kvm-all: drop kvm_setup_guest_memory
[qemu/ar7.git] / cpus.c
blob030843132f3841e009fa207e307e94fe53ad1904
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "monitor/monitor.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qemu/error-report.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/block-backend.h"
34 #include "exec/gdbstub.h"
35 #include "sysemu/dma.h"
36 #include "sysemu/kvm.h"
37 #include "qmp-commands.h"
38 #include "exec/exec-all.h"
40 #include "qemu/thread.h"
41 #include "sysemu/cpus.h"
42 #include "sysemu/qtest.h"
43 #include "qemu/main-loop.h"
44 #include "qemu/bitmap.h"
45 #include "qemu/seqlock.h"
46 #include "qapi-event.h"
47 #include "hw/nmi.h"
48 #include "sysemu/replay.h"
50 #ifndef _WIN32
51 #include "qemu/compatfd.h"
52 #endif
54 #ifdef CONFIG_LINUX
56 #include <sys/prctl.h>
58 #ifndef PR_MCE_KILL
59 #define PR_MCE_KILL 33
60 #endif
62 #ifndef PR_MCE_KILL_SET
63 #define PR_MCE_KILL_SET 1
64 #endif
66 #ifndef PR_MCE_KILL_EARLY
67 #define PR_MCE_KILL_EARLY 1
68 #endif
70 #endif /* CONFIG_LINUX */
72 static CPUState *next_cpu;
73 int64_t max_delay;
74 int64_t max_advance;
76 /* vcpu throttling controls */
77 static QEMUTimer *throttle_timer;
78 static unsigned int throttle_percentage;
80 #define CPU_THROTTLE_PCT_MIN 1
81 #define CPU_THROTTLE_PCT_MAX 99
82 #define CPU_THROTTLE_TIMESLICE_NS 10000000
84 bool cpu_is_stopped(CPUState *cpu)
86 return cpu->stopped || !runstate_is_running();
89 static bool cpu_thread_is_idle(CPUState *cpu)
91 if (cpu->stop || cpu->queued_work_first) {
92 return false;
94 if (cpu_is_stopped(cpu)) {
95 return true;
97 if (!cpu->halted || cpu_has_work(cpu) ||
98 kvm_halt_in_kernel()) {
99 return false;
101 return true;
104 static bool all_cpu_threads_idle(void)
106 CPUState *cpu;
108 CPU_FOREACH(cpu) {
109 if (!cpu_thread_is_idle(cpu)) {
110 return false;
113 return true;
116 /***********************************************************/
117 /* guest cycle counter */
119 /* Protected by TimersState seqlock */
121 static bool icount_sleep = true;
122 static int64_t vm_clock_warp_start = -1;
123 /* Conversion factor from emulated instructions to virtual clock ticks. */
124 static int icount_time_shift;
125 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
126 #define MAX_ICOUNT_SHIFT 10
128 static QEMUTimer *icount_rt_timer;
129 static QEMUTimer *icount_vm_timer;
130 static QEMUTimer *icount_warp_timer;
132 typedef struct TimersState {
133 /* Protected by BQL. */
134 int64_t cpu_ticks_prev;
135 int64_t cpu_ticks_offset;
137 /* cpu_clock_offset can be read out of BQL, so protect it with
138 * this lock.
140 QemuSeqLock vm_clock_seqlock;
141 int64_t cpu_clock_offset;
142 int32_t cpu_ticks_enabled;
143 int64_t dummy;
145 /* Compensate for varying guest execution speed. */
146 int64_t qemu_icount_bias;
147 /* Only written by TCG thread */
148 int64_t qemu_icount;
149 } TimersState;
151 static TimersState timers_state;
153 int64_t cpu_get_icount_raw(void)
155 int64_t icount;
156 CPUState *cpu = current_cpu;
158 icount = timers_state.qemu_icount;
159 if (cpu) {
160 if (!cpu->can_do_io) {
161 fprintf(stderr, "Bad icount read\n");
162 exit(1);
164 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
166 return icount;
169 /* Return the virtual CPU time, based on the instruction counter. */
170 static int64_t cpu_get_icount_locked(void)
172 int64_t icount = cpu_get_icount_raw();
173 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
176 int64_t cpu_get_icount(void)
178 int64_t icount;
179 unsigned start;
181 do {
182 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
183 icount = cpu_get_icount_locked();
184 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
186 return icount;
189 int64_t cpu_icount_to_ns(int64_t icount)
191 return icount << icount_time_shift;
194 /* return the time elapsed in VM between vm_start and vm_stop. Unless
195 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
196 * counter.
