Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / memory.c
blob9352b2a9922307571da7833c0f7269d550cc6e2b
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "exec/memory.h"
19 #include "exec/address-spaces.h"
20 #include "exec/ioport.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qom/object.h"
25 #include "trace.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "sysemu/kvm.h"
30 #include "sysemu/sysemu.h"
32 //#define DEBUG_UNASSIGNED
34 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 static unsigned memory_region_transaction_depth;
37 static bool memory_region_update_pending;
38 static bool ioeventfd_update_pending;
39 static bool global_dirty_log = false;
41 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
42 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
44 static QTAILQ_HEAD(, AddressSpace) address_spaces
45 = QTAILQ_HEAD_INITIALIZER(address_spaces);
47 typedef struct AddrRange AddrRange;
50 * Note that signed integers are needed for negative offsetting in aliases
51 * (large MemoryRegion::alias_offset).
53 struct AddrRange {
54 Int128 start;
55 Int128 size;
58 static AddrRange addrrange_make(Int128 start, Int128 size)
60 return (AddrRange) { start, size };
63 static bool addrrange_equal(AddrRange r1, AddrRange r2)
65 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
68 static Int128 addrrange_end(AddrRange r)
70 return int128_add(r.start, r.size);
73 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
75 int128_addto(&range.start, delta);
76 return range;
79 static bool addrrange_contains(AddrRange range, Int128 addr)
81 return int128_ge(addr, range.start)
82 && int128_lt(addr, addrrange_end(range));
85 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
87 return addrrange_contains(r1, r2.start)
88 || addrrange_contains(r2, r1.start);
91 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
93 Int128 start = int128_max(r1.start, r2.start);
94 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
95 return addrrange_make(start, int128_sub(end, start));
98 enum ListenerDirection { Forward, Reverse };
100 static bool memory_listener_match(MemoryListener *listener,
101 MemoryRegionSection *section)
103 return !listener->address_space_filter
104 || listener->address_space_filter == section->address_space;
107 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 do { \
109 MemoryListener *_listener; \
111 switch (_direction) { \
112 case Forward: \
113 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
114 if (_listener->_callback) { \
115 _listener->_callback(_listener, ##_args); \
118 break; \
119 case Reverse: \
120 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
121 memory_listeners, link) { \
122 if (_listener->_callback) { \
123 _listener->_callback(_listener, ##_args); \
126 break; \
127 default: \
128 abort(); \
130 } while (0)
132 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
133 do { \
134 MemoryListener *_listener; \
136 switch (_direction) { \
137 case Forward: \
138 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
139 if (_listener->_callback \
140 && memory_listener_match(_listener, _section)) { \
141 _listener->_callback(_listener, _section, ##_args); \
144 break; \
145 case Reverse: \
146 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
147 memory_listeners, link) { \
148 if (_listener->_callback \
149 && memory_listener_match(_listener, _section)) { \
150 _listener->_callback(_listener, _section, ##_args); \
153 break; \
154 default: \
155 abort(); \
157 } while (0)
159 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
160 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
161 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
162 .mr = (fr)->mr, \
163 .address_space = (as), \
164 .offset_within_region = (fr)->offset_in_region, \
165 .size = (fr)->addr.size, \
166 .offset_within_address_space = int128_get64((fr)->addr.start), \
167 .readonly = (fr)->readonly, \
168 }), ##_args)
170 struct CoalescedMemoryRange {
171 AddrRange addr;
172 QTAILQ_ENTRY(CoalescedMemoryRange) link;
175 struct MemoryRegionIoeventfd {
176 AddrRange addr;
177 bool match_data;
178 uint64_t data;
179 EventNotifier *e;
182 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
183 MemoryRegionIoeventfd b)
185 if (int128_lt(a.addr.start, b.addr.start)) {
186 return true;
187 } else if (int128_gt(a.addr.start, b.addr.start)) {
188 return false;
189 } else if (int128_lt(a.addr.size, b.addr.size)) {
190 return true;
191 } else if (int128_gt(a.addr.size, b.addr.size)) {
192 return false;
193 } else if (a.match_data < b.match_data) {
194 return true;
195 } else if (a.match_data > b.match_data) {
196 return false;
197 } else if (a.match_data) {
198 if (a.data < b.data) {
199 return true;
200 } else if (a.data > b.data) {
201 return false;
204 if (a.e < b.e) {
205 return true;
206 } else if (a.e > b.e) {
207 return false;
209 return false;
212 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
213 MemoryRegionIoeventfd b)
215 return !memory_region_ioeventfd_before(a, b)
216 && !memory_region_ioeventfd_before(b, a);
219 typedef struct FlatRange FlatRange;
220 typedef struct FlatView FlatView;
222 /* Range of memory in the global map. Addresses are absolute. */
223 struct FlatRange {
224 MemoryRegion *mr;
225 hwaddr offset_in_region;
226 AddrRange addr;
227 uint8_t dirty_log_mask;
228 bool romd_mode;
229 bool readonly;
232 /* Flattened global view of current active memory hierarchy. Kept in sorted
233 * order.
235 struct FlatView {
236 struct rcu_head rcu;
237 unsigned ref;
238 FlatRange *ranges;
239 unsigned nr;
240 unsigned nr_allocated;
243 typedef struct AddressSpaceOps AddressSpaceOps;
245 #define FOR_EACH_FLAT_RANGE(var, view) \
246 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
250 return a->mr == b->mr
251 && addrrange_equal(a->addr, b->addr)
252 && a->offset_in_region == b->offset_in_region
253 && a->romd_mode == b->romd_mode
254 && a->readonly == b->readonly;
257 static void flatview_init(FlatView *view)
259 view->ref = 1;
260 view->ranges = NULL;
261 view->nr = 0;
262 view->nr_allocated = 0;
265 /* Insert a range into a given position. Caller is responsible for maintaining
266 * sorting order.
