Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / target / arm / op_helper.c
blobb322aecef47dd91757ab6cb6badb4b6e033779b5
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void QEMU_NORETURN
32 raise_exception(CPUARMState *env, uint32_t excp,
33 uint32_t syndrome, uint32_t target_el)
35 CPUState *cs = CPU(arm_env_get_cpu(env));
37 assert(!excp_is_internal(excp));
38 cs->exception_index = excp;
39 env->exception.syndrome = syndrome;
40 env->exception.target_el = target_el;
41 cpu_loop_exit(cs);
44 static int exception_target_el(CPUARMState *env)
46 int target_el = MAX(1, arm_current_el(env));
48 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
49 * to EL3 in this case.
51 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
52 target_el = 3;
55 return target_el;
58 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
59 uint32_t rn, uint32_t maxindex)
61 uint32_t val;
62 uint32_t tmp;
63 int index;
64 int shift;
65 uint64_t *table;
66 table = (uint64_t *)&env->vfp.regs[rn];
67 val = 0;
68 for (shift = 0; shift < 32; shift += 8) {
69 index = (ireg >> shift) & 0xff;
70 if (index < maxindex) {
71 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
72 val |= tmp << shift;
73 } else {
74 val |= def & (0xff << shift);
77 return val;
80 #if !defined(CONFIG_USER_ONLY)
82 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
83 unsigned int target_el,
84 bool same_el,
85 bool s1ptw, bool is_write,
86 int fsc)
88 uint32_t syn;
90 /* ISV is only set for data aborts routed to EL2 and
91 * never for stage-1 page table walks faulting on stage 2.
93 * Furthermore, ISV is only set for certain kinds of load/stores.
94 * If the template syndrome does not have ISV set, we should leave
95 * it cleared.
97 * See ARMv8 specs, D7-1974:
98 * ISS encoding for an exception from a Data Abort, the
99 * ISV field.
101 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
102 syn = syn_data_abort_no_iss(same_el,
103 0, 0, s1ptw, is_write, fsc);
104 } else {
105 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
106 * syndrome created at translation time.
107 * Now we create the runtime syndrome with the remaining fields.
109 syn = syn_data_abort_with_iss(same_el,
110 0, 0, 0, 0, 0,
111 0, 0, s1ptw, is_write, fsc,
112 false);
113 /* Merge the runtime syndrome with the template syndrome. */
114 syn |= template_syn;
116 return syn;
119 /* try to fill the TLB and return an exception if error. If retaddr is
120 * NULL, it means that the function was called in C code (i.e. not
121 * from generated code or from helper.c)
123 void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
124 int mmu_idx, uintptr_t retaddr)
126 bool ret;
127 uint32_t fsr = 0;
128 ARMMMUFaultInfo fi = {};
130 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
131 if (unlikely(ret)) {
132 ARMCPU *cpu = ARM_CPU(cs);
133 CPUARMState *env = &cpu->env;
134 uint32_t syn, exc, fsc;
135 unsigned int target_el;
136 bool same_el;
138 if (retaddr) {
139 /* now we have a real cpu fault */
140 cpu_restore_state(cs, retaddr);
143 target_el = exception_target_el(env);
144 if (fi.stage2) {
145 target_el = 2;
146 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
148 same_el = arm_current_el(env) == target_el;
150 if (fsr & (1 << 9)) {
151 /* LPAE format fault status register : bottom 6 bits are
152 * status code in the same form as needed for syndrome
154 fsc = extract32(fsr, 0, 6);
155 } else {
156 /* Short format FSR : this fault will never actually be reported
157 * to an EL that uses a syndrome register. Check that here,
158 * and use a (currently) reserved FSR code in case the constructed
159 * syndrome does leak into the guest somehow.
161 assert(target_el != 2 && !arm_el_is_aa64(env, target_el));
162 fsc = 0x3f;
165 /* For insn and data aborts we assume there is no instruction syndrome
166 * information; this is always true for exceptions reported to EL1.
