Merge tag 'v3.0.0-rc4'
[qemu/ar7.git] / exec.c
blob25dc80643b5981ce0335f98ff024c4a9acb2119b
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
108 /* RAM can be migrated */
109 #define RAM_MIGRATABLE (1 << 4)
110 #endif
112 #ifdef TARGET_PAGE_BITS_VARY
113 int target_page_bits;
114 bool target_page_bits_decided;
115 #endif
117 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
118 /* current CPU in the current thread. It is only valid inside
119 cpu_exec() */
120 __thread CPUState *current_cpu;
121 /* 0 = Do not count executed instructions.
122 1 = Precise instruction counting.
123 2 = Adaptive rate instruction counting. */
124 int use_icount;
126 uintptr_t qemu_host_page_size;
127 intptr_t qemu_host_page_mask;
129 bool set_preferred_target_page_bits(int bits)
131 /* The target page size is the lowest common denominator for all
132 * the CPUs in the system, so we can only make it smaller, never
133 * larger. And we can't make it smaller once we've committed to
134 * a particular size.
136 #ifdef TARGET_PAGE_BITS_VARY
137 assert(bits >= TARGET_PAGE_BITS_MIN);
138 if (target_page_bits == 0 || target_page_bits > bits) {
139 if (target_page_bits_decided) {
140 return false;
142 target_page_bits = bits;
144 #endif
145 return true;
148 #if !defined(CONFIG_USER_ONLY)
150 static void finalize_target_page_bits(void)
152 #ifdef TARGET_PAGE_BITS_VARY
153 if (target_page_bits == 0) {
154 target_page_bits = TARGET_PAGE_BITS_MIN;
156 target_page_bits_decided = true;
157 #endif
160 typedef struct PhysPageEntry PhysPageEntry;
162 struct PhysPageEntry {
163 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
164 uint32_t skip : 6;
165 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 uint32_t ptr : 26;
169 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
171 /* Size of the L2 (and L3, etc) page tables. */
172 #define ADDR_SPACE_BITS 64
174 #define P_L2_BITS 9
175 #define P_L2_SIZE (1 << P_L2_BITS)
177 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
179 typedef PhysPageEntry Node[P_L2_SIZE];
181 typedef struct PhysPageMap {
182 struct rcu_head rcu;
184 unsigned sections_nb;
185 unsigned sections_nb_alloc;
186 unsigned nodes_nb;
187 unsigned nodes_nb_alloc;
188 Node *nodes;
189 MemoryRegionSection *sections;
190 } PhysPageMap;
192 struct AddressSpaceDispatch {
193 MemoryRegionSection *mru_section;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
197 PhysPageEntry phys_map;
198 PhysPageMap map;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t {
203 MemoryRegion iomem;
204 FlatView *fv;
205 hwaddr base;
206 uint16_t sub_section[];
207 } subpage_t;
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener *listener);
218 static MemoryRegion io_mem_watch;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace {
228 CPUState *cpu;
229 AddressSpace *as;
230 struct AddressSpaceDispatch *memory_dispatch;
231 MemoryListener tcg_as_listener;
234 struct DirtyBitmapSnapshot {
235 ram_addr_t start;
236 ram_addr_t end;
237 unsigned long dirty[];
240 #endif
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
246 static unsigned alloc_hint = 16;
247 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
248 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
249 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
250 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
251 alloc_hint = map->nodes_nb_alloc;
255 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
257 unsigned i;
258 uint32_t ret;
259 PhysPageEntry e;
260 PhysPageEntry *p;
262 ret = map->nodes_nb++;
263 p = map->nodes[ret];
264 assert(ret != PHYS_MAP_NODE_NIL);
265 assert(ret != map->nodes_nb_alloc);
267 e.skip = leaf ? 0 : 1;
268 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
269 for (i = 0; i < P_L2_SIZE; ++i) {
270 memcpy(&p[i], &e, sizeof(e));
272 return ret;
275 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
276 hwaddr *index, hwaddr *nb, uint16_t leaf,
277 int level)
279 PhysPageEntry *p;
280 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
282 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
283 lp->ptr = phys_map_node_alloc(map, level == 0);
285 p = map->nodes[lp->ptr];
286 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
288 while (*nb && lp < &p[P_L2_SIZE]) {
289 if ((*index & (step - 1)) == 0 && *nb >= step) {
290 lp->skip = 0;
291 lp->ptr = leaf;
292 *index += step;
293 *nb -= step;
294 } else {
295 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
297 ++lp;
301 static void phys_page_set(AddressSpaceDispatch *d,
302 hwaddr index, hwaddr nb,
303 uint16_t leaf)
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
308 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
316 unsigned valid_ptr = P_L2_SIZE;
317 int valid = 0;
318 PhysPageEntry *p;
319 int i;
321 if (lp->ptr == PHYS_MAP_NODE_NIL) {
322 return;
325 p = nodes[lp->ptr];
326 for (i = 0; i < P_L2_SIZE; i++) {
327 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
328 continue;
331 valid_ptr = i;
332 valid++;
333 if (p[i].skip) {
334 phys_page_compact(&p[i], nodes);
338 /* We can only compress if there's only one child. */
339 if (valid != 1) {
340 return;
343 assert(valid_ptr < P_L2_SIZE);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
347 return;
350 lp->ptr = p[valid_ptr].ptr;
351 if (!p[valid_ptr].skip) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
356 * change this rule.
358 lp->skip = 0;
359 } else {
360 lp->skip += p[valid_ptr].skip;
364 void address_space_dispatch_compact(AddressSpaceDispatch *d)
366 if (d->phys_map.skip) {
367 phys_page_compact(&d->phys_map, d->map.nodes);
371 static inline bool section_covers_addr(const MemoryRegionSection *section,
372 hwaddr addr)
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section->size) ||
378 range_covers_byte(section->offset_within_address_space,
379 int128_getlo(section->size), addr);
382 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
384 PhysPageEntry lp = d->phys_map, *p;
385 Node *nodes = d->map.nodes;
386 MemoryRegionSection *sections = d->map.sections;
387 hwaddr index = addr >> TARGET_PAGE_BITS;
388 int i;
390 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
391 if (lp.ptr == PHYS_MAP_NODE_NIL) {
392 return &sections[PHYS_SECTION_UNASSIGNED];
394 p = nodes[lp.ptr];
395 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
398 if (section_covers_addr(&sections[lp.ptr], addr)) {
399 return &sections[lp.ptr];
400 } else {
401 return &sections[PHYS_SECTION_UNASSIGNED];
405 bool memory_region_is_unassigned(MemoryRegion *mr)
407 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
408 && mr != &io_mem_watch;
411 /* Called from RCU critical section */
412 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
413 hwaddr addr,
414 bool resolve_subpage)
416 MemoryRegionSection *section = atomic_read(&d->mru_section);
417 subpage_t *subpage;
419 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
420 !section_covers_addr(section, addr)) {
421 section = phys_page_find(d, addr);
422 atomic_set(&d->mru_section, section);
424 if (resolve_subpage && section->mr->subpage) {
425 subpage = container_of(section->mr, subpage_t, iomem);
426 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
428 return section;
431 /* Called from RCU critical section */
432 static MemoryRegionSection *
433 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
434 hwaddr *plen, bool resolve_subpage)
436 MemoryRegionSection *section;
437 MemoryRegion *mr;
438 Int128 diff;
440 section = address_space_lookup_region(d, addr, resolve_subpage);
441 /* Compute offset within MemoryRegionSection */
442 addr -= section->offset_within_address_space;
444 /* Compute offset within MemoryRegion */
445 *xlat = addr + section->offset_within_region;
447 mr = section->mr;
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
454 * here.
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
460 if (memory_region_is_ram(mr)) {
461 diff = int128_sub(section->size, int128_make64(addr));
462 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 return section;
468 * address_space_translate_iommu - translate an address through an IOMMU
469 * memory region and then through the target address space.
471 * @iommu_mr: the IOMMU memory region that we start the translation from
472 * @addr: the address to be translated through the MMU
473 * @xlat: the translated address offset within the destination memory region.
474 * It cannot be %NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * cannot be %NULL.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be %NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 * @target_as: the address space targeted by the IOMMU
484 * @attrs: transaction attributes
486 * This function is called from RCU critical section. It is the common
487 * part of flatview_do_translate and address_space_translate_cached.
489 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
490 hwaddr *xlat,
491 hwaddr *plen_out,
492 hwaddr *page_mask_out,
493 bool is_write,
494 bool is_mmio,
495 AddressSpace **target_as,
496 MemTxAttrs attrs)
498 MemoryRegionSection *section;
499 hwaddr page_mask = (hwaddr)-1;
501 do {
502 hwaddr addr = *xlat;
503 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
504 int iommu_idx = 0;
505 IOMMUTLBEntry iotlb;
507 if (imrc->attrs_to_index) {
508 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
511 iotlb = imrc->translate(iommu_mr, addr, is_write ?
512 IOMMU_WO : IOMMU_RO, iommu_idx);
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto unassigned;
518 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
519 | (addr & iotlb.addr_mask));
520 page_mask &= iotlb.addr_mask;
521 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
522 *target_as = iotlb.target_as;
524 section = address_space_translate_internal(
525 address_space_to_dispatch(iotlb.target_as), addr, xlat,
526 plen_out, is_mmio);
528 iommu_mr = memory_region_get_iommu(section->mr);
529 } while (unlikely(iommu_mr));
531 if (page_mask_out) {
532 *page_mask_out = page_mask;
534 return *section;
536 unassigned:
537 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
541 * flatview_do_translate - translate an address in FlatView
543 * @fv: the flat view that we want to translate on
544 * @addr: the address to be translated in above address space
545 * @xlat: the translated address offset within memory region. It
546 * cannot be @NULL.
547 * @plen_out: valid read/write length of the translated address. It
548 * can be @NULL when we don't care about it.
549 * @page_mask_out: page mask for the translated address. This
550 * should only be meaningful for IOMMU translated
551 * addresses, since there may be huge pages that this bit
552 * would tell. It can be @NULL if we don't care about it.
553 * @is_write: whether the translation operation is for write
554 * @is_mmio: whether this can be MMIO, set true if it can
555 * @target_as: the address space targeted by the IOMMU
556 * @attrs: memory transaction attributes
558 * This function is called from RCU critical section
560 static MemoryRegionSection flatview_do_translate(FlatView *fv,
561 hwaddr addr,
562 hwaddr *xlat,
563 hwaddr *plen_out,
564 hwaddr *page_mask_out,
565 bool is_write,
566 bool is_mmio,
567 AddressSpace **target_as,
568 MemTxAttrs attrs)
570 MemoryRegionSection *section;
571 IOMMUMemoryRegion *iommu_mr;
572 hwaddr plen = (hwaddr)(-1);
574 if (!plen_out) {
575 plen_out = &plen;
578 section = address_space_translate_internal(
579 flatview_to_dispatch(fv), addr, xlat,
580 plen_out, is_mmio);
582 iommu_mr = memory_region_get_iommu(section->mr);
583 if (unlikely(iommu_mr)) {
584 return address_space_translate_iommu(iommu_mr, xlat,
585 plen_out, page_mask_out,
586 is_write, is_mmio,
587 target_as, attrs);
589 if (page_mask_out) {
590 /* Not behind an IOMMU, use default page size. */
591 *page_mask_out = ~TARGET_PAGE_MASK;
594 return *section;
597 /* Called from RCU critical section */
598 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
599 bool is_write, MemTxAttrs attrs)
601 MemoryRegionSection section;
602 hwaddr xlat, page_mask;
605 * This can never be MMIO, and we don't really care about plen,
606 * but page mask.
608 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
609 NULL, &page_mask, is_write, false, &as,
610 attrs);
612 /* Illegal translation */
613 if (section.mr == &io_mem_unassigned) {
614 goto iotlb_fail;
617 /* Convert memory region offset into address space offset */
618 xlat += section.offset_within_address_space -
619 section.offset_within_region;
621 return (IOMMUTLBEntry) {
622 .target_as = as,
623 .iova = addr & ~page_mask,
624 .translated_addr = xlat & ~page_mask,
625 .addr_mask = page_mask,
626 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
627 .perm = IOMMU_RW,
630 iotlb_fail:
631 return (IOMMUTLBEntry) {0};
634 /* Called from RCU critical section */
635 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
636 hwaddr *plen, bool is_write,
637 MemTxAttrs attrs)
639 MemoryRegion *mr;
640 MemoryRegionSection section;
641 AddressSpace *as = NULL;
643 /* This can be MMIO, so setup MMIO bit. */
644 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
645 is_write, true, &as, attrs);
646 mr = section.mr;
648 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
649 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
650 *plen = MIN(page, *plen);
653 return mr;
656 typedef struct TCGIOMMUNotifier {
657 IOMMUNotifier n;
658 MemoryRegion *mr;
659 CPUState *cpu;
660 int iommu_idx;
661 bool active;
662 } TCGIOMMUNotifier;
664 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
666 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
668 if (!notifier->active) {
669 return;
671 tlb_flush(notifier->cpu);
672 notifier->active = false;
673 /* We leave the notifier struct on the list to avoid reallocating it later.