268 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
270 if (view->nr == view->nr_allocated) {
271 view->nr_allocated = MAX(2 * view->nr, 10);
272 view->ranges = g_realloc(view->ranges,
273 view->nr_allocated * sizeof(*view->ranges));
275 memmove(view->ranges + pos + 1, view->ranges + pos,
276 (view->nr - pos) * sizeof(FlatRange));
277 view->ranges[pos] = *range;
278 memory_region_ref(range->mr);
279 ++view->nr;
282 static void flatview_destroy(FlatView *view)
284 int i;
286 for (i = 0; i < view->nr; i++) {
287 memory_region_unref(view->ranges[i].mr);
289 g_free(view->ranges);
290 g_free(view);
293 static void flatview_ref(FlatView *view)
295 atomic_inc(&view->ref);
298 static void flatview_unref(FlatView *view)
300 if (atomic_fetch_dec(&view->ref) == 1) {
301 flatview_destroy(view);
305 static bool can_merge(FlatRange *r1, FlatRange *r2)
307 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
308 && r1->mr == r2->mr
309 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
310 r1->addr.size),
311 int128_make64(r2->offset_in_region))
312 && r1->dirty_log_mask == r2->dirty_log_mask
313 && r1->romd_mode == r2->romd_mode
314 && r1->readonly == r2->readonly;
317 /* Attempt to simplify a view by merging adjacent ranges */
318 static void flatview_simplify(FlatView *view)
320 unsigned i, j;
322 i = 0;
323 while (i < view->nr) {
324 j = i + 1;
325 while (j < view->nr
326 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
327 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
328 ++j;
330 ++i;
331 memmove(&view->ranges[i], &view->ranges[j],
332 (view->nr - j) * sizeof(view->ranges[j]));
333 view->nr -= j - i;
337 static bool memory_region_big_endian(MemoryRegion *mr)
339 #ifdef TARGET_WORDS_BIGENDIAN
340 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
341 #else
342 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
343 #endif
346 static bool memory_region_wrong_endianness(MemoryRegion *mr)
348 #ifdef TARGET_WORDS_BIGENDIAN
349 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
350 #else
351 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
352 #endif
355 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
357 if (memory_region_wrong_endianness(mr)) {
358 switch (size) {
359 case 1:
360 break;
361 case 2:
362 *data = bswap16(*data);
363 break;
364 case 4:
365 *data = bswap32(*data);
366 break;
367 case 8:
368 *data = bswap64(*data);
369 break;
370 default:
371 abort();
376 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
378 MemoryRegion *root;
379 hwaddr abs_addr = offset;
381 abs_addr += mr->addr;
382 for (root = mr; root->container; ) {
383 root = root->container;
384 abs_addr += root->addr;
387 return abs_addr;
390 static int get_cpu_index(void)
392 if (current_cpu) {
393 return current_cpu->cpu_index;
395 return -1;
398 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
399 hwaddr addr,
400 uint64_t *value,
401 unsigned size,
402 unsigned shift,
403 uint64_t mask,
404 MemTxAttrs attrs)
406 uint64_t tmp;
408 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
409 if (mr->subpage) {
410 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
411 } else if (mr == &io_mem_notdirty) {
412 /* Accesses to code which has previously been translated into a TB show
413 * up in the MMIO path, as accesses to the io_mem_notdirty
414 * MemoryRegion. */
415 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
416 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
417 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
418 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
420 *value |= (tmp & mask) << shift;
421 return MEMTX_OK;
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 unsigned shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
432 uint64_t tmp;
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (mr == &io_mem_notdirty) {
438 /* Accesses to code which has previously been translated into a TB show
439 * up in the MMIO path, as accesses to the io_mem_notdirty
440 * MemoryRegion. */
441 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
442 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
443 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
444 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
446 *value |= (tmp & mask) << shift;
447 return MEMTX_OK;
450 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
451 hwaddr addr,
452 uint64_t *value,
453 unsigned size,
454 unsigned shift,
455 uint64_t mask,
456 MemTxAttrs attrs)
458 uint64_t tmp = 0;
459 MemTxResult r;
461 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
462 if (mr->subpage) {
463 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
464 } else if (mr == &io_mem_notdirty) {
465 /* Accesses to code which has previously been translated into a TB show
466 * up in the MMIO path, as accesses to the io_mem_notdirty
467 * MemoryRegion. */
468 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
469 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
470 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
471 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
473 *value |= (tmp & mask) << shift;
474 return r;
477 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
478 hwaddr addr,
479 uint64_t *value,
480 unsigned size,
481 unsigned shift,
482 uint64_t mask,
483 MemTxAttrs attrs)
485 uint64_t tmp;
487 tmp = (*value >> shift) & mask;
488 if (mr->subpage) {
489 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
490 } else if (mr == &io_mem_notdirty) {
491 /* Accesses to code which has previously been translated into a TB show
492 * up in the MMIO path, as accesses to the io_mem_notdirty
493 * MemoryRegion. */
494 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
495 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
496 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
497 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
499 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
500 return MEMTX_OK;
503 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
504 hwaddr addr,
505 uint64_t *value,
506 unsigned size,
507 unsigned shift,
508 uint64_t mask,
509 MemTxAttrs attrs)
511 uint64_t tmp;
513 tmp = (*value >> shift) & mask;
514 if (mr->subpage) {
515 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
516 } else if (mr == &io_mem_notdirty) {
517 /* Accesses to code which has previously been translated into a TB show
518 * up in the MMIO path, as accesses to the io_mem_notdirty
519 * MemoryRegion. */
520 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
521 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
522 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
523 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
525 mr->ops->write(mr->opaque, addr, tmp, size);
526 return MEMTX_OK;
529 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
530 hwaddr addr,
531 uint64_t *value,
532 unsigned size,
533 unsigned shift,
534 uint64_t mask,
535 MemTxAttrs attrs)
537 uint64_t tmp;
539 tmp = (*value >> shift) & mask;
540 if (mr->subpage) {
541 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
542 } else if (mr == &io_mem_notdirty) {
543 /* Accesses to code which has previously been translated into a TB show
544 * up in the MMIO path, as accesses to the io_mem_notdirty
545 * MemoryRegion. */
546 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
547 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
548 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
549 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
551 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
554 static MemTxResult access_with_adjusted_size(hwaddr addr,
555 uint64_t *value,
556 unsigned size,
557 unsigned access_size_min,
558 unsigned access_size_max,
559 MemTxResult (*access)(MemoryRegion *mr,
560 hwaddr addr,
561 uint64_t *value,
562 unsigned size,
563 unsigned shift,
564 uint64_t mask,
565 MemTxAttrs attrs),
566 MemoryRegion *mr,
567 MemTxAttrs attrs)
569 uint64_t access_mask;
570 unsigned access_size;
571 unsigned i;
572 MemTxResult r = MEMTX_OK;
574 if (!access_size_min) {
575 access_size_min = 1;
577 if (!access_size_max) {
578 access_size_max = 4;
581 /* FIXME: support unaligned access? */
582 access_size = MAX(MIN(size, access_size_max), access_size_min);
583 access_mask = -1ULL >> (64 - access_size * 8);
584 if (memory_region_big_endian(mr)) {
585 for (i = 0; i < size; i += access_size) {
586 r |= access(mr, addr + i, value, access_size,
587 (size - access_size - i) * 8, access_mask, attrs);
589 } else {
590 for (i = 0; i < size; i += access_size) {
591 r |= access(mr, addr + i, value, access_size, i * 8,
592 access_mask, attrs);
595 return r;
598 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
600 AddressSpace *as;
602 while (mr->container) {
603 mr = mr->container;
605 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
606 if (mr == as->root) {
607 return as;
610 return NULL;
613 /* Render a memory region into the global view. Ranges in @view obscure
614 * ranges in @mr.
616 static void render_memory_region(FlatView *view,
617 MemoryRegion *mr,
618 Int128 base,
619 AddrRange clip,
620 bool readonly)
622 MemoryRegion *subregion;
623 unsigned i;
624 hwaddr offset_in_region;
625 Int128 remain;
626 Int128 now;
627 FlatRange fr;
628 AddrRange tmp;
630 if (!mr->enabled) {
631 return;
634 int128_addto(&base, int128_make64(mr->addr));
635 readonly |= mr->readonly;
637 tmp = addrrange_make(base, mr->size);
639 if (!addrrange_intersects(tmp, clip)) {
640 return;
643 clip = addrrange_intersection(tmp, clip);
645 if (mr->alias) {
646 int128_subfrom(&base, int128_make64(mr->alias->addr));
647 int128_subfrom(&base, int128_make64(mr->alias_offset));
648 render_memory_region(view, mr->alias, base, clip, readonly);
649 return;
652 /* Render subregions in priority order. */
653 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
654 render_memory_region(view, subregion, base, clip, readonly);
657 if (!mr->terminates) {
658 return;
661 offset_in_region = int128_get64(int128_sub(clip.start, base));
662 base = clip.start;
663 remain = clip.size;
665 fr.mr = mr;
666 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
667 fr.romd_mode = mr->romd_mode;
668 fr.readonly = readonly;
670 /* Render the region itself into any gaps left by the current view. */
671 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
672 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
673 continue;
675 if (int128_lt(base, view->ranges[i].addr.start)) {
676 now = int128_min(remain,
677 int128_sub(view->ranges[i].addr.start, base));
678 fr.offset_in_region = offset_in_region;
679 fr.addr = addrrange_make(base, now);
680 flatview_insert(view, i, &fr);
681 ++i;
682 int128_addto(&base, now);
683 offset_in_region += int128_get64(now);
684 int128_subfrom(&remain, now);
686 now = int128_sub(int128_min(int128_add(base, remain),
687 addrrange_end(view->ranges[i].addr)),
688 base);
689 int128_addto(&base, now);
690 offset_in_region += int128_get64(now);
691 int128_subfrom(&remain, now);
693 if (int128_nz(remain)) {
694 fr.offset_in_region = offset_in_region;
695 fr.addr = addrrange_make(base, remain);
696 flatview_insert(view, i, &fr);
700 /* Render a memory topology into a list of disjoint absolute ranges. */
701 static FlatView *generate_memory_topology(MemoryRegion *mr)
703 FlatView *view;
705 view = g_new(FlatView, 1);
706 flatview_init(view);
708 if (mr) {
709 render_memory_region(view, mr, int128_zero(),
710 addrrange_make(int128_zero(), int128_2_64()), false);
712 flatview_simplify(view);
714 return view;
717 static void address_space_add_del_ioeventfds(AddressSpace *as,
718 MemoryRegionIoeventfd *fds_new,
719 unsigned fds_new_nb,
720 MemoryRegionIoeventfd *fds_old,
721 unsigned fds_old_nb)
723 unsigned iold, inew;
724 MemoryRegionIoeventfd *fd;
725 MemoryRegionSection section;
727 /* Generate a symmetric difference of the old and new fd sets, adding
728 * and deleting as necessary.
