hw/arm/virt: remove include/hw/arm/virt-acpi-build.h
[qemu/ar7.git] / hw / arm / virt.c
blob1b88b5043dfd65a707d83fc5c185e1913d3372a2
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qapi/error.h"
33 #include "hw/sysbus.h"
34 #include "hw/arm/arm.h"
35 #include "hw/arm/primecell.h"
36 #include "hw/arm/virt.h"
37 #include "hw/devices.h"
38 #include "net/net.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/numa.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/kvm.h"
44 #include "hw/boards.h"
45 #include "hw/compat.h"
46 #include "hw/loader.h"
47 #include "exec/address-spaces.h"
48 #include "qemu/bitops.h"
49 #include "qemu/error-report.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/arm/sysbus-fdt.h"
52 #include "hw/platform-bus.h"
53 #include "hw/arm/fdt.h"
54 #include "hw/intc/arm_gic.h"
55 #include "hw/intc/arm_gicv3_common.h"
56 #include "kvm_arm.h"
57 #include "hw/smbios/smbios.h"
58 #include "qapi/visitor.h"
59 #include "standard-headers/linux/input.h"
61 /* Number of external interrupt lines to configure the GIC with */
62 #define NUM_IRQS 256
64 #define PLATFORM_BUS_NUM_IRQS 64
66 static ARMPlatformBusSystemParams platform_bus_params;
68 typedef struct {
69 MachineClass parent;
70 bool disallow_affinity_adjustment;
71 bool no_its;
72 bool no_pmu;
73 bool claim_edge_triggered_timers;
74 } VirtMachineClass;
76 typedef struct {
77 MachineState parent;
78 VirtGuestInfo acpi_guest_info;
79 Notifier machine_done;
80 bool secure;
81 bool highmem;
82 int32_t gic_version;
83 struct arm_boot_info bootinfo;
84 const MemMapEntry *memmap;
85 const int *irqmap;
86 int smp_cpus;
87 void *fdt;
88 int fdt_size;
89 uint32_t clock_phandle;
90 uint32_t gic_phandle;
91 uint32_t msi_phandle;
92 bool using_psci;
93 } VirtMachineState;
95 #define TYPE_VIRT_MACHINE MACHINE_TYPE_NAME("virt")
96 #define VIRT_MACHINE(obj) \
97 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
98 #define VIRT_MACHINE_GET_CLASS(obj) \
99 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
100 #define VIRT_MACHINE_CLASS(klass) \
101 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
104 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
105 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
106 void *data) \
108 MachineClass *mc = MACHINE_CLASS(oc); \
109 virt_machine_##major##_##minor##_options(mc); \
110 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
111 if (latest) { \
112 mc->alias = "virt"; \
115 static const TypeInfo machvirt_##major##_##minor##_info = { \
116 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
117 .parent = TYPE_VIRT_MACHINE, \
118 .instance_init = virt_##major##_##minor##_instance_init, \
119 .class_init = virt_##major##_##minor##_class_init, \
120 }; \
121 static void machvirt_machine_##major##_##minor##_init(void) \
123 type_register_static(&machvirt_##major##_##minor##_info); \
125 type_init(machvirt_machine_##major##_##minor##_init);
127 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
128 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
129 #define DEFINE_VIRT_MACHINE(major, minor) \
130 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
133 /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
134 * RAM can go up to the 256GB mark, leaving 256GB of the physical
135 * address space unallocated and free for future use between 256G and 512G.
136 * If we need to provide more RAM to VMs in the future then we need to:
137 * * allocate a second bank of RAM starting at 2TB and working up
138 * * fix the DT and ACPI table generation code in QEMU to correctly
139 * report two split lumps of RAM to the guest
140 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
141 * (We don't want to fill all the way up to 512GB with RAM because
142 * we might want it for non-RAM purposes later. Conversely it seems
143 * reasonable to assume that anybody configuring a VM with a quarter
144 * of a terabyte of RAM will be doing it on a host with more than a
145 * terabyte of physical address space.)
147 #define RAMLIMIT_GB 255
148 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
150 /* Addresses and sizes of our components.
151 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
152 * 128MB..256MB is used for miscellaneous device I/O.
153 * 256MB..1GB is reserved for possible future PCI support (ie where the
154 * PCI memory window will go if we add a PCI host controller).
155 * 1GB and up is RAM (which may happily spill over into the
156 * high memory region beyond 4GB).
157 * This represents a compromise between how much RAM can be given to
158 * a 32 bit VM and leaving space for expansion and in particular for PCI.
159 * Note that devices should generally be placed at multiples of 0x10000,
160 * to accommodate guests using 64K pages.