198 * Caller must hold the BQL
200 int64_t cpu_get_ticks(void)
202 int64_t ticks;
204 if (use_icount) {
205 return cpu_get_icount();
208 ticks = timers_state.cpu_ticks_offset;
209 if (timers_state.cpu_ticks_enabled) {
210 ticks += cpu_get_host_ticks();
213 if (timers_state.cpu_ticks_prev > ticks) {
214 /* Note: non increasing ticks may happen if the host uses
215 software suspend */
216 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
217 ticks = timers_state.cpu_ticks_prev;
220 timers_state.cpu_ticks_prev = ticks;
221 return ticks;
224 static int64_t cpu_get_clock_locked(void)
226 int64_t time;
228 time = timers_state.cpu_clock_offset;
229 if (timers_state.cpu_ticks_enabled) {
230 time += get_clock();
233 return time;
236 /* Return the monotonic time elapsed in VM, i.e.,
237 * the time between vm_start and vm_stop */
238 int64_t cpu_get_clock(void)
240 int64_t ti;
241 unsigned start;
243 do {
244 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
245 ti = cpu_get_clock_locked();
246 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
248 return ti;
251 /* enable cpu_get_ticks()
252 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
254 void cpu_enable_ticks(void)
256 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
257 seqlock_write_begin(&timers_state.vm_clock_seqlock);
258 if (!timers_state.cpu_ticks_enabled) {
259 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
260 timers_state.cpu_clock_offset -= get_clock();
261 timers_state.cpu_ticks_enabled = 1;
263 seqlock_write_end(&timers_state.vm_clock_seqlock);
266 /* disable cpu_get_ticks() : the clock is stopped. You must not call
267 * cpu_get_ticks() after that.
268 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
270 void cpu_disable_ticks(void)
272 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
273 seqlock_write_begin(&timers_state.vm_clock_seqlock);
274 if (timers_state.cpu_ticks_enabled) {
275 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
276 timers_state.cpu_clock_offset = cpu_get_clock_locked();
277 timers_state.cpu_ticks_enabled = 0;
279 seqlock_write_end(&timers_state.vm_clock_seqlock);
282 /* Correlation between real and virtual time is always going to be
283 fairly approximate, so ignore small variation.
284 When the guest is idle real and virtual time will be aligned in
285 the IO wait loop. */
286 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
288 static void icount_adjust(void)
290 int64_t cur_time;
291 int64_t cur_icount;
292 int64_t delta;
294 /* Protected by TimersState mutex. */
295 static int64_t last_delta;
297 /* If the VM is not running, then do nothing. */
298 if (!runstate_is_running()) {
299 return;
302 seqlock_write_begin(&timers_state.vm_clock_seqlock);
303 cur_time = cpu_get_clock_locked();
304 cur_icount = cpu_get_icount_locked();
306 delta = cur_icount - cur_time;
307 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
308 if (delta > 0
309 && last_delta + ICOUNT_WOBBLE < delta * 2
310 && icount_time_shift > 0) {
311 /* The guest is getting too far ahead. Slow time down. */
312 icount_time_shift--;
314 if (delta < 0
315 && last_delta - ICOUNT_WOBBLE > delta * 2
316 && icount_time_shift < MAX_ICOUNT_SHIFT) {
317 /* The guest is getting too far behind. Speed time up. */
318 icount_time_shift++;
320 last_delta = delta;
321 timers_state.qemu_icount_bias = cur_icount
322 - (timers_state.qemu_icount << icount_time_shift);
323 seqlock_write_end(&timers_state.vm_clock_seqlock);
326 static void icount_adjust_rt(void *opaque)
328 timer_mod(icount_rt_timer,
329 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
330 icount_adjust();
333 static void icount_adjust_vm(void *opaque)
335 timer_mod(icount_vm_timer,
336 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
337 NANOSECONDS_PER_SECOND / 10);
338 icount_adjust();
341 static int64_t qemu_icount_round(int64_t count)
343 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
346 static void icount_warp_rt(void)
348 unsigned seq;
349 int64_t warp_start;
351 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
352 * changes from -1 to another value, so the race here is okay.