731 iold = inew = 0;
732 while (iold < fds_old_nb || inew < fds_new_nb) {
733 if (iold < fds_old_nb
734 && (inew == fds_new_nb
735 || memory_region_ioeventfd_before(fds_old[iold],
736 fds_new[inew]))) {
737 fd = &fds_old[iold];
738 section = (MemoryRegionSection) {
739 .address_space = as,
740 .offset_within_address_space = int128_get64(fd->addr.start),
741 .size = fd->addr.size,
743 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
744 fd->match_data, fd->data, fd->e);
745 ++iold;
746 } else if (inew < fds_new_nb
747 && (iold == fds_old_nb
748 || memory_region_ioeventfd_before(fds_new[inew],
749 fds_old[iold]))) {
750 fd = &fds_new[inew];
751 section = (MemoryRegionSection) {
752 .address_space = as,
753 .offset_within_address_space = int128_get64(fd->addr.start),
754 .size = fd->addr.size,
756 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
757 fd->match_data, fd->data, fd->e);
758 ++inew;
759 } else {
760 ++iold;
761 ++inew;
766 static FlatView *address_space_get_flatview(AddressSpace *as)
768 FlatView *view;
770 rcu_read_lock();
771 view = atomic_rcu_read(&as->current_map);
772 flatview_ref(view);
773 rcu_read_unlock();
774 return view;
777 static void address_space_update_ioeventfds(AddressSpace *as)
779 FlatView *view;
780 FlatRange *fr;
781 unsigned ioeventfd_nb = 0;
782 MemoryRegionIoeventfd *ioeventfds = NULL;
783 AddrRange tmp;
784 unsigned i;
786 view = address_space_get_flatview(as);
787 FOR_EACH_FLAT_RANGE(fr, view) {
788 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
789 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
790 int128_sub(fr->addr.start,
791 int128_make64(fr->offset_in_region)));
792 if (addrrange_intersects(fr->addr, tmp)) {
793 ++ioeventfd_nb;
794 ioeventfds = g_realloc(ioeventfds,
795 ioeventfd_nb * sizeof(*ioeventfds));
796 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
797 ioeventfds[ioeventfd_nb-1].addr = tmp;
802 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
803 as->ioeventfds, as->ioeventfd_nb);
805 g_free(as->ioeventfds);
806 as->ioeventfds = ioeventfds;
807 as->ioeventfd_nb = ioeventfd_nb;
808 flatview_unref(view);
811 static void address_space_update_topology_pass(AddressSpace *as,
812 const FlatView *old_view,
813 const FlatView *new_view,
814 bool adding)
816 unsigned iold, inew;
817 FlatRange *frold, *frnew;
819 /* Generate a symmetric difference of the old and new memory maps.
820 * Kill ranges in the old map, and instantiate ranges in the new map.
822 iold = inew = 0;
823 while (iold < old_view->nr || inew < new_view->nr) {
824 if (iold < old_view->nr) {
825 frold = &old_view->ranges[iold];
826 } else {
827 frold = NULL;
829 if (inew < new_view->nr) {
830 frnew = &new_view->ranges[inew];
831 } else {
832 frnew = NULL;
835 if (frold
836 && (!frnew
837 || int128_lt(frold->addr.start, frnew->addr.start)
838 || (int128_eq(frold->addr.start, frnew->addr.start)
839 && !flatrange_equal(frold, frnew)))) {
840 /* In old but not in new, or in both but attributes changed. */
842 if (!adding) {
843 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
846 ++iold;
847 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
848 /* In both and unchanged (except logging may have changed) */
850 if (adding) {
851 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
852 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
853 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
854 frold->dirty_log_mask,
855 frnew->dirty_log_mask);
857 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
858 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
859 frold->dirty_log_mask,
860 frnew->dirty_log_mask);
864 ++iold;
865 ++inew;
866 } else {
867 /* In new */
869 if (adding) {
870 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
873 ++inew;
879 static void address_space_update_topology(AddressSpace *as)
881 FlatView *old_view = address_space_get_flatview(as);
882 FlatView *new_view = generate_memory_topology(as->root);
884 address_space_update_topology_pass(as, old_view, new_view, false);
885 address_space_update_topology_pass(as, old_view, new_view, true);
887 /* Writes are protected by the BQL. */
888 atomic_rcu_set(&as->current_map, new_view);
889 call_rcu(old_view, flatview_unref, rcu);
891 /* Note that all the old MemoryRegions are still alive up to this
892 * point. This relieves most MemoryListeners from the need to
893 * ref/unref the MemoryRegions they get---unless they use them
894 * outside the iothread mutex, in which case precise reference
895 * counting is necessary.