162 static const MemMapEntry a15memmap[] = {
163 /* Space up to 0x8000000 is reserved for a boot ROM */
164 [VIRT_FLASH] = { 0, 0x08000000 },
165 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
166 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
167 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
168 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
169 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
170 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
171 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
172 /* This redistributor space allows up to 2*64kB*123 CPUs */
173 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
174 [VIRT_UART] = { 0x09000000, 0x00001000 },
175 [VIRT_RTC] = { 0x09010000, 0x00001000 },
176 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
177 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
178 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
179 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
180 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
181 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
182 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
183 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
184 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
185 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
186 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
187 /* Second PCIe window, 512GB wide at the 512GB boundary */
188 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
191 static const int a15irqmap[] = {
192 [VIRT_UART] = 1,
193 [VIRT_RTC] = 2,
194 [VIRT_PCIE] = 3, /* ... to 6 */
195 [VIRT_GPIO] = 7,
196 [VIRT_SECURE_UART] = 8,
197 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
198 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
199 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
202 static const char *valid_cpus[] = {
203 "cortex-a15",
204 "cortex-a53",
205 "cortex-a57",
206 "host",
207 NULL
210 static bool cpuname_valid(const char *cpu)
212 int i;
214 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
215 if (strcmp(cpu, valid_cpus[i]) == 0) {
216 return true;
219 return false;
222 static void create_fdt(VirtMachineState *vms)
224 void *fdt = create_device_tree(&vms->fdt_size);
226 if (!fdt) {
227 error_report("create_device_tree() failed");
228 exit(1);
231 vms->fdt = fdt;
233 /* Header */
234 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
235 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
236 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
239 * /chosen and /memory nodes must exist for load_dtb
240 * to fill in necessary properties later
242 qemu_fdt_add_subnode(fdt, "/chosen");
243 qemu_fdt_add_subnode(fdt, "/memory");
244 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
246 /* Clock node, for the benefit of the UART. The kernel device tree
247 * binding documentation claims the PL011 node clock properties are
248 * optional but in practice if you omit them the kernel refuses to
249 * probe for the device.
251 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
252 qemu_fdt_add_subnode(fdt, "/apb-pclk");
253 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
254 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
255 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
256 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
257 "clk24mhz");
258 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
262 static void fdt_add_psci_node(const VirtMachineState *vms)
264 uint32_t cpu_suspend_fn;
265 uint32_t cpu_off_fn;
266 uint32_t cpu_on_fn;
267 uint32_t migrate_fn;
268 void *fdt = vms->fdt;
269 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
271 if (!vms->using_psci) {
272 return;
275 qemu_fdt_add_subnode(fdt, "/psci");
276 if (armcpu->psci_version == 2) {
277 const char comp[] = "arm,psci-0.2\0arm,psci";
278 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
280 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
281 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
282 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
283 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
284 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
285 } else {
286 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
287 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
288 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
290 } else {
291 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
293 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
294 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
295 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
296 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
299 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
300 * to the instruction that should be used to invoke PSCI functions.
301 * However, the device tree binding uses 'method' instead, so that is
302 * what we should use here.
304 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
306 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
307 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
308 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
309 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
312 static void fdt_add_timer_nodes(const VirtMachineState *vms)
314 /* On real hardware these interrupts are level-triggered.
315 * On KVM they were edge-triggered before host kernel version 4.4,
316 * and level-triggered afterwards.
317 * On emulated QEMU they are level-triggered.
319 * Getting the DTB info about them wrong is awkward for some
320 * guest kernels:
321 * pre-4.8 ignore the DT and leave the interrupt configured
322 * with whatever the GIC reset value (or the bootloader) left it at
323 * 4.8 before rc6 honour the incorrect data by programming it back
324 * into the GIC, causing problems
325 * 4.8rc6 and later ignore the DT and always write "level triggered"
326 * into the GIC
328 * For backwards-compatibility, virt-2.8 and earlier will continue
329 * to say these are edge-triggered, but later machines will report
330 * the correct information.
332 ARMCPU *armcpu;
333 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
334 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
336 if (vmc->claim_edge_triggered_timers) {
337 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
340 if (vms->gic_version == 2) {
341 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
342 GIC_FDT_IRQ_PPI_CPU_WIDTH,
343 (1 << vms->smp_cpus) - 1);
346 qemu_fdt_add_subnode(vms->fdt, "/timer");
348 armcpu = ARM_CPU(qemu_get_cpu(0));
349 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
350 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
351 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
352 compat, sizeof(compat));
353 } else {
354 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
355 "arm,armv7-timer");
357 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
358 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
359 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
360 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
361 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
362 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
365 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
367 int cpu;
368 int addr_cells = 1;
369 unsigned int i;
372 * From Documentation/devicetree/bindings/arm/cpus.txt
373 * On ARM v8 64-bit systems value should be set to 2,
374 * that corresponds to the MPIDR_EL1 register size.
375 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
376 * in the system, #address-cells can be set to 1, since
377 * MPIDR_EL1[63:32] bits are not used for CPUs
378 * identification.
380 * Here we actually don't know whether our system is 32- or 64-bit one.
381 * The simplest way to go is to examine affinity IDs of all our CPUs. If
382 * at least one of them has Aff3 populated, we set #address-cells to 2.