168 if (access_type == MMU_INST_FETCH) {
169 syn = syn_insn_abort(same_el, 0, fi.s1ptw, fsc);
170 exc = EXCP_PREFETCH_ABORT;
171 } else {
172 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
173 same_el, fi.s1ptw,
174 access_type == MMU_DATA_STORE, fsc);
175 if (access_type == MMU_DATA_STORE
176 && arm_feature(env, ARM_FEATURE_V6)) {
177 fsr |= (1 << 11);
179 exc = EXCP_DATA_ABORT;
182 env->exception.vaddress = addr;
183 env->exception.fsr = fsr;
184 raise_exception(env, exc, syn, target_el);
188 /* Raise a data fault alignment exception for the specified virtual address */
189 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
190 MMUAccessType access_type,
191 int mmu_idx, uintptr_t retaddr)
193 ARMCPU *cpu = ARM_CPU(cs);
194 CPUARMState *env = &cpu->env;
195 int target_el;
196 bool same_el;
197 uint32_t syn;
198 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
200 if (retaddr) {
201 /* now we have a real cpu fault */
202 cpu_restore_state(cs, retaddr);
205 target_el = exception_target_el(env);
206 same_el = (arm_current_el(env) == target_el);
208 env->exception.vaddress = vaddr;
210 /* the DFSR for an alignment fault depends on whether we're using
211 * the LPAE long descriptor format, or the short descriptor format
213 if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
214 env->exception.fsr = (1 << 9) | 0x21;
215 } else {
216 env->exception.fsr = 0x1;
219 if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
220 env->exception.fsr |= (1 << 11);
223 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
224 same_el, 0, access_type == MMU_DATA_STORE,
225 0x21);
226 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
229 #endif /* !defined(CONFIG_USER_ONLY) */
231 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
233 uint32_t res = a + b;
234 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
235 env->QF = 1;
236 return res;
239 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
241 uint32_t res = a + b;
242 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
243 env->QF = 1;
244 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
246 return res;
249 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
251 uint32_t res = a - b;
252 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
253 env->QF = 1;
254 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
256 return res;
259 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
261 uint32_t res;
262 if (val >= 0x40000000) {
263 res = ~SIGNBIT;
264 env->QF = 1;
265 } else if (val <= (int32_t)0xc0000000) {
266 res = SIGNBIT;
267 env->QF = 1;
268 } else {
269 res = val << 1;
271 return res;
274 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
276 uint32_t res = a + b;
277 if (res < a) {
278 env->QF = 1;
279 res = ~0;
281 return res;
284 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
286 uint32_t res = a - b;
287 if (res > a) {
288 env->QF = 1;
289 res = 0;
291 return res;
294 /* Signed saturation. */
295 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
297 int32_t top;
298 uint32_t mask;
300 top = val >> shift;
301 mask = (1u << shift) - 1;
302 if (top > 0) {
303 env->QF = 1;
304 return mask;
305 } else if (top < -1) {
306 env->QF = 1;
307 return ~mask;
309 return val;
312 /* Unsigned saturation. */
313 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
315 uint32_t max;
317 max = (1u << shift) - 1;
318 if (val < 0) {
319 env->QF = 1;
320 return 0;
321 } else if (val > max) {
322 env->QF = 1;
323 return max;
325 return val;
328 /* Signed saturate. */
329 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
331 return do_ssat(env, x, shift);
334 /* Dual halfword signed saturate. */
335 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
337 uint32_t res;
339 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
340 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
341 return res;
344 /* Unsigned saturate. */
345 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
347 return do_usat(env, x, shift);
350 /* Dual halfword unsigned saturate. */
351 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
353 uint32_t res;
355 res = (uint16_t)do_usat(env, (int16_t)x, shift);
356 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
357 return res;
360 void HELPER(setend)(CPUARMState *env)
362 env->uncached_cpsr ^= CPSR_E;
365 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
366 * The function returns the target EL (1-3) if the instruction is to be trapped;
367 * otherwise it returns 0 indicating it is not trapped.
369 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
371 int cur_el = arm_current_el(env);
372 uint64_t mask;
374 /* If we are currently in EL0 then we need to check if SCTLR is set up for
375 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
377 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
378 int target_el;
380 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
381 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
382 /* Secure EL0 and Secure PL1 is at EL3 */
383 target_el = 3;
384 } else {
385 target_el = 1;
388 if (!(env->cp15.sctlr_el[target_el] & mask)) {
389 return target_el;
393 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
394 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
395 * bits will be zero indicating no trap.