674 * Generally the number of IOMMUs a CPU deals with will be small.
675 * In any case we can't unregister the iommu notifier from a notify
676 * callback.
680 static void tcg_register_iommu_notifier(CPUState *cpu,
681 IOMMUMemoryRegion *iommu_mr,
682 int iommu_idx)
684 /* Make sure this CPU has an IOMMU notifier registered for this
685 * IOMMU/IOMMU index combination, so that we can flush its TLB
686 * when the IOMMU tells us the mappings we've cached have changed.
688 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
689 TCGIOMMUNotifier *notifier;
690 int i;
692 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
693 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
694 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
695 break;
698 if (i == cpu->iommu_notifiers->len) {
699 /* Not found, add a new entry at the end of the array */
700 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
701 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
703 notifier->mr = mr;
704 notifier->iommu_idx = iommu_idx;
705 notifier->cpu = cpu;
706 /* Rather than trying to register interest in the specific part
707 * of the iommu's address space that we've accessed and then
708 * expand it later as subsequent accesses touch more of it, we
709 * just register interest in the whole thing, on the assumption
710 * that iommu reconfiguration will be rare.
712 iommu_notifier_init(&notifier->n,
713 tcg_iommu_unmap_notify,
714 IOMMU_NOTIFIER_UNMAP,
716 HWADDR_MAX,
717 iommu_idx);
718 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
721 if (!notifier->active) {
722 notifier->active = true;
726 static void tcg_iommu_free_notifier_list(CPUState *cpu)
728 /* Destroy the CPU's notifier list */
729 int i;
730 TCGIOMMUNotifier *notifier;
732 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
733 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
734 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
736 g_array_free(cpu->iommu_notifiers, true);
739 /* Called from RCU critical section */
740 MemoryRegionSection *
741 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
742 hwaddr *xlat, hwaddr *plen,
743 MemTxAttrs attrs, int *prot)
745 MemoryRegionSection *section;
746 IOMMUMemoryRegion *iommu_mr;
747 IOMMUMemoryRegionClass *imrc;
748 IOMMUTLBEntry iotlb;
749 int iommu_idx;
750 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
752 for (;;) {
753 section = address_space_translate_internal(d, addr, &addr, plen, false);
755 iommu_mr = memory_region_get_iommu(section->mr);
756 if (!iommu_mr) {
757 break;
760 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
762 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
763 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
764 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
765 * doesn't short-cut its translation table walk.
767 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
768 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
769 | (addr & iotlb.addr_mask));
770 /* Update the caller's prot bits to remove permissions the IOMMU
771 * is giving us a failure response for. If we get down to no
772 * permissions left at all we can give up now.
774 if (!(iotlb.perm & IOMMU_RO)) {
775 *prot &= ~(PAGE_READ | PAGE_EXEC);
777 if (!(iotlb.perm & IOMMU_WO)) {
778 *prot &= ~PAGE_WRITE;
781 if (!*prot) {
782 goto translate_fail;
785 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
788 assert(!memory_region_is_iommu(section->mr));
789 *xlat = addr;
790 return section;
792 translate_fail:
793 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
795 #endif
797 #if !defined(CONFIG_USER_ONLY)
799 static int cpu_common_post_load(void *opaque, int version_id)
801 CPUState *cpu = opaque;
803 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
804 version_id is increased. */
805 cpu->interrupt_request &= ~0x01;
806 tlb_flush(cpu);
808 /* loadvm has just updated the content of RAM, bypassing the
809 * usual mechanisms that ensure we flush TBs for writes to
810 * memory we've translated code from. So we must flush all TBs,
811 * which will now be stale.
813 tb_flush(cpu);
815 return 0;
818 static int cpu_common_pre_load(void *opaque)
820 CPUState *cpu = opaque;
822 cpu->exception_index = -1;
824 return 0;
827 static bool cpu_common_exception_index_needed(void *opaque)
829 CPUState *cpu = opaque;
831 return tcg_enabled() && cpu->exception_index != -1;
834 static const VMStateDescription vmstate_cpu_common_exception_index = {
835 .name = "cpu_common/exception_index",
836 .version_id = 1,
837 .minimum_version_id = 1,
838 .needed = cpu_common_exception_index_needed,
839 .fields = (VMStateField[]) {
840 VMSTATE_INT32(exception_index, CPUState),
841 VMSTATE_END_OF_LIST()
845 static bool cpu_common_crash_occurred_needed(void *opaque)
847 CPUState *cpu = opaque;
849 return cpu->crash_occurred;
852 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
853 .name = "cpu_common/crash_occurred",
854 .version_id = 1,
855 .minimum_version_id = 1,
856 .needed = cpu_common_crash_occurred_needed,
857 .fields = (VMStateField[]) {
858 VMSTATE_BOOL(crash_occurred, CPUState),
859 VMSTATE_END_OF_LIST()
863 const VMStateDescription vmstate_cpu_common = {
864 .name = "cpu_common",
865 .version_id = 1,
866 .minimum_version_id = 1,
867 .pre_load = cpu_common_pre_load,
868 .post_load = cpu_common_post_load,
869 .fields = (VMStateField[]) {
870 VMSTATE_UINT32(halted, CPUState),
871 VMSTATE_UINT32(interrupt_request, CPUState),
872 VMSTATE_END_OF_LIST()
874 .subsections = (const VMStateDescription*[]) {
875 &vmstate_cpu_common_exception_index,
876 &vmstate_cpu_common_crash_occurred,
877 NULL
881 #endif
883 CPUState *qemu_get_cpu(int index)
885 CPUState *cpu;
887 CPU_FOREACH(cpu) {
888 if (cpu->cpu_index == index) {
889 return cpu;
893 return NULL;
896 #if !defined(CONFIG_USER_ONLY)
897 void cpu_address_space_init(CPUState *cpu, int asidx,
898 const char *prefix, MemoryRegion *mr)
900 CPUAddressSpace *newas;
901 AddressSpace *as = g_new0(AddressSpace, 1);
902 char *as_name;
904 assert(mr);
905 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
906 address_space_init(as, mr, as_name);
907 g_free(as_name);
909 /* Target code should have set num_ases before calling us */
910 assert(asidx < cpu->num_ases);
912 if (asidx == 0) {
913 /* address space 0 gets the convenience alias */
914 cpu->as = as;
917 /* KVM cannot currently support multiple address spaces. */
918 assert(asidx == 0 || !kvm_enabled());
920 if (!cpu->cpu_ases) {
921 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
924 newas = &cpu->cpu_ases[asidx];
925 newas->cpu = cpu;
926 newas->as = as;
927 if (tcg_enabled()) {
928 newas->tcg_as_listener.commit = tcg_commit;
929 memory_listener_register(&newas->tcg_as_listener, as);
933 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
935 /* Return the AddressSpace corresponding to the specified index */
936 return cpu->cpu_ases[asidx].as;
938 #endif
940 void cpu_exec_unrealizefn(CPUState *cpu)
942 CPUClass *cc = CPU_GET_CLASS(cpu);
944 cpu_list_remove(cpu);
946 if (cc->vmsd != NULL) {
947 vmstate_unregister(NULL, cc->vmsd, cpu);
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
952 #ifndef CONFIG_USER_ONLY
953 tcg_iommu_free_notifier_list(cpu);
954 #endif
957 Property cpu_common_props[] = {
958 #ifndef CONFIG_USER_ONLY
959 /* Create a memory property for softmmu CPU object,
960 * so users can wire up its memory. (This can't go in qom/cpu.c
961 * because that file is compiled only once for both user-mode
962 * and system builds.) The default if no link is set up is to use
963 * the system address space.
965 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
966 MemoryRegion *),
967 #endif
968 DEFINE_PROP_END_OF_LIST(),
971 void cpu_exec_initfn(CPUState *cpu)
973 #ifdef TARGET_WORDS_BIGENDIAN
974 cpu->bigendian = true;
975 #else
976 cpu->bigendian = false;
977 #endif
978 cpu->as = NULL;
979 cpu->num_ases = 0;
981 #ifndef CONFIG_USER_ONLY
982 cpu->thread_id = qemu_get_thread_id();
983 cpu->memory = system_memory;
984 object_ref(OBJECT(cpu->memory));
985 #endif
988 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
990 CPUClass *cc = CPU_GET_CLASS(cpu);
991 static bool tcg_target_initialized;
993 cpu_list_add(cpu);
995 if (tcg_enabled() && !tcg_target_initialized) {
996 tcg_target_initialized = true;
997 cc->tcg_initialize();
1000 #ifndef CONFIG_USER_ONLY
1001 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
1002 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
1004 if (cc->vmsd != NULL) {
1005 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
1008 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
1009 #endif
1012 const char *parse_cpu_model(const char *cpu_model)
1014 ObjectClass *oc;
1015 CPUClass *cc;
1016 gchar **model_pieces;
1017 const char *cpu_type;
1019 model_pieces = g_strsplit(cpu_model, ",", 2);
1021 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1022 if (oc == NULL) {
1023 error_report("unable to find CPU model '%s'", model_pieces[0]);
1024 g_strfreev(model_pieces);
1025 exit(EXIT_FAILURE);
1028 cpu_type = object_class_get_name(oc);
1029 cc = CPU_CLASS(oc);
1030 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1031 g_strfreev(model_pieces);
1032 return cpu_type;
1035 #if defined(CONFIG_USER_ONLY)
1036 void tb_invalidate_phys_addr(target_ulong addr)
1038 mmap_lock();
1039 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1040 mmap_unlock();
1043 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1045 tb_invalidate_phys_addr(pc);
1047 #else
1048 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1050 ram_addr_t ram_addr;
1051 MemoryRegion *mr;
1052 hwaddr l = 1;
1054 if (!tcg_enabled()) {
1055 return;
1058 rcu_read_lock();
1059 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1060 if (!(memory_region_is_ram(mr)
1061 || memory_region_is_romd(mr))) {
1062 rcu_read_unlock();
1063 return;
1065 ram_addr = memory_region_get_ram_addr(mr) + addr;
1066 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1067 rcu_read_unlock();
1070 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1072 MemTxAttrs attrs;
1073 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1074 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1075 if (phys != -1) {
1076 /* Locks grabbed by tb_invalidate_phys_addr */
1077 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1078 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1081 #endif
1083 #if defined(CONFIG_USER_ONLY)
1084 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1089 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1090 int flags)
1092 return -ENOSYS;
1095 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1099 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1100 int flags, CPUWatchpoint **watchpoint)
1102 return -ENOSYS;
1104 #else
1105 /* Add a watchpoint. */
1106 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1107 int flags, CPUWatchpoint **watchpoint)
1109 CPUWatchpoint *wp;
1111 /* forbid ranges which are empty or run off the end of the address space */
1112 if (len == 0 || (addr + len - 1) < addr) {
1113 error_report("tried to set invalid watchpoint at %"
1114 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1115 return -EINVAL;
1117 wp = g_malloc(sizeof(*wp));
1119 wp->vaddr = addr;
1120 wp->len = len;
1121 wp->flags = flags;
1123 /* keep all GDB-injected watchpoints in front */
1124 if (flags & BP_GDB) {
1125 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1126 } else {
1127 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1130 tlb_flush_page(cpu, addr);
1132 if (watchpoint)
1133 *watchpoint = wp;
1134 return 0;
1137 /* Remove a specific watchpoint. */
1138 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1139 int flags)
1141 CPUWatchpoint *wp;
1143 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1144 if (addr == wp->vaddr && len == wp->len
1145 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1146 cpu_watchpoint_remove_by_ref(cpu, wp);
1147 return 0;
1150 return -ENOENT;
1153 /* Remove a specific watchpoint by reference. */
1154 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1156 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1158 tlb_flush_page(cpu, watchpoint->vaddr);
1160 g_free(watchpoint);
1163 /* Remove all matching watchpoints. */
1164 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1166 CPUWatchpoint *wp, *next;
1168 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1169 if (wp->flags & mask) {
1170 cpu_watchpoint_remove_by_ref(cpu, wp);
1175 /* Return true if this watchpoint address matches the specified
1176 * access (ie the address range covered by the watchpoint overlaps
1177 * partially or completely with the address range covered by the
1178 * access).