384 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
385 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
387 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
388 addr_cells = 2;
389 break;
393 qemu_fdt_add_subnode(vms->fdt, "/cpus");
394 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
395 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
397 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
398 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
399 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
401 qemu_fdt_add_subnode(vms->fdt, nodename);
402 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
403 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
404 armcpu->dtb_compatible);
406 if (vms->using_psci && vms->smp_cpus > 1) {
407 qemu_fdt_setprop_string(vms->fdt, nodename,
408 "enable-method", "psci");
411 if (addr_cells == 2) {
412 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
413 armcpu->mp_affinity);
414 } else {
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
416 armcpu->mp_affinity);
419 i = numa_get_node_for_cpu(cpu);
420 if (i < nb_numa_nodes) {
421 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
424 g_free(nodename);
428 static void fdt_add_its_gic_node(VirtMachineState *vms)
430 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
431 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
432 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
433 "arm,gic-v3-its");
434 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
435 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
436 2, vms->memmap[VIRT_GIC_ITS].base,
437 2, vms->memmap[VIRT_GIC_ITS].size);
438 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
441 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
443 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
444 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
445 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
446 "arm,gic-v2m-frame");
447 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
448 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
449 2, vms->memmap[VIRT_GIC_V2M].base,
450 2, vms->memmap[VIRT_GIC_V2M].size);
451 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
454 static void fdt_add_gic_node(VirtMachineState *vms)
456 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
457 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
459 qemu_fdt_add_subnode(vms->fdt, "/intc");
460 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
461 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
462 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
463 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
464 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
465 if (vms->gic_version == 3) {
466 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
467 "arm,gic-v3");
468 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
469 2, vms->memmap[VIRT_GIC_DIST].base,
470 2, vms->memmap[VIRT_GIC_DIST].size,
471 2, vms->memmap[VIRT_GIC_REDIST].base,
472 2, vms->memmap[VIRT_GIC_REDIST].size);
473 } else {
474 /* 'cortex-a15-gic' means 'GIC v2' */
475 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
476 "arm,cortex-a15-gic");
477 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
478 2, vms->memmap[VIRT_GIC_DIST].base,
479 2, vms->memmap[VIRT_GIC_DIST].size,
480 2, vms->memmap[VIRT_GIC_CPU].base,
481 2, vms->memmap[VIRT_GIC_CPU].size);
484 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
487 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
489 CPUState *cpu;
490 ARMCPU *armcpu;
491 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
493 CPU_FOREACH(cpu) {
494 armcpu = ARM_CPU(cpu);
495 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
496 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
497 return;
501 if (vms->gic_version == 2) {
502 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
503 GIC_FDT_IRQ_PPI_CPU_WIDTH,
504 (1 << vms->smp_cpus) - 1);
507 armcpu = ARM_CPU(qemu_get_cpu(0));
508 qemu_fdt_add_subnode(vms->fdt, "/pmu");
509 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
510 const char compat[] = "arm,armv8-pmuv3";
511 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
512 compat, sizeof(compat));
513 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
514 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
518 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
520 const char *itsclass = its_class_name();
521 DeviceState *dev;
523 if (!itsclass) {
524 /* Do nothing if not supported */
525 return;
528 dev = qdev_create(NULL, itsclass);
530 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
531 &error_abort);
532 qdev_init_nofail(dev);
533 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
535 fdt_add_its_gic_node(vms);
538 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
540 int i;
541 int irq = vms->irqmap[VIRT_GIC_V2M];
542 DeviceState *dev;
544 dev = qdev_create(NULL, "arm-gicv2m");
545 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
546 qdev_prop_set_uint32(dev, "base-spi", irq);
547 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
548 qdev_init_nofail(dev);
550 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
551 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
554 fdt_add_v2m_gic_node(vms);
557 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
559 /* We create a standalone GIC */
560 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
561 DeviceState *gicdev;
562 SysBusDevice *gicbusdev;
563 const char *gictype;
564 int type = vms->gic_version, i;
566 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
568 gicdev = qdev_create(NULL, gictype);
569 qdev_prop_set_uint32(gicdev, "revision", type);
570 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
571 /* Note that the num-irq property counts both internal and external
572 * interrupts; there are always 32 of the former (mandated by GIC spec).
574 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
575 if (!kvm_irqchip_in_kernel()) {
576 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
578 qdev_init_nofail(gicdev);
579 gicbusdev = SYS_BUS_DEVICE(gicdev);
580 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
581 if (type == 3) {
582 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
583 } else {
584 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
587 /* Wire the outputs from each CPU's generic timer to the
588 * appropriate GIC PPI inputs, and the GIC's IRQ output to
589 * the CPU's IRQ input.
591 for (i = 0; i < smp_cpus; i++) {
592 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
593 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
594 int irq;
595 /* Mapping from the output timer irq lines from the CPU to the
596 * GIC PPI inputs we use for the virt board.