897 flatview_unref(old_view);
899 address_space_update_ioeventfds(as);
902 void memory_region_transaction_begin(void)
904 qemu_flush_coalesced_mmio_buffer();
905 ++memory_region_transaction_depth;
908 static void memory_region_clear_pending(void)
910 memory_region_update_pending = false;
911 ioeventfd_update_pending = false;
914 void memory_region_transaction_commit(void)
916 AddressSpace *as;
918 assert(memory_region_transaction_depth);
919 --memory_region_transaction_depth;
920 if (!memory_region_transaction_depth) {
921 if (memory_region_update_pending) {
922 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
924 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
925 address_space_update_topology(as);
928 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
929 } else if (ioeventfd_update_pending) {
930 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
931 address_space_update_ioeventfds(as);
934 memory_region_clear_pending();
938 static void memory_region_destructor_none(MemoryRegion *mr)
942 static void memory_region_destructor_ram(MemoryRegion *mr)
944 qemu_ram_free(mr->ram_block);
947 static void memory_region_destructor_rom_device(MemoryRegion *mr)
949 qemu_ram_free(mr->ram_block);
952 static bool memory_region_need_escape(char c)
954 return c == '/' || c == '[' || c == '\\' || c == ']';
957 static char *memory_region_escape_name(const char *name)
959 const char *p;
960 char *escaped, *q;
961 uint8_t c;
962 size_t bytes = 0;
964 for (p = name; *p; p++) {
965 bytes += memory_region_need_escape(*p) ? 4 : 1;
967 if (bytes == p - name) {
968 return g_memdup(name, bytes + 1);
971 escaped = g_malloc(bytes + 1);
972 for (p = name, q = escaped; *p; p++) {
973 c = *p;
974 if (unlikely(memory_region_need_escape(c))) {
975 *q++ = '\\';
976 *q++ = 'x';
977 *q++ = "0123456789abcdef"[c >> 4];
978 c = "0123456789abcdef"[c & 15];
980 *q++ = c;
982 *q = 0;
983 return escaped;
986 void memory_region_init(MemoryRegion *mr,
987 Object *owner,
988 const char *name,
989 uint64_t size)
991 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
992 mr->size = int128_make64(size);
993 if (size == UINT64_MAX) {
994 mr->size = int128_2_64();
996 mr->name = g_strdup(name);
997 mr->owner = owner;
998 mr->ram_block = NULL;
1000 if (name) {
1001 char *escaped_name = memory_region_escape_name(name);
1002 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1004 if (!owner) {
1005 owner = container_get(qdev_get_machine(), "/unattached");
1008 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1009 object_unref(OBJECT(mr));
1010 g_free(name_array);
1011 g_free(escaped_name);
1015 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1016 void *opaque, Error **errp)
1018 MemoryRegion *mr = MEMORY_REGION(obj);
1019 uint64_t value = mr->addr;
1021 visit_type_uint64(v, name, &value, errp);
1024 static void memory_region_get_container(Object *obj, Visitor *v,
1025 const char *name, void *opaque,
1026 Error **errp)
1028 MemoryRegion *mr = MEMORY_REGION(obj);
1029 gchar *path = (gchar *)"";
1031 if (mr->container) {
1032 path = object_get_canonical_path(OBJECT(mr->container));
1034 visit_type_str(v, name, &path, errp);
1035 if (mr->container) {
1036 g_free(path);
1040 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1041 const char *part)
1043 MemoryRegion *mr = MEMORY_REGION(obj);
1045 return OBJECT(mr->container);
1048 static void memory_region_get_priority(Object *obj, Visitor *v,
1049 const char *name, void *opaque,
1050 Error **errp)
1052 MemoryRegion *mr = MEMORY_REGION(obj);
1053 int32_t value = mr->priority;
1055 visit_type_int32(v, name, &value, errp);
1058 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
1060 MemoryRegion *mr = MEMORY_REGION(obj);
1062 return mr->may_overlap;
1065 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1066 void *opaque, Error **errp)
1068 MemoryRegion *mr = MEMORY_REGION(obj);
1069 uint64_t value = memory_region_size(mr);
1071 visit_type_uint64(v, name, &value, errp);
1074 static void memory_region_initfn(Object *obj)
1076 MemoryRegion *mr = MEMORY_REGION(obj);
1077 ObjectProperty *op;
1079 mr->ops = &unassigned_mem_ops;
1080 mr->enabled = true;
1081 mr->romd_mode = true;
1082 mr->global_locking = true;
1083 mr->destructor = memory_region_destructor_none;
1084 QTAILQ_INIT(&mr->subregions);
1085 QTAILQ_INIT(&mr->coalesced);
1087 op = object_property_add(OBJECT(mr), "container",
1088 "link<" TYPE_MEMORY_REGION ">",
1089 memory_region_get_container,
1090 NULL, /* memory_region_set_container */
1091 NULL, NULL, &error_abort);
1092 op->resolve = memory_region_resolve_container;
1094 object_property_add(OBJECT(mr), "addr", "uint64",
1095 memory_region_get_addr,
1096 NULL, /* memory_region_set_addr */
1097 NULL, NULL, &error_abort);
1098 object_property_add(OBJECT(mr), "priority", "uint32",
1099 memory_region_get_priority,
1100 NULL, /* memory_region_set_priority */
1101 NULL, NULL, &error_abort);
1102 object_property_add_bool(OBJECT(mr), "may-overlap",
1103 memory_region_get_may_overlap,
1104 NULL, /* memory_region_set_may_overlap */
1105 &error_abort);
1106 object_property_add(OBJECT(mr), "size", "uint64",
1107 memory_region_get_size,
1108 NULL, /* memory_region_set_size, */
1109 NULL, NULL, &error_abort);
1112 static int qemu_target_backtrace(target_ulong *array, size_t size)
1114 int n = 0;
1115 if (size >= 2) {
1116 #if defined(TARGET_ARM)
1117 CPUArchState *env = current_cpu->env_ptr;
1118 array[0] = env->regs[15];
1119 array[1] = env->regs[14];
1120 #elif defined(TARGET_MIPS)
1121 CPUArchState *env = current_cpu->env_ptr;
1122 array[0] = env->active_tc.PC;
1123 array[1] = env->active_tc.gpr[31];
1124 #else
1125 array[0] = 0;
1126 array[1] = 0;
1127 #endif
1128 n = 2;
1130 return n;
1133 #include "disas/disas.h"
1134 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1136 char *p = buffer;
1137 if (current_cpu) {
1138 target_ulong caller[2];
1139 const char *symbol;
1140 qemu_target_backtrace(caller, 2);
1141 symbol = lookup_symbol(caller[0]);
1142 p += sprintf(p, "[%s]", symbol);
1143 symbol = lookup_symbol(caller[1]);
1144 p += sprintf(p, "[%s]", symbol);
1145 } else {
1146 p += sprintf(p, "[cpu not running]");
1148 assert((p - buffer) < length);
1149 return buffer;
1152 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1153 unsigned size)
1155 if (trace_unassigned) {
1156 char buffer[256];
1157 fprintf(stderr, "Unassigned mem read " TARGET_FMT_plx " %s\n",
1158 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1160 //~ vm_stop(0);
1161 if (current_cpu != NULL) {
1162 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1164 return 0;
1167 static void unassigned_mem_write(void *opaque, hwaddr addr,
1168 uint64_t val, unsigned size)
1170 if (trace_unassigned) {
1171 char buffer[256];
1172 fprintf(stderr, "Unassigned mem write " TARGET_FMT_plx
1173 " = 0x%" PRIx64 " %s\n",
1174 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1176 if (current_cpu != NULL) {
1177 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1181 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1182 unsigned size, bool is_write)
1184 return false;
1187 const MemoryRegionOps unassigned_mem_ops = {
1188 .valid.accepts = unassigned_mem_accepts,
1189 .endianness = DEVICE_NATIVE_ENDIAN,
1192 bool memory_region_access_valid(MemoryRegion *mr,
1193 hwaddr addr,
1194 unsigned size,
1195 bool is_write)
1197 int access_size_min, access_size_max;
1198 int access_size, i;
1200 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1201 fprintf(stderr, "Misaligned i/o to address %08" HWADDR_PRIx
1202 " with size %u for memory region %s\n",
1203 addr, size, mr->name);
1204 return false;
1207 if (!mr->ops->valid.accepts) {
1208 return true;
1211 access_size_min = mr->ops->valid.min_access_size;
1212 if (!mr->ops->valid.min_access_size) {
1213 access_size_min = 1;
1216 access_size_max = mr->ops->valid.max_access_size;
