Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / memory.c
blob0614d77150dd59ddfaa2efa86909f82773844703
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
29 static unsigned memory_region_transaction_depth;
30 static bool memory_region_update_pending;
31 static bool ioeventfd_update_pending;
32 static bool global_dirty_log = false;
34 /* flat_view_mutex is taken around reading as->current_map; the critical
35 * section is extremely short, so I'm using a single mutex for every AS.
36 * We could also RCU for the read-side.
38 * The BQL is taken around transaction commits, hence both locks are taken
39 * while writing to as->current_map (with the BQL taken outside).
41 static QemuMutex flat_view_mutex;
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49 static void memory_init(void)
51 qemu_mutex_init(&flat_view_mutex);
54 typedef struct AddrRange AddrRange;
57 * Note using signed integers limits us to physical addresses at most
58 * 63 bits wide. They are needed for negative offsetting in aliases
59 * (large MemoryRegion::alias_offset).
61 struct AddrRange {
62 Int128 start;
63 Int128 size;
66 static AddrRange addrrange_make(Int128 start, Int128 size)
68 return (AddrRange) { start, size };
71 static bool addrrange_equal(AddrRange r1, AddrRange r2)
73 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
76 static Int128 addrrange_end(AddrRange r)
78 return int128_add(r.start, r.size);
81 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
83 int128_addto(&range.start, delta);
84 return range;
87 static bool addrrange_contains(AddrRange range, Int128 addr)
89 return int128_ge(addr, range.start)
90 && int128_lt(addr, addrrange_end(range));
93 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
95 return addrrange_contains(r1, r2.start)
96 || addrrange_contains(r2, r1.start);
99 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
101 Int128 start = int128_max(r1.start, r2.start);
102 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
103 return addrrange_make(start, int128_sub(end, start));
106 enum ListenerDirection { Forward, Reverse };
108 static bool memory_listener_match(MemoryListener *listener,
109 MemoryRegionSection *section)
111 return !listener->address_space_filter
112 || listener->address_space_filter == section->address_space;
115 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
116 do { \
117 MemoryListener *_listener; \
119 switch (_direction) { \
120 case Forward: \
121 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
122 if (_listener->_callback) { \
123 _listener->_callback(_listener, ##_args); \
126 break; \
127 case Reverse: \
128 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
129 memory_listeners, link) { \
130 if (_listener->_callback) { \
131 _listener->_callback(_listener, ##_args); \
134 break; \
135 default: \
136 abort(); \
138 } while (0)
140 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
141 do { \
142 MemoryListener *_listener; \
144 switch (_direction) { \
145 case Forward: \
146 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
147 if (_listener->_callback \
148 && memory_listener_match(_listener, _section)) { \
149 _listener->_callback(_listener, _section, ##_args); \
152 break; \
153 case Reverse: \
154 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
155 memory_listeners, link) { \
156 if (_listener->_callback \
157 && memory_listener_match(_listener, _section)) { \
158 _listener->_callback(_listener, _section, ##_args); \
161 break; \
162 default: \
163 abort(); \
165 } while (0)
167 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
168 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
169 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
170 .mr = (fr)->mr, \
171 .address_space = (as), \
172 .offset_within_region = (fr)->offset_in_region, \
173 .size = (fr)->addr.size, \
174 .offset_within_address_space = int128_get64((fr)->addr.start), \
175 .readonly = (fr)->readonly, \
178 struct CoalescedMemoryRange {
179 AddrRange addr;
180 QTAILQ_ENTRY(CoalescedMemoryRange) link;
183 struct MemoryRegionIoeventfd {
184 AddrRange addr;
185 bool match_data;
186 uint64_t data;
187 EventNotifier *e;
190 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
191 MemoryRegionIoeventfd b)
193 if (int128_lt(a.addr.start, b.addr.start)) {
194 return true;
195 } else if (int128_gt(a.addr.start, b.addr.start)) {
196 return false;
197 } else if (int128_lt(a.addr.size, b.addr.size)) {
198 return true;
199 } else if (int128_gt(a.addr.size, b.addr.size)) {
200 return false;
201 } else if (a.match_data < b.match_data) {
202 return true;
203 } else if (a.match_data > b.match_data) {
204 return false;
205 } else if (a.match_data) {
206 if (a.data < b.data) {
207 return true;
208 } else if (a.data > b.data) {
209 return false;
212 if (a.e < b.e) {
213 return true;
214 } else if (a.e > b.e) {
215 return false;
217 return false;
220 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
221 MemoryRegionIoeventfd b)
223 return !memory_region_ioeventfd_before(a, b)
224 && !memory_region_ioeventfd_before(b, a);
227 typedef struct FlatRange FlatRange;
228 typedef struct FlatView FlatView;
230 /* Range of memory in the global map. Addresses are absolute. */
231 struct FlatRange {
232 MemoryRegion *mr;
233 hwaddr offset_in_region;
234 AddrRange addr;
235 uint8_t dirty_log_mask;
236 bool romd_mode;
237 bool readonly;
240 /* Flattened global view of current active memory hierarchy. Kept in sorted
241 * order.
243 struct FlatView {
244 unsigned ref;
245 FlatRange *ranges;
246 unsigned nr;
247 unsigned nr_allocated;
250 typedef struct AddressSpaceOps AddressSpaceOps;
252 #define FOR_EACH_FLAT_RANGE(var, view) \
253 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
255 static bool flatrange_equal(FlatRange *a, FlatRange *b)
257 return a->mr == b->mr
258 && addrrange_equal(a->addr, b->addr)
259 && a->offset_in_region == b->offset_in_region
260 && a->romd_mode == b->romd_mode
261 && a->readonly == b->readonly;
264 static void flatview_init(FlatView *view)
266 view->ref = 1;
267 view->ranges = NULL;
268 view->nr = 0;
269 view->nr_allocated = 0;
272 /* Insert a range into a given position. Caller is responsible for maintaining
273 * sorting order.