598 const int timer_irq[] = {
599 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
600 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
601 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
602 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
605 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
606 qdev_connect_gpio_out(cpudev, irq,
607 qdev_get_gpio_in(gicdev,
608 ppibase + timer_irq[irq]));
611 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
612 sysbus_connect_irq(gicbusdev, i + smp_cpus,
613 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
616 for (i = 0; i < NUM_IRQS; i++) {
617 pic[i] = qdev_get_gpio_in(gicdev, i);
620 fdt_add_gic_node(vms);
622 if (type == 3 && !vmc->no_its) {
623 create_its(vms, gicdev);
624 } else if (type == 2) {
625 create_v2m(vms, pic);
629 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
630 MemoryRegion *mem, CharDriverState *chr)
632 char *nodename;
633 hwaddr base = vms->memmap[uart].base;
634 hwaddr size = vms->memmap[uart].size;
635 int irq = vms->irqmap[uart];
636 const char compat[] = "arm,pl011\0arm,primecell";
637 const char clocknames[] = "uartclk\0apb_pclk";
638 DeviceState *dev = qdev_create(NULL, "pl011");
639 SysBusDevice *s = SYS_BUS_DEVICE(dev);
641 qdev_prop_set_chr(dev, "chardev", chr);
642 qdev_init_nofail(dev);
643 memory_region_add_subregion(mem, base,
644 sysbus_mmio_get_region(s, 0));
645 sysbus_connect_irq(s, 0, pic[irq]);
647 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
648 qemu_fdt_add_subnode(vms->fdt, nodename);
649 /* Note that we can't use setprop_string because of the embedded NUL */
650 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
651 compat, sizeof(compat));
652 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
653 2, base, 2, size);
654 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
655 GIC_FDT_IRQ_TYPE_SPI, irq,
656 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
657 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
658 vms->clock_phandle, vms->clock_phandle);
659 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
660 clocknames, sizeof(clocknames));
662 if (uart == VIRT_UART) {
663 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
664 } else {
665 /* Mark as not usable by the normal world */
666 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
667 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
670 g_free(nodename);
673 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
675 char *nodename;
676 hwaddr base = vms->memmap[VIRT_RTC].base;
677 hwaddr size = vms->memmap[VIRT_RTC].size;
678 int irq = vms->irqmap[VIRT_RTC];
679 const char compat[] = "arm,pl031\0arm,primecell";
681 sysbus_create_simple("pl031", base, pic[irq]);
683 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
684 qemu_fdt_add_subnode(vms->fdt, nodename);
685 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
686 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
687 2, base, 2, size);
688 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
689 GIC_FDT_IRQ_TYPE_SPI, irq,
690 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
691 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
692 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
693 g_free(nodename);
696 static DeviceState *gpio_key_dev;
697 static void virt_powerdown_req(Notifier *n, void *opaque)
699 /* use gpio Pin 3 for power button event */
700 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
703 static Notifier virt_system_powerdown_notifier = {
704 .notify = virt_powerdown_req
707 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
709 char *nodename;
710 DeviceState *pl061_dev;
711 hwaddr base = vms->memmap[VIRT_GPIO].base;
712 hwaddr size = vms->memmap[VIRT_GPIO].size;
713 int irq = vms->irqmap[VIRT_GPIO];
714 const char compat[] = "arm,pl061\0arm,primecell";
716 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
718 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
719 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
720 qemu_fdt_add_subnode(vms->fdt, nodename);
721 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
722 2, base, 2, size);
723 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
724 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
725 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
726 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
727 GIC_FDT_IRQ_TYPE_SPI, irq,
728 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
729 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
730 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
731 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
733 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
734 qdev_get_gpio_in(pl061_dev, 3));
735 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
736 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
737 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
738 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
740 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
741 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
742 "label", "GPIO Key Poweroff");
743 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
744 KEY_POWER);
745 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
746 "gpios", phandle, 3, 0);
748 /* connect powerdown request */
749 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
751 g_free(nodename);
754 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
756 int i;
757 hwaddr size = vms->memmap[VIRT_MMIO].size;
759 /* We create the transports in forwards order. Since qbus_realize()
760 * prepends (not appends) new child buses, the incrementing loop below will
761 * create a list of virtio-mmio buses with decreasing base addresses.
763 * When a -device option is processed from the command line,
764 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
765 * order. The upshot is that -device options in increasing command line
766 * order are mapped to virtio-mmio buses with decreasing base addresses.
768 * When this code was originally written, that arrangement ensured that the
769 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
770 * the first -device on the command line. (The end-to-end order is a
771 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
772 * guest kernel's name-to-address assignment strategy.)
774 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
775 * the message, if not necessarily the code, of commit 70161ff336.
776 * Therefore the loop now establishes the inverse of the original intent.
778 * Unfortunately, we can't counteract the kernel change by reversing the
779 * loop; it would break existing command lines.
781 * In any case, the kernel makes no guarantee about the stability of
782 * enumeration order of virtio devices (as demonstrated by it changing
783 * between kernel versions). For reliable and stable identification
784 * of disks users must use UUIDs or similar mechanisms.
786 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
787 int irq = vms->irqmap[VIRT_MMIO] + i;
788 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
790 sysbus_create_simple("virtio-mmio", base, pic[irq]);
793 /* We add dtb nodes in reverse order so that they appear in the finished
794 * device tree lowest address first.
796 * Note that this mapping is independent of the loop above. The previous
797 * loop influences virtio device to virtio transport assignment, whereas
798 * this loop controls how virtio transports are laid out in the dtb.
800 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
801 char *nodename;
802 int irq = vms->irqmap[VIRT_MMIO] + i;
803 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
805 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
806 qemu_fdt_add_subnode(vms->fdt, nodename);
807 qemu_fdt_setprop_string(vms->fdt, nodename,
808 "compatible", "virtio,mmio");
809 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
810 2, base, 2, size);
811 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
812 GIC_FDT_IRQ_TYPE_SPI, irq,
813 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
814 g_free(nodename);
818 static void create_one_flash(const char *name, hwaddr flashbase,
819 hwaddr flashsize, const char *file,
820 MemoryRegion *sysmem)
822 /* Create and map a single flash device. We use the same
823 * parameters as the flash devices on the Versatile Express board.