354 do {
355 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
356 warp_start = vm_clock_warp_start;
357 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
359 if (warp_start == -1) {
360 return;
363 seqlock_write_begin(&timers_state.vm_clock_seqlock);
364 if (runstate_is_running()) {
365 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
366 cpu_get_clock_locked());
367 int64_t warp_delta;
369 warp_delta = clock - vm_clock_warp_start;
370 if (use_icount == 2) {
372 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
373 * far ahead of real time.
375 int64_t cur_icount = cpu_get_icount_locked();
376 int64_t delta = clock - cur_icount;
377 warp_delta = MIN(warp_delta, delta);
379 timers_state.qemu_icount_bias += warp_delta;
381 vm_clock_warp_start = -1;
382 seqlock_write_end(&timers_state.vm_clock_seqlock);
384 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
385 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
389 static void icount_timer_cb(void *opaque)
391 /* No need for a checkpoint because the timer already synchronizes
392 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
394 icount_warp_rt();
397 void qtest_clock_warp(int64_t dest)
399 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
400 AioContext *aio_context;
401 assert(qtest_enabled());
402 aio_context = qemu_get_aio_context();
403 while (clock < dest) {
404 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
405 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
407 seqlock_write_begin(&timers_state.vm_clock_seqlock);
408 timers_state.qemu_icount_bias += warp;
409 seqlock_write_end(&timers_state.vm_clock_seqlock);
411 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
412 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
413 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
415 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
418 void qemu_start_warp_timer(void)
420 int64_t clock;
421 int64_t deadline;
423 if (!use_icount) {
424 return;
427 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
428 * do not fire, so computing the deadline does not make sense.
430 if (!runstate_is_running()) {
431 return;
434 /* warp clock deterministically in record/replay mode */
435 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
436 return;
439 if (!all_cpu_threads_idle()) {
440 return;
443 if (qtest_enabled()) {
444 /* When testing, qtest commands advance icount. */
445 return;
448 /* We want to use the earliest deadline from ALL vm_clocks */
449 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
450 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
451 if (deadline < 0) {
452 static bool notified;
453 if (!icount_sleep && !notified) {
454 error_report("WARNING: icount sleep disabled and no active timers");
455 notified = true;
457 return;
460 if (deadline > 0) {
462 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
463 * sleep. Otherwise, the CPU might be waiting for a future timer
464 * interrupt to wake it up, but the interrupt never comes because
465 * the vCPU isn't running any insns and thus doesn't advance the
466 * QEMU_CLOCK_VIRTUAL.
468 if (!icount_sleep) {
470 * We never let VCPUs sleep in no sleep icount mode.
471 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
472 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
473 * It is useful when we want a deterministic execution time,
474 * isolated from host latencies.
476 seqlock_write_begin(&timers_state.vm_clock_seqlock);
477 timers_state.qemu_icount_bias += deadline;
478 seqlock_write_end(&timers_state.vm_clock_seqlock);
479 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
480 } else {
482 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
483 * "real" time, (related to the time left until the next event) has
484 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
485 * This avoids that the warps are visible externally; for example,
486 * you will not be sending network packets continuously instead of
487 * every 100ms.
489 seqlock_write_begin(&timers_state.vm_clock_seqlock);
490 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
491 vm_clock_warp_start = clock;
493 seqlock_write_end(&timers_state.vm_clock_seqlock);
494 timer_mod_anticipate(icount_warp_timer, clock + deadline);
496 } else if (deadline == 0) {
497 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
501 static void qemu_account_warp_timer(void)
503 if (!use_icount || !icount_sleep) {
504 return;
507 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
508 * do not fire, so computing the deadline does not make sense.
510 if (!runstate_is_running()) {
511 return;
514 /* warp clock deterministically in record/replay mode */
515 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
516 return;
519 timer_del(icount_warp_timer);
520 icount_warp_rt();
523 static bool icount_state_needed(void *opaque)
525 return use_icount;
529 * This is a subsection for icount migration.