397 if (cur_el < 2 && !arm_is_secure(env)) {
398 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
399 if (env->cp15.hcr_el2 & mask) {
400 return 2;
404 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
405 if (cur_el < 3) {
406 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
407 if (env->cp15.scr_el3 & mask) {
408 return 3;
412 return 0;
415 void HELPER(wfi)(CPUARMState *env)
417 CPUState *cs = CPU(arm_env_get_cpu(env));
418 int target_el = check_wfx_trap(env, false);
420 if (cpu_has_work(cs)) {
421 /* Don't bother to go into our "low power state" if
422 * we would just wake up immediately.
424 return;
427 if (target_el) {
428 env->pc -= 4;
429 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
432 cs->exception_index = EXCP_HLT;
433 cs->halted = 1;
434 cpu_loop_exit(cs);
437 void QEMU_NORETURN HELPER(wfe)(CPUARMState *env)
439 /* This is a hint instruction that is semantically different
440 * from YIELD even though we currently implement it identically.
441 * Don't actually halt the CPU, just yield back to top
442 * level loop. This is not going into a "low power state"
443 * (ie halting until some event occurs), so we never take
444 * a configurable trap to a different exception level.
446 HELPER(yield)(env);
449 void QEMU_NORETURN HELPER(yield)(CPUARMState *env)
451 ARMCPU *cpu = arm_env_get_cpu(env);
452 CPUState *cs = CPU(cpu);
454 /* When running in MTTCG we don't generate jumps to the yield and
455 * WFE helpers as it won't affect the scheduling of other vCPUs.
456 * If we wanted to more completely model WFE/SEV so we don't busy
457 * spin unnecessarily we would need to do something more involved.
459 g_assert(!parallel_cpus);
461 /* This is a non-trappable hint instruction that generally indicates
462 * that the guest is currently busy-looping. Yield control back to the
463 * top level loop so that a more deserving VCPU has a chance to run.
465 cs->exception_index = EXCP_YIELD;
466 cpu_loop_exit(cs);
469 /* Raise an internal-to-QEMU exception. This is limited to only
470 * those EXCP values which are special cases for QEMU to interrupt
471 * execution and not to be used for exceptions which are passed to
472 * the guest (those must all have syndrome information and thus should
473 * use exception_with_syndrome).
475 void QEMU_NORETURN HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
477 CPUState *cs = CPU(arm_env_get_cpu(env));
479 assert(excp_is_internal(excp));
480 cs->exception_index = excp;
481 cpu_loop_exit(cs);
484 /* Raise an exception with the specified syndrome register value */
485 void QEMU_NORETURN
486 HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
487 uint32_t syndrome, uint32_t target_el)
489 raise_exception(env, excp, syndrome, target_el);
492 uint32_t HELPER(cpsr_read)(CPUARMState *env)
494 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
497 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
499 cpsr_write(env, val, mask, CPSRWriteByInstr);
502 /* Write the CPSR for a 32-bit exception return */
503 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
505 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
507 /* Generated code has already stored the new PC value, but
508 * without masking out its low bits, because which bits need
509 * masking depends on whether we're returning to Thumb or ARM
510 * state. Do the masking now.
512 env->regs[15] &= (env->thumb ? ~1 : ~3);
514 qemu_mutex_lock_iothread();
515 arm_call_el_change_hook(arm_env_get_cpu(env));
516 qemu_mutex_unlock_iothread();
519 /* Access to user mode registers from privileged modes. */
520 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
522 uint32_t val;
524 if (regno == 13) {
525 val = env->banked_r13[BANK_USRSYS];
526 } else if (regno == 14) {
527 val = env->banked_r14[BANK_USRSYS];
528 } else if (regno >= 8
529 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
530 val = env->usr_regs[regno - 8];
531 } else {
532 val = env->regs[regno];
534 return val;
537 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
539 if (regno == 13) {
540 env->banked_r13[BANK_USRSYS] = val;
541 } else if (regno == 14) {
542 env->banked_r14[BANK_USRSYS] = val;
543 } else if (regno >= 8
544 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
545 env->usr_regs[regno - 8] = val;
546 } else {
547 env->regs[regno] = val;
551 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
553 if ((env->uncached_cpsr & CPSR_M) == mode) {
554 env->regs[13] = val;
555 } else {
556 env->banked_r13[bank_number(mode)] = val;
560 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
562 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
563 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
564 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
566 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
567 exception_target_el(env));
570 if ((env->uncached_cpsr & CPSR_M) == mode) {
571 return env->regs[13];
572 } else {
573 return env->banked_r13[bank_number(mode)];
577 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
578 uint32_t regno)
580 /* Raise an exception if the requested access is one of the UNPREDICTABLE
581 * cases; otherwise return. This broadly corresponds to the pseudocode
582 * BankedRegisterAccessValid() and SPSRAccessValid(),
583 * except that we have already handled some cases at translate time.