275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
277 if (view->nr == view->nr_allocated) {
278 view->nr_allocated = MAX(2 * view->nr, 10);
279 view->ranges = g_realloc(view->ranges,
280 view->nr_allocated * sizeof(*view->ranges));
282 memmove(view->ranges + pos + 1, view->ranges + pos,
283 (view->nr - pos) * sizeof(FlatRange));
284 view->ranges[pos] = *range;
285 memory_region_ref(range->mr);
286 ++view->nr;
289 static void flatview_destroy(FlatView *view)
291 int i;
293 for (i = 0; i < view->nr; i++) {
294 memory_region_unref(view->ranges[i].mr);
296 g_free(view->ranges);
297 g_free(view);
300 static void flatview_ref(FlatView *view)
302 atomic_inc(&view->ref);
305 static void flatview_unref(FlatView *view)
307 if (atomic_fetch_dec(&view->ref) == 1) {
308 flatview_destroy(view);
312 static bool can_merge(FlatRange *r1, FlatRange *r2)
314 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
315 && r1->mr == r2->mr
316 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
317 r1->addr.size),
318 int128_make64(r2->offset_in_region))
319 && r1->dirty_log_mask == r2->dirty_log_mask
320 && r1->romd_mode == r2->romd_mode
321 && r1->readonly == r2->readonly;
324 /* Attempt to simplify a view by merging adjacent ranges */
325 static void flatview_simplify(FlatView *view)
327 unsigned i, j;
329 i = 0;
330 while (i < view->nr) {
331 j = i + 1;
332 while (j < view->nr
333 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
334 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
335 ++j;
337 ++i;
338 memmove(&view->ranges[i], &view->ranges[j],
339 (view->nr - j) * sizeof(view->ranges[j]));
340 view->nr -= j - i;
344 static bool memory_region_big_endian(MemoryRegion *mr)
346 #ifdef TARGET_WORDS_BIGENDIAN
347 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
348 #else
349 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
350 #endif
353 static bool memory_region_wrong_endianness(MemoryRegion *mr)
355 #ifdef TARGET_WORDS_BIGENDIAN
356 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
357 #else
358 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
359 #endif
362 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
364 if (memory_region_wrong_endianness(mr)) {
365 switch (size) {
366 case 1:
367 break;
368 case 2:
369 *data = bswap16(*data);
370 break;
371 case 4:
372 *data = bswap32(*data);
373 break;
374 case 8:
375 *data = bswap64(*data);
376 break;
377 default:
378 abort();
383 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
384 hwaddr addr,
385 uint64_t *value,
386 unsigned size,
387 unsigned shift,
388 uint64_t mask)
390 uint64_t tmp;
392 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
393 trace_memory_region_ops_read(mr, addr, tmp, size);
394 *value |= (tmp & mask) << shift;
397 static void memory_region_read_accessor(MemoryRegion *mr,
398 hwaddr addr,
399 uint64_t *value,
400 unsigned size,
401 unsigned shift,
402 uint64_t mask)
404 uint64_t tmp;
406 if (mr->flush_coalesced_mmio) {
407 qemu_flush_coalesced_mmio_buffer();
409 tmp = mr->ops->read(mr->opaque, addr, size);
410 trace_memory_region_ops_read(mr, addr, tmp, size);
411 *value |= (tmp & mask) << shift;
414 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
415 hwaddr addr,
416 uint64_t *value,
417 unsigned size,
418 unsigned shift,
419 uint64_t mask)
421 uint64_t tmp;
423 tmp = (*value >> shift) & mask;
424 trace_memory_region_ops_write(mr, addr, tmp, size);
425 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
428 static void memory_region_write_accessor(MemoryRegion *mr,
429 hwaddr addr,
430 uint64_t *value,
431 unsigned size,
432 unsigned shift,
433 uint64_t mask)
435 uint64_t tmp;
437 if (mr->flush_coalesced_mmio) {
438 qemu_flush_coalesced_mmio_buffer();
440 tmp = (*value >> shift) & mask;
441 trace_memory_region_ops_write(mr, addr, tmp, size);
442 mr->ops->write(mr->opaque, addr, tmp, size);
445 static void access_with_adjusted_size(hwaddr addr,
446 uint64_t *value,
447 unsigned size,
448 unsigned access_size_min,
449 unsigned access_size_max,
450 void (*access)(MemoryRegion *mr,
451 hwaddr addr,
452 uint64_t *value,
453 unsigned size,
454 unsigned shift,
455 uint64_t mask),
456 MemoryRegion *mr)
458 uint64_t access_mask;
459 unsigned access_size;
460 unsigned i;
462 if (!access_size_min) {
463 access_size_min = 1;
465 if (!access_size_max) {
466 access_size_max = 4;
469 /* FIXME: support unaligned access? */
470 access_size = MAX(MIN(size, access_size_max), access_size_min);
471 access_mask = -1ULL >> (64 - access_size * 8);
472 if (memory_region_big_endian(mr)) {
473 for (i = 0; i < size; i += access_size) {
474 access(mr, addr + i, value, access_size,
475 (size - access_size - i) * 8, access_mask);
477 } else {
478 for (i = 0; i < size; i += access_size) {
479 access(mr, addr + i, value, access_size, i * 8, access_mask);
484 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
486 AddressSpace *as;
488 while (mr->container) {
489 mr = mr->container;
491 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
492 if (mr == as->root) {
493 return as;
496 return NULL;
499 /* Render a memory region into the global view. Ranges in @view obscure
500 * ranges in @mr.
502 static void render_memory_region(FlatView *view,
503 MemoryRegion *mr,
504 Int128 base,
505 AddrRange clip,
506 bool readonly)
508 MemoryRegion *subregion;
509 unsigned i;
510 hwaddr offset_in_region;
511 Int128 remain;
512 Int128 now;
513 FlatRange fr;
514 AddrRange tmp;
516 if (!mr->enabled) {
517 return;
520 int128_addto(&base, int128_make64(mr->addr));
521 readonly |= mr->readonly;
523 tmp = addrrange_make(base, mr->size);
525 if (!addrrange_intersects(tmp, clip)) {
526 return;
529 clip = addrrange_intersection(tmp, clip);
531 if (mr->alias) {
532 int128_subfrom(&base, int128_make64(mr->alias->addr));
533 int128_subfrom(&base, int128_make64(mr->alias_offset));
534 render_memory_region(view, mr->alias, base, clip, readonly);
535 return;
538 /* Render subregions in priority order. */
539 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
540 render_memory_region(view, subregion, base, clip, readonly);
543 if (!mr->terminates) {
544 return;
547 offset_in_region = int128_get64(int128_sub(clip.start, base));
548 base = clip.start;
549 remain = clip.size;
551 fr.mr = mr;
552 fr.dirty_log_mask = mr->dirty_log_mask;
553 fr.romd_mode = mr->romd_mode;
554 fr.readonly = readonly;
556 /* Render the region itself into any gaps left by the current view. */
557 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
558 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
559 continue;
561 if (int128_lt(base, view->ranges[i].addr.start)) {
562 now = int128_min(remain,
563 int128_sub(view->ranges[i].addr.start, base));
564 fr.offset_in_region = offset_in_region;
565 fr.addr = addrrange_make(base, now);
566 flatview_insert(view, i, &fr);
567 ++i;
568 int128_addto(&base, now);
569 offset_in_region += int128_get64(now);
570 int128_subfrom(&remain, now);
572 now = int128_sub(int128_min(int128_add(base, remain),
573 addrrange_end(view->ranges[i].addr)),
574 base);
575 int128_addto(&base, now);
576 offset_in_region += int128_get64(now);
577 int128_subfrom(&remain, now);
579 if (int128_nz(remain)) {
580 fr.offset_in_region = offset_in_region;
581 fr.addr = addrrange_make(base, remain);
582 flatview_insert(view, i, &fr);
586 /* Render a memory topology into a list of disjoint absolute ranges. */
587 static FlatView *generate_memory_topology(MemoryRegion *mr)
589 FlatView *view;
591 view = g_new(FlatView, 1);
592 flatview_init(view);
594 if (mr) {
595 render_memory_region(view, mr, int128_zero(),
596 addrrange_make(int128_zero(), int128_2_64()), false);
598 flatview_simplify(view);
600 return view;
603 static void address_space_add_del_ioeventfds(AddressSpace *as,
604 MemoryRegionIoeventfd *fds_new,
605 unsigned fds_new_nb,
606 MemoryRegionIoeventfd *fds_old,
607 unsigned fds_old_nb)
609 unsigned iold, inew;
610 MemoryRegionIoeventfd *fd;
611 MemoryRegionSection section;
613 /* Generate a symmetric difference of the old and new fd sets, adding
614 * and deleting as necessary.