531 static const VMStateDescription icount_vmstate_timers = {
532 .name = "timer/icount",
533 .version_id = 1,
534 .minimum_version_id = 1,
535 .needed = icount_state_needed,
536 .fields = (VMStateField[]) {
537 VMSTATE_INT64(qemu_icount_bias, TimersState),
538 VMSTATE_INT64(qemu_icount, TimersState),
539 VMSTATE_END_OF_LIST()
543 static const VMStateDescription vmstate_timers = {
544 .name = "timer",
545 .version_id = 2,
546 .minimum_version_id = 1,
547 .fields = (VMStateField[]) {
548 VMSTATE_INT64(cpu_ticks_offset, TimersState),
549 VMSTATE_INT64(dummy, TimersState),
550 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
551 VMSTATE_END_OF_LIST()
553 .subsections = (const VMStateDescription*[]) {
554 &icount_vmstate_timers,
555 NULL
559 static void cpu_throttle_thread(void *opaque)
561 CPUState *cpu = opaque;
562 double pct;
563 double throttle_ratio;
564 long sleeptime_ns;
566 if (!cpu_throttle_get_percentage()) {
567 return;
570 pct = (double)cpu_throttle_get_percentage()/100;
571 throttle_ratio = pct / (1 - pct);
572 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
574 qemu_mutex_unlock_iothread();
575 atomic_set(&cpu->throttle_thread_scheduled, 0);
576 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
577 qemu_mutex_lock_iothread();
580 static void cpu_throttle_timer_tick(void *opaque)
582 CPUState *cpu;
583 double pct;
585 /* Stop the timer if needed */
586 if (!cpu_throttle_get_percentage()) {
587 return;
589 CPU_FOREACH(cpu) {
590 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
591 async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
595 pct = (double)cpu_throttle_get_percentage()/100;
596 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
597 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
600 void cpu_throttle_set(int new_throttle_pct)
602 /* Ensure throttle percentage is within valid range */
603 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
604 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
606 atomic_set(&throttle_percentage, new_throttle_pct);
608 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
609 CPU_THROTTLE_TIMESLICE_NS);
612 void cpu_throttle_stop(void)
614 atomic_set(&throttle_percentage, 0);
617 bool cpu_throttle_active(void)
619 return (cpu_throttle_get_percentage() != 0);
622 int cpu_throttle_get_percentage(void)
624 return atomic_read(&throttle_percentage);
627 void cpu_ticks_init(void)
629 seqlock_init(&timers_state.vm_clock_seqlock);
630 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
631 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
632 cpu_throttle_timer_tick, NULL);
635 void configure_icount(QemuOpts *opts, Error **errp)
637 const char *option;
638 char *rem_str = NULL;
640 option = qemu_opt_get(opts, "shift");
641 if (!option) {
642 if (qemu_opt_get(opts, "align") != NULL) {
643 error_setg(errp, "Please specify shift option when using align");
645 return;
648 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
649 if (icount_sleep) {
650 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
651 icount_timer_cb, NULL);
654 icount_align_option = qemu_opt_get_bool(opts, "align", false);
656 if (icount_align_option && !icount_sleep) {
657 error_setg(errp, "align=on and sleep=off are incompatible");
659 if (strcmp(option, "auto") != 0) {
660 errno = 0;
661 icount_time_shift = strtol(option, &rem_str, 0);
662 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
663 error_setg(errp, "icount: Invalid shift value");
665 use_icount = 1;
666 return;
667 } else if (icount_align_option) {
668 error_setg(errp, "shift=auto and align=on are incompatible");
669 } else if (!icount_sleep) {
670 error_setg(errp, "shift=auto and sleep=off are incompatible");
673 use_icount = 2;
675 /* 125MIPS seems a reasonable initial guess at the guest speed.
676 It will be corrected fairly quickly anyway. */
677 icount_time_shift = 3;
679 /* Have both realtime and virtual time triggers for speed adjustment.
680 The realtime trigger catches emulated time passing too slowly,
681 the virtual time trigger catches emulated time passing too fast.
682 Realtime triggers occur even when idle, so use them less frequently
683 than VM triggers. */
684 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
685 icount_adjust_rt, NULL);
686 timer_mod(icount_rt_timer,
687 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
688 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
689 icount_adjust_vm, NULL);
690 timer_mod(icount_vm_timer,
691 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
692 NANOSECONDS_PER_SECOND / 10);
695 /***********************************************************/
696 void hw_error(const char *fmt, ...)