1180 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1181 vaddr addr,
1182 vaddr len)
1184 /* We know the lengths are non-zero, but a little caution is
1185 * required to avoid errors in the case where the range ends
1186 * exactly at the top of the address space and so addr + len
1187 * wraps round to zero.
1189 vaddr wpend = wp->vaddr + wp->len - 1;
1190 vaddr addrend = addr + len - 1;
1192 return !(addr > wpend || wp->vaddr > addrend);
1195 #endif
1197 /* Add a breakpoint. */
1198 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1199 CPUBreakpoint **breakpoint)
1201 CPUBreakpoint *bp;
1203 bp = g_malloc(sizeof(*bp));
1205 bp->pc = pc;
1206 bp->flags = flags;
1208 /* keep all GDB-injected breakpoints in front */
1209 if (flags & BP_GDB) {
1210 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1211 } else {
1212 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1215 breakpoint_invalidate(cpu, pc);
1217 if (breakpoint) {
1218 *breakpoint = bp;
1220 return 0;
1223 /* Remove a specific breakpoint. */
1224 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1226 CPUBreakpoint *bp;
1228 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1229 if (bp->pc == pc && bp->flags == flags) {
1230 cpu_breakpoint_remove_by_ref(cpu, bp);
1231 return 0;
1234 return -ENOENT;
1237 /* Remove a specific breakpoint by reference. */
1238 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1240 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1242 breakpoint_invalidate(cpu, breakpoint->pc);
1244 g_free(breakpoint);
1247 /* Remove all matching breakpoints. */
1248 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1250 CPUBreakpoint *bp, *next;
1252 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1253 if (bp->flags & mask) {
1254 cpu_breakpoint_remove_by_ref(cpu, bp);
1259 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1260 CPU loop after each instruction */
1261 void cpu_single_step(CPUState *cpu, int enabled)
1263 if (cpu->singlestep_enabled != enabled) {
1264 cpu->singlestep_enabled = enabled;
1265 if (kvm_enabled()) {
1266 kvm_update_guest_debug(cpu, 0);
1267 } else {
1268 /* must flush all the translated code to avoid inconsistencies */
1269 /* XXX: only flush what is necessary */
1270 tb_flush(cpu);
1275 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1277 va_list ap;
1278 va_list ap2;
1280 va_start(ap, fmt);
1281 va_copy(ap2, ap);
1282 fprintf(stderr, "qemu: fatal: ");
1283 vfprintf(stderr, fmt, ap);
1284 fprintf(stderr, "\n");
1285 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1286 if (qemu_log_separate()) {
1287 qemu_log_lock();
1288 qemu_log("qemu: fatal: ");
1289 qemu_log_vprintf(fmt, ap2);
1290 qemu_log("\n");
1291 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1292 qemu_log_flush();
1293 qemu_log_unlock();
1294 qemu_log_close();
1296 va_end(ap2);
1297 va_end(ap);
1298 replay_finish();
1299 #if defined(CONFIG_USER_ONLY)
1301 struct sigaction act;
1302 sigfillset(&act.sa_mask);
1303 act.sa_handler = SIG_DFL;
1304 act.sa_flags = 0;
1305 sigaction(SIGABRT, &act, NULL);
1307 #endif
1308 abort();
1311 #if !defined(CONFIG_USER_ONLY)
1312 /* Called from RCU critical section */
1313 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1315 RAMBlock *block;
1317 block = atomic_rcu_read(&ram_list.mru_block);
1318 if (block && addr - block->offset < block->max_length) {
1319 return block;
1321 RAMBLOCK_FOREACH(block) {
1322 if (addr - block->offset < block->max_length) {
1323 goto found;
1327 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1328 abort();
1330 found:
1331 /* It is safe to write mru_block outside the iothread lock. This
1332 * is what happens:
1334 * mru_block = xxx
1335 * rcu_read_unlock()
1336 * xxx removed from list
1337 * rcu_read_lock()
1338 * read mru_block
1339 * mru_block = NULL;
1340 * call_rcu(reclaim_ramblock, xxx);
1341 * rcu_read_unlock()
1343 * atomic_rcu_set is not needed here. The block was already published
1344 * when it was placed into the list. Here we're just making an extra
1345 * copy of the pointer.
1347 ram_list.mru_block = block;
1348 return block;
1351 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1353 CPUState *cpu;
1354 ram_addr_t start1;
1355 RAMBlock *block;
1356 ram_addr_t end;
1358 assert(tcg_enabled());
1359 end = TARGET_PAGE_ALIGN(start + length);
1360 start &= TARGET_PAGE_MASK;
1362 rcu_read_lock();
1363 block = qemu_get_ram_block(start);
1364 assert(block == qemu_get_ram_block(end - 1));
1365 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1366 CPU_FOREACH(cpu) {
1367 tlb_reset_dirty(cpu, start1, length);
1369 rcu_read_unlock();
1372 /* Note: start and end must be within the same ram block. */
1373 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1374 ram_addr_t length,
1375 unsigned client)
1377 DirtyMemoryBlocks *blocks;
1378 unsigned long end, page;
1379 bool dirty = false;
1381 if (length == 0) {
1382 return false;
1385 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1386 page = start >> TARGET_PAGE_BITS;
1388 rcu_read_lock();
1390 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1392 while (page < end) {
1393 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1394 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1395 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1397 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1398 offset, num);
1399 page += num;
1402 rcu_read_unlock();
1404 if (dirty && tcg_enabled()) {
1405 tlb_reset_dirty_range_all(start, length);
1408 return dirty;
1411 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1412 (ram_addr_t start, ram_addr_t length, unsigned client)
1414 DirtyMemoryBlocks *blocks;
1415 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1416 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1417 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1418 DirtyBitmapSnapshot *snap;
1419 unsigned long page, end, dest;
1421 snap = g_malloc0(sizeof(*snap) +
1422 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1423 snap->start = first;
1424 snap->end = last;
1426 page = first >> TARGET_PAGE_BITS;
1427 end = last >> TARGET_PAGE_BITS;
1428 dest = 0;
1430 rcu_read_lock();
1432 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1434 while (page < end) {
1435 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1436 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1437 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1439 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1440 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1441 offset >>= BITS_PER_LEVEL;
1443 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1444 blocks->blocks[idx] + offset,
1445 num);
1446 page += num;
1447 dest += num >> BITS_PER_LEVEL;
1450 rcu_read_unlock();
1452 if (tcg_enabled()) {
1453 tlb_reset_dirty_range_all(start, length);
1456 return snap;
1459 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1460 ram_addr_t start,
1461 ram_addr_t length)
1463 unsigned long page, end;
1465 assert(start >= snap->start);
1466 assert(start + length <= snap->end);
1468 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1469 page = (start - snap->start) >> TARGET_PAGE_BITS;
1471 while (page < end) {
1472 if (test_bit(page, snap->dirty)) {
1473 return true;
1475 page++;
1477 return false;
1480 /* Called from RCU critical section */
1481 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1482 MemoryRegionSection *section,
1483 target_ulong vaddr,
1484 hwaddr paddr, hwaddr xlat,
1485 int prot,
1486 target_ulong *address)
1488 hwaddr iotlb;
1489 CPUWatchpoint *wp;
1491 if (memory_region_is_ram(section->mr)) {
1492 /* Normal RAM. */
1493 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1494 if (!section->readonly) {
1495 iotlb |= PHYS_SECTION_NOTDIRTY;
1496 } else {
1497 iotlb |= PHYS_SECTION_ROM;
1499 } else {
1500 AddressSpaceDispatch *d;
1502 d = flatview_to_dispatch(section->fv);
1503 iotlb = section - d->map.sections;
1504 iotlb += xlat;
1507 /* Make accesses to pages with watchpoints go via the
1508 watchpoint trap routines. */
1509 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1510 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1511 /* Avoid trapping reads of pages with a write breakpoint. */
1512 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1513 iotlb = PHYS_SECTION_WATCH + paddr;
1514 *address |= TLB_MMIO;
1515 break;
1520 return iotlb;
1522 #endif /* defined(CONFIG_USER_ONLY) */
1524 #if !defined(CONFIG_USER_ONLY)
1526 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1527 uint16_t section);
1528 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1530 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1531 qemu_anon_ram_alloc;
1534 * Set a custom physical guest memory alloator.
1535 * Accelerators with unusual needs may need this. Hopefully, we can
1536 * get rid of it eventually.
1538 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1540 phys_mem_alloc = alloc;
1543 static uint16_t phys_section_add(PhysPageMap *map,
1544 MemoryRegionSection *section)
1546 /* The physical section number is ORed with a page-aligned
1547 * pointer to produce the iotlb entries. Thus it should
1548 * never overflow into the page-aligned value.
1550 assert(map->sections_nb < TARGET_PAGE_SIZE);
1552 if (map->sections_nb == map->sections_nb_alloc) {
1553 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1554 map->sections = g_renew(MemoryRegionSection, map->sections,
1555 map->sections_nb_alloc);
1557 map->sections[map->sections_nb] = *section;
1558 memory_region_ref(section->mr);
1559 return map->sections_nb++;
1562 static void phys_section_destroy(MemoryRegion *mr)
1564 bool have_sub_page = mr->subpage;
1566 memory_region_unref(mr);
1568 if (have_sub_page) {
1569 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1570 object_unref(OBJECT(&subpage->iomem));
1571 g_free(subpage);
1575 static void phys_sections_free(PhysPageMap *map)
1577 while (map->sections_nb > 0) {
1578 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1579 phys_section_destroy(section->mr);
1581 g_free(map->sections);
1582 g_free(map->nodes);
1585 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1587 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1588 subpage_t *subpage;
1589 hwaddr base = section->offset_within_address_space
1590 & TARGET_PAGE_MASK;
1591 MemoryRegionSection *existing = phys_page_find(d, base);
1592 MemoryRegionSection subsection = {
1593 .offset_within_address_space = base,
1594 .size = int128_make64(TARGET_PAGE_SIZE),
1596 hwaddr start, end;
1598 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1600 if (!(existing->mr->subpage)) {
1601 subpage = subpage_init(fv, base);
1602 subsection.fv = fv;
1603 subsection.mr = &subpage->iomem;
1604 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1605 phys_section_add(&d->map, &subsection));
1606 } else {
1607 subpage = container_of(existing->mr, subpage_t, iomem);
1609 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1610 end = start + int128_get64(section->size) - 1;
1611 subpage_register(subpage, start, end,
1612 phys_section_add(&d->map, section));
1616 static void register_multipage(FlatView *fv,
1617 MemoryRegionSection *section)
1619 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1620 hwaddr start_addr = section->offset_within_address_space;
1621 uint16_t section_index = phys_section_add(&d->map, section);
1622 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1623 TARGET_PAGE_BITS));
1625 assert(num_pages);
1626 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1629 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1631 MemoryRegionSection now = *section, remain = *section;
1632 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1634 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1635 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1636 - now.offset_within_address_space;
1638 now.size = int128_min(int128_make64(left), now.size);
1639 register_subpage(fv, &now);
1640 } else {
1641 now.size = int128_zero();
1643 while (int128_ne(remain.size, now.size)) {
1644 remain.size = int128_sub(remain.size, now.size);
1645 remain.offset_within_address_space += int128_get64(now.size);
1646 remain.offset_within_region += int128_get64(now.size);
1647 now = remain;
1648 if (int128_lt(remain.size, page_size)) {
1649 register_subpage(fv, &now);
1650 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1651 now.size = page_size;
1652 register_subpage(fv, &now);
1653 } else {
1654 now.size = int128_and(now.size, int128_neg(page_size));
1655 register_multipage(fv, &now);
1660 void qemu_flush_coalesced_mmio_buffer(void)
1662 if (kvm_enabled())
1663 kvm_flush_coalesced_mmio_buffer();
1666 void qemu_mutex_lock_ramlist(void)
1668 qemu_mutex_lock(&ram_list.mutex);
1671 void qemu_mutex_unlock_ramlist(void)
1673 qemu_mutex_unlock(&ram_list.mutex);
1676 void ram_block_dump(Monitor *mon)
1678 RAMBlock *block;
1679 char *psize;
1681 rcu_read_lock();
1682 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1683 "Block Name", "PSize", "Offset", "Used", "Total");
1684 RAMBLOCK_FOREACH(block) {
1685 psize = size_to_str(block->page_size);
1686 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1687 " 0x%016" PRIx64 "\n", block->idstr, psize,
1688 (uint64_t)block->offset,
1689 (uint64_t)block->used_length,
1690 (uint64_t)block->max_length);
1691 g_free(psize);
1693 rcu_read_unlock();
1696 #ifdef __linux__
1698 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1699 * may or may not name the same files / on the same filesystem now as
1700 * when we actually open and map them. Iterate over the file
1701 * descriptors instead, and use qemu_fd_getpagesize().