1217 if (!mr->ops->valid.max_access_size) {
1218 access_size_max = 4;
1221 access_size = MAX(MIN(size, access_size_max), access_size_min);
1222 for (i = 0; i < size; i += access_size) {
1223 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1224 is_write)) {
1225 return false;
1229 return true;
1232 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1233 hwaddr addr,
1234 uint64_t *pval,
1235 unsigned size,
1236 MemTxAttrs attrs)
1238 *pval = 0;
1240 if (mr->ops->read) {
1241 return access_with_adjusted_size(addr, pval, size,
1242 mr->ops->impl.min_access_size,
1243 mr->ops->impl.max_access_size,
1244 memory_region_read_accessor,
1245 mr, attrs);
1246 } else if (mr->ops->read_with_attrs) {
1247 return access_with_adjusted_size(addr, pval, size,
1248 mr->ops->impl.min_access_size,
1249 mr->ops->impl.max_access_size,
1250 memory_region_read_with_attrs_accessor,
1251 mr, attrs);
1252 } else {
1253 return access_with_adjusted_size(addr, pval, size, 1, 4,
1254 memory_region_oldmmio_read_accessor,
1255 mr, attrs);
1259 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1260 hwaddr addr,
1261 uint64_t *pval,
1262 unsigned size,
1263 MemTxAttrs attrs)
1265 MemTxResult r;
1267 if (!memory_region_access_valid(mr, addr, size, false)) {
1268 *pval = unassigned_mem_read(mr, addr, size);
1269 return MEMTX_DECODE_ERROR;
1272 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1273 adjust_endianness(mr, pval, size);
1274 return r;
1277 /* Return true if an eventfd was signalled */
1278 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1279 hwaddr addr,
1280 uint64_t data,
1281 unsigned size,
1282 MemTxAttrs attrs)
1284 MemoryRegionIoeventfd ioeventfd = {
1285 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1286 .data = data,
1288 unsigned i;
1290 for (i = 0; i < mr->ioeventfd_nb; i++) {
1291 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1292 ioeventfd.e = mr->ioeventfds[i].e;
1294 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1295 event_notifier_set(ioeventfd.e);
1296 return true;
1300 return false;
1303 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1304 hwaddr addr,
1305 uint64_t data,
1306 unsigned size,
1307 MemTxAttrs attrs)
1309 if (!memory_region_access_valid(mr, addr, size, true)) {
1310 unassigned_mem_write(mr, addr, data, size);
1311 return MEMTX_DECODE_ERROR;
1314 adjust_endianness(mr, &data, size);
1316 if ((!kvm_eventfds_enabled()) &&
1317 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1318 return MEMTX_OK;
1321 if (mr->ops->write) {
1322 return access_with_adjusted_size(addr, &data, size,
1323 mr->ops->impl.min_access_size,
1324 mr->ops->impl.max_access_size,
1325 memory_region_write_accessor, mr,
1326 attrs);
1327 } else if (mr->ops->write_with_attrs) {
1328 return
1329 access_with_adjusted_size(addr, &data, size,
1330 mr->ops->impl.min_access_size,
1331 mr->ops->impl.max_access_size,
1332 memory_region_write_with_attrs_accessor,
1333 mr, attrs);
1334 } else {
1335 return access_with_adjusted_size(addr, &data, size, 1, 4,
1336 memory_region_oldmmio_write_accessor,
1337 mr, attrs);
1341 void memory_region_init_io(MemoryRegion *mr,
1342 Object *owner,
1343 const MemoryRegionOps *ops,
1344 void *opaque,
1345 const char *name,
1346 uint64_t size)
1348 memory_region_init(mr, owner, name, size);
1349 mr->ops = ops ? ops : &unassigned_mem_ops;
1350 mr->opaque = opaque;
1351 mr->terminates = true;
1354 void memory_region_init_ram(MemoryRegion *mr,
1355 Object *owner,
1356 const char *name,
1357 uint64_t size,
1358 Error **errp)
1360 memory_region_init(mr, owner, name, size);
1361 mr->ram = true;
1362 mr->terminates = true;
1363 mr->destructor = memory_region_destructor_ram;
1364 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1365 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1368 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1369 Object *owner,
1370 const char *name,
1371 uint64_t size,
1372 uint64_t max_size,
1373 void (*resized)(const char*,
1374 uint64_t length,
1375 void *host),
1376 Error **errp)
1378 memory_region_init(mr, owner, name, size);
1379 mr->ram = true;
1380 mr->terminates = true;
1381 mr->destructor = memory_region_destructor_ram;
1382 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1383 mr, errp);
1384 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1387 #ifdef __linux__
1388 void memory_region_init_ram_from_file(MemoryRegion *mr,
1389 struct Object *owner,
1390 const char *name,
1391 uint64_t size,
1392 bool share,
1393 const char *path,
1394 Error **errp)
1396 memory_region_init(mr, owner, name, size);
1397 mr->ram = true;
1398 mr->terminates = true;
1399 mr->destructor = memory_region_destructor_ram;
1400 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1401 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1403 #endif
1405 void memory_region_init_ram_ptr(MemoryRegion *mr,
1406 Object *owner,
1407 const char *name,
1408 uint64_t size,
1409 void *ptr)
1411 memory_region_init(mr, owner, name, size);
1412 mr->ram = true;
1413 mr->terminates = true;
1414 mr->destructor = memory_region_destructor_ram;
1415 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1417 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1418 assert(ptr != NULL);
1419 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1422 void memory_region_set_skip_dump(MemoryRegion *mr)
1424 mr->skip_dump = true;
1427 void memory_region_init_alias(MemoryRegion *mr,
1428 Object *owner,
1429 const char *name,
1430 MemoryRegion *orig,
1431 hwaddr offset,
1432 uint64_t size)
1434 memory_region_init(mr, owner, name, size);
1435 mr->alias = orig;
1436 mr->alias_offset = offset;
1439 void memory_region_init_rom_device(MemoryRegion *mr,
1440 Object *owner,
1441 const MemoryRegionOps *ops,
1442 void *opaque,
1443 const char *name,
1444 uint64_t size,
1445 Error **errp)
1447 memory_region_init(mr, owner, name, size);
1448 mr->ops = ops;
1449 mr->opaque = opaque;
1450 mr->terminates = true;
1451 mr->rom_device = true;
1452 mr->destructor = memory_region_destructor_rom_device;
1453 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1456 void memory_region_init_iommu(MemoryRegion *mr,
1457 Object *owner,
1458 const MemoryRegionIOMMUOps *ops,
1459 const char *name,
1460 uint64_t size)
1462 memory_region_init(mr, owner, name, size);
1463 mr->iommu_ops = ops,
1464 mr->terminates = true; /* then re-forwards */
1465 notifier_list_init(&mr->iommu_notify);
1468 static void memory_region_finalize(Object *obj)
1470 MemoryRegion *mr = MEMORY_REGION(obj);
1472 assert(!mr->container);
1474 /* We know the region is not visible in any address space (it
1475 * does not have a container and cannot be a root either because
1476 * it has no references, so we can blindly clear mr->enabled.
1477 * memory_region_set_enabled instead could trigger a transaction
1478 * and cause an infinite loop.
1480 mr->enabled = false;
1481 memory_region_transaction_begin();
1482 while (!QTAILQ_EMPTY(&mr->subregions)) {
1483 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1484 memory_region_del_subregion(mr, subregion);
1486 memory_region_transaction_commit();
1488 mr->destructor(mr);
1489 memory_region_clear_coalescing(mr);
1490 g_free((char *)mr->name);
1491 g_free(mr->ioeventfds);
1494 Object *memory_region_owner(MemoryRegion *mr)
1496 Object *obj = OBJECT(mr);
1497 return obj->parent;
1500 void memory_region_ref(MemoryRegion *mr)
1502 /* MMIO callbacks most likely will access data that belongs
1503 * to the owner, hence the need to ref/unref the owner whenever
1504 * the memory region is in use.
1506 * The memory region is a child of its owner. As long as the
1507 * owner doesn't call unparent itself on the memory region,
1508 * ref-ing the owner will also keep the memory region alive.
1509 * Memory regions without an owner are supposed to never go away;
1510 * we do not ref/unref them because it slows down DMA sensibly.