825 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
826 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
827 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
828 const uint64_t sectorlength = 256 * 1024;
830 if (dinfo) {
831 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
832 &error_abort);
835 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
836 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
837 qdev_prop_set_uint8(dev, "width", 4);
838 qdev_prop_set_uint8(dev, "device-width", 2);
839 qdev_prop_set_bit(dev, "big-endian", false);
840 qdev_prop_set_uint16(dev, "id0", 0x89);
841 qdev_prop_set_uint16(dev, "id1", 0x18);
842 qdev_prop_set_uint16(dev, "id2", 0x00);
843 qdev_prop_set_uint16(dev, "id3", 0x00);
844 qdev_prop_set_string(dev, "name", name);
845 qdev_init_nofail(dev);
847 memory_region_add_subregion(sysmem, flashbase,
848 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
850 if (file) {
851 char *fn;
852 int image_size;
854 if (drive_get(IF_PFLASH, 0, 0)) {
855 error_report("The contents of the first flash device may be "
856 "specified with -bios or with -drive if=pflash... "
857 "but you cannot use both options at once");
858 exit(1);
860 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
861 if (!fn) {
862 error_report("Could not find ROM image '%s'", file);
863 exit(1);
865 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
866 g_free(fn);
867 if (image_size < 0) {
868 error_report("Could not load ROM image '%s'", file);
869 exit(1);
874 static void create_flash(const VirtMachineState *vms,
875 MemoryRegion *sysmem,
876 MemoryRegion *secure_sysmem)
878 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
879 * Any file passed via -bios goes in the first of these.
880 * sysmem is the system memory space. secure_sysmem is the secure view
881 * of the system, and the first flash device should be made visible only
882 * there. The second flash device is visible to both secure and nonsecure.
883 * If sysmem == secure_sysmem this means there is no separate Secure
884 * address space and both flash devices are generally visible.
886 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
887 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
888 char *nodename;
890 create_one_flash("virt.flash0", flashbase, flashsize,
891 bios_name, secure_sysmem);
892 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
893 NULL, sysmem);
895 if (sysmem == secure_sysmem) {
896 /* Report both flash devices as a single node in the DT */
897 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
898 qemu_fdt_add_subnode(vms->fdt, nodename);
899 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
900 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
901 2, flashbase, 2, flashsize,
902 2, flashbase + flashsize, 2, flashsize);
903 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
904 g_free(nodename);
905 } else {
906 /* Report the devices as separate nodes so we can mark one as
907 * only visible to the secure world.
909 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
910 qemu_fdt_add_subnode(vms->fdt, nodename);
911 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
912 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
913 2, flashbase, 2, flashsize);
914 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
915 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
916 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
917 g_free(nodename);
919 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
920 qemu_fdt_add_subnode(vms->fdt, nodename);
921 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
922 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
923 2, flashbase + flashsize, 2, flashsize);
924 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
925 g_free(nodename);
929 static void create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
931 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
932 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
933 FWCfgState *fw_cfg;
934 char *nodename;
936 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
937 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
939 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
940 qemu_fdt_add_subnode(vms->fdt, nodename);
941 qemu_fdt_setprop_string(vms->fdt, nodename,
942 "compatible", "qemu,fw-cfg-mmio");
943 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
944 2, base, 2, size);
945 g_free(nodename);
948 static void create_pcie_irq_map(const VirtMachineState *vms,
949 uint32_t gic_phandle,
950 int first_irq, const char *nodename)
952 int devfn, pin;
953 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
954 uint32_t *irq_map = full_irq_map;
956 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
957 for (pin = 0; pin < 4; pin++) {
958 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
959 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
960 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
961 int i;
963 uint32_t map[] = {
964 devfn << 8, 0, 0, /* devfn */
965 pin + 1, /* PCI pin */
966 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
968 /* Convert map to big endian */
969 for (i = 0; i < 10; i++) {
970 irq_map[i] = cpu_to_be32(map[i]);
972 irq_map += 10;
976 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
977 full_irq_map, sizeof(full_irq_map));
979 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
980 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
981 0x7 /* PCI irq */);
984 static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
986 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
987 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
988 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
989 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
990 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
991 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
992 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
993 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
994 hwaddr base = base_mmio;
995 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
996 int irq = vms->irqmap[VIRT_PCIE];
997 MemoryRegion *mmio_alias;
998 MemoryRegion *mmio_reg;
999 MemoryRegion *ecam_alias;
1000 MemoryRegion *ecam_reg;
1001 DeviceState *dev;
1002 char *nodename;
1003 int i;
1004 PCIHostState *pci;
1006 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1007 qdev_init_nofail(dev);
1009 /* Map only the first size_ecam bytes of ECAM space */
1010 ecam_alias = g_new0(MemoryRegion, 1);
1011 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1012 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1013 ecam_reg, 0, size_ecam);
1014 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1016 /* Map the MMIO window into system address space so as to expose
1017 * the section of PCI MMIO space which starts at the same base address
1018 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1019 * the window).