1703 static int find_max_supported_pagesize(Object *obj, void *opaque)
1705 long *hpsize_min = opaque;
1707 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1708 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1710 if (hpsize < *hpsize_min) {
1711 *hpsize_min = hpsize;
1715 return 0;
1718 long qemu_getrampagesize(void)
1720 long hpsize = LONG_MAX;
1721 long mainrampagesize;
1722 Object *memdev_root;
1724 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1726 /* it's possible we have memory-backend objects with
1727 * hugepage-backed RAM. these may get mapped into system
1728 * address space via -numa parameters or memory hotplug
1729 * hooks. we want to take these into account, but we
1730 * also want to make sure these supported hugepage
1731 * sizes are applicable across the entire range of memory
1732 * we may boot from, so we take the min across all
1733 * backends, and assume normal pages in cases where a
1734 * backend isn't backed by hugepages.
1736 memdev_root = object_resolve_path("/objects", NULL);
1737 if (memdev_root) {
1738 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1740 if (hpsize == LONG_MAX) {
1741 /* No additional memory regions found ==> Report main RAM page size */
1742 return mainrampagesize;
1745 /* If NUMA is disabled or the NUMA nodes are not backed with a
1746 * memory-backend, then there is at least one node using "normal" RAM,
1747 * so if its page size is smaller we have got to report that size instead.
1749 if (hpsize > mainrampagesize &&
1750 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1751 static bool warned;
1752 if (!warned) {
1753 error_report("Huge page support disabled (n/a for main memory).");
1754 warned = true;
1756 return mainrampagesize;
1759 return hpsize;
1761 #else
1762 long qemu_getrampagesize(void)
1764 return getpagesize();
1766 #endif
1768 #ifdef __linux__
1769 static int64_t get_file_size(int fd)
1771 int64_t size = lseek(fd, 0, SEEK_END);
1772 if (size < 0) {
1773 return -errno;
1775 return size;
1778 static int file_ram_open(const char *path,
1779 const char *region_name,
1780 bool *created,
1781 Error **errp)
1783 char *filename;
1784 char *sanitized_name;
1785 char *c;
1786 int fd = -1;
1788 *created = false;
1789 for (;;) {
1790 fd = open(path, O_RDWR);
1791 if (fd >= 0) {
1792 /* @path names an existing file, use it */
1793 break;
1795 if (errno == ENOENT) {
1796 /* @path names a file that doesn't exist, create it */
1797 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1798 if (fd >= 0) {
1799 *created = true;
1800 break;
1802 } else if (errno == EISDIR) {
1803 /* @path names a directory, create a file there */
1804 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1805 sanitized_name = g_strdup(region_name);
1806 for (c = sanitized_name; *c != '\0'; c++) {
1807 if (*c == '/') {
1808 *c = '_';
1812 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1813 sanitized_name);
1814 g_free(sanitized_name);
1816 fd = mkstemp(filename);
1817 if (fd >= 0) {
1818 unlink(filename);
1819 g_free(filename);
1820 break;
1822 g_free(filename);
1824 if (errno != EEXIST && errno != EINTR) {
1825 error_setg_errno(errp, errno,
1826 "can't open backing store %s for guest RAM",
1827 path);
1828 return -1;
1831 * Try again on EINTR and EEXIST. The latter happens when
1832 * something else creates the file between our two open().
1836 return fd;
1839 static void *file_ram_alloc(RAMBlock *block,
1840 ram_addr_t memory,
1841 int fd,
1842 bool truncate,
1843 Error **errp)
1845 void *area;
1847 block->page_size = qemu_fd_getpagesize(fd);
1848 if (block->mr->align % block->page_size) {
1849 error_setg(errp, "alignment 0x%" PRIx64
1850 " must be multiples of page size 0x%zx",
1851 block->mr->align, block->page_size);
1852 return NULL;
1853 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1854 error_setg(errp, "alignment 0x%" PRIx64
1855 " must be a power of two", block->mr->align);
1856 return NULL;
1858 block->mr->align = MAX(block->page_size, block->mr->align);
1859 #if defined(__s390x__)
1860 if (kvm_enabled()) {
1861 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1863 #endif
1865 if (memory < block->page_size) {
1866 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1867 "or larger than page size 0x%zx",
1868 memory, block->page_size);
1869 return NULL;
1872 memory = ROUND_UP(memory, block->page_size);
1875 * ftruncate is not supported by hugetlbfs in older
1876 * hosts, so don't bother bailing out on errors.
1877 * If anything goes wrong with it under other filesystems,
1878 * mmap will fail.
1880 * Do not truncate the non-empty backend file to avoid corrupting
1881 * the existing data in the file. Disabling shrinking is not
1882 * enough. For example, the current vNVDIMM implementation stores
1883 * the guest NVDIMM labels at the end of the backend file. If the
1884 * backend file is later extended, QEMU will not be able to find
1885 * those labels. Therefore, extending the non-empty backend file
1886 * is disabled as well.
1888 if (truncate && ftruncate(fd, memory)) {
1889 perror("ftruncate");
1892 area = qemu_ram_mmap(fd, memory, block->mr->align,
1893 block->flags & RAM_SHARED);
1894 if (area == MAP_FAILED) {
1895 error_setg_errno(errp, errno,
1896 "unable to map backing store for guest RAM");
1897 return NULL;
1900 if (mem_prealloc) {
1901 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1902 if (errp && *errp) {
1903 qemu_ram_munmap(area, memory);
1904 return NULL;
1908 block->fd = fd;
1909 return area;
1911 #endif
1913 /* Allocate space within the ram_addr_t space that governs the
1914 * dirty bitmaps.
1915 * Called with the ramlist lock held.
1917 static ram_addr_t find_ram_offset(ram_addr_t size)
1919 RAMBlock *block, *next_block;
1920 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1922 assert(size != 0); /* it would hand out same offset multiple times */
1924 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1925 return 0;
1928 RAMBLOCK_FOREACH(block) {
1929 ram_addr_t candidate, next = RAM_ADDR_MAX;
1931 /* Align blocks to start on a 'long' in the bitmap
1932 * which makes the bitmap sync'ing take the fast path.
1934 candidate = block->offset + block->max_length;
1935 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1937 /* Search for the closest following block
1938 * and find the gap.
1940 RAMBLOCK_FOREACH(next_block) {
1941 if (next_block->offset >= candidate) {
1942 next = MIN(next, next_block->offset);
1946 /* If it fits remember our place and remember the size
1947 * of gap, but keep going so that we might find a smaller
1948 * gap to fill so avoiding fragmentation.
1950 if (next - candidate >= size && next - candidate < mingap) {
1951 offset = candidate;
1952 mingap = next - candidate;
1955 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1958 if (offset == RAM_ADDR_MAX) {
1959 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1960 (uint64_t)size);
1961 abort();
1964 trace_find_ram_offset(size, offset);
1966 return offset;
1969 static unsigned long last_ram_page(void)
1971 RAMBlock *block;
1972 ram_addr_t last = 0;
1974 rcu_read_lock();
1975 RAMBLOCK_FOREACH(block) {
1976 last = MAX(last, block->offset + block->max_length);
1978 rcu_read_unlock();
1979 return last >> TARGET_PAGE_BITS;
1982 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1984 int ret;
1986 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1987 if (!machine_dump_guest_core(current_machine)) {
1988 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1989 if (ret) {
1990 perror("qemu_madvise");
1991 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1992 "but dump_guest_core=off specified\n");
1997 const char *qemu_ram_get_idstr(RAMBlock *rb)
1999 return rb->idstr;
2002 bool qemu_ram_is_shared(RAMBlock *rb)
2004 return rb->flags & RAM_SHARED;
2007 /* Note: Only set at the start of postcopy */
2008 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2010 return rb->flags & RAM_UF_ZEROPAGE;
2013 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2015 rb->flags |= RAM_UF_ZEROPAGE;
2018 bool qemu_ram_is_migratable(RAMBlock *rb)
2020 return rb->flags & RAM_MIGRATABLE;
2023 void qemu_ram_set_migratable(RAMBlock *rb)
2025 rb->flags |= RAM_MIGRATABLE;
2028 void qemu_ram_unset_migratable(RAMBlock *rb)
2030 rb->flags &= ~RAM_MIGRATABLE;
2033 /* Called with iothread lock held. */
2034 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2036 RAMBlock *block;
2038 assert(new_block);
2039 assert(!new_block->idstr[0]);
2041 if (dev) {
2042 char *id = qdev_get_dev_path(dev);
2043 if (id) {
2044 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2045 g_free(id);
2048 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2050 rcu_read_lock();
2051 RAMBLOCK_FOREACH(block) {
2052 if (block != new_block &&
2053 !strcmp(block->idstr, new_block->idstr)) {
2054 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2055 new_block->idstr);
2056 abort();
2059 rcu_read_unlock();
2062 /* Called with iothread lock held. */
2063 void qemu_ram_unset_idstr(RAMBlock *block)
2065 /* FIXME: arch_init.c assumes that this is not called throughout
2066 * migration. Ignore the problem since hot-unplug during migration
2067 * does not work anyway.
2069 if (block) {
2070 memset(block->idstr, 0, sizeof(block->idstr));
2074 size_t qemu_ram_pagesize(RAMBlock *rb)
2076 return rb->page_size;
2079 /* Returns the largest size of page in use */
2080 size_t qemu_ram_pagesize_largest(void)
2082 RAMBlock *block;
2083 size_t largest = 0;
2085 RAMBLOCK_FOREACH(block) {
2086 largest = MAX(largest, qemu_ram_pagesize(block));
2089 return largest;
2092 static int memory_try_enable_merging(void *addr, size_t len)
2094 if (!machine_mem_merge(current_machine)) {
2095 /* disabled by the user */
2096 return 0;
2099 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2102 /* Only legal before guest might have detected the memory size: e.g. on
2103 * incoming migration, or right after reset.
2105 * As memory core doesn't know how is memory accessed, it is up to
2106 * resize callback to update device state and/or add assertions to detect
2107 * misuse, if necessary.
2109 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2111 assert(block);
2113 newsize = HOST_PAGE_ALIGN(newsize);
2115 if (block->used_length == newsize) {
2116 return 0;
2119 if (!(block->flags & RAM_RESIZEABLE)) {
2120 error_setg_errno(errp, EINVAL,
2121 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2122 " in != 0x" RAM_ADDR_FMT, block->idstr,
2123 newsize, block->used_length);
2124 return -EINVAL;
2127 if (block->max_length < newsize) {
2128 error_setg_errno(errp, EINVAL,
2129 "Length too large: %s: 0x" RAM_ADDR_FMT
2130 " > 0x" RAM_ADDR_FMT, block->idstr,
2131 newsize, block->max_length);
2132 return -EINVAL;
2135 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2136 block->used_length = newsize;
2137 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2138 DIRTY_CLIENTS_ALL);
2139 memory_region_set_size(block->mr, newsize);
2140 if (block->resized) {
2141 block->resized(block->idstr, newsize, block->host);
2143 return 0;
2146 /* Called with ram_list.mutex held */
2147 static void dirty_memory_extend(ram_addr_t old_ram_size,
2148 ram_addr_t new_ram_size)
2150 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2151 DIRTY_MEMORY_BLOCK_SIZE);
2152 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2153 DIRTY_MEMORY_BLOCK_SIZE);
2154 int i;
2156 /* Only need to extend if block count increased */
2157 if (new_num_blocks <= old_num_blocks) {
2158 return;
2161 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2162 DirtyMemoryBlocks *old_blocks;
2163 DirtyMemoryBlocks *new_blocks;
2164 int j;
2166 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2167 new_blocks = g_malloc(sizeof(*new_blocks) +
2168 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2170 if (old_num_blocks) {
2171 memcpy(new_blocks->blocks, old_blocks->blocks,
2172 old_num_blocks * sizeof(old_blocks->blocks[0]));
2175 for (j = old_num_blocks; j < new_num_blocks; j++) {
2176 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2179 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2181 if (old_blocks) {
2182 g_free_rcu(old_blocks, rcu);
2187 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2189 RAMBlock *block;
2190 RAMBlock *last_block = NULL;
2191 ram_addr_t old_ram_size, new_ram_size;
2192 Error *err = NULL;
2194 old_ram_size = last_ram_page();
2196 qemu_mutex_lock_ramlist();
2197 new_block->offset = find_ram_offset(new_block->max_length);
2199 if (!new_block->host) {
2200 if (xen_enabled()) {
2201 xen_ram_alloc(new_block->offset, new_block->max_length,
2202 new_block->mr, &err);
2203 if (err) {
2204 error_propagate(errp, err);
2205 qemu_mutex_unlock_ramlist();
2206 return;
2208 } else {
2209 new_block->host = phys_mem_alloc(new_block->max_length,
2210 &new_block->mr->align, shared);
2211 if (!new_block->host) {
2212 error_setg_errno(errp, errno,
2213 "cannot set up guest memory '%s'",
2214 memory_region_name(new_block->mr));
2215 qemu_mutex_unlock_ramlist();
2216 return;
2218 memory_try_enable_merging(new_block->host, new_block->max_length);
2222 new_ram_size = MAX(old_ram_size,
2223 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2224 if (new_ram_size > old_ram_size) {
2225 dirty_memory_extend(old_ram_size, new_ram_size);
2227 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2228 * QLIST (which has an RCU-friendly variant) does not have insertion at
2229 * tail, so save the last element in last_block.