585 int curmode = env->uncached_cpsr & CPSR_M;
587 if (curmode == tgtmode) {
588 goto undef;
591 if (tgtmode == ARM_CPU_MODE_USR) {
592 switch (regno) {
593 case 8 ... 12:
594 if (curmode != ARM_CPU_MODE_FIQ) {
595 goto undef;
597 break;
598 case 13:
599 if (curmode == ARM_CPU_MODE_SYS) {
600 goto undef;
602 break;
603 case 14:
604 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
605 goto undef;
607 break;
608 default:
609 break;
613 if (tgtmode == ARM_CPU_MODE_HYP) {
614 switch (regno) {
615 case 17: /* ELR_Hyp */
616 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
617 goto undef;
619 break;
620 default:
621 if (curmode != ARM_CPU_MODE_MON) {
622 goto undef;
624 break;
628 return;
630 undef:
631 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
632 exception_target_el(env));
635 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
636 uint32_t regno)
638 msr_mrs_banked_exc_checks(env, tgtmode, regno);
640 switch (regno) {
641 case 16: /* SPSRs */
642 env->banked_spsr[bank_number(tgtmode)] = value;
643 break;
644 case 17: /* ELR_Hyp */
645 env->elr_el[2] = value;
646 break;
647 case 13:
648 env->banked_r13[bank_number(tgtmode)] = value;
649 break;
650 case 14:
651 env->banked_r14[bank_number(tgtmode)] = value;
652 break;
653 case 8 ... 12:
654 switch (tgtmode) {
655 case ARM_CPU_MODE_USR:
656 env->usr_regs[regno - 8] = value;
657 break;
658 case ARM_CPU_MODE_FIQ:
659 env->fiq_regs[regno - 8] = value;
660 break;
661 default:
662 g_assert_not_reached();
664 break;
665 default:
666 g_assert_not_reached();
670 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
672 msr_mrs_banked_exc_checks(env, tgtmode, regno);
674 switch (regno) {
675 case 16: /* SPSRs */
676 return env->banked_spsr[bank_number(tgtmode)];
677 case 17: /* ELR_Hyp */
678 return env->elr_el[2];
679 case 13:
680 return env->banked_r13[bank_number(tgtmode)];
681 case 14:
682 return env->banked_r14[bank_number(tgtmode)];
683 case 8 ... 12:
684 switch (tgtmode) {
685 case ARM_CPU_MODE_USR:
686 return env->usr_regs[regno - 8];
687 case ARM_CPU_MODE_FIQ:
688 return env->fiq_regs[regno - 8];
689 default:
690 g_assert_not_reached();
692 default:
693 g_assert_not_reached();
697 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
698 uint32_t isread)
700 const ARMCPRegInfo *ri = rip;
701 int target_el;
703 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
704 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
705 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
708 if (!ri->accessfn) {
709 return;
712 switch (ri->accessfn(env, ri, isread)) {
713 case CP_ACCESS_OK:
714 return;
715 case CP_ACCESS_TRAP:
716 target_el = exception_target_el(env);
717 break;
718 case CP_ACCESS_TRAP_EL2:
719 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
720 * a bug in the access function.
722 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
723 target_el = 2;
724 break;
725 case CP_ACCESS_TRAP_EL3:
726 target_el = 3;
727 break;
728 case CP_ACCESS_TRAP_UNCATEGORIZED:
729 target_el = exception_target_el(env);
730 syndrome = syn_uncategorized();
731 break;
732 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
733 target_el = 2;
734 syndrome = syn_uncategorized();
735 break;
736 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
737 target_el = 3;
738 syndrome = syn_uncategorized();
739 break;
740 case CP_ACCESS_TRAP_FP_EL2:
741 target_el = 2;
742 /* Since we are an implementation that takes exceptions on a trapped
743 * conditional insn only if the insn has passed its condition code
744 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
745 * (which is also the required value for AArch64 traps).