1512 if (mr && mr->owner) {
1513 object_ref(mr->owner);
1517 void memory_region_unref(MemoryRegion *mr)
1519 if (mr && mr->owner) {
1520 object_unref(mr->owner);
1524 uint64_t memory_region_size(MemoryRegion *mr)
1526 if (int128_eq(mr->size, int128_2_64())) {
1527 return UINT64_MAX;
1529 return int128_get64(mr->size);
1532 const char *memory_region_name(const MemoryRegion *mr)
1534 if (!mr->name) {
1535 ((MemoryRegion *)mr)->name =
1536 object_get_canonical_path_component(OBJECT(mr));
1538 return mr->name;
1541 bool memory_region_is_skip_dump(MemoryRegion *mr)
1543 return mr->skip_dump;
1546 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1548 uint8_t mask = mr->dirty_log_mask;
1549 if (global_dirty_log) {
1550 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1552 return mask;
1555 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1557 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1560 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1562 notifier_list_add(&mr->iommu_notify, n);
1565 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
1566 hwaddr granularity, bool is_write)
1568 hwaddr addr;
1569 IOMMUTLBEntry iotlb;
1571 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1572 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
1573 if (iotlb.perm != IOMMU_NONE) {
1574 n->notify(n, &iotlb);
1577 /* if (2^64 - MR size) < granularity, it's possible to get an
1578 * infinite loop here. This should catch such a wraparound */
1579 if ((addr + granularity) < addr) {
1580 break;
1585 void memory_region_unregister_iommu_notifier(Notifier *n)
1587 notifier_remove(n);
1590 void memory_region_notify_iommu(MemoryRegion *mr,
1591 IOMMUTLBEntry entry)
1593 assert(memory_region_is_iommu(mr));
1594 notifier_list_notify(&mr->iommu_notify, &entry);
1597 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1599 uint8_t mask = 1 << client;
1600 uint8_t old_logging;
1602 assert(client == DIRTY_MEMORY_VGA);
1603 old_logging = mr->vga_logging_count;
1604 mr->vga_logging_count += log ? 1 : -1;
1605 if (!!old_logging == !!mr->vga_logging_count) {
1606 return;
1609 memory_region_transaction_begin();
1610 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1611 memory_region_update_pending |= mr->enabled;
1612 memory_region_transaction_commit();
1615 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1616 hwaddr size, unsigned client)
1618 assert(mr->ram_block);
1619 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1620 size, client);
1623 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1624 hwaddr size)
1626 assert(mr->ram_block);
1627 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1628 size,
1629 memory_region_get_dirty_log_mask(mr));
1632 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1633 hwaddr size, unsigned client)
1635 assert(mr->ram_block);
1636 return cpu_physical_memory_test_and_clear_dirty(
1637 memory_region_get_ram_addr(mr) + addr, size, client);
1641 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1643 AddressSpace *as;
1644 FlatRange *fr;
1646 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1647 FlatView *view = address_space_get_flatview(as);
1648 FOR_EACH_FLAT_RANGE(fr, view) {
1649 if (fr->mr == mr) {
1650 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1653 flatview_unref(view);
1657 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1659 if (mr->readonly != readonly) {
1660 memory_region_transaction_begin();
1661 mr->readonly = readonly;
1662 memory_region_update_pending |= mr->enabled;
1663 memory_region_transaction_commit();
1667 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1669 if (mr->romd_mode != romd_mode) {
1670 memory_region_transaction_begin();
1671 mr->romd_mode = romd_mode;
1672 memory_region_update_pending |= mr->enabled;
1673 memory_region_transaction_commit();
1677 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1678 hwaddr size, unsigned client)
1680 assert(mr->ram_block);
1681 cpu_physical_memory_test_and_clear_dirty(
1682 memory_region_get_ram_addr(mr) + addr, size, client);
1685 int memory_region_get_fd(MemoryRegion *mr)
1687 if (mr->alias) {
1688 return memory_region_get_fd(mr->alias);
1691 assert(mr->ram_block);
1693 return qemu_get_ram_fd(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1696 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1698 void *ptr;
1699 uint64_t offset = 0;
1701 rcu_read_lock();
1702 while (mr->alias) {
1703 offset += mr->alias_offset;
1704 mr = mr->alias;
1706 assert(mr->ram_block);
1707 ptr = qemu_get_ram_ptr(mr->ram_block,
1708 memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK);
1709 rcu_read_unlock();
1711 return ptr + offset;
1714 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1716 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1719 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1721 assert(mr->ram_block);
1723 qemu_ram_resize(memory_region_get_ram_addr(mr), newsize, errp);
1726 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1728 FlatView *view;
1729 FlatRange *fr;
1730 CoalescedMemoryRange *cmr;
1731 AddrRange tmp;
1732 MemoryRegionSection section;
1734 view = address_space_get_flatview(as);
1735 FOR_EACH_FLAT_RANGE(fr, view) {
1736 if (fr->mr == mr) {
1737 section = (MemoryRegionSection) {
1738 .address_space = as,
1739 .offset_within_address_space = int128_get64(fr->addr.start),
1740 .size = fr->addr.size,
1743 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1744 int128_get64(fr->addr.start),
1745 int128_get64(fr->addr.size));
1746 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1747 tmp = addrrange_shift(cmr->addr,
1748 int128_sub(fr->addr.start,
1749 int128_make64(fr->offset_in_region)));
1750 if (!addrrange_intersects(tmp, fr->addr)) {
1751 continue;
1753 tmp = addrrange_intersection(tmp, fr->addr);
1754 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1755 int128_get64(tmp.start),
1756 int128_get64(tmp.size));
1760 flatview_unref(view);
1763 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1765 AddressSpace *as;
1767 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1768 memory_region_update_coalesced_range_as(mr, as);
1772 void memory_region_set_coalescing(MemoryRegion *mr)
1774 memory_region_clear_coalescing(mr);
1775 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1778 void memory_region_add_coalescing(MemoryRegion *mr,
1779 hwaddr offset,
1780 uint64_t size)
1782 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1784 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1785 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1786 memory_region_update_coalesced_range(mr);
1787 memory_region_set_flush_coalesced(mr);
1790 void memory_region_clear_coalescing(MemoryRegion *mr)
1792 CoalescedMemoryRange *cmr;
1793 bool updated = false;
1795 qemu_flush_coalesced_mmio_buffer();
1796 mr->flush_coalesced_mmio = false;
1798 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1799 cmr = QTAILQ_FIRST(&mr->coalesced);
1800 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1801 g_free(cmr);
1802 updated = true;
1805 if (updated) {
1806 memory_region_update_coalesced_range(mr);
1810 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1812 mr->flush_coalesced_mmio = true;
1815 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1817 qemu_flush_coalesced_mmio_buffer();
1818 if (QTAILQ_EMPTY(&mr->coalesced)) {
1819 mr->flush_coalesced_mmio = false;
1823 void memory_region_set_global_locking(MemoryRegion *mr)
1825 mr->global_locking = true;
1828 void memory_region_clear_global_locking(MemoryRegion *mr)
1830 mr->global_locking = false;
1833 static bool userspace_eventfd_warning;
1835 void memory_region_add_eventfd(MemoryRegion *mr,
1836 hwaddr addr,
1837 unsigned size,
1838 bool match_data,
1839 uint64_t data,
1840 EventNotifier *e)
1842 MemoryRegionIoeventfd mrfd = {
1843 .addr.start = int128_make64(addr),
1844 .addr.size = int128_make64(size),
1845 .match_data = match_data,
1846 .data = data,
1847 .e = e,
1849 unsigned i;
1851 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1852 userspace_eventfd_warning))) {
1853 userspace_eventfd_warning = true;
1854 error_report("Using eventfd without MMIO binding in KVM. "
1855 "Suboptimal performance expected");