2231 RAMBLOCK_FOREACH(block) {
2232 last_block = block;
2233 if (block->max_length < new_block->max_length) {
2234 break;
2237 if (block) {
2238 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2239 } else if (last_block) {
2240 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2241 } else { /* list is empty */
2242 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2244 ram_list.mru_block = NULL;
2246 /* Write list before version */
2247 smp_wmb();
2248 ram_list.version++;
2249 qemu_mutex_unlock_ramlist();
2251 cpu_physical_memory_set_dirty_range(new_block->offset,
2252 new_block->used_length,
2253 DIRTY_CLIENTS_ALL);
2255 if (new_block->host) {
2256 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2257 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2258 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2259 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2260 ram_block_notify_add(new_block->host, new_block->max_length);
2264 #ifdef __linux__
2265 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2266 bool share, int fd,
2267 Error **errp)
2269 RAMBlock *new_block;
2270 Error *local_err = NULL;
2271 int64_t file_size;
2273 if (xen_enabled()) {
2274 error_setg(errp, "-mem-path not supported with Xen");
2275 return NULL;
2278 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2279 error_setg(errp,
2280 "host lacks kvm mmu notifiers, -mem-path unsupported");
2281 return NULL;
2284 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2286 * file_ram_alloc() needs to allocate just like
2287 * phys_mem_alloc, but we haven't bothered to provide
2288 * a hook there.
2290 error_setg(errp,
2291 "-mem-path not supported with this accelerator");
2292 return NULL;
2295 size = HOST_PAGE_ALIGN(size);
2296 file_size = get_file_size(fd);
2297 if (file_size > 0 && file_size < size) {
2298 error_setg(errp, "backing store %s size 0x%" PRIx64
2299 " does not match 'size' option 0x" RAM_ADDR_FMT,
2300 mem_path, file_size, size);
2301 return NULL;
2304 new_block = g_malloc0(sizeof(*new_block));
2305 new_block->mr = mr;
2306 new_block->used_length = size;
2307 new_block->max_length = size;
2308 new_block->flags = share ? RAM_SHARED : 0;
2309 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2310 if (!new_block->host) {
2311 g_free(new_block);
2312 return NULL;
2315 ram_block_add(new_block, &local_err, share);
2316 if (local_err) {
2317 g_free(new_block);
2318 error_propagate(errp, local_err);
2319 return NULL;
2321 return new_block;
2326 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2327 bool share, const char *mem_path,
2328 Error **errp)
2330 int fd;
2331 bool created;
2332 RAMBlock *block;
2334 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2335 if (fd < 0) {
2336 return NULL;
2339 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2340 if (!block) {
2341 if (created) {
2342 unlink(mem_path);
2344 close(fd);
2345 return NULL;
2348 return block;
2350 #endif
2352 static
2353 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2354 void (*resized)(const char*,
2355 uint64_t length,
2356 void *host),
2357 void *host, bool resizeable, bool share,
2358 MemoryRegion *mr, Error **errp)
2360 RAMBlock *new_block;
2361 Error *local_err = NULL;
2363 size = HOST_PAGE_ALIGN(size);
2364 max_size = HOST_PAGE_ALIGN(max_size);
2365 new_block = g_malloc0(sizeof(*new_block));
2366 new_block->mr = mr;
2367 new_block->resized = resized;
2368 new_block->used_length = size;
2369 new_block->max_length = max_size;
2370 assert(max_size >= size);
2371 new_block->fd = -1;
2372 new_block->page_size = getpagesize();
2373 new_block->host = host;
2374 if (host) {
2375 new_block->flags |= RAM_PREALLOC;
2377 if (resizeable) {
2378 new_block->flags |= RAM_RESIZEABLE;
2380 ram_block_add(new_block, &local_err, share);
2381 if (local_err) {
2382 g_free(new_block);
2383 error_propagate(errp, local_err);
2384 return NULL;
2386 return new_block;
2389 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2390 MemoryRegion *mr, Error **errp)
2392 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2393 false, mr, errp);
2396 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2397 MemoryRegion *mr, Error **errp)
2399 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2400 share, mr, errp);
2403 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2404 void (*resized)(const char*,
2405 uint64_t length,
2406 void *host),
2407 MemoryRegion *mr, Error **errp)
2409 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2410 false, mr, errp);
2413 static void reclaim_ramblock(RAMBlock *block)
2415 if (block->flags & RAM_PREALLOC) {
2417 } else if (xen_enabled()) {
2418 xen_invalidate_map_cache_entry(block->host);
2419 #ifndef _WIN32
2420 } else if (block->fd >= 0) {
2421 qemu_ram_munmap(block->host, block->max_length);
2422 close(block->fd);
2423 #endif
2424 } else {
2425 qemu_anon_ram_free(block->host, block->max_length);
2427 g_free(block);
2430 void qemu_ram_free(RAMBlock *block)
2432 if (!block) {
2433 return;
2436 if (block->host) {
2437 ram_block_notify_remove(block->host, block->max_length);
2440 qemu_mutex_lock_ramlist();
2441 QLIST_REMOVE_RCU(block, next);
2442 ram_list.mru_block = NULL;
2443 /* Write list before version */
2444 smp_wmb();
2445 ram_list.version++;
2446 call_rcu(block, reclaim_ramblock, rcu);
2447 qemu_mutex_unlock_ramlist();
2450 #ifndef _WIN32
2451 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2453 RAMBlock *block;
2454 ram_addr_t offset;
2455 int flags;
2456 void *area, *vaddr;
2458 RAMBLOCK_FOREACH(block) {
2459 offset = addr - block->offset;
2460 if (offset < block->max_length) {
2461 vaddr = ramblock_ptr(block, offset);
2462 if (block->flags & RAM_PREALLOC) {
2464 } else if (xen_enabled()) {
2465 abort();
2466 } else {
2467 flags = MAP_FIXED;
2468 if (block->fd >= 0) {
2469 flags |= (block->flags & RAM_SHARED ?
2470 MAP_SHARED : MAP_PRIVATE);
2471 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2472 flags, block->fd, offset);
2473 } else {
2475 * Remap needs to match alloc. Accelerators that
2476 * set phys_mem_alloc never remap. If they did,
2477 * we'd need a remap hook here.
2479 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2481 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2482 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2483 flags, -1, 0);
2485 if (area != vaddr) {
2486 error_report("Could not remap addr: "
2487 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2488 length, addr);
2489 exit(1);
2491 memory_try_enable_merging(vaddr, length);
2492 qemu_ram_setup_dump(vaddr, length);
2497 #endif /* !_WIN32 */
2499 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2500 * This should not be used for general purpose DMA. Use address_space_map
2501 * or address_space_rw instead. For local memory (e.g. video ram) that the
2502 * device owns, use memory_region_get_ram_ptr.
2504 * Called within RCU critical section.
2506 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2508 RAMBlock *block = ram_block;
2510 if (block == NULL) {
2511 block = qemu_get_ram_block(addr);
2512 addr -= block->offset;
2515 if (xen_enabled() && block->host == NULL) {
2516 /* We need to check if the requested address is in the RAM
2517 * because we don't want to map the entire memory in QEMU.
2518 * In that case just map until the end of the page.
2520 if (block->offset == 0) {
2521 return xen_map_cache(addr, 0, 0, false);
2524 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2526 return ramblock_ptr(block, addr);
2529 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2530 * but takes a size argument.
2532 * Called within RCU critical section.
2534 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2535 hwaddr *size, bool lock)
2537 RAMBlock *block = ram_block;
2538 if (*size == 0) {
2539 return NULL;
2542 if (block == NULL) {
2543 block = qemu_get_ram_block(addr);
2544 addr -= block->offset;
2546 *size = MIN(*size, block->max_length - addr);
2548 if (xen_enabled() && block->host == NULL) {
2549 /* We need to check if the requested address is in the RAM
2550 * because we don't want to map the entire memory in QEMU.
2551 * In that case just map the requested area.
2553 if (block->offset == 0) {
2554 return xen_map_cache(addr, *size, lock, lock);
2557 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2560 return ramblock_ptr(block, addr);
2563 /* Return the offset of a hostpointer within a ramblock */
2564 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2566 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2567 assert((uintptr_t)host >= (uintptr_t)rb->host);
2568 assert(res < rb->max_length);
2570 return res;
2574 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2575 * in that RAMBlock.
2577 * ptr: Host pointer to look up
2578 * round_offset: If true round the result offset down to a page boundary
2579 * *ram_addr: set to result ram_addr
2580 * *offset: set to result offset within the RAMBlock
2582 * Returns: RAMBlock (or NULL if not found)
2584 * By the time this function returns, the returned pointer is not protected
2585 * by RCU anymore. If the caller is not within an RCU critical section and
2586 * does not hold the iothread lock, it must have other means of protecting the
2587 * pointer, such as a reference to the region that includes the incoming
2588 * ram_addr_t.
2590 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2591 ram_addr_t *offset)
2593 RAMBlock *block;
2594 uint8_t *host = ptr;
2596 if (xen_enabled()) {
2597 ram_addr_t ram_addr;
2598 rcu_read_lock();
2599 ram_addr = xen_ram_addr_from_mapcache(ptr);
2600 block = qemu_get_ram_block(ram_addr);
2601 if (block) {
2602 *offset = ram_addr - block->offset;
2604 rcu_read_unlock();
2605 return block;
2608 rcu_read_lock();
2609 block = atomic_rcu_read(&ram_list.mru_block);
2610 if (block && block->host && host - block->host < block->max_length) {
2611 goto found;
2614 RAMBLOCK_FOREACH(block) {
2615 /* This case append when the block is not mapped. */
2616 if (block->host == NULL) {
2617 continue;
2619 if (host - block->host < block->max_length) {
2620 goto found;
2624 rcu_read_unlock();
2625 return NULL;
2627 found:
2628 *offset = (host - block->host);
2629 if (round_offset) {
2630 *offset &= TARGET_PAGE_MASK;
2632 rcu_read_unlock();
2633 return block;
2637 * Finds the named RAMBlock
2639 * name: The name of RAMBlock to find
2641 * Returns: RAMBlock (or NULL if not found)
2643 RAMBlock *qemu_ram_block_by_name(const char *name)
2645 RAMBlock *block;
2647 RAMBLOCK_FOREACH(block) {
2648 if (!strcmp(name, block->idstr)) {
2649 return block;
2653 return NULL;
2656 /* Some of the softmmu routines need to translate from a host pointer
2657 (typically a TLB entry) back to a ram offset. */
2658 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2660 RAMBlock *block;
2661 ram_addr_t offset;
2663 block = qemu_ram_block_from_host(ptr, false, &offset);
2664 if (!block) {
2665 return RAM_ADDR_INVALID;
2668 return block->offset + offset;
2671 /* Called within RCU critical section. */
2672 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2673 CPUState *cpu,
2674 vaddr mem_vaddr,
2675 ram_addr_t ram_addr,
2676 unsigned size)
2678 ndi->cpu = cpu;
2679 ndi->ram_addr = ram_addr;
2680 ndi->mem_vaddr = mem_vaddr;
2681 ndi->size = size;
2682 ndi->pages = NULL;
2684 assert(tcg_enabled());
2685 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2686 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2687 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2691 /* Called within RCU critical section. */
2692 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2694 if (ndi->pages) {
2695 assert(tcg_enabled());
2696 page_collection_unlock(ndi->pages);
2697 ndi->pages = NULL;
2700 /* Set both VGA and migration bits for simplicity and to remove
2701 * the notdirty callback faster.
