != -1)
377 qemu_mod_timer(s->irq_timer, expire_time);
378 else
379 qemu_del_timer(s->irq_timer);
382 static void pit_irq_timer(void *opaque)
384 PITChannelState *s = opaque;
386 pit_irq_timer_update(s, s->next_transition_time);
389 static void pit_save(QEMUFile *f, void *opaque)
391 PITState *pit = opaque;
392 PITChannelState *s;
393 int i;
395 for(i = 0; i < 3; i++) {
396 s = &pit->channels[i];
397 qemu_put_be32s(f, &s->count);
398 qemu_put_be16s(f, &s->latched_count);
399 qemu_put_8s(f, &s->count_latched);
400 qemu_put_8s(f, &s->status_latched);
401 qemu_put_8s(f, &s->status);
402 qemu_put_8s(f, &s->read_state);
403 qemu_put_8s(f, &s->write_state);
404 qemu_put_8s(f, &s->write_latch);
405 qemu_put_8s(f, &s->rw_mode);
406 qemu_put_8s(f, &s->mode);
407 qemu_put_8s(f, &s->bcd);
408 qemu_put_8s(f, &s->gate);
409 qemu_put_be64s(f, &s->count_load_time);
410 if (s->irq_timer) {
411 qemu_put_be64s(f, &s->next_transition_time);
412 qemu_put_timer(f, s->irq_timer);
417 static int pit_load(QEMUFile *f, void *opaque, int version_id)
419 PITState *pit = opaque;
420 PITChannelState *s;
421 int i;
423 if (version_id != 1)
424 return -EINVAL;
426 for(i = 0; i < 3; i++) {
427 s = &pit->channels[i];
428 qemu_get_be32s(f, &s->count);
429 qemu_get_be16s(f, &s->latched_count);
430 qemu_get_8s(f, &s->count_latched);
431 qemu_get_8s(f, &s->status_latched);
432 qemu_get_8s(f, &s->status);
433 qemu_get_8s(f, &s->read_state);
434 qemu_get_8s(f, &s->write_state);
435 qemu_get_8s(f, &s->write_latch);
436 qemu_get_8s(f, &s->rw_mode);
437 qemu_get_8s(f, &s->mode);
438 qemu_get_8s(f, &s->bcd);
439 qemu_get_8s(f, &s->gate);
440 qemu_get_be64s(f, &s->count_load_time);
441 if (s->irq_timer) {
442 qemu_get_be64s(f, &s->next_transition_time);
443 qemu_get_timer(f, s->irq_timer);
446 return 0;
449 static void pit_reset(void *opaque)
451 PITState *pit = opaque;
452 PITChannelState *s;
453 int i;
455 for(i = 0;i < 3; i++) {
456 s = &pit->channels[i];
457 s->mode = 3;
458 s->gate = (i != 2);
459 pit_load_count(s, 0);
463 PITState *pit_init(int base, qemu_irq irq)
465 PITState *pit = &pit_state;
466 PITChannelState *s;
468 s = &pit->channels[0];
469 /* the timer 0 is connected to an IRQ */
470 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
471 s->irq = irq;
473 register_savevm("i8254", base, 1, pit_save, pit_load, pit);
475 qemu_register_reset(pit_reset, pit);
476 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
477 register_ioport_read(base, 3, 1, pit_ioport_read, pit);
479 pit_reset(pit);
481 return pit;