747 syndrome = syn_fp_access_trap(1, 0xe, false);
748 break;
749 case CP_ACCESS_TRAP_FP_EL3:
750 target_el = 3;
751 syndrome = syn_fp_access_trap(1, 0xe, false);
752 break;
753 default:
754 g_assert_not_reached();
757 raise_exception(env, EXCP_UDEF, syndrome, target_el);
760 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
762 const ARMCPRegInfo *ri = rip;
764 if (ri->type & ARM_CP_IO) {
765 qemu_mutex_lock_iothread();
766 ri->writefn(env, ri, value);
767 qemu_mutex_unlock_iothread();
768 } else {
769 ri->writefn(env, ri, value);
773 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
775 const ARMCPRegInfo *ri = rip;
776 uint32_t res;
778 if (ri->type & ARM_CP_IO) {
779 qemu_mutex_lock_iothread();
780 res = ri->readfn(env, ri);
781 qemu_mutex_unlock_iothread();
782 } else {
783 res = ri->readfn(env, ri);
786 return res;
789 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
791 const ARMCPRegInfo *ri = rip;
793 if (ri->type & ARM_CP_IO) {
794 qemu_mutex_lock_iothread();
795 ri->writefn(env, ri, value);
796 qemu_mutex_unlock_iothread();
797 } else {
798 ri->writefn(env, ri, value);
802 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
804 const ARMCPRegInfo *ri = rip;
805 uint64_t res;
807 if (ri->type & ARM_CP_IO) {
808 qemu_mutex_lock_iothread();
809 res = ri->readfn(env, ri);
810 qemu_mutex_unlock_iothread();
811 } else {
812 res = ri->readfn(env, ri);
815 return res;
818 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
820 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
821 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
822 * to catch that case at translate time.
824 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
825 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
826 extract32(op, 3, 3), 4,
827 imm, 0x1f, 0);
828 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
831 switch (op) {
832 case 0x05: /* SPSel */
833 update_spsel(env, imm);
834 break;
835 case 0x1e: /* DAIFSet */
836 env->daif |= (imm << 6) & PSTATE_DAIF;
837 break;
838 case 0x1f: /* DAIFClear */
839 env->daif &= ~((imm << 6) & PSTATE_DAIF);
840 break;
841 default:
842 g_assert_not_reached();
846 void HELPER(clear_pstate_ss)(CPUARMState *env)
848 env->pstate &= ~PSTATE_SS;
851 void HELPER(pre_hvc)(CPUARMState *env)
853 ARMCPU *cpu = arm_env_get_cpu(env);
854 int cur_el = arm_current_el(env);
855 /* FIXME: Use actual secure state. */
856 bool secure = false;
857 bool undef;
859 if (arm_is_psci_call(cpu, EXCP_HVC)) {
860 /* If PSCI is enabled and this looks like a valid PSCI call then
861 * that overrides the architecturally mandated HVC behaviour.
863 return;
866 if (!arm_feature(env, ARM_FEATURE_EL2)) {
867 /* If EL2 doesn't exist, HVC always UNDEFs */
868 undef = true;
869 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
870 /* EL3.HCE has priority over EL2.HCD. */
871 undef = !(env->cp15.scr_el3 & SCR_HCE);
872 } else {
873 undef = env->cp15.hcr_el2 & HCR_HCD;
876 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
877 * For ARMv8/AArch64, HVC is allowed in EL3.
878 * Note that we've already trapped HVC from EL0 at translation
879 * time.
881 if (secure && (!is_a64(env) || cur_el == 1)) {
882 undef = true;
885 if (undef) {
886 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
887 exception_target_el(env));
891 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
893 ARMCPU *cpu = arm_env_get_cpu(env);
894 int cur_el = arm_current_el(env);
895 bool secure = arm_is_secure(env);
896 bool smd = env->cp15.scr_el3 & SCR_SMD;
897 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
898 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
899 * extensions, SMD only applies to NS state.
900 * On ARMv7 without the Virtualization extensions, the SMD bit
901 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
902 * so we need not special case this here.
904 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
906 if (arm_is_psci_call(cpu, EXCP_SMC)) {
907 /* If PSCI is enabled and this looks like a valid PSCI call then
908 * that overrides the architecturally mandated SMC behaviour.