617 iold = inew = 0;
618 while (iold < fds_old_nb || inew < fds_new_nb) {
619 if (iold < fds_old_nb
620 && (inew == fds_new_nb
621 || memory_region_ioeventfd_before(fds_old[iold],
622 fds_new[inew]))) {
623 fd = &fds_old[iold];
624 section = (MemoryRegionSection) {
625 .address_space = as,
626 .offset_within_address_space = int128_get64(fd->addr.start),
627 .size = fd->addr.size,
629 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
630 fd->match_data, fd->data, fd->e);
631 ++iold;
632 } else if (inew < fds_new_nb
633 && (iold == fds_old_nb
634 || memory_region_ioeventfd_before(fds_new[inew],
635 fds_old[iold]))) {
636 fd = &fds_new[inew];
637 section = (MemoryRegionSection) {
638 .address_space = as,
639 .offset_within_address_space = int128_get64(fd->addr.start),
640 .size = fd->addr.size,
642 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
643 fd->match_data, fd->data, fd->e);
644 ++inew;
645 } else {
646 ++iold;
647 ++inew;
652 static FlatView *address_space_get_flatview(AddressSpace *as)
654 FlatView *view;
656 qemu_mutex_lock(&flat_view_mutex);
657 view = as->current_map;
658 flatview_ref(view);
659 qemu_mutex_unlock(&flat_view_mutex);
660 return view;
663 static void address_space_update_ioeventfds(AddressSpace *as)
665 FlatView *view;
666 FlatRange *fr;
667 unsigned ioeventfd_nb = 0;
668 MemoryRegionIoeventfd *ioeventfds = NULL;
669 AddrRange tmp;
670 unsigned i;
672 view = address_space_get_flatview(as);
673 FOR_EACH_FLAT_RANGE(fr, view) {
674 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
675 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
676 int128_sub(fr->addr.start,
677 int128_make64(fr->offset_in_region)));
678 if (addrrange_intersects(fr->addr, tmp)) {
679 ++ioeventfd_nb;
680 ioeventfds = g_realloc(ioeventfds,
681 ioeventfd_nb * sizeof(*ioeventfds));
682 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
683 ioeventfds[ioeventfd_nb-1].addr = tmp;
688 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
689 as->ioeventfds, as->ioeventfd_nb);
691 g_free(as->ioeventfds);
692 as->ioeventfds = ioeventfds;
693 as->ioeventfd_nb = ioeventfd_nb;
694 flatview_unref(view);
697 static void address_space_update_topology_pass(AddressSpace *as,
698 const FlatView *old_view,
699 const FlatView *new_view,
700 bool adding)
702 unsigned iold, inew;
703 FlatRange *frold, *frnew;
705 /* Generate a symmetric difference of the old and new memory maps.
706 * Kill ranges in the old map, and instantiate ranges in the new map.
708 iold = inew = 0;
709 while (iold < old_view->nr || inew < new_view->nr) {
710 if (iold < old_view->nr) {
711 frold = &old_view->ranges[iold];
712 } else {
713 frold = NULL;
715 if (inew < new_view->nr) {
716 frnew = &new_view->ranges[inew];
717 } else {
718 frnew = NULL;
721 if (frold
722 && (!frnew
723 || int128_lt(frold->addr.start, frnew->addr.start)
724 || (int128_eq(frold->addr.start, frnew->addr.start)
725 && !flatrange_equal(frold, frnew)))) {
726 /* In old but not in new, or in both but attributes changed. */
728 if (!adding) {
729 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
732 ++iold;
733 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
734 /* In both and unchanged (except logging may have changed) */
736 if (adding) {
737 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
738 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
739 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
740 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
741 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
745 ++iold;
746 ++inew;
747 } else {
748 /* In new */
750 if (adding) {
751 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
754 ++inew;
760 static void address_space_update_topology(AddressSpace *as)
762 FlatView *old_view = address_space_get_flatview(as);
763 FlatView *new_view = generate_memory_topology(as->root);
765 address_space_update_topology_pass(as, old_view, new_view, false);
766 address_space_update_topology_pass(as, old_view, new_view, true);
768 qemu_mutex_lock(&flat_view_mutex);
769 flatview_unref(as->current_map);
770 as->current_map = new_view;
771 qemu_mutex_unlock(&flat_view_mutex);
773 /* Note that all the old MemoryRegions are still alive up to this
774 * point. This relieves most MemoryListeners from the need to
775 * ref/unref the MemoryRegions they get---unless they use them
776 * outside the iothread mutex, in which case precise reference
777 * counting is necessary.