2703 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2704 DIRTY_CLIENTS_NOCODE);
2705 /* we remove the notdirty callback only if the code has been
2706 flushed */
2707 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2708 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2712 /* Called within RCU critical section. */
2713 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2714 uint64_t val, unsigned size)
2716 NotDirtyInfo ndi;
2718 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2719 ram_addr, size);
2721 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2722 memory_notdirty_write_complete(&ndi);
2725 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2726 unsigned size, bool is_write,
2727 MemTxAttrs attrs)
2729 return is_write;
2732 static const MemoryRegionOps notdirty_mem_ops = {
2733 .write = notdirty_mem_write,
2734 .valid.accepts = notdirty_mem_accepts,
2735 .endianness = DEVICE_NATIVE_ENDIAN,
2736 .valid = {
2737 .min_access_size = 1,
2738 .max_access_size = 8,
2739 .unaligned = false,
2741 .impl = {
2742 .min_access_size = 1,
2743 .max_access_size = 8,
2744 .unaligned = false,
2748 /* Generate a debug exception if a watchpoint has been hit. */
2749 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2751 CPUState *cpu = current_cpu;
2752 CPUClass *cc = CPU_GET_CLASS(cpu);
2753 target_ulong vaddr;
2754 CPUWatchpoint *wp;
2756 assert(tcg_enabled());
2757 if (cpu->watchpoint_hit) {
2758 /* We re-entered the check after replacing the TB. Now raise
2759 * the debug interrupt so that is will trigger after the
2760 * current instruction. */
2761 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2762 return;
2764 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2765 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2766 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2767 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2768 && (wp->flags & flags)) {
2769 if (flags == BP_MEM_READ) {
2770 wp->flags |= BP_WATCHPOINT_HIT_READ;
2771 } else {
2772 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2774 wp->hitaddr = vaddr;
2775 wp->hitattrs = attrs;
2776 if (!cpu->watchpoint_hit) {
2777 if (wp->flags & BP_CPU &&
2778 !cc->debug_check_watchpoint(cpu, wp)) {
2779 wp->flags &= ~BP_WATCHPOINT_HIT;
2780 continue;
2782 cpu->watchpoint_hit = wp;
2784 mmap_lock();
2785 tb_check_watchpoint(cpu);
2786 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2787 cpu->exception_index = EXCP_DEBUG;
2788 mmap_unlock();
2789 cpu_loop_exit(cpu);
2790 } else {
2791 /* Force execution of one insn next time. */
2792 cpu->cflags_next_tb = 1 | curr_cflags();
2793 mmap_unlock();
2794 cpu_loop_exit_noexc(cpu);
2797 } else {
2798 wp->flags &= ~BP_WATCHPOINT_HIT;
2803 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2804 so these check for a hit then pass through to the normal out-of-line
2805 phys routines. */
2806 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2807 unsigned size, MemTxAttrs attrs)
2809 MemTxResult res;
2810 uint64_t data;
2811 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2812 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2814 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2815 switch (size) {
2816 case 1:
2817 data = address_space_ldub(as, addr, attrs, &res);
2818 break;
2819 case 2:
2820 data = address_space_lduw(as, addr, attrs, &res);
2821 break;
2822 case 4:
2823 data = address_space_ldl(as, addr, attrs, &res);
2824 break;
2825 case 8:
2826 data = address_space_ldq(as, addr, attrs, &res);
2827 break;
2828 default: abort();
2830 *pdata = data;
2831 return res;
2834 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2835 uint64_t val, unsigned size,
2836 MemTxAttrs attrs)
2838 MemTxResult res;
2839 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2840 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2842 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2843 switch (size) {
2844 case 1:
2845 address_space_stb(as, addr, val, attrs, &res);
2846 break;
2847 case 2:
2848 address_space_stw(as, addr, val, attrs, &res);
2849 break;
2850 case 4:
2851 address_space_stl(as, addr, val, attrs, &res);
2852 break;
2853 case 8:
2854 address_space_stq(as, addr, val, attrs, &res);
2855 break;
2856 default: abort();
2858 return res;
2861 static const MemoryRegionOps watch_mem_ops = {
2862 .read_with_attrs = watch_mem_read,
2863 .write_with_attrs = watch_mem_write,
2864 .endianness = DEVICE_NATIVE_ENDIAN,
2865 .valid = {
2866 .min_access_size = 1,
2867 .max_access_size = 8,
2868 .unaligned = false,
2870 .impl = {
2871 .min_access_size = 1,
2872 .max_access_size = 8,
2873 .unaligned = false,
2877 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2878 MemTxAttrs attrs, uint8_t *buf, int len);
2879 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2880 const uint8_t *buf, int len);
2881 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2882 bool is_write, MemTxAttrs attrs);
2884 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2885 unsigned len, MemTxAttrs attrs)
2887 subpage_t *subpage = opaque;
2888 uint8_t buf[8];
2889 MemTxResult res;
2891 #if defined(DEBUG_SUBPAGE)
2892 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2893 subpage, len, addr);
2894 #endif
2895 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2896 if (res) {
2897 return res;
2899 *data = ldn_p(buf, len);
2900 return MEMTX_OK;
2903 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2904 uint64_t value, unsigned len, MemTxAttrs attrs)
2906 subpage_t *subpage = opaque;
2907 uint8_t buf[8];
2909 #if defined(DEBUG_SUBPAGE)
2910 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2911 " value %"PRIx64"\n",
2912 __func__, subpage, len, addr, value);
2913 #endif
2914 stn_p(buf, len, value);
2915 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2918 static bool subpage_accepts(void *opaque, hwaddr addr,
2919 unsigned len, bool is_write,
2920 MemTxAttrs attrs)
2922 subpage_t *subpage = opaque;
2923 #if defined(DEBUG_SUBPAGE)
2924 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2925 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2926 #endif
2928 return flatview_access_valid(subpage->fv, addr + subpage->base,
2929 len, is_write, attrs);
2932 static const MemoryRegionOps subpage_ops = {
2933 .read_with_attrs = subpage_read,
2934 .write_with_attrs = subpage_write,
2935 .impl.min_access_size = 1,
2936 .impl.max_access_size = 8,
2937 .valid.min_access_size = 1,
2938 .valid.max_access_size = 8,
2939 .valid.accepts = subpage_accepts,
2940 .endianness = DEVICE_NATIVE_ENDIAN,
2943 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2944 uint16_t section)
2946 int idx, eidx;
2948 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2949 return -1;
2950 idx = SUBPAGE_IDX(start);
2951 eidx = SUBPAGE_IDX(end);
2952 #if defined(DEBUG_SUBPAGE)
2953 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2954 __func__, mmio, start, end, idx, eidx, section);
2955 #endif
2956 for (; idx <= eidx; idx++) {
2957 mmio->sub_section[idx] = section;
2960 return 0;
2963 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2965 subpage_t *mmio;
2967 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2968 mmio->fv = fv;
2969 mmio->base = base;
2970 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2971 NULL, TARGET_PAGE_SIZE);
2972 mmio->iomem.subpage = true;
2973 #if defined(DEBUG_SUBPAGE)
2974 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2975 mmio, base, TARGET_PAGE_SIZE);
2976 #endif
2977 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2979 return mmio;
2982 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2984 assert(fv);
2985 MemoryRegionSection section = {
2986 .fv = fv,
2987 .mr = mr,
2988 .offset_within_address_space = 0,
2989 .offset_within_region = 0,
2990 .size = int128_2_64(),
2993 return phys_section_add(map, &section);
2996 static void readonly_mem_write(void *opaque, hwaddr addr,
2997 uint64_t val, unsigned size)
2999 /* Ignore any write to ROM. */
3002 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3003 unsigned size, bool is_write,
3004 MemTxAttrs attrs)
3006 return is_write;
3009 /* This will only be used for writes, because reads are special cased
3010 * to directly access the underlying host ram.
3012 static const MemoryRegionOps readonly_mem_ops = {
3013 .write = readonly_mem_write,
3014 .valid.accepts = readonly_mem_accepts,
3015 .endianness = DEVICE_NATIVE_ENDIAN,
3016 .valid = {
3017 .min_access_size = 1,
3018 .max_access_size = 8,
3019 .unaligned = false,
3021 .impl = {
3022 .min_access_size = 1,
3023 .max_access_size = 8,
3024 .unaligned = false,
3028 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3029 hwaddr index, MemTxAttrs attrs)
3031 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3032 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3033 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3034 MemoryRegionSection *sections = d->map.sections;
3036 return &sections[index & ~TARGET_PAGE_MASK];
3039 static void io_mem_init(void)
3041 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3042 NULL, NULL, UINT64_MAX);
3043 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3044 NULL, UINT64_MAX);
3046 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3047 * which can be called without the iothread mutex.
3049 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3050 NULL, UINT64_MAX);
3051 memory_region_clear_global_locking(&io_mem_notdirty);
3053 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3054 NULL, UINT64_MAX);
3057 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3059 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3060 uint16_t n;
3062 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3063 assert(n == PHYS_SECTION_UNASSIGNED);
3064 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3065 assert(n == PHYS_SECTION_NOTDIRTY);
3066 n = dummy_section(&d->map, fv, &io_mem_rom);
3067 assert(n == PHYS_SECTION_ROM);
3068 n = dummy_section(&d->map, fv, &io_mem_watch);
3069 assert(n == PHYS_SECTION_WATCH);
3071 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3073 return d;
3076 void address_space_dispatch_free(AddressSpaceDispatch *d)
3078 phys_sections_free(&d->map);
3079 g_free(d);
3082 static void tcg_commit(MemoryListener *listener)
3084 CPUAddressSpace *cpuas;
3085 AddressSpaceDispatch *d;
3087 assert(tcg_enabled());
3088 /* since each CPU stores ram addresses in its TLB cache, we must
3089 reset the modified entries */
3090 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3091 cpu_reloading_memory_map();
3092 /* The CPU and TLB are protected by the iothread lock.
3093 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3094 * may have split the RCU critical section.
3096 d = address_space_to_dispatch(cpuas->as);
3097 atomic_rcu_set(&cpuas->memory_dispatch, d);
3098 tlb_flush(cpuas->cpu);
3101 static void memory_map_init(void)
3103 system_memory = g_malloc(sizeof(*system_memory));
3105 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3106 address_space_init(&address_space_memory, system_memory, "memory");
3108 system_io = g_malloc(sizeof(*system_io));
3109 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3110 65536);
3111 address_space_init(&address_space_io, system_io, "I/O");
3114 MemoryRegion *get_system_memory(void)
3116 return system_memory;
3119 MemoryRegion *get_system_io(void)
3121 return system_io;
3124 #endif /* !defined(CONFIG_USER_ONLY) */
3126 /* physical memory access (slow version, mainly for debug) */
3127 #if defined(CONFIG_USER_ONLY)
3128 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3129 uint8_t *buf, int len, int is_write)
3131 int l, flags;
3132 target_ulong page;
3133 void * p;
3135 while (len > 0) {
3136 page = addr & TARGET_PAGE_MASK;
3137 l = (page + TARGET_PAGE_SIZE) - addr;
3138 if (l > len)
3139 l = len;
3140 flags = page_get_flags(page);
3141 if (!(flags & PAGE_VALID))
3142 return -1;
3143 if (is_write) {
3144 if (!(flags & PAGE_WRITE))
3145 return -1;
3146 /* XXX: this code should not depend on lock_user */
3147 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3148 return -1;
3149 memcpy(p, buf, l);
3150 unlock_user(p, addr, l);
3151 } else {
3152 if (!(flags & PAGE_READ))
3153 return -1;
3154 /* XXX: this code should not depend on lock_user */
3155 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3156 return -1;
3157 memcpy(buf, p, l);
3158 unlock_user(p, addr, 0);
3160 len -= l;
3161 buf += l;
3162 addr += l;
3164 return 0;
3167 #else
3169 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3170 hwaddr length)
3172 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3173 addr += memory_region_get_ram_addr(mr);
3175 /* No early return if dirty_log_mask is or becomes 0, because
3176 * cpu_physical_memory_set_dirty_range will still call
3177 * xen_modified_memory.