910 return;
913 if (!arm_feature(env, ARM_FEATURE_EL3)) {
914 /* If we have no EL3 then SMC always UNDEFs */
915 undef = true;
916 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
917 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
918 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
921 if (undef) {
922 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
923 exception_target_el(env));
927 static int el_from_spsr(uint32_t spsr)
929 /* Return the exception level that this SPSR is requesting a return to,
930 * or -1 if it is invalid (an illegal return)
932 if (spsr & PSTATE_nRW) {
933 switch (spsr & CPSR_M) {
934 case ARM_CPU_MODE_USR:
935 return 0;
936 case ARM_CPU_MODE_HYP:
937 return 2;
938 case ARM_CPU_MODE_FIQ:
939 case ARM_CPU_MODE_IRQ:
940 case ARM_CPU_MODE_SVC:
941 case ARM_CPU_MODE_ABT:
942 case ARM_CPU_MODE_UND:
943 case ARM_CPU_MODE_SYS:
944 return 1;
945 case ARM_CPU_MODE_MON:
946 /* Returning to Mon from AArch64 is never possible,
947 * so this is an illegal return.
949 default:
950 return -1;
952 } else {
953 if (extract32(spsr, 1, 1)) {
954 /* Return with reserved M[1] bit set */
955 return -1;
957 if (extract32(spsr, 0, 4) == 1) {
958 /* return to EL0 with M[0] bit set */
959 return -1;
961 return extract32(spsr, 2, 2);
965 void HELPER(exception_return)(CPUARMState *env)
967 int cur_el = arm_current_el(env);
968 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
969 uint32_t spsr = env->banked_spsr[spsr_idx];
970 int new_el;
971 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
973 aarch64_save_sp(env, cur_el);
975 env->exclusive_addr = -1;
977 /* We must squash the PSTATE.SS bit to zero unless both of the
978 * following hold:
979 * 1. debug exceptions are currently disabled
980 * 2. singlestep will be active in the EL we return to
981 * We check 1 here and 2 after we've done the pstate/cpsr write() to
982 * transition to the EL we're going to.
984 if (arm_generate_debug_exceptions(env)) {
985 spsr &= ~PSTATE_SS;
988 new_el = el_from_spsr(spsr);
989 if (new_el == -1) {
990 goto illegal_return;
992 if (new_el > cur_el
993 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
994 /* Disallow return to an EL which is unimplemented or higher
995 * than the current one.
997 goto illegal_return;
1000 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
1001 /* Return to an EL which is configured for a different register width */
1002 goto illegal_return;
1005 if (new_el == 2 && arm_is_secure_below_el3(env)) {
1006 /* Return to the non-existent secure-EL2 */
1007 goto illegal_return;
1010 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
1011 && !arm_is_secure_below_el3(env)) {
1012 goto illegal_return;
1015 if (!return_to_aa64) {
1016 env->aarch64 = 0;
1017 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1018 * will sort the register banks out for us, and we've already
1019 * caught all the bad-mode cases in el_from_spsr().
1021 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1022 if (!arm_singlestep_active(env)) {
1023 env->uncached_cpsr &= ~PSTATE_SS;
1025 aarch64_sync_64_to_32(env);
1027 if (spsr & CPSR_T) {
1028 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1029 } else {
1030 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1032 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1033 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1034 cur_el, new_el, env->regs[15]);
1035 } else {
1036 env->aarch64 = 1;
1037 pstate_write(env, spsr);
1038 if (!arm_singlestep_active(env)) {
1039 env->pstate &= ~PSTATE_SS;
1041 aarch64_restore_sp(env, new_el);
1042 env->pc = env->elr_el[cur_el];
1043 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1044 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1045 cur_el, new_el, env->pc);
1048 qemu_mutex_lock_iothread();
1049 arm_call_el_change_hook(arm_env_get_cpu(env));
1050 qemu_mutex_unlock_iothread();
1052 return;
1054 illegal_return:
1055 /* Illegal return events of various kinds have architecturally
1056 * mandated behaviour:
1057 * restore NZCV and DAIF from SPSR_ELx
1058 * set PSTATE.IL
1059 * restore PC from ELR_ELx
1060 * no change to exception level, execution state or stack pointer
1062 env->pstate |= PSTATE_IL;
1063 env->pc = env->elr_el[cur_el];
1064 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1065 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1066 pstate_write(env, spsr);
1067 if (!arm_singlestep_active(env)) {
1068 env->pstate &= ~PSTATE_SS;
1070 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1071 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1074 /* Return true if the linked breakpoint entry lbn passes its checks */
1075 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1077 CPUARMState *env = &cpu->env;
1078 uint64_t bcr = env->cp15.dbgbcr[lbn];
1079 int brps = extract32(cpu->dbgdidr, 24, 4);
1080 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1081 int bt;
1082 uint32_t contextidr;
1084 /* Links to unimplemented or non-context aware breakpoints are
1085 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1086 * as if linked to an UNKNOWN context-aware breakpoint (in which
1087 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1088 * We choose the former.