779 flatview_unref(old_view);
781 address_space_update_ioeventfds(as);
784 void memory_region_transaction_begin(void)
786 qemu_flush_coalesced_mmio_buffer();
787 ++memory_region_transaction_depth;
790 static void memory_region_clear_pending(void)
792 memory_region_update_pending = false;
793 ioeventfd_update_pending = false;
796 void memory_region_transaction_commit(void)
798 AddressSpace *as;
800 assert(memory_region_transaction_depth);
801 --memory_region_transaction_depth;
802 if (!memory_region_transaction_depth) {
803 if (memory_region_update_pending) {
804 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
806 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
807 address_space_update_topology(as);
810 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
811 } else if (ioeventfd_update_pending) {
812 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
813 address_space_update_ioeventfds(as);
816 memory_region_clear_pending();
820 static void memory_region_destructor_none(MemoryRegion *mr)
824 static void memory_region_destructor_ram(MemoryRegion *mr)
826 qemu_ram_free(mr->ram_addr);
829 static void memory_region_destructor_alias(MemoryRegion *mr)
831 memory_region_unref(mr->alias);
834 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
836 qemu_ram_free_from_ptr(mr->ram_addr);
839 static void memory_region_destructor_rom_device(MemoryRegion *mr)
841 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
844 static bool memory_region_need_escape(char c)
846 return c == '/' || c == '[' || c == '\\' || c == ']';
849 static char *memory_region_escape_name(const char *name)
851 const char *p;
852 char *escaped, *q;
853 uint8_t c;
854 size_t bytes = 0;
856 for (p = name; *p; p++) {
857 bytes += memory_region_need_escape(*p) ? 4 : 1;
859 if (bytes == p - name) {
860 return g_memdup(name, bytes + 1);
863 escaped = g_malloc(bytes + 1);
864 for (p = name, q = escaped; *p; p++) {
865 c = *p;
866 if (unlikely(memory_region_need_escape(c))) {
867 *q++ = '\\';
868 *q++ = 'x';
869 *q++ = "0123456789abcdef"[c >> 4];
870 c = "0123456789abcdef"[c & 15];
872 *q++ = c;
874 *q = 0;
875 return escaped;
878 static void object_property_add_child_array(Object *owner,
879 const char *name,
880 Object *child)
882 int i;
883 char *base_name = memory_region_escape_name(name);
885 for (i = 0; ; i++) {
886 char *full_name = g_strdup_printf("%s[%d]", base_name, i);
887 Error *local_err = NULL;
889 object_property_add_child(owner, full_name, child, &local_err);
890 g_free(full_name);
891 if (!local_err) {
892 break;
895 error_free(local_err);
898 g_free(base_name);
902 void memory_region_init(MemoryRegion *mr,
903 Object *owner,
904 const char *name,
905 uint64_t size)
907 if (!owner) {
908 owner = qdev_get_machine();
911 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
912 mr->size = int128_make64(size);
913 if (size == UINT64_MAX) {
914 mr->size = int128_2_64();
916 mr->name = g_strdup(name);
918 if (name) {
919 object_property_add_child_array(owner, name, OBJECT(mr));
920 object_unref(OBJECT(mr));
924 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
925 const char *name, Error **errp)
927 MemoryRegion *mr = MEMORY_REGION(obj);
928 uint64_t value = mr->addr;
930 visit_type_uint64(v, &value, name, errp);
933 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
934 const char *name, Error **errp)
936 MemoryRegion *mr = MEMORY_REGION(obj);
937 gchar *path = (gchar *)"";
939 if (mr->container) {
940 path = object_get_canonical_path(OBJECT(mr->container));
942 visit_type_str(v, &path, name, errp);
943 if (mr->container) {
944 g_free(path);
948 static Object *memory_region_resolve_container(Object *obj, void *opaque,
949 const char *part)
951 MemoryRegion *mr = MEMORY_REGION(obj);
953 return OBJECT(mr->container);
956 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
957 const char *name, Error **errp)
959 MemoryRegion *mr = MEMORY_REGION(obj);
960 int32_t value = mr->priority;
962 visit_type_int32(v, &value, name, errp);
965 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
967 MemoryRegion *mr = MEMORY_REGION(obj);
969 return mr->may_overlap;
972 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
973 const char *name, Error **errp)
975 MemoryRegion *mr = MEMORY_REGION(obj);
976 uint64_t value = memory_region_size(mr);
978 visit_type_uint64(v, &value, name, errp);
981 static void memory_region_initfn(Object *obj)
983 MemoryRegion *mr = MEMORY_REGION(obj);
984 ObjectProperty *op;
986 mr->ops = &unassigned_mem_ops;
987 mr->enabled = true;
988 mr->romd_mode = true;
989 mr->destructor = memory_region_destructor_none;
990 QTAILQ_INIT(&mr->subregions);
991 QTAILQ_INIT(&mr->coalesced);
993 op = object_property_add(OBJECT(mr), "container",
994 "link<" TYPE_MEMORY_REGION ">",
995 memory_region_get_container,
996 NULL, /* memory_region_set_container */
997 NULL, NULL, &error_abort);
998 op->resolve = memory_region_resolve_container;
1000 object_property_add(OBJECT(mr), "addr", "uint64",
1001 memory_region_get_addr,
1002 NULL, /* memory_region_set_addr */
1003 NULL, NULL, &error_abort);
1004 object_property_add(OBJECT(mr), "priority", "uint32",
1005 memory_region_get_priority,
1006 NULL, /* memory_region_set_priority */
1007 NULL, NULL, &error_abort);
1008 object_property_add_bool(OBJECT(mr), "may-overlap",
1009 memory_region_get_may_overlap,
1010 NULL, /* memory_region_set_may_overlap */
1011 &error_abort);
1012 object_property_add(OBJECT(mr), "size", "uint64",
1013 memory_region_get_size,
1014 NULL, /* memory_region_set_size, */
1015 NULL, NULL, &error_abort);
1018 static int qemu_target_backtrace(target_ulong *array, size_t size)
1020 int n = 0;
1021 if (size >= 2) {
1022 #if defined(TARGET_ARM)
1023 CPUArchState *env = current_cpu->env_ptr;
1024 array[0] = env->regs[15];
1025 array[1] = env->regs[14];
1026 #elif defined(TARGET_MIPS)
1027 CPUArchState *env = current_cpu->env_ptr;
1028 array[0] = env->active_tc.PC;
1029 array[1] = env->active_tc.gpr[31];
1030 #else
1031 array[0] = 0;
1032 array[1] = 0;
1033 #endif
1034 n = 2;
1036 return n;
1039 #include "disas/disas.h"
1040 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1042 char *p = buffer;
1043 if (current_cpu) {
1044 target_ulong caller[2];
1045 const char *symbol;
1046 qemu_target_backtrace(caller, 2);
1047 symbol = lookup_symbol(caller[0]);
1048 p += sprintf(p, "[%s]", symbol);
1049 symbol = lookup_symbol(caller[1]);
1050 p += sprintf(p, "[%s]", symbol);
1051 } else {
1052 p += sprintf(p, "[cpu not running]");
1054 assert((p - buffer) < length);
1055 return buffer;
1058 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1059 unsigned size)
1061 if (trace_unassigned) {