3179 if (dirty_log_mask) {
3180 dirty_log_mask =
3181 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3183 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3184 assert(tcg_enabled());
3185 tb_invalidate_phys_range(addr, addr + length);
3186 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3188 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3191 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3193 unsigned access_size_max = mr->ops->valid.max_access_size;
3195 /* Regions are assumed to support 1-4 byte accesses unless
3196 otherwise specified. */
3197 if (access_size_max == 0) {
3198 access_size_max = 4;
3201 /* Bound the maximum access by the alignment of the address. */
3202 if (!mr->ops->impl.unaligned) {
3203 unsigned align_size_max = addr & -addr;
3204 if (align_size_max != 0 && align_size_max < access_size_max) {
3205 access_size_max = align_size_max;
3209 /* Don't attempt accesses larger than the maximum. */
3210 if (l > access_size_max) {
3211 l = access_size_max;
3213 l = pow2floor(l);
3215 return l;
3218 static bool prepare_mmio_access(MemoryRegion *mr)
3220 bool unlocked = !qemu_mutex_iothread_locked();
3221 bool release_lock = false;
3223 if (unlocked && mr->global_locking) {
3224 qemu_mutex_lock_iothread();
3225 unlocked = false;
3226 release_lock = true;
3228 if (mr->flush_coalesced_mmio) {
3229 if (unlocked) {
3230 qemu_mutex_lock_iothread();
3232 qemu_flush_coalesced_mmio_buffer();
3233 if (unlocked) {
3234 qemu_mutex_unlock_iothread();
3238 return release_lock;
3241 /* Called within RCU critical section. */
3242 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3243 MemTxAttrs attrs,
3244 const uint8_t *buf,
3245 int len, hwaddr addr1,
3246 hwaddr l, MemoryRegion *mr)
3248 uint8_t *ptr;
3249 uint64_t val;
3250 MemTxResult result = MEMTX_OK;
3251 bool release_lock = false;
3253 for (;;) {
3254 if (!memory_access_is_direct(mr, true)) {
3255 release_lock |= prepare_mmio_access(mr);
3256 l = memory_access_size(mr, l, addr1);
3257 /* XXX: could force current_cpu to NULL to avoid
3258 potential bugs */
3259 val = ldn_p(buf, l);
3260 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3261 } else {
3262 /* RAM case */
3263 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3264 memcpy(ptr, buf, l);
3265 invalidate_and_set_dirty(mr, addr1, l);
3268 if (release_lock) {
3269 qemu_mutex_unlock_iothread();
3270 release_lock = false;
3273 len -= l;
3274 buf += l;
3275 addr += l;
3277 if (!len) {
3278 break;
3281 l = len;
3282 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3285 return result;
3288 /* Called from RCU critical section. */
3289 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3290 const uint8_t *buf, int len)
3292 hwaddr l;
3293 hwaddr addr1;
3294 MemoryRegion *mr;
3295 MemTxResult result = MEMTX_OK;
3297 l = len;
3298 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3299 result = flatview_write_continue(fv, addr, attrs, buf, len,
3300 addr1, l, mr);
3302 return result;
3305 /* Called within RCU critical section. */
3306 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3307 MemTxAttrs attrs, uint8_t *buf,
3308 int len, hwaddr addr1, hwaddr l,
3309 MemoryRegion *mr)
3311 uint8_t *ptr;
3312 uint64_t val;
3313 MemTxResult result = MEMTX_OK;
3314 bool release_lock = false;
3316 for (;;) {
3317 if (!memory_access_is_direct(mr, false)) {
3318 /* I/O case */
3319 release_lock |= prepare_mmio_access(mr);
3320 l = memory_access_size(mr, l, addr1);
3321 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3322 stn_p(buf, l, val);
3323 } else {
3324 /* RAM case */
3325 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3326 memcpy(buf, ptr, l);
3329 if (release_lock) {
3330 qemu_mutex_unlock_iothread();
3331 release_lock = false;
3334 len -= l;
3335 buf += l;
3336 addr += l;
3338 if (!len) {
3339 break;
3342 l = len;
3343 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3346 return result;
3349 /* Called from RCU critical section. */
3350 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3351 MemTxAttrs attrs, uint8_t *buf, int len)
3353 hwaddr l;
3354 hwaddr addr1;
3355 MemoryRegion *mr;
3357 l = len;
3358 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3359 return flatview_read_continue(fv, addr, attrs, buf, len,
3360 addr1, l, mr);
3363 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3364 MemTxAttrs attrs, uint8_t *buf, int len)
3366 MemTxResult result = MEMTX_OK;
3367 FlatView *fv;
3369 if (len > 0) {
3370 rcu_read_lock();
3371 fv = address_space_to_flatview(as);
3372 result = flatview_read(fv, addr, attrs, buf, len);
3373 rcu_read_unlock();
3376 return result;
3379 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3380 MemTxAttrs attrs,
3381 const uint8_t *buf, int len)
3383 MemTxResult result = MEMTX_OK;
3384 FlatView *fv;
3386 if (len > 0) {
3387 rcu_read_lock();
3388 fv = address_space_to_flatview(as);
3389 result = flatview_write(fv, addr, attrs, buf, len);
3390 rcu_read_unlock();
3393 return result;
3396 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3397 uint8_t *buf, int len, bool is_write)
3399 if (is_write) {
3400 return address_space_write(as, addr, attrs, buf, len);
3401 } else {
3402 return address_space_read_full(as, addr, attrs, buf, len);
3406 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3407 int len, int is_write)
3409 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3410 buf, len, is_write);
3413 enum write_rom_type {
3414 WRITE_DATA,
3415 FLUSH_CACHE,
3418 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3419 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3421 hwaddr l;
3422 uint8_t *ptr;
3423 hwaddr addr1;
3424 MemoryRegion *mr;
3426 rcu_read_lock();
3427 while (len > 0) {
3428 l = len;
3429 mr = address_space_translate(as, addr, &addr1, &l, true,
3430 MEMTXATTRS_UNSPECIFIED);
3432 if (!(memory_region_is_ram(mr) ||
3433 memory_region_is_romd(mr))) {
3434 l = memory_access_size(mr, l, addr1);
3435 } else {
3436 /* ROM/RAM case */
3437 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3438 switch (type) {
3439 case WRITE_DATA:
3440 memcpy(ptr, buf, l);
3441 invalidate_and_set_dirty(mr, addr1, l);
3442 break;
3443 case FLUSH_CACHE:
3444 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3445 break;
3448 len -= l;
3449 buf += l;
3450 addr += l;
3452 rcu_read_unlock();
3455 /* used for ROM loading : can write in RAM and ROM */
3456 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3457 const uint8_t *buf, int len)
3459 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3462 void cpu_flush_icache_range(hwaddr start, int len)
3465 * This function should do the same thing as an icache flush that was
3466 * triggered from within the guest. For TCG we are always cache coherent,
3467 * so there is no need to flush anything. For KVM / Xen we need to flush
3468 * the host's instruction cache at least.
3470 if (tcg_enabled()) {
3471 return;
3474 cpu_physical_memory_write_rom_internal(&address_space_memory,
3475 start, NULL, len, FLUSH_CACHE);
3478 typedef struct {
3479 MemoryRegion *mr;
3480 void *buffer;
3481 hwaddr addr;
3482 hwaddr len;
3483 bool in_use;
3484 } BounceBuffer;
3486 static BounceBuffer bounce;
3488 typedef struct MapClient {
3489 QEMUBH *bh;
3490 QLIST_ENTRY(MapClient) link;
3491 } MapClient;
3493 QemuMutex map_client_list_lock;
3494 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3495 = QLIST_HEAD_INITIALIZER(map_client_list);
3497 static void cpu_unregister_map_client_do(MapClient *client)
3499 QLIST_REMOVE(client, link);
3500 g_free(client);
3503 static void cpu_notify_map_clients_locked(void)
3505 MapClient *client;
3507 while (!QLIST_EMPTY(&map_client_list)) {
3508 client = QLIST_FIRST(&map_client_list);
3509 qemu_bh_schedule(client->bh);
3510 cpu_unregister_map_client_do(client);
3514 void cpu_register_map_client(QEMUBH *bh)
3516 MapClient *client = g_malloc(sizeof(*client));
3518 qemu_mutex_lock(&map_client_list_lock);
3519 client->bh = bh;
3520 QLIST_INSERT_HEAD(&map_client_list, client, link);
3521 if (!atomic_read(&bounce.in_use)) {
3522 cpu_notify_map_clients_locked();
3524 qemu_mutex_unlock(&map_client_list_lock);
3527 void cpu_exec_init_all(void)
3529 qemu_mutex_init(&ram_list.mutex);
3530 /* The data structures we set up here depend on knowing the page size,
3531 * so no more changes can be made after this point.
3532 * In an ideal world, nothing we did before we had finished the
3533 * machine setup would care about the target page size, and we could
3534 * do this much later, rather than requiring board models to state
3535 * up front what their requirements are.
3537 finalize_target_page_bits();
3538 io_mem_init();
3539 memory_map_init();
3540 qemu_mutex_init(&map_client_list_lock);
3543 void cpu_unregister_map_client(QEMUBH *bh)
3545 MapClient *client;
3547 qemu_mutex_lock(&map_client_list_lock);
3548 QLIST_FOREACH(client, &map_client_list, link) {
3549 if (client->bh == bh) {
3550 cpu_unregister_map_client_do(client);
3551 break;
3554 qemu_mutex_unlock(&map_client_list_lock);
3557 static void cpu_notify_map_clients(void)
3559 qemu_mutex_lock(&map_client_list_lock);
3560 cpu_notify_map_clients_locked();
3561 qemu_mutex_unlock(&map_client_list_lock);
3564 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3565 bool is_write, MemTxAttrs attrs)
3567 MemoryRegion *mr;
3568 hwaddr l, xlat;
3570 while (len > 0) {
3571 l = len;
3572 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3573 if (!memory_access_is_direct(mr, is_write)) {
3574 l = memory_access_size(mr, l, addr);
3575 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3576 return false;
3580 len -= l;
3581 addr += l;
3583 return true;
3586 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3587 int len, bool is_write,
3588 MemTxAttrs attrs)
3590 FlatView *fv;
3591 bool result;
3593 rcu_read_lock();
3594 fv = address_space_to_flatview(as);
3595 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3596 rcu_read_unlock();
3597 return result;
3600 static hwaddr
3601 flatview_extend_translation(FlatView *fv, hwaddr addr,
3602 hwaddr target_len,
3603 MemoryRegion *mr, hwaddr base, hwaddr len,
3604 bool is_write, MemTxAttrs attrs)
3606 hwaddr done = 0;
3607 hwaddr xlat;
3608 MemoryRegion *this_mr;
3610 for (;;) {
3611 target_len -= len;
3612 addr += len;
3613 done += len;
3614 if (target_len == 0) {
3615 return done;
3618 len = target_len;
3619 this_mr = flatview_translate(fv, addr, &xlat,
3620 &len, is_write, attrs);
3621 if (this_mr != mr || xlat != base + done) {
3622 return done;
3627 /* Map a physical memory region into a host virtual address.
3628 * May map a subset of the requested range, given by and returned in *plen.
3629 * May return NULL if resources needed to perform the mapping are exhausted.
3630 * Use only for reads OR writes - not for read-modify-write operations.
3631 * Use cpu_register_map_client() to know when retrying the map operation is
3632 * likely to succeed.
3634 void *address_space_map(AddressSpace *as,
3635 hwaddr addr,
3636 hwaddr *plen,
3637 bool is_write,
3638 MemTxAttrs attrs)
3640 hwaddr len = *plen;
3641 hwaddr l, xlat;
3642 MemoryRegion *mr;
3643 void *ptr;
3644 FlatView *fv;
3646 if (len == 0) {
3647 return NULL;
3650 l = len;
3651 rcu_read_lock();
3652 fv = address_space_to_flatview(as);
3653 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3655 if (!memory_access_is_direct(mr, is_write)) {
3656 if (atomic_xchg(&bounce.in_use, true)) {
3657 rcu_read_unlock();
3658 return NULL;
3660 /* Avoid unbounded allocations */
3661 l = MIN(l, TARGET_PAGE_SIZE);
3662 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3663 bounce.addr = addr;
3664 bounce.len = l;
3666 memory_region_ref(mr);
3667 bounce.mr = mr;
3668 if (!is_write) {
3669 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3670 bounce.buffer, l);
3673 rcu_read_unlock();
3674 *plen = l;
3675 return bounce.buffer;
3679 memory_region_ref(mr);
3680 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3681 l, is_write, attrs);
3682 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3683 rcu_read_unlock();
3685 return ptr;
3688 /* Unmaps a memory region previously mapped by address_space_map().
3689 * Will also mark the memory as dirty if is_write == 1. access_len gives
3690 * the amount of memory that was actually read or written by the caller.