1090 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1091 return false;
1094 bcr = env->cp15.dbgbcr[lbn];
1096 if (extract64(bcr, 0, 1) == 0) {
1097 /* Linked breakpoint disabled : generate no events */
1098 return false;
1101 bt = extract64(bcr, 20, 4);
1103 /* We match the whole register even if this is AArch32 using the
1104 * short descriptor format (in which case it holds both PROCID and ASID),
1105 * since we don't implement the optional v7 context ID masking.
1107 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1109 switch (bt) {
1110 case 3: /* linked context ID match */
1111 if (arm_current_el(env) > 1) {
1112 /* Context matches never fire in EL2 or (AArch64) EL3 */
1113 return false;
1115 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1116 case 5: /* linked address mismatch (reserved in AArch64) */
1117 case 9: /* linked VMID match (reserved if no EL2) */
1118 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1119 default:
1120 /* Links to Unlinked context breakpoints must generate no
1121 * events; we choose to do the same for reserved values too.
1123 return false;
1126 return false;
1129 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1131 CPUARMState *env = &cpu->env;
1132 uint64_t cr;
1133 int pac, hmc, ssc, wt, lbn;
1134 /* Note that for watchpoints the check is against the CPU security
1135 * state, not the S/NS attribute on the offending data access.
1137 bool is_secure = arm_is_secure(env);
1138 int access_el = arm_current_el(env);
1140 if (is_wp) {
1141 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1143 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1144 return false;
1146 cr = env->cp15.dbgwcr[n];
1147 if (wp->hitattrs.user) {
1148 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1149 * match watchpoints as if they were accesses done at EL0, even if
1150 * the CPU is at EL1 or higher.
1152 access_el = 0;
1154 } else {
1155 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1157 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1158 return false;
1160 cr = env->cp15.dbgbcr[n];
1162 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1163 * enabled and that the address and access type match; for breakpoints
1164 * we know the address matched; check the remaining fields, including
1165 * linked breakpoints. We rely on WCR and BCR having the same layout
1166 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1167 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1168 * must act either like some valid combination or as if the watchpoint
1169 * were disabled. We choose the former, and use this together with
1170 * the fact that EL3 must always be Secure and EL2 must always be
1171 * Non-Secure to simplify the code slightly compared to the full
1172 * table in the ARM ARM.
1174 pac = extract64(cr, 1, 2);
1175 hmc = extract64(cr, 13, 1);
1176 ssc = extract64(cr, 14, 2);
1178 switch (ssc) {
1179 case 0:
1180 break;
1181 case 1:
1182 case 3:
1183 if (is_secure) {
1184 return false;
1186 break;
1187 case 2:
1188 if (!is_secure) {
1189 return false;
1191 break;
1194 switch (access_el) {
1195 case 3:
1196 case 2:
1197 if (!hmc) {
1198 return false;
1200 break;
1201 case 1:
1202 if (extract32(pac, 0, 1) == 0) {
1203 return false;
1205 break;
1206 case 0:
1207 if (extract32(pac, 1, 1) == 0) {
1208 return false;
1210 break;
1211 default:
1212 g_assert_not_reached();
1215 wt = extract64(cr, 20, 1);
1216 lbn = extract64(cr, 16, 4);
1218 if (wt && !linked_bp_matches(cpu, lbn)) {
1219 return false;
1222 return true;
1225 static bool check_watchpoints(ARMCPU *cpu)
1227 CPUARMState *env = &cpu->env;
1228 int n;
1230 /* If watchpoints are disabled globally or we can't take debug
1231 * exceptions here then watchpoint firings are ignored.
1233 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1234 || !arm_generate_debug_exceptions(env)) {
1235 return false;
1238 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1239 if (bp_wp_matches(cpu, n, true)) {
1240 return true;
1243 return false;
1246 static bool check_breakpoints(ARMCPU *cpu)
1248 CPUARMState *env = &cpu->env;
1249 int n;
1251 /* If breakpoints are disabled globally or we can't take debug
1252 * exceptions here then breakpoint firings are ignored.