698 va_list ap;
699 CPUState *cpu;
701 va_start(ap, fmt);
702 fprintf(stderr, "qemu: hardware error: ");
703 vfprintf(stderr, fmt, ap);
704 fprintf(stderr, "\n");
705 CPU_FOREACH(cpu) {
706 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
707 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
709 va_end(ap);
710 abort();
713 void cpu_synchronize_all_states(void)
715 CPUState *cpu;
717 CPU_FOREACH(cpu) {
718 cpu_synchronize_state(cpu);
722 void cpu_synchronize_all_post_reset(void)
724 CPUState *cpu;
726 CPU_FOREACH(cpu) {
727 cpu_synchronize_post_reset(cpu);
731 void cpu_synchronize_all_post_init(void)
733 CPUState *cpu;
735 CPU_FOREACH(cpu) {
736 cpu_synchronize_post_init(cpu);
740 static int do_vm_stop(RunState state)
742 int ret = 0;
744 if (runstate_is_running()) {
745 cpu_disable_ticks();
746 pause_all_vcpus();
747 runstate_set(state);
748 vm_state_notify(0, state);
749 qapi_event_send_stop(&error_abort);
752 bdrv_drain_all();
753 ret = blk_flush_all();
755 return ret;
758 static bool cpu_can_run(CPUState *cpu)
760 if (cpu->stop) {
761 return false;
763 if (cpu_is_stopped(cpu)) {
764 return false;
766 return true;
769 static void cpu_handle_guest_debug(CPUState *cpu)
771 gdb_set_stop_cpu(cpu);
772 qemu_system_debug_request();
773 cpu->stopped = true;
776 #ifdef CONFIG_LINUX
777 static void sigbus_reraise(void)
779 sigset_t set;
780 struct sigaction action;
782 memset(&action, 0, sizeof(action));
783 action.sa_handler = SIG_DFL;
784 if (!sigaction(SIGBUS, &action, NULL)) {
785 raise(SIGBUS);
786 sigemptyset(&set);
787 sigaddset(&set, SIGBUS);
788 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
790 perror("Failed to re-raise SIGBUS!\n");
791 abort();
794 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
795 void *ctx)
797 if (kvm_on_sigbus(siginfo->ssi_code,
798 (void *)(intptr_t)siginfo->ssi_addr)) {
799 sigbus_reraise();
803 static void qemu_init_sigbus(void)
805 struct sigaction action;
807 memset(&action, 0, sizeof(action));
808 action.sa_flags = SA_SIGINFO;
809 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
810 sigaction(SIGBUS, &action, NULL);
812 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
815 static void qemu_kvm_eat_signals(CPUState *cpu)
817 struct timespec ts = { 0, 0 };
818 siginfo_t siginfo;
819 sigset_t waitset;
820 sigset_t chkset;
821 int r;
823 sigemptyset(&waitset);
824 sigaddset(&waitset, SIG_IPI);
825 sigaddset(&waitset, SIGBUS);
827 do {
828 r = sigtimedwait(&waitset, &siginfo, &ts);
829 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
830 perror("sigtimedwait");
831 exit(1);
834 switch (r) {
835 case SIGBUS:
836 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
837 sigbus_reraise();
839 break;
840 default:
841 break;
844 r = sigpending(&chkset);
845 if (r == -1) {
846 perror("sigpending");
847 exit(1);
849 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
852 #else /* !CONFIG_LINUX */
854 static void qemu_init_sigbus(void)
858 static void qemu_kvm_eat_signals(CPUState *cpu)
861 #endif /* !CONFIG_LINUX */
863 #ifndef _WIN32
864 static void dummy_signal(int sig)
868 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
870 int r;
871 sigset_t set;
872 struct sigaction sigact;
874 memset(&sigact, 0, sizeof(sigact));
875 sigact.sa_handler = dummy_signal;
876 sigaction(SIG_IPI, &sigact, NULL);
878 pthread_sigmask(SIG_BLOCK, NULL, &set);
879 sigdelset(&set, SIG_IPI);
880 sigdelset(&set, SIGBUS);
881 r = kvm_set_signal_mask(cpu, &set);
882 if (r) {
883 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
884 exit(1);
888 #else /* _WIN32 */
889 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
891 abort();
893 #endif /* _WIN32 */
895 static QemuMutex qemu_global_mutex;
896 static QemuCond qemu_io_proceeded_cond;
897 static unsigned iothread_requesting_mutex;
899 static QemuThread io_thread;
901 /* cpu creation */