1062 char buffer[256];
1063 fprintf(stderr, "Unassigned mem read " TARGET_FMT_plx " %s\n",
1064 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1066 //~ vm_stop(0);
1067 if (current_cpu != NULL) {
1068 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1070 return 0;
1073 static void unassigned_mem_write(void *opaque, hwaddr addr,
1074 uint64_t val, unsigned size)
1076 if (trace_unassigned) {
1077 char buffer[256];
1078 fprintf(stderr, "Unassigned mem write " TARGET_FMT_plx
1079 " = 0x%" PRIx64 " %s\n",
1080 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1082 if (current_cpu != NULL) {
1083 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1087 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1088 unsigned size, bool is_write)
1090 return false;
1093 const MemoryRegionOps unassigned_mem_ops = {
1094 .valid.accepts = unassigned_mem_accepts,
1095 .endianness = DEVICE_NATIVE_ENDIAN,
1098 bool memory_region_access_valid(MemoryRegion *mr,
1099 hwaddr addr,
1100 unsigned size,
1101 bool is_write)
1103 int access_size_min, access_size_max;
1104 int access_size, i;
1106 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1107 fprintf(stderr, "Misaligned i/o with size %u for memory region %s\n",
1108 size, mr->name);
1109 return false;
1112 if (!mr->ops->valid.accepts) {
1113 return true;
1116 access_size_min = mr->ops->valid.min_access_size;
1117 if (!mr->ops->valid.min_access_size) {
1118 access_size_min = 1;
1121 access_size_max = mr->ops->valid.max_access_size;
1122 if (!mr->ops->valid.max_access_size) {
1123 access_size_max = 4;
1126 access_size = MAX(MIN(size, access_size_max), access_size_min);
1127 for (i = 0; i < size; i += access_size) {
1128 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1129 is_write)) {
1130 return false;
1134 return true;
1137 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1138 hwaddr addr,
1139 unsigned size)
1141 uint64_t data = 0;
1143 if (mr->ops->read) {
1144 access_with_adjusted_size(addr, &data, size,
1145 mr->ops->impl.min_access_size,
1146 mr->ops->impl.max_access_size,
1147 memory_region_read_accessor, mr);
1148 } else {
1149 access_with_adjusted_size(addr, &data, size, 1, 4,
1150 memory_region_oldmmio_read_accessor, mr);
1153 return data;
1156 static bool memory_region_dispatch_read(MemoryRegion *mr,
1157 hwaddr addr,
1158 uint64_t *pval,
1159 unsigned size)
1161 if (!memory_region_access_valid(mr, addr, size, false)) {
1162 *pval = unassigned_mem_read(mr, addr, size);
1163 return true;
1166 *pval = memory_region_dispatch_read1(mr, addr, size);
1167 adjust_endianness(mr, pval, size);
1168 return false;
1171 static bool memory_region_dispatch_write(MemoryRegion *mr,
1172 hwaddr addr,
1173 uint64_t data,
1174 unsigned size)
1176 if (!memory_region_access_valid(mr, addr, size, true)) {
1177 unassigned_mem_write(mr, addr, data, size);
1178 return true;
1181 adjust_endianness(mr, &data, size);
1183 if (mr->ops->write) {
1184 access_with_adjusted_size(addr, &data, size,
1185 mr->ops->impl.min_access_size,
1186 mr->ops->impl.max_access_size,
1187 memory_region_write_accessor, mr);
1188 } else {
1189 access_with_adjusted_size(addr, &data, size, 1, 4,
1190 memory_region_oldmmio_write_accessor, mr);
1192 return false;
1195 void memory_region_init_io(MemoryRegion *mr,
1196 Object *owner,
1197 const MemoryRegionOps *ops,
1198 void *opaque,
1199 const char *name,
1200 uint64_t size)
1202 memory_region_init(mr, owner, name, size);
1203 mr->ops = ops;
1204 mr->opaque = opaque;
1205 mr->terminates = true;
1206 mr->ram_addr = ~(ram_addr_t)0;
1209 void memory_region_init_ram(MemoryRegion *mr,
1210 Object *owner,
1211 const char *name,
1212 uint64_t size)
1214 memory_region_init(mr, owner, name, size);
1215 mr->ram = true;
1216 mr->terminates = true;
1217 mr->destructor = memory_region_destructor_ram;
1218 mr->ram_addr = qemu_ram_alloc(size, mr);
1221 #ifdef __linux__
1222 void memory_region_init_ram_from_file(MemoryRegion *mr,
1223 struct Object *owner,
1224 const char *name,
1225 uint64_t size,
1226 bool share,
1227 const char *path,
1228 Error **errp)
1230 memory_region_init(mr, owner, name, size);
1231 mr->ram = true;
1232 mr->terminates = true;
1233 mr->destructor = memory_region_destructor_ram;
1234 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1236 #endif
1238 void memory_region_init_ram_ptr(MemoryRegion *mr,
1239 Object *owner,
1240 const char *name,
1241 uint64_t size,
1242 void *ptr)
1244 memory_region_init(mr, owner, name, size);
1245 mr->ram = true;
1246 mr->terminates = true;
1247 mr->destructor = memory_region_destructor_ram_from_ptr;
1248 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1251 void memory_region_init_alias(MemoryRegion *mr,
1252 Object *owner,
1253 const char *name,
1254 MemoryRegion *orig,
1255 hwaddr offset,
1256 uint64_t size)
1258 memory_region_init(mr, owner, name, size);
1259 memory_region_ref(orig);
1260 mr->destructor = memory_region_destructor_alias;
1261 mr->alias = orig;
1262 mr->alias_offset = offset;
1265 void memory_region_init_rom_device(MemoryRegion *mr,
1266 Object *owner,
1267 const MemoryRegionOps *ops,
1268 void *opaque,
1269 const char *name,
1270 uint64_t size)
1272 memory_region_init(mr, owner, name, size);
1273 mr->ops = ops;
1274 mr->opaque = opaque;
1275 mr->terminates = true;
1276 mr->rom_device = true;
1277 mr->destructor = memory_region_destructor_rom_device;
1278 mr->ram_addr = qemu_ram_alloc(size, mr);
1281 void memory_region_init_iommu(MemoryRegion *mr,
1282 Object *owner,
1283 const MemoryRegionIOMMUOps *ops,
1284 const char *name,
1285 uint64_t size)
1287 memory_region_init(mr, owner, name, size);
1288 mr->iommu_ops = ops,
1289 mr->terminates = true; /* then re-forwards */
1290 notifier_list_init(&mr->iommu_notify);
1293 void memory_region_init_reservation(MemoryRegion *mr,
1294 Object *owner,
1295 const char *name,
1296 uint64_t size)
1298 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1301 static void memory_region_finalize(Object *obj)
1303 MemoryRegion *mr = MEMORY_REGION(obj);
1305 assert(QTAILQ_EMPTY(&mr->subregions));
1306 assert(memory_region_transaction_depth == 0);
1307 mr->destructor(mr);
1308 memory_region_clear_coalescing(mr);
1309 g_free((char *)mr->name);
1310 g_free(mr->ioeventfds);
1313 void memory_region_destroy(MemoryRegion *mr)
1315 object_unparent(OBJECT(mr));
1319 Object *memory_region_owner(MemoryRegion *mr)
1321 Object *obj = OBJECT(mr);
1322 return obj->parent;
1325 void memory_region_ref(MemoryRegion *mr)
1327 /* MMIO callbacks most likely will access data that belongs
1328 * to the owner, hence the need to ref/unref the owner whenever
1329 * the memory region is in use.