1021 mmio_alias = g_new0(MemoryRegion, 1);
1022 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1023 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1024 mmio_reg, base_mmio, size_mmio);
1025 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1027 if (vms->highmem) {
1028 /* Map high MMIO space */
1029 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1031 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1032 mmio_reg, base_mmio_high, size_mmio_high);
1033 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1034 high_mmio_alias);
1037 /* Map IO port space */
1038 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1040 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1041 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1044 pci = PCI_HOST_BRIDGE(dev);
1045 if (pci->bus) {
1046 for (i = 0; i < nb_nics; i++) {
1047 NICInfo *nd = &nd_table[i];
1049 if (!nd->model) {
1050 nd->model = g_strdup("virtio");
1053 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1057 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1058 qemu_fdt_add_subnode(vms->fdt, nodename);
1059 qemu_fdt_setprop_string(vms->fdt, nodename,
1060 "compatible", "pci-host-ecam-generic");
1061 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1062 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1063 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1064 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1065 nr_pcie_buses - 1);
1066 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1068 if (vms->msi_phandle) {
1069 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1070 vms->msi_phandle);
1073 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1074 2, base_ecam, 2, size_ecam);
1076 if (vms->highmem) {
1077 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1078 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1079 2, base_pio, 2, size_pio,
1080 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1081 2, base_mmio, 2, size_mmio,
1082 1, FDT_PCI_RANGE_MMIO_64BIT,
1083 2, base_mmio_high,
1084 2, base_mmio_high, 2, size_mmio_high);
1085 } else {
1086 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1087 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1088 2, base_pio, 2, size_pio,
1089 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1090 2, base_mmio, 2, size_mmio);
1093 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1094 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1096 g_free(nodename);
1099 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1101 DeviceState *dev;
1102 SysBusDevice *s;
1103 int i;
1104 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1105 MemoryRegion *sysmem = get_system_memory();
1107 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1108 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1109 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
1110 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1112 fdt_params->system_params = &platform_bus_params;
1113 fdt_params->binfo = &vms->bootinfo;
1114 fdt_params->intc = "/intc";
1116 * register a machine init done notifier that creates the device tree
1117 * nodes of the platform bus and its children dynamic sysbus devices
1119 arm_register_platform_bus_fdt_creator(fdt_params);
1121 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1122 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1123 qdev_prop_set_uint32(dev, "num_irqs",
1124 platform_bus_params.platform_bus_num_irqs);
1125 qdev_prop_set_uint32(dev, "mmio_size",
1126 platform_bus_params.platform_bus_size);
1127 qdev_init_nofail(dev);
1128 s = SYS_BUS_DEVICE(dev);
1130 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1131 int irqn = platform_bus_params.platform_bus_first_irq + i;
1132 sysbus_connect_irq(s, i, pic[irqn]);
1135 memory_region_add_subregion(sysmem,
1136 platform_bus_params.platform_bus_base,
1137 sysbus_mmio_get_region(s, 0));
1140 static void create_secure_ram(VirtMachineState *vms,
1141 MemoryRegion *secure_sysmem)
1143 MemoryRegion *secram = g_new(MemoryRegion, 1);
1144 char *nodename;
1145 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1146 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1148 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1149 vmstate_register_ram_global(secram);
1150 memory_region_add_subregion(secure_sysmem, base, secram);
1152 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1153 qemu_fdt_add_subnode(vms->fdt, nodename);
1154 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1155 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1156 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1157 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1159 g_free(nodename);
1162 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1164 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1165 bootinfo);
1167 *fdt_size = board->fdt_size;
1168 return board->fdt;
1171 static void virt_build_smbios(VirtGuestInfo *guest_info)
1173 FWCfgState *fw_cfg = guest_info->fw_cfg;
1174 uint8_t *smbios_tables, *smbios_anchor;
1175 size_t smbios_tables_len, smbios_anchor_len;
1176 const char *product = "QEMU Virtual Machine";
1178 if (!fw_cfg) {
1179 return;
1182 if (kvm_enabled()) {
1183 product = "KVM Virtual Machine";
1186 smbios_set_defaults("QEMU", product,
1187 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1189 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1190 &smbios_anchor, &smbios_anchor_len);
1192 if (smbios_anchor) {
1193 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1194 smbios_tables, smbios_tables_len);
1195 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1196 smbios_anchor, smbios_anchor_len);
1200 static
1201 void virt_machine_done(Notifier *notifier, void *data)
1203 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1204 machine_done);
1206 virt_acpi_setup(&vms->acpi_guest_info);
1207 virt_build_smbios(&vms->acpi_guest_info);
1210 static void machvirt_init(MachineState *machine)
1212 VirtMachineState *vms = VIRT_MACHINE(machine);
1213 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1214 qemu_irq pic[NUM_IRQS];
1215 MemoryRegion *sysmem = get_system_memory();
1216 MemoryRegion *secure_sysmem = NULL;
1217 int n, virt_max_cpus;
1218 MemoryRegion *ram = g_new(MemoryRegion, 1);
1219 const char *cpu_model = machine->cpu_model;
1220 VirtGuestInfo *guest_info = &vms->acpi_guest_info;
1221 char **cpustr;
1222 ObjectClass *oc;
1223 const char *typename;
1224 CPUClass *cc;
1225 Error *err = NULL;
1226 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1227 uint8_t clustersz;
1229 if (!cpu_model) {
1230 cpu_model = "cortex-a15";
1233 /* We can probe only here because during property set
1234 * KVM is not available yet
1236 if (!vms->gic_version) {
1237 if (!kvm_enabled()) {
1238 error_report("gic-version=host requires KVM");
1239 exit(1);
1242 vms->gic_version = kvm_arm_vgic_probe();
1243 if (!vms->gic_version) {
1244 error_report("Unable to determine GIC version supported by host");
1245 exit(1);
1249 /* Separate the actual CPU model name from any appended features */
1250 cpustr = g_strsplit(cpu_model, ",", 2);
1252 if (!cpuname_valid(cpustr[0])) {
1253 error_report("mach-virt: CPU %s not supported", cpustr[0]);
1254 exit(1);
1257 /* If we have an EL3 boot ROM then the assumption is that it will
1258 * implement PSCI itself, so disable QEMU's internal implementation
1259 * so it doesn't get in the way. Instead of starting secondary
1260 * CPUs in PSCI powerdown state we will start them all running and
1261 * let the boot ROM sort them out.