3692 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3693 int is_write, hwaddr access_len)
3695 if (buffer != bounce.buffer) {
3696 MemoryRegion *mr;
3697 ram_addr_t addr1;
3699 mr = memory_region_from_host(buffer, &addr1);
3700 assert(mr != NULL);
3701 if (is_write) {
3702 invalidate_and_set_dirty(mr, addr1, access_len);
3704 if (xen_enabled()) {
3705 xen_invalidate_map_cache_entry(buffer);
3707 memory_region_unref(mr);
3708 return;
3710 if (is_write) {
3711 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3712 bounce.buffer, access_len);
3714 qemu_vfree(bounce.buffer);
3715 bounce.buffer = NULL;
3716 memory_region_unref(bounce.mr);
3717 atomic_mb_set(&bounce.in_use, false);
3718 cpu_notify_map_clients();
3721 void *cpu_physical_memory_map(hwaddr addr,
3722 hwaddr *plen,
3723 int is_write)
3725 return address_space_map(&address_space_memory, addr, plen, is_write,
3726 MEMTXATTRS_UNSPECIFIED);
3729 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3730 int is_write, hwaddr access_len)
3732 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3735 #define ARG1_DECL AddressSpace *as
3736 #define ARG1 as
3737 #define SUFFIX
3738 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3739 #define RCU_READ_LOCK(...) rcu_read_lock()
3740 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3741 #include "memory_ldst.inc.c"
3743 int64_t address_space_cache_init(MemoryRegionCache *cache,
3744 AddressSpace *as,
3745 hwaddr addr,
3746 hwaddr len,
3747 bool is_write)
3749 AddressSpaceDispatch *d;
3750 hwaddr l;
3751 MemoryRegion *mr;
3753 assert(len > 0);
3755 l = len;
3756 cache->fv = address_space_get_flatview(as);
3757 d = flatview_to_dispatch(cache->fv);
3758 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3760 mr = cache->mrs.mr;
3761 memory_region_ref(mr);
3762 if (memory_access_is_direct(mr, is_write)) {
3763 /* We don't care about the memory attributes here as we're only
3764 * doing this if we found actual RAM, which behaves the same
3765 * regardless of attributes; so UNSPECIFIED is fine.
3767 l = flatview_extend_translation(cache->fv, addr, len, mr,
3768 cache->xlat, l, is_write,
3769 MEMTXATTRS_UNSPECIFIED);
3770 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3771 } else {
3772 cache->ptr = NULL;
3775 cache->len = l;
3776 cache->is_write = is_write;
3777 return l;
3780 void address_space_cache_invalidate(MemoryRegionCache *cache,
3781 hwaddr addr,
3782 hwaddr access_len)
3784 assert(cache->is_write);
3785 if (likely(cache->ptr)) {
3786 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3790 void address_space_cache_destroy(MemoryRegionCache *cache)
3792 if (!cache->mrs.mr) {
3793 return;
3796 if (xen_enabled()) {
3797 xen_invalidate_map_cache_entry(cache->ptr);
3799 memory_region_unref(cache->mrs.mr);
3800 flatview_unref(cache->fv);
3801 cache->mrs.mr = NULL;
3802 cache->fv = NULL;
3805 /* Called from RCU critical section. This function has the same
3806 * semantics as address_space_translate, but it only works on a
3807 * predefined range of a MemoryRegion that was mapped with
3808 * address_space_cache_init.
3810 static inline MemoryRegion *address_space_translate_cached(
3811 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3812 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3814 MemoryRegionSection section;
3815 MemoryRegion *mr;
3816 IOMMUMemoryRegion *iommu_mr;
3817 AddressSpace *target_as;
3819 assert(!cache->ptr);
3820 *xlat = addr + cache->xlat;
3822 mr = cache->mrs.mr;
3823 iommu_mr = memory_region_get_iommu(mr);
3824 if (!iommu_mr) {
3825 /* MMIO region. */
3826 return mr;
3829 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3830 NULL, is_write, true,
3831 &target_as, attrs);
3832 return section.mr;
3835 /* Called from RCU critical section. address_space_read_cached uses this
3836 * out of line function when the target is an MMIO or IOMMU region.
3838 void
3839 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3840 void *buf, int len)
3842 hwaddr addr1, l;
3843 MemoryRegion *mr;
3845 l = len;
3846 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3847 MEMTXATTRS_UNSPECIFIED);
3848 flatview_read_continue(cache->fv,
3849 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3850 addr1, l, mr);
3853 /* Called from RCU critical section. address_space_write_cached uses this
3854 * out of line function when the target is an MMIO or IOMMU region.
3856 void
3857 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3858 const void *buf, int len)
3860 hwaddr addr1, l;
3861 MemoryRegion *mr;
3863 l = len;
3864 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3865 MEMTXATTRS_UNSPECIFIED);
3866 flatview_write_continue(cache->fv,
3867 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3868 addr1, l, mr);
3871 #define ARG1_DECL MemoryRegionCache *cache
3872 #define ARG1 cache
3873 #define SUFFIX _cached_slow
3874 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3875 #define RCU_READ_LOCK() ((void)0)
3876 #define RCU_READ_UNLOCK() ((void)0)
3877 #include "memory_ldst.inc.c"
3879 /* virtual memory access for debug (includes writing to ROM) */
3880 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3881 uint8_t *buf, int len, int is_write)
3883 int l;
3884 hwaddr phys_addr;
3885 target_ulong page;
3887 cpu_synchronize_state(cpu);
3888 while (len > 0) {
3889 int asidx;
3890 MemTxAttrs attrs;
3892 page = addr & TARGET_PAGE_MASK;
3893 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3894 asidx = cpu_asidx_from_attrs(cpu, attrs);
3895 /* if no physical page mapped, return an error */
3896 if (phys_addr == -1)
3897 return -1;
3898 l = (page + TARGET_PAGE_SIZE) - addr;
3899 if (l > len)
3900 l = len;
3901 phys_addr += (addr & ~TARGET_PAGE_MASK);
3902 if (is_write) {
3903 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3904 phys_addr, buf, l);
3905 } else {
3906 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3907 MEMTXATTRS_UNSPECIFIED,
3908 buf, l, 0);
3910 len -= l;
3911 buf += l;
3912 addr += l;
3914 return 0;
3918 * Allows code that needs to deal with migration bitmaps etc to still be built
3919 * target independent.
3921 size_t qemu_target_page_size(void)
3923 return TARGET_PAGE_SIZE;
3926 int qemu_target_page_bits(void)
3928 return TARGET_PAGE_BITS;
3931 int qemu_target_page_bits_min(void)
3933 return TARGET_PAGE_BITS_MIN;
3935 #endif
3938 * A helper function for the _utterly broken_ virtio device model to find out if
3939 * it's running on a big endian machine. Don't do this at home kids!
3941 bool target_words_bigendian(void);
3942 bool target_words_bigendian(void)
3944 #if defined(TARGET_WORDS_BIGENDIAN)
3945 return true;
3946 #else
3947 return false;
3948 #endif
3951 #ifndef CONFIG_USER_ONLY
3952 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3954 MemoryRegion*mr;
3955 hwaddr l = 1;
3956 bool res;
3958 rcu_read_lock();
3959 mr = address_space_translate(&address_space_memory,
3960 phys_addr, &phys_addr, &l, false,
3961 MEMTXATTRS_UNSPECIFIED);
3963 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3964 rcu_read_unlock();
3965 return res;
3968 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3970 RAMBlock *block;
3971 int ret = 0;
3973 rcu_read_lock();
3974 RAMBLOCK_FOREACH(block) {
3975 ret = func(block->idstr, block->host, block->offset,
3976 block->used_length, opaque);
3977 if (ret) {
3978 break;
3981 rcu_read_unlock();
3982 return ret;
3985 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3987 RAMBlock *block;
3988 int ret = 0;
3990 rcu_read_lock();
3991 RAMBLOCK_FOREACH(block) {
3992 if (!qemu_ram_is_migratable(block)) {
3993 continue;
3995 ret = func(block->idstr, block->host, block->offset,
3996 block->used_length, opaque);
3997 if (ret) {
3998 break;
4001 rcu_read_unlock();
4002 return ret;
4006 * Unmap pages of memory from start to start+length such that
4007 * they a) read as 0, b) Trigger whatever fault mechanism
4008 * the OS provides for postcopy.
4009 * The pages must be unmapped by the end of the function.
4010 * Returns: 0 on success, none-0 on failure
4013 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4015 int ret = -1;
4017 uint8_t *host_startaddr = rb->host + start;
4019 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4020 error_report("ram_block_discard_range: Unaligned start address: %p",
4021 host_startaddr);
4022 goto err;
4025 if ((start + length) <= rb->used_length) {
4026 bool need_madvise, need_fallocate;
4027 uint8_t *host_endaddr = host_startaddr + length;
4028 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4029 error_report("ram_block_discard_range: Unaligned end address: %p",
4030 host_endaddr);
4031 goto err;
4034 errno = ENOTSUP; /* If we are missing MADVISE etc */
4036 /* The logic here is messy;
4037 * madvise DONTNEED fails for hugepages
4038 * fallocate works on hugepages and shmem
4040 need_madvise = (rb->page_size == qemu_host_page_size);
4041 need_fallocate = rb->fd != -1;
4042 if (need_fallocate) {
4043 /* For a file, this causes the area of the file to be zero'd
4044 * if read, and for hugetlbfs also causes it to be unmapped
4045 * so a userfault will trigger.
4047 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4048 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4049 start, length);
4050 if (ret) {
4051 ret = -errno;
4052 error_report("ram_block_discard_range: Failed to fallocate "
4053 "%s:%" PRIx64 " +%zx (%d)",
4054 rb->idstr, start, length, ret);
4055 goto err;
4057 #else
4058 ret = -ENOSYS;
4059 error_report("ram_block_discard_range: fallocate not available/file"
4060 "%s:%" PRIx64 " +%zx (%d)",
4061 rb->idstr, start, length, ret);
4062 goto err;
4063 #endif
4065 if (need_madvise) {
4066 /* For normal RAM this causes it to be unmapped,
4067 * for shared memory it causes the local mapping to disappear
4068 * and to fall back on the file contents (which we just
4069 * fallocate'd away).
4071 #if defined(CONFIG_MADVISE)
4072 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4073 if (ret) {
4074 ret = -errno;
4075 error_report("ram_block_discard_range: Failed to discard range "
4076 "%s:%" PRIx64 " +%zx (%d)",
4077 rb->idstr, start, length, ret);
4078 goto err;
4080 #else
4081 ret = -ENOSYS;
4082 error_report("ram_block_discard_range: MADVISE not available"
4083 "%s:%" PRIx64 " +%zx (%d)",
4084 rb->idstr, start, length, ret);
4085 goto err;
4086 #endif
4088 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4089 need_madvise, need_fallocate, ret);
4090 } else {
4091 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4092 "/%zx/" RAM_ADDR_FMT")",
4093 rb->idstr, start, length, rb->used_length);
4096 err:
4097 return ret;
4100 #endif
4102 void page_size_init(void)
4104 /* NOTE: we can always suppose that qemu_host_page_size >=
4105 TARGET_PAGE_SIZE */
4106 if (qemu_host_page_size == 0) {
4107 qemu_host_page_size = qemu_real_host_page_size;
4109 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4110 qemu_host_page_size = TARGET_PAGE_SIZE;
4112 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4115 #if !defined(CONFIG_USER_ONLY)
4117 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4118 int start, int end, int skip, int ptr)
4120 if (start == end - 1) {
4121 mon(f, "\t%3d ", start);
4122 } else {
4123 mon(f, "\t%3d..%-3d ", start, end - 1);
4125 mon(f, " skip=%d ", skip);
4126 if (ptr == PHYS_MAP_NODE_NIL) {
4127 mon(f, " ptr=NIL");
4128 } else if (!skip) {
4129 mon(f, " ptr=#%d", ptr);
4130 } else {
4131 mon(f, " ptr=[%d]", ptr);
4133 mon(f, "\n");
4136 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4137 int128_sub((size), int128_one())) : 0)
4139 void mtree_print_dispatch(fprintf_function mon, void *f,
4140 AddressSpaceDispatch *d, MemoryRegion *root)
4142 int i;
4144 mon(f, " Dispatch\n");
4145 mon(f, " Physical sections\n");
4147 for (i = 0; i < d->map.sections_nb; ++i) {
4148 MemoryRegionSection *s = d->map.sections + i;
4149 const char *names[] = { " [unassigned]", " [not dirty]",
4150 " [ROM]", " [watch]" };
4152 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4154 s->offset_within_address_space,
4155 s->offset_within_address_space + MR_SIZE(s->mr->size),
4156 s->mr->name ? s->mr->name : "(noname)",
4157 i < ARRAY_SIZE(names) ? names[i] : "",
4158 s->mr == root ? " [ROOT]" : "",
4159 s == d->mru_section ? " [MRU]" : "",
4160 s->mr->is_iommu ? " [iommu]" : "");
4162 if (s->mr->alias) {
4163 mon(f, " alias=%s", s->mr->alias->name ?
4164 s->mr->alias->name : "noname");
4166 mon(f, "\n");
4169 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4170 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4171 for (i = 0; i < d->map.nodes_nb; ++i) {
4172 int j, jprev;
4173 PhysPageEntry prev;
4174 Node *n = d->map.nodes + i;
4176 mon(f, " [%d]\n", i);
4178 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4179 PhysPageEntry *pe = *n + j;
4181 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4182 continue;
4185 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4187 jprev = j;
4188 prev = *pe;
4191 if (jprev != ARRAY_SIZE(*n)) {
4192 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4197 #endif