1331 * The memory region is a child of its owner. As long as the
1332 * owner doesn't call unparent itself on the memory region,
1333 * ref-ing the owner will also keep the memory region alive.
1334 * Memory regions without an owner are supposed to never go away,
1335 * but we still ref/unref them for debugging purposes.
1337 Object *obj = OBJECT(mr);
1338 if (obj && obj->parent) {
1339 object_ref(obj->parent);
1340 } else {
1341 object_ref(obj);
1345 void memory_region_unref(MemoryRegion *mr)
1347 Object *obj = OBJECT(mr);
1348 if (obj && obj->parent) {
1349 object_unref(obj->parent);
1350 } else {
1351 object_unref(obj);
1355 uint64_t memory_region_size(MemoryRegion *mr)
1357 if (int128_eq(mr->size, int128_2_64())) {
1358 return UINT64_MAX;
1360 return int128_get64(mr->size);
1363 const char *memory_region_name(MemoryRegion *mr)
1365 return mr->name;
1368 bool memory_region_is_ram(MemoryRegion *mr)
1370 return mr->ram;
1373 bool memory_region_is_logging(MemoryRegion *mr)
1375 return mr->dirty_log_mask;
1378 bool memory_region_is_rom(MemoryRegion *mr)
1380 return mr->ram && mr->readonly;
1383 bool memory_region_is_iommu(MemoryRegion *mr)
1385 return mr->iommu_ops;
1388 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1390 notifier_list_add(&mr->iommu_notify, n);
1393 void memory_region_unregister_iommu_notifier(Notifier *n)
1395 notifier_remove(n);
1398 void memory_region_notify_iommu(MemoryRegion *mr,
1399 IOMMUTLBEntry entry)
1401 assert(memory_region_is_iommu(mr));
1402 notifier_list_notify(&mr->iommu_notify, &entry);
1405 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1407 uint8_t mask = 1 << client;
1409 memory_region_transaction_begin();
1410 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1411 memory_region_update_pending |= mr->enabled;
1412 memory_region_transaction_commit();
1415 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1416 hwaddr size, unsigned client)
1418 assert(mr->terminates);
1419 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1422 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1423 hwaddr size)
1425 assert(mr->terminates);
1426 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1429 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1430 hwaddr size, unsigned client)
1432 bool ret;
1433 assert(mr->terminates);
1434 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1435 if (ret) {
1436 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1438 return ret;
1442 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1444 AddressSpace *as;
1445 FlatRange *fr;
1447 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1448 FlatView *view = address_space_get_flatview(as);
1449 FOR_EACH_FLAT_RANGE(fr, view) {
1450 if (fr->mr == mr) {
1451 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1454 flatview_unref(view);
1458 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1460 if (mr->readonly != readonly) {
1461 memory_region_transaction_begin();
1462 mr->readonly = readonly;
1463 memory_region_update_pending |= mr->enabled;
1464 memory_region_transaction_commit();
1468 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1470 if (mr->romd_mode != romd_mode) {
1471 memory_region_transaction_begin();
1472 mr->romd_mode = romd_mode;
1473 memory_region_update_pending |= mr->enabled;
1474 memory_region_transaction_commit();
1478 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1479 hwaddr size, unsigned client)
1481 assert(mr->terminates);
1482 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1485 int memory_region_get_fd(MemoryRegion *mr)
1487 if (mr->alias) {
1488 return memory_region_get_fd(mr->alias);
1491 assert(mr->terminates);
1493 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1496 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1498 if (mr->alias) {
1499 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1502 assert(mr->terminates);
1504 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1507 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1509 FlatView *view;
1510 FlatRange *fr;
1511 CoalescedMemoryRange *cmr;
1512 AddrRange tmp;
1513 MemoryRegionSection section;
1515 view = address_space_get_flatview(as);
1516 FOR_EACH_FLAT_RANGE(fr, view) {
1517 if (fr->mr == mr) {
1518 section = (MemoryRegionSection) {
1519 .address_space = as,
1520 .offset_within_address_space = int128_get64(fr->addr.start),
1521 .size = fr->addr.size,
1524 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1525 int128_get64(fr->addr.start),
1526 int128_get64(fr->addr.size));
1527 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1528 tmp = addrrange_shift(cmr->addr,
1529 int128_sub(fr->addr.start,
1530 int128_make64(fr->offset_in_region)));
1531 if (!addrrange_intersects(tmp, fr->addr)) {
1532 continue;
1534 tmp = addrrange_intersection(tmp, fr->addr);
1535 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1536 int128_get64(tmp.start),
1537 int128_get64(tmp.size));
1541 flatview_unref(view);
1544 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1546 AddressSpace *as;
1548 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1549 memory_region_update_coalesced_range_as(mr, as);
1553 void memory_region_set_coalescing(MemoryRegion *mr)
1555 memory_region_clear_coalescing(mr);
1556 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1559 void memory_region_add_coalescing(MemoryRegion *mr,
1560 hwaddr offset,
1561 uint64_t size)
1563 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1565 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1566 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1567 memory_region_update_coalesced_range(mr);
1568 memory_region_set_flush_coalesced(mr);
1571 void memory_region_clear_coalescing(MemoryRegion *mr)
1573 CoalescedMemoryRange *cmr;
1574 bool updated = false;
1576 qemu_flush_coalesced_mmio_buffer();
1577 mr->flush_coalesced_mmio = false;
1579 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1580 cmr = QTAILQ_FIRST(&mr->coalesced);
1581 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1582 g_free(cmr);
1583 updated = true;
1586 if (updated) {
1587 memory_region_update_coalesced_range(mr);
1591 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1593 mr->flush_coalesced_mmio = true;
1596 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1598 qemu_flush_coalesced_mmio_buffer();
1599 if (QTAILQ_EMPTY(&mr->coalesced)) {
1600 mr->flush_coalesced_mmio = false;
1604 void memory_region_add_eventfd(MemoryRegion *mr,
1605 hwaddr addr,
1606 unsigned size,
1607 bool match_data,
1608 uint64_t data,
1609 EventNotifier *e)
1611 MemoryRegionIoeventfd mrfd = {
1612 .addr.start = int128_make64(addr),
1613 .addr.size = int128_make64(size),
1614 .match_data = match_data,
1615 .data = data,
1616 .e = e,
1618 unsigned i;
1620 adjust_endianness(mr, &mrfd.data, size);
1621 memory_region_transaction_begin();
1622 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1623 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1624 break;
1627 ++mr->ioeventfd_nb;
1628 mr->ioeventfds = g_realloc(mr->ioeventfds,