1262 * The usual case is that we do use QEMU's PSCI implementation.
1264 vms->using_psci = !(vms->secure && firmware_loaded);
1266 /* The maximum number of CPUs depends on the GIC version, or on how
1267 * many redistributors we can fit into the memory map.
1269 if (vms->gic_version == 3) {
1270 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
1271 clustersz = GICV3_TARGETLIST_BITS;
1272 } else {
1273 virt_max_cpus = GIC_NCPU;
1274 clustersz = GIC_TARGETLIST_BITS;
1277 if (max_cpus > virt_max_cpus) {
1278 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1279 "supported by machine 'mach-virt' (%d)",
1280 max_cpus, virt_max_cpus);
1281 exit(1);
1284 vms->smp_cpus = smp_cpus;
1286 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
1287 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1288 exit(1);
1291 if (vms->secure) {
1292 if (kvm_enabled()) {
1293 error_report("mach-virt: KVM does not support Security extensions");
1294 exit(1);
1297 /* The Secure view of the world is the same as the NonSecure,
1298 * but with a few extra devices. Create it as a container region
1299 * containing the system memory at low priority; any secure-only
1300 * devices go in at higher priority and take precedence.
1302 secure_sysmem = g_new(MemoryRegion, 1);
1303 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1304 UINT64_MAX);
1305 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1308 create_fdt(vms);
1310 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1311 if (!oc) {
1312 error_report("Unable to find CPU definition");
1313 exit(1);
1315 typename = object_class_get_name(oc);
1317 /* convert -smp CPU options specified by the user into global props */
1318 cc = CPU_CLASS(oc);
1319 cc->parse_features(typename, cpustr[1], &err);
1320 g_strfreev(cpustr);
1321 if (err) {
1322 error_report_err(err);
1323 exit(1);
1326 for (n = 0; n < smp_cpus; n++) {
1327 Object *cpuobj = object_new(typename);
1328 if (!vmc->disallow_affinity_adjustment) {
1329 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1330 * GIC's target-list limitations. 32-bit KVM hosts currently
1331 * always create clusters of 4 CPUs, but that is expected to
1332 * change when they gain support for gicv3. When KVM is enabled
1333 * it will override the changes we make here, therefore our
1334 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1335 * and to improve SGI efficiency.
1337 uint8_t aff1 = n / clustersz;
1338 uint8_t aff0 = n % clustersz;
1339 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1340 "mp-affinity", NULL);
1343 if (!vms->secure) {
1344 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1347 if (vms->using_psci) {
1348 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1349 "psci-conduit", NULL);
1351 /* Secondary CPUs start in PSCI powered-down state */
1352 if (n > 0) {
1353 object_property_set_bool(cpuobj, true,
1354 "start-powered-off", NULL);
1358 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1359 object_property_set_bool(cpuobj, false, "pmu", NULL);
1362 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1363 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1364 "reset-cbar", &error_abort);
1367 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1368 &error_abort);
1369 if (vms->secure) {
1370 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1371 "secure-memory", &error_abort);
1374 object_property_set_bool(cpuobj, true, "realized", NULL);
1376 fdt_add_timer_nodes(vms);
1377 fdt_add_cpu_nodes(vms);
1378 fdt_add_psci_node(vms);
1380 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1381 machine->ram_size);
1382 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1384 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1386 create_gic(vms, pic);
1388 fdt_add_pmu_nodes(vms);
1390 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
1392 if (vms->secure) {
1393 create_secure_ram(vms, secure_sysmem);
1394 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
1397 create_rtc(vms, pic);
1399 create_pcie(vms, pic);
1401 create_gpio(vms, pic);
1403 /* Create mmio transports, so the user can create virtio backends
1404 * (which will be automatically plugged in to the transports). If
1405 * no backend is created the transport will just sit harmlessly idle.
1407 create_virtio_devices(vms, pic);
1409 create_fw_cfg(vms, &address_space_memory);
1410 rom_set_fw(fw_cfg_find());
1412 guest_info->smp_cpus = smp_cpus;
1413 guest_info->fw_cfg = fw_cfg_find();
1414 guest_info->memmap = vms->memmap;
1415 guest_info->irqmap = vms->irqmap;
1416 guest_info->use_highmem = vms->highmem;
1417 guest_info->gic_version = vms->gic_version;
1418 guest_info->no_its = vmc->no_its;
1419 vms->machine_done.notify = virt_machine_done;
1420 qemu_add_machine_init_done_notifier(&vms->machine_done);
1422 vms->bootinfo.ram_size = machine->ram_size;
1423 vms->bootinfo.kernel_filename = machine->kernel_filename;
1424 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1425 vms->bootinfo.initrd_filename = machine->initrd_filename;
1426 vms->bootinfo.nb_cpus = smp_cpus;
1427 vms->bootinfo.board_id = -1;
1428 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1429 vms->bootinfo.get_dtb = machvirt_dtb;
1430 vms->bootinfo.firmware_loaded = firmware_loaded;
1431 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1434 * arm_load_kernel machine init done notifier registration must
1435 * happen before the platform_bus_create call. In this latter,
1436 * another notifier is registered which adds platform bus nodes.
1437 * Notifiers are executed in registration reverse order.