1254 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1255 || !arm_generate_debug_exceptions(env)) {
1256 return false;
1259 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1260 if (bp_wp_matches(cpu, n, false)) {
1261 return true;
1264 return false;
1267 void HELPER(check_breakpoints)(CPUARMState *env)
1269 ARMCPU *cpu = arm_env_get_cpu(env);
1271 if (check_breakpoints(cpu)) {
1272 HELPER(exception_internal(env, EXCP_DEBUG));
1276 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1278 /* Called by core code when a CPU watchpoint fires; need to check if this
1279 * is also an architectural watchpoint match.
1281 ARMCPU *cpu = ARM_CPU(cs);
1283 return check_watchpoints(cpu);
1286 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1288 ARMCPU *cpu = ARM_CPU(cs);
1289 CPUARMState *env = &cpu->env;
1291 /* In BE32 system mode, target memory is stored byteswapped (on a
1292 * little-endian host system), and by the time we reach here (via an
1293 * opcode helper) the addresses of subword accesses have been adjusted
1294 * to account for that, which means that watchpoints will not match.
1295 * Undo the adjustment here.
1297 if (arm_sctlr_b(env)) {
1298 if (len == 1) {
1299 addr ^= 3;
1300 } else if (len == 2) {
1301 addr ^= 2;
1305 return addr;
1308 void arm_debug_excp_handler(CPUState *cs)
1310 /* Called by core code when a watchpoint or breakpoint fires;
1311 * need to check which one and raise the appropriate exception.
1313 ARMCPU *cpu = ARM_CPU(cs);
1314 CPUARMState *env = &cpu->env;
1315 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1317 if (wp_hit) {
1318 if (wp_hit->flags & BP_CPU) {
1319 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1320 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1322 cs->watchpoint_hit = NULL;
1324 if (extended_addresses_enabled(env)) {
1325 env->exception.fsr = (1 << 9) | 0x22;
1326 } else {
1327 env->exception.fsr = 0x2;
1329 env->exception.vaddress = wp_hit->hitaddr;
1330 raise_exception(env, EXCP_DATA_ABORT,
1331 syn_watchpoint(same_el, 0, wnr),
1332 arm_debug_target_el(env));
1334 } else {
1335 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1336 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1338 /* (1) GDB breakpoints should be handled first.
1339 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1340 * since singlestep is also done by generating a debug internal
1341 * exception.
1343 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1344 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1345 return;
1348 if (extended_addresses_enabled(env)) {
1349 env->exception.fsr = (1 << 9) | 0x22;
1350 } else {
1351 env->exception.fsr = 0x2;
1353 /* FAR is UNKNOWN, so doesn't need setting */
1354 raise_exception(env, EXCP_PREFETCH_ABORT,
1355 syn_breakpoint(same_el),
1356 arm_debug_target_el(env));
1360 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1361 The only way to do that in TCG is a conditional branch, which clobbers
1362 all our temporaries. For now implement these as helper functions. */
1364 /* Similarly for variable shift instructions. */
1366 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1368 int shift = i & 0xff;
1369 if (shift >= 32) {
1370 if (shift == 32)
1371 env->CF = x & 1;
1372 else
1373 env->CF = 0;
1374 return 0;
1375 } else if (shift != 0) {
1376 env->CF = (x >> (32 - shift)) & 1;
1377 return x << shift;
1379 return x;
1382 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1384 int shift = i & 0xff;
1385 if (shift >= 32) {
1386 if (shift == 32)
1387 env->CF = (x >> 31) & 1;
1388 else
1389 env->CF = 0;
1390 return 0;
1391 } else if (shift != 0) {
1392 env->CF = (x >> (shift - 1)) & 1;
1393 return x >> shift;
1395 return x;
1398 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1400 int shift = i & 0xff;
1401 if (shift >= 32) {
1402 env->CF = (x >> 31) & 1;
1403 return (int32_t)x >> 31;
1404 } else if (shift != 0) {
1405 env->CF = (x >> (shift - 1)) & 1;
1406 return (int32_t)x >> shift;
1408 return x;
1411 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1413 int shift1, shift;
1414 shift1 = i & 0xff;
1415 shift = shift1 & 0x1f;
1416 if (shift == 0) {
1417 if (shift1 != 0)
1418 env->CF = (x >> 31) & 1;
1419 return x;
1420 } else {
1421 env->CF = (x >> (shift - 1)) & 1;
1422 return ((uint32_t)x >> shift) | (x << (32 - shift));