1629 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1630 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1631 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1632 mr->ioeventfds[i] = mrfd;
1633 ioeventfd_update_pending |= mr->enabled;
1634 memory_region_transaction_commit();
1637 void memory_region_del_eventfd(MemoryRegion *mr,
1638 hwaddr addr,
1639 unsigned size,
1640 bool match_data,
1641 uint64_t data,
1642 EventNotifier *e)
1644 MemoryRegionIoeventfd mrfd = {
1645 .addr.start = int128_make64(addr),
1646 .addr.size = int128_make64(size),
1647 .match_data = match_data,
1648 .data = data,
1649 .e = e,
1651 unsigned i;
1653 adjust_endianness(mr, &mrfd.data, size);
1654 memory_region_transaction_begin();
1655 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1656 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1657 break;
1660 assert(i != mr->ioeventfd_nb);
1661 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1662 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1663 --mr->ioeventfd_nb;
1664 mr->ioeventfds = g_realloc(mr->ioeventfds,
1665 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1666 ioeventfd_update_pending |= mr->enabled;
1667 memory_region_transaction_commit();
1670 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1672 hwaddr offset = subregion->addr;
1673 MemoryRegion *mr = subregion->container;
1674 MemoryRegion *other;
1676 memory_region_transaction_begin();
1678 memory_region_ref(subregion);
1679 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1680 if (subregion->may_overlap || other->may_overlap) {
1681 continue;
1683 if (int128_ge(int128_make64(offset),
1684 int128_add(int128_make64(other->addr), other->size))
1685 || int128_le(int128_add(int128_make64(offset), subregion->size),
1686 int128_make64(other->addr))) {
1687 continue;
1689 #if 0
1690 printf("warning: subregion collision %llx/%llx (%s) "
1691 "vs %llx/%llx (%s)\n",
1692 (unsigned long long)offset,
1693 (unsigned long long)int128_get64(subregion->size),
1694 subregion->name,
1695 (unsigned long long)other->addr,
1696 (unsigned long long)int128_get64(other->size),
1697 other->name);
1698 #endif
1700 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1701 if (subregion->priority >= other->priority) {
1702 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1703 goto done;
1706 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1707 done:
1708 memory_region_update_pending |= mr->enabled && subregion->enabled;
1709 memory_region_transaction_commit();
1712 static void memory_region_add_subregion_common(MemoryRegion *mr,
1713 hwaddr offset,
1714 MemoryRegion *subregion)
1716 assert(!subregion->container);
1717 subregion->container = mr;
1718 subregion->addr = offset;
1719 memory_region_update_container_subregions(subregion);
1722 void memory_region_add_subregion(MemoryRegion *mr,
1723 hwaddr offset,
1724 MemoryRegion *subregion)
1726 subregion->may_overlap = false;
1727 subregion->priority = 0;
1728 memory_region_add_subregion_common(mr, offset, subregion);
1731 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1732 hwaddr offset,
1733 MemoryRegion *subregion,
1734 int priority)
1736 subregion->may_overlap = true;
1737 subregion->priority = priority;
1738 memory_region_add_subregion_common(mr, offset, subregion);
1741 void memory_region_del_subregion(MemoryRegion *mr,
1742 MemoryRegion *subregion)
1744 memory_region_transaction_begin();
1745 assert(subregion->container == mr);
1746 subregion->container = NULL;
1747 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1748 memory_region_unref(subregion);
1749 memory_region_update_pending |= mr->enabled && subregion->enabled;
1750 memory_region_transaction_commit();
1753 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1755 if (enabled == mr->enabled) {
1756 return;
1758 memory_region_transaction_begin();
1759 mr->enabled = enabled;
1760 memory_region_update_pending = true;
1761 memory_region_transaction_commit();
1764 static void memory_region_readd_subregion(MemoryRegion *mr)
1766 MemoryRegion *container = mr->container;
1768 if (container) {
1769 memory_region_transaction_begin();
1770 memory_region_ref(mr);
1771 memory_region_del_subregion(container, mr);
1772 mr->container = container;
1773 memory_region_update_container_subregions(mr);
1774 memory_region_unref(mr);
1775 memory_region_transaction_commit();
1779 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1781 if (addr != mr->addr) {
1782 mr->addr = addr;
1783 memory_region_readd_subregion(mr);
1787 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1789 assert(mr->alias);
1791 if (offset == mr->alias_offset) {
1792 return;
1795 memory_region_transaction_begin();
1796 mr->alias_offset = offset;
1797 memory_region_update_pending |= mr->enabled;
1798 memory_region_transaction_commit();
1801 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1803 return mr->ram_addr;
1806 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1808 const AddrRange *addr = addr_;
1809 const FlatRange *fr = fr_;
1811 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1812 return -1;
1813 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1814 return 1;
1816 return 0;
1819 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1821 return bsearch(&addr, view->ranges, view->nr,
1822 sizeof(FlatRange), cmp_flatrange_addr);
1825 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1827 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1828 if (!mr || (mr == container)) {
1829 return false;
1831 memory_region_unref(mr);
1832 return true;
1835 bool memory_region_is_mapped(MemoryRegion *mr)
1837 return mr->container ? true : false;
1840 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1841 hwaddr addr, uint64_t size)
1843 MemoryRegionSection ret = { .mr = NULL };
1844 MemoryRegion *root;
1845 AddressSpace *as;
1846 AddrRange range;
1847 FlatView *view;
1848 FlatRange *fr;
1850 addr += mr->addr;
1851 for (root = mr; root->container; ) {
1852 root = root->container;
1853 addr += root->addr;
1856 as = memory_region_to_address_space(root);
1857 if (!as) {
1858 return ret;
1860 range = addrrange_make(int128_make64(addr), int128_make64(size));
1862 view = address_space_get_flatview(as);
1863 fr = flatview_lookup(view, range);
1864 if (!fr) {
1865 flatview_unref(view);
1866 return ret;
1869 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1870 --fr;
1873 ret.mr = fr->mr;
1874 ret.address_space = as;
1875 range = addrrange_intersection(range, fr->addr);
1876 ret.offset_within_region = fr->offset_in_region;
1877 ret.offset_within_region += int128_get64(int128_sub(range.start,
1878 fr->addr.start));
1879 ret.size = range.size;
1880 ret.offset_within_address_space = int128_get64(range.start);
1881 ret.readonly = fr->readonly;
1882 memory_region_ref(ret.mr);
1884 flatview_unref(view);
1885 return ret;
1888 void address_space_sync_dirty_bitmap(AddressSpace *as)
1890 FlatView *view;
1891 FlatRange *fr;
1893 view = address_space_get_flatview(as);
1894 FOR_EACH_FLAT_RANGE(fr, view) {
1895 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1897 flatview_unref(view);