1439 create_platform_bus(vms, pic);
1442 static bool virt_get_secure(Object *obj, Error **errp)
1444 VirtMachineState *vms = VIRT_MACHINE(obj);
1446 return vms->secure;
1449 static void virt_set_secure(Object *obj, bool value, Error **errp)
1451 VirtMachineState *vms = VIRT_MACHINE(obj);
1453 vms->secure = value;
1456 static bool virt_get_highmem(Object *obj, Error **errp)
1458 VirtMachineState *vms = VIRT_MACHINE(obj);
1460 return vms->highmem;
1463 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1465 VirtMachineState *vms = VIRT_MACHINE(obj);
1467 vms->highmem = value;
1470 static char *virt_get_gic_version(Object *obj, Error **errp)
1472 VirtMachineState *vms = VIRT_MACHINE(obj);
1473 const char *val = vms->gic_version == 3 ? "3" : "2";
1475 return g_strdup(val);
1478 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1480 VirtMachineState *vms = VIRT_MACHINE(obj);
1482 if (!strcmp(value, "3")) {
1483 vms->gic_version = 3;
1484 } else if (!strcmp(value, "2")) {
1485 vms->gic_version = 2;
1486 } else if (!strcmp(value, "host")) {
1487 vms->gic_version = 0; /* Will probe later */
1488 } else {
1489 error_setg(errp, "Invalid gic-version value");
1490 error_append_hint(errp, "Valid values are 3, 2, host.\n");
1494 static void virt_machine_class_init(ObjectClass *oc, void *data)
1496 MachineClass *mc = MACHINE_CLASS(oc);
1498 mc->init = machvirt_init;
1499 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1500 * it later in machvirt_init, where we have more information about the
1501 * configuration of the particular instance.
1503 mc->max_cpus = 255;
1504 mc->has_dynamic_sysbus = true;
1505 mc->block_default_type = IF_VIRTIO;
1506 mc->no_cdrom = 1;
1507 mc->pci_allow_0_address = true;
1508 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1509 mc->minimum_page_bits = 12;
1512 static const TypeInfo virt_machine_info = {
1513 .name = TYPE_VIRT_MACHINE,
1514 .parent = TYPE_MACHINE,
1515 .abstract = true,
1516 .instance_size = sizeof(VirtMachineState),
1517 .class_size = sizeof(VirtMachineClass),
1518 .class_init = virt_machine_class_init,
1521 static void machvirt_machine_init(void)
1523 type_register_static(&virt_machine_info);
1525 type_init(machvirt_machine_init);
1527 static void virt_2_9_instance_init(Object *obj)
1529 VirtMachineState *vms = VIRT_MACHINE(obj);
1531 /* EL3 is disabled by default on virt: this makes us consistent
1532 * between KVM and TCG for this board, and it also allows us to
1533 * boot UEFI blobs which assume no TrustZone support.
1535 vms->secure = false;
1536 object_property_add_bool(obj, "secure", virt_get_secure,
1537 virt_set_secure, NULL);
1538 object_property_set_description(obj, "secure",
1539 "Set on/off to enable/disable the ARM "
1540 "Security Extensions (TrustZone)",
1541 NULL);
1543 /* High memory is enabled by default */
1544 vms->highmem = true;
1545 object_property_add_bool(obj, "highmem", virt_get_highmem,
1546 virt_set_highmem, NULL);
1547 object_property_set_description(obj, "highmem",
1548 "Set on/off to enable/disable using "
1549 "physical address space above 32 bits",
1550 NULL);
1551 /* Default GIC type is v2 */
1552 vms->gic_version = 2;
1553 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1554 virt_set_gic_version, NULL);
1555 object_property_set_description(obj, "gic-version",
1556 "Set GIC version. "
1557 "Valid values are 2, 3 and host", NULL);
1559 vms->memmap = a15memmap;
1560 vms->irqmap = a15irqmap;
1563 static void virt_machine_2_9_options(MachineClass *mc)
1566 DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1568 #define VIRT_COMPAT_2_8 \
1569 HW_COMPAT_2_8
1571 static void virt_2_8_instance_init(Object *obj)
1573 virt_2_9_instance_init(obj);
1576 static void virt_machine_2_8_options(MachineClass *mc)
1578 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1580 virt_machine_2_9_options(mc);
1581 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
1582 /* For 2.8 and earlier we falsely claimed in the DT that
1583 * our timers were edge-triggered, not level-triggered.
1585 vmc->claim_edge_triggered_timers = true;
1587 DEFINE_VIRT_MACHINE(2, 8)
1589 #define VIRT_COMPAT_2_7 \
1590 HW_COMPAT_2_7
1592 static void virt_2_7_instance_init(Object *obj)
1594 virt_2_8_instance_init(obj);
1597 static void virt_machine_2_7_options(MachineClass *mc)
1599 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1601 virt_machine_2_8_options(mc);
1602 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
1603 /* ITS was introduced with 2.8 */
1604 vmc->no_its = true;
1605 /* Stick with 1K pages for migration compatibility */
1606 mc->minimum_page_bits = 0;
1608 DEFINE_VIRT_MACHINE(2, 7)
1610 #define VIRT_COMPAT_2_6 \
1611 HW_COMPAT_2_6
1613 static void virt_2_6_instance_init(Object *obj)
1615 virt_2_7_instance_init(obj);
1618 static void virt_machine_2_6_options(MachineClass *mc)
1620 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1622 virt_machine_2_7_options(mc);
1623 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
1624 vmc->disallow_affinity_adjustment = true;
1625 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1626 vmc->no_pmu = true;
1628 DEFINE_VIRT_MACHINE(2, 6)