1858 if (size) {
1859 adjust_endianness(mr, &mrfd.data, size);
1861 memory_region_transaction_begin();
1862 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1863 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1864 break;
1867 ++mr->ioeventfd_nb;
1868 mr->ioeventfds = g_realloc(mr->ioeventfds,
1869 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1870 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1871 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1872 mr->ioeventfds[i] = mrfd;
1873 ioeventfd_update_pending |= mr->enabled;
1874 memory_region_transaction_commit();
1877 void memory_region_del_eventfd(MemoryRegion *mr,
1878 hwaddr addr,
1879 unsigned size,
1880 bool match_data,
1881 uint64_t data,
1882 EventNotifier *e)
1884 MemoryRegionIoeventfd mrfd = {
1885 .addr.start = int128_make64(addr),
1886 .addr.size = int128_make64(size),
1887 .match_data = match_data,
1888 .data = data,
1889 .e = e,
1891 unsigned i;
1893 if (size) {
1894 adjust_endianness(mr, &mrfd.data, size);
1896 memory_region_transaction_begin();
1897 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1898 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1899 break;
1902 assert(i != mr->ioeventfd_nb);
1903 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1904 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1905 --mr->ioeventfd_nb;
1906 mr->ioeventfds = g_realloc(mr->ioeventfds,
1907 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1908 ioeventfd_update_pending |= mr->enabled;
1909 memory_region_transaction_commit();
1912 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1914 hwaddr offset = subregion->addr;
1915 MemoryRegion *mr = subregion->container;
1916 MemoryRegion *other;
1918 memory_region_transaction_begin();
1920 memory_region_ref(subregion);
1921 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1922 if (subregion->may_overlap || other->may_overlap) {
1923 continue;
1925 if (int128_ge(int128_make64(offset),
1926 int128_add(int128_make64(other->addr), other->size))
1927 || int128_le(int128_add(int128_make64(offset), subregion->size),
1928 int128_make64(other->addr))) {
1929 continue;
1931 #if 0
1932 printf("warning: subregion collision %llx/%llx (%s) "
1933 "vs %llx/%llx (%s)\n",
1934 (unsigned long long)offset,
1935 (unsigned long long)int128_get64(subregion->size),
1936 subregion->name,
1937 (unsigned long long)other->addr,
1938 (unsigned long long)int128_get64(other->size),
1939 other->name);
1940 #endif
1942 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1943 if (subregion->priority >= other->priority) {
1944 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1945 goto done;
1948 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1949 done:
1950 memory_region_update_pending |= mr->enabled && subregion->enabled;
1951 memory_region_transaction_commit();
1954 static void memory_region_add_subregion_common(MemoryRegion *mr,
1955 hwaddr offset,
1956 MemoryRegion *subregion)
1958 assert(!subregion->container);
1959 subregion->container = mr;
1960 subregion->addr = offset;
1961 memory_region_update_container_subregions(subregion);
1964 void memory_region_add_subregion(MemoryRegion *mr,
1965 hwaddr offset,
1966 MemoryRegion *subregion)
1968 subregion->may_overlap = false;
1969 subregion->priority = 0;
1970 memory_region_add_subregion_common(mr, offset, subregion);
1973 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1974 hwaddr offset,
1975 MemoryRegion *subregion,
1976 int priority)
1978 subregion->may_overlap = true;
1979 subregion->priority = priority;
1980 memory_region_add_subregion_common(mr, offset, subregion);
1983 void memory_region_del_subregion(MemoryRegion *mr,
1984 MemoryRegion *subregion)
1986 memory_region_transaction_begin();
1987 assert(subregion->container == mr);
1988 subregion->container = NULL;
1989 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1990 memory_region_unref(subregion);
1991 memory_region_update_pending |= mr->enabled && subregion->enabled;
1992 memory_region_transaction_commit();
1995 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1997 if (enabled == mr->enabled) {
1998 return;
2000 memory_region_transaction_begin();
2001 mr->enabled = enabled;
2002 memory_region_update_pending = true;
2003 memory_region_transaction_commit();
2006 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2008 Int128 s = int128_make64(size);
2010 if (size == UINT64_MAX) {
2011 s = int128_2_64();
2013 if (int128_eq(s, mr->size)) {
2014 return;
2016 memory_region_transaction_begin();
2017 mr->size = s;
2018 memory_region_update_pending = true;
2019 memory_region_transaction_commit();
2022 static void memory_region_readd_subregion(MemoryRegion *mr)
2024 MemoryRegion *container = mr->container;
2026 if (container) {
2027 memory_region_transaction_begin();
2028 memory_region_ref(mr);
2029 memory_region_del_subregion(container, mr);
2030 mr->container = container;
2031 memory_region_update_container_subregions(mr);
2032 memory_region_unref(mr);
2033 memory_region_transaction_commit();
2037 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2039 if (addr != mr->addr) {
2040 mr->addr = addr;
2041 memory_region_readd_subregion(mr);
2045 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2047 assert(mr->alias);
2049 if (offset == mr->alias_offset) {
2050 return;
2053 memory_region_transaction_begin();
2054 mr->alias_offset = offset;
2055 memory_region_update_pending |= mr->enabled;
2056 memory_region_transaction_commit();
2059 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2061 return mr->align;
2064 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2066 const AddrRange *addr = addr_;
2067 const FlatRange *fr = fr_;
2069 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2070 return -1;
2071 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2072 return 1;
2074 return 0;
2077 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2079 return bsearch(&addr, view->ranges, view->nr,
2080 sizeof(FlatRange), cmp_flatrange_addr);
2083 bool memory_region_is_mapped(MemoryRegion *mr)
2085 return mr->container ? true : false;
2088 /* Same as memory_region_find, but it does not add a reference to the
2089 * returned region. It must be called from an RCU critical section.
2091 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2092 hwaddr addr, uint64_t size)
2094 MemoryRegionSection ret = { .mr = NULL };
2095 MemoryRegion *root;
2096 AddressSpace *as;
2097 AddrRange range;
2098 FlatView *view;
2099 FlatRange *fr;
2101 addr += mr->addr;
2102 for (root = mr; root->container; ) {
2103 root = root->container;
2104 addr += root->addr;
2107 as = memory_region_to_address_space(root);
2108 if (!as) {
2109 return ret;
2111 range = addrrange_make(int128_make64(addr), int128_make64(size));
2113 view = atomic_rcu_read(&as->current_map);
2114 fr = flatview_lookup(view, range);
2115 if (!fr) {
2116 return ret;
2119 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2120 --fr;
2123 ret.mr = fr->mr;
2124 ret.address_space = as;
2125 range = addrrange_intersection(range, fr->addr);
2126 ret.offset_within_region = fr->offset_in_region;
2127 ret.offset_within_region += int128_get64(int128_sub(range.start,
2128 fr->addr.start));
2129 ret.size = range.size;
2130 ret.offset_within_address_space = int128_get64(range.start);
2131 ret.readonly = fr->readonly;
2132 return ret;
2135 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2136 hwaddr addr, uint64_t size)
2138 MemoryRegionSection ret;
2139 rcu_read_lock();
2140 ret = memory_region_find_rcu(mr, addr, size);
2141 if (ret.mr) {
2142 memory_region_ref(ret.mr);
2144 rcu_read_unlock();
2145 return ret;
2148 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2150 MemoryRegion *mr;
2152 rcu_read_lock();
2153 mr = memory_region_find_rcu(container, addr, 1).mr;
2154 rcu_read_unlock();
2155 return mr && mr != container;
2158 void address_space_sync_dirty_bitmap(AddressSpace *as)
2160 FlatView *view;
2161 FlatRange *fr;
2163 view = address_space_get_flatview(as);
2164 FOR_EACH_FLAT_RANGE(fr, view) {
2165 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
2167 flatview_unref(view);
2170 void memory_global_dirty_log_start(void)
2172 global_dirty_log = true;