1900 void memory_global_dirty_log_start(void)
1902 global_dirty_log = true;
1903 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1906 void memory_global_dirty_log_stop(void)
1908 global_dirty_log = false;
1909 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1912 static void listener_add_address_space(MemoryListener *listener,
1913 AddressSpace *as)
1915 FlatView *view;
1916 FlatRange *fr;
1918 if (listener->address_space_filter
1919 && listener->address_space_filter != as) {
1920 return;
1923 if (global_dirty_log) {
1924 if (listener->log_global_start) {
1925 listener->log_global_start(listener);
1929 view = address_space_get_flatview(as);
1930 FOR_EACH_FLAT_RANGE(fr, view) {
1931 MemoryRegionSection section = {
1932 .mr = fr->mr,
1933 .address_space = as,
1934 .offset_within_region = fr->offset_in_region,
1935 .size = fr->addr.size,
1936 .offset_within_address_space = int128_get64(fr->addr.start),
1937 .readonly = fr->readonly,
1939 if (listener->region_add) {
1940 listener->region_add(listener, &section);
1943 flatview_unref(view);
1946 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1948 MemoryListener *other = NULL;
1949 AddressSpace *as;
1951 listener->address_space_filter = filter;
1952 if (QTAILQ_EMPTY(&memory_listeners)
1953 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1954 memory_listeners)->priority) {
1955 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1956 } else {
1957 QTAILQ_FOREACH(other, &memory_listeners, link) {
1958 if (listener->priority < other->priority) {
1959 break;
1962 QTAILQ_INSERT_BEFORE(other, listener, link);
1965 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1966 listener_add_address_space(listener, as);
1970 void memory_listener_unregister(MemoryListener *listener)
1972 QTAILQ_REMOVE(&memory_listeners, listener, link);
1975 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1977 if (QTAILQ_EMPTY(&address_spaces)) {
1978 memory_init();
1981 memory_region_transaction_begin();
1982 as->root = root;
1983 as->current_map = g_new(FlatView, 1);
1984 flatview_init(as->current_map);
1985 as->ioeventfd_nb = 0;
1986 as->ioeventfds = NULL;
1987 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1988 as->name = g_strdup(name ? name : "anonymous");
1989 address_space_init_dispatch(as);
1990 memory_region_update_pending |= root->enabled;
1991 memory_region_transaction_commit();
1994 void address_space_destroy(AddressSpace *as)
1996 MemoryListener *listener;
1998 /* Flush out anything from MemoryListeners listening in on this */
1999 memory_region_transaction_begin();
2000 as->root = NULL;
2001 memory_region_transaction_commit();
2002 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2003 address_space_destroy_dispatch(as);
2005 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2006 assert(listener->address_space_filter != as);
2009 flatview_unref(as->current_map);
2010 g_free(as->name);
2011 g_free(as->ioeventfds);
2014 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
2016 return memory_region_dispatch_read(mr, addr, pval, size);
2019 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
2020 uint64_t val, unsigned size)
2022 return memory_region_dispatch_write(mr, addr, val, size);
2025 typedef struct MemoryRegionList MemoryRegionList;
2027 struct MemoryRegionList {
2028 const MemoryRegion *mr;
2029 bool printed;
2030 QTAILQ_ENTRY(MemoryRegionList) queue;
2033 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2035 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2036 const MemoryRegion *mr, unsigned int level,
2037 hwaddr base,
2038 MemoryRegionListHead *alias_print_queue)
2040 MemoryRegionList *new_ml, *ml, *next_ml;
2041 MemoryRegionListHead submr_print_queue;
2042 const MemoryRegion *submr;
2043 unsigned int i;
2045 if (!mr || !mr->enabled) {
2046 return;
2049 for (i = 0; i < level; i++) {
2050 mon_printf(f, " ");
2053 if (mr->alias) {
2054 MemoryRegionList *ml;
2055 bool found = false;
2057 /* check if the alias is already in the queue */
2058 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2059 if (ml->mr == mr->alias && !ml->printed) {
2060 found = true;
2064 if (!found) {
2065 ml = g_new(MemoryRegionList, 1);
2066 ml->mr = mr->alias;
2067 ml->printed = false;
2068 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2070 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2071 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2072 "-" TARGET_FMT_plx "\n",
2073 base + mr->addr,
2074 base + mr->addr
2075 + (int128_nz(mr->size) ?
2076 (hwaddr)int128_get64(int128_sub(mr->size,
2077 int128_one())) : 0),
2078 mr->priority,
2079 mr->romd_mode ? 'R' : '-',
2080 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2081 : '-',
2082 mr->name,
2083 mr->alias->name,
2084 mr->alias_offset,
2085 mr->alias_offset
2086 + (int128_nz(mr->size) ?
2087 (hwaddr)int128_get64(int128_sub(mr->size,
2088 int128_one())) : 0));
2089 } else {
2090 mon_printf(f,
2091 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2092 base + mr->addr,
2093 base + mr->addr
2094 + (int128_nz(mr->size) ?
2095 (hwaddr)int128_get64(int128_sub(mr->size,
2096 int128_one())) : 0),
2097 mr->priority,
2098 mr->romd_mode ? 'R' : '-',
2099 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2100 : '-',
2101 mr->name);
2104 QTAILQ_INIT(&submr_print_queue);
2106 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2107 new_ml = g_new(MemoryRegionList, 1);
2108 new_ml->mr = submr;
2109 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2110 if (new_ml->mr->addr < ml->mr->addr ||
2111 (new_ml->mr->addr == ml->mr->addr &&
2112 new_ml->mr->priority > ml->mr->priority)) {
2113 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2114 new_ml = NULL;
2115 break;
2118 if (new_ml) {
2119 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2123 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2124 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2125 alias_print_queue);
2128 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2129 g_free(ml);
2133 void mtree_info(fprintf_function mon_printf, void *f)
2135 MemoryRegionListHead ml_head;
2136 MemoryRegionList *ml, *ml2;
2137 AddressSpace *as;
2139 QTAILQ_INIT(&ml_head);
2141 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2142 mon_printf(f, "%s\n", as->name);
2143 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2146 mon_printf(f, "aliases\n");
2147 /* print aliased regions */
2148 QTAILQ_FOREACH(ml, &ml_head, queue) {
2149 if (!ml->printed) {
2150 mon_printf(f, "%s\n", ml->mr->name);
2151 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2155 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2156 g_free(ml);
2160 static const TypeInfo memory_region_info = {
2161 .parent = TYPE_OBJECT,
2162 .name = TYPE_MEMORY_REGION,
2163 .instance_size = sizeof(MemoryRegion),
2164 .instance_init = memory_region_initfn,
2165 .instance_finalize = memory_region_finalize,
2168 static void memory_register_types(void)
2170 type_register_static(&memory_region_info);
2173 type_init(memory_register_types)