2174 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2176 /* Refresh DIRTY_LOG_MIGRATION bit. */
2177 memory_region_transaction_begin();
2178 memory_region_update_pending = true;
2179 memory_region_transaction_commit();
2182 void memory_global_dirty_log_stop(void)
2184 global_dirty_log = false;
2186 /* Refresh DIRTY_LOG_MIGRATION bit. */
2187 memory_region_transaction_begin();
2188 memory_region_update_pending = true;
2189 memory_region_transaction_commit();
2191 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2194 static void listener_add_address_space(MemoryListener *listener,
2195 AddressSpace *as)
2197 FlatView *view;
2198 FlatRange *fr;
2200 if (listener->address_space_filter
2201 && listener->address_space_filter != as) {
2202 return;
2205 if (listener->begin) {
2206 listener->begin(listener);
2208 if (global_dirty_log) {
2209 if (listener->log_global_start) {
2210 listener->log_global_start(listener);
2214 view = address_space_get_flatview(as);
2215 FOR_EACH_FLAT_RANGE(fr, view) {
2216 MemoryRegionSection section = {
2217 .mr = fr->mr,
2218 .address_space = as,
2219 .offset_within_region = fr->offset_in_region,
2220 .size = fr->addr.size,
2221 .offset_within_address_space = int128_get64(fr->addr.start),
2222 .readonly = fr->readonly,
2224 if (fr->dirty_log_mask && listener->log_start) {
2225 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2227 if (listener->region_add) {
2228 listener->region_add(listener, &section);
2231 if (listener->commit) {
2232 listener->commit(listener);
2234 flatview_unref(view);
2237 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2239 MemoryListener *other = NULL;
2240 AddressSpace *as;
2242 listener->address_space_filter = filter;
2243 if (QTAILQ_EMPTY(&memory_listeners)
2244 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2245 memory_listeners)->priority) {
2246 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2247 } else {
2248 QTAILQ_FOREACH(other, &memory_listeners, link) {
2249 if (listener->priority < other->priority) {
2250 break;
2253 QTAILQ_INSERT_BEFORE(other, listener, link);
2256 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2257 listener_add_address_space(listener, as);
2261 void memory_listener_unregister(MemoryListener *listener)
2263 QTAILQ_REMOVE(&memory_listeners, listener, link);
2266 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2268 memory_region_ref(root);
2269 memory_region_transaction_begin();
2270 as->ref_count = 1;
2271 as->root = root;
2272 as->malloced = false;
2273 as->current_map = g_new(FlatView, 1);
2274 flatview_init(as->current_map);
2275 as->ioeventfd_nb = 0;
2276 as->ioeventfds = NULL;
2277 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2278 as->name = g_strdup(name ? name : "anonymous");
2279 address_space_init_dispatch(as);
2280 memory_region_update_pending |= root->enabled;
2281 memory_region_transaction_commit();
2284 static void do_address_space_destroy(AddressSpace *as)
2286 MemoryListener *listener;
2287 bool do_free = as->malloced;
2289 address_space_destroy_dispatch(as);
2291 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2292 assert(listener->address_space_filter != as);
2295 flatview_unref(as->current_map);
2296 g_free(as->name);
2297 g_free(as->ioeventfds);
2298 memory_region_unref(as->root);
2299 if (do_free) {
2300 g_free(as);
2304 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2306 AddressSpace *as;
2308 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2309 if (root == as->root && as->malloced) {
2310 as->ref_count++;
2311 return as;
2315 as = g_malloc0(sizeof *as);
2316 address_space_init(as, root, name);
2317 as->malloced = true;
2318 return as;
2321 void address_space_destroy(AddressSpace *as)
2323 MemoryRegion *root = as->root;
2325 as->ref_count--;
2326 if (as->ref_count) {
2327 return;
2329 /* Flush out anything from MemoryListeners listening in on this */
2330 memory_region_transaction_begin();
2331 as->root = NULL;
2332 memory_region_transaction_commit();
2333 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2334 address_space_unregister(as);
2336 /* At this point, as->dispatch and as->current_map are dummy
2337 * entries that the guest should never use. Wait for the old
2338 * values to expire before freeing the data.
2340 as->root = root;
2341 call_rcu(as, do_address_space_destroy, rcu);
2344 typedef struct MemoryRegionList MemoryRegionList;
2346 struct MemoryRegionList {
2347 const MemoryRegion *mr;
2348 QTAILQ_ENTRY(MemoryRegionList) queue;
2351 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2353 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2354 const MemoryRegion *mr, unsigned int level,
2355 hwaddr base,
2356 MemoryRegionListHead *alias_print_queue)
2358 MemoryRegionList *new_ml, *ml, *next_ml;
2359 MemoryRegionListHead submr_print_queue;
2360 const MemoryRegion *submr;
2361 unsigned int i;
2363 if (!mr) {
2364 return;
2367 for (i = 0; i < level; i++) {
2368 mon_printf(f, " ");
2371 if (mr->alias) {
2372 MemoryRegionList *ml;
2373 bool found = false;
2375 /* check if the alias is already in the queue */
2376 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2377 if (ml->mr == mr->alias) {
2378 found = true;
2382 if (!found) {
2383 ml = g_new(MemoryRegionList, 1);
2384 ml->mr = mr->alias;
2385 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2387 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2388 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2389 "-" TARGET_FMT_plx "%s\n",
2390 base + mr->addr,
2391 base + mr->addr
2392 + (int128_nz(mr->size) ?
2393 (hwaddr)int128_get64(int128_sub(mr->size,
2394 int128_one())) : 0),
2395 mr->priority,
2396 mr->romd_mode ? 'R' : '-',
2397 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2398 : '-',
2399 memory_region_name(mr),
2400 memory_region_name(mr->alias),
2401 mr->alias_offset,
2402 mr->alias_offset
2403 + (int128_nz(mr->size) ?
2404 (hwaddr)int128_get64(int128_sub(mr->size,
2405 int128_one())) : 0),
2406 mr->enabled ? "" : " [disabled]");
2407 } else {
2408 mon_printf(f,
2409 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2410 base + mr->addr,
2411 base + mr->addr
2412 + (int128_nz(mr->size) ?
2413 (hwaddr)int128_get64(int128_sub(mr->size,
2414 int128_one())) : 0),
2415 mr->priority,
2416 mr->romd_mode ? 'R' : '-',
2417 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2418 : '-',
2419 memory_region_name(mr),
2420 mr->enabled ? "" : " [disabled]");
2423 QTAILQ_INIT(&submr_print_queue);
2425 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2426 new_ml = g_new(MemoryRegionList, 1);
2427 new_ml->mr = submr;
2428 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2429 if (new_ml->mr->addr < ml->mr->addr ||
2430 (new_ml->mr->addr == ml->mr->addr &&
2431 new_ml->mr->priority > ml->mr->priority)) {
2432 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2433 new_ml = NULL;
2434 break;
2437 if (new_ml) {
2438 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2442 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2443 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2444 alias_print_queue);
2447 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2448 g_free(ml);
2452 void mtree_info(fprintf_function mon_printf, void *f)
2454 MemoryRegionListHead ml_head;
2455 MemoryRegionList *ml, *ml2;
2456 AddressSpace *as;
2458 QTAILQ_INIT(&ml_head);
2460 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2461 mon_printf(f, "address-space: %s\n", as->name);
2462 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2463 mon_printf(f, "\n");
2466 /* print aliased regions */
2467 QTAILQ_FOREACH(ml, &ml_head, queue) {
2468 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2469 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2470 mon_printf(f, "\n");
2473 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2474 g_free(ml);
2478 static const TypeInfo memory_region_info = {
2479 .parent = TYPE_OBJECT,
2480 .name = TYPE_MEMORY_REGION,
2481 .instance_size = sizeof(MemoryRegion),
2482 .instance_init = memory_region_initfn,
2483 .instance_finalize = memory_region_finalize,
2486 static void memory_register_types(void)
2488 type_register_static(&memory_region_info);
2491 type_init(memory_register_types)