902 static QemuCond qemu_cpu_cond;
903 /* system init */
904 static QemuCond qemu_pause_cond;
905 static QemuCond qemu_work_cond;
907 void qemu_init_cpu_loop(void)
909 qemu_init_sigbus();
910 qemu_cond_init(&qemu_cpu_cond);
911 qemu_cond_init(&qemu_pause_cond);
912 qemu_cond_init(&qemu_work_cond);
913 qemu_cond_init(&qemu_io_proceeded_cond);
914 qemu_mutex_init(&qemu_global_mutex);
916 qemu_thread_get_self(&io_thread);
919 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
921 struct qemu_work_item wi;
923 if (qemu_cpu_is_self(cpu)) {
924 func(data);
925 return;
928 wi.func = func;
929 wi.data = data;
930 wi.free = false;
932 qemu_mutex_lock(&cpu->work_mutex);
933 if (cpu->queued_work_first == NULL) {
934 cpu->queued_work_first = &wi;
935 } else {
936 cpu->queued_work_last->next = &wi;
938 cpu->queued_work_last = &wi;
939 wi.next = NULL;
940 wi.done = false;
941 qemu_mutex_unlock(&cpu->work_mutex);
943 qemu_cpu_kick(cpu);
944 while (!atomic_mb_read(&wi.done)) {
945 CPUState *self_cpu = current_cpu;
947 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
948 current_cpu = self_cpu;
952 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
954 struct qemu_work_item *wi;
956 if (qemu_cpu_is_self(cpu)) {
957 func(data);
958 return;
961 wi = g_malloc0(sizeof(struct qemu_work_item));
962 wi->func = func;
963 wi->data = data;
964 wi->free = true;
966 qemu_mutex_lock(&cpu->work_mutex);
967 if (cpu->queued_work_first == NULL) {
968 cpu->queued_work_first = wi;
969 } else {
970 cpu->queued_work_last->next = wi;
972 cpu->queued_work_last = wi;
973 wi->next = NULL;
974 wi->done = false;
975 qemu_mutex_unlock(&cpu->work_mutex);
977 qemu_cpu_kick(cpu);
980 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
982 if (kvm_destroy_vcpu(cpu) < 0) {
983 error_report("kvm_destroy_vcpu failed");
984 exit(EXIT_FAILURE);
988 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
992 static void flush_queued_work(CPUState *cpu)
994 struct qemu_work_item *wi;
996 if (cpu->queued_work_first == NULL) {
997 return;
1000 qemu_mutex_lock(&cpu->work_mutex);
1001 while (cpu->queued_work_first != NULL) {
1002 wi = cpu->queued_work_first;
1003 cpu->queued_work_first = wi->next;
1004 if (!cpu->queued_work_first) {
1005 cpu->queued_work_last = NULL;
1007 qemu_mutex_unlock(&cpu->work_mutex);
1008 wi->func(wi->data);
1009 qemu_mutex_lock(&cpu->work_mutex);
1010 if (wi->free) {
1011 g_free(wi);
1012 } else {
1013 atomic_mb_set(&wi->done, true);
1016 qemu_mutex_unlock(&cpu->work_mutex);
1017 qemu_cond_broadcast(&qemu_work_cond);
1020 static void qemu_wait_io_event_common(CPUState *cpu)
1022 if (cpu->stop) {
1023 cpu->stop = false;
1024 cpu->stopped = true;
1025 qemu_cond_broadcast(&qemu_pause_cond);
1027 flush_queued_work(cpu);
1028 cpu->thread_kicked = false;
1031 static void qemu_tcg_wait_io_event(CPUState *cpu)
1033 while (all_cpu_threads_idle()) {
1034 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1037 while (iothread_requesting_mutex) {
1038 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
1041 CPU_FOREACH(cpu) {
1042 qemu_wait_io_event_common(cpu);
1046 static void qemu_kvm_wait_io_event(CPUState *cpu)
1048 while (cpu_thread_is_idle(cpu)) {
1049 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1052 qemu_kvm_eat_signals(cpu);
1053 qemu_wait_io_event_common(cpu);
1056 static void *qemu_kvm_cpu_thread_fn(void *arg)
1058 CPUState *cpu = arg;
1059 int r;
1061 rcu_register_thread();
1063 qemu_mutex_lock_iothread();
1064 qemu_thread_get_self(cpu->thread);
1065 cpu->thread_id = qemu_get_thread_id();
1066 cpu->can_do_io = 1;
1067 current_cpu = cpu;
1069 r = kvm_init_vcpu(cpu);
1070 if (r < 0) {
1071 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1072 exit(1);
1075 qemu_kvm_init_cpu_signals(cpu);
1077 /* signal CPU creation */
1078 cpu->created = true;
1079 qemu_cond_signal(&qemu_cpu_cond);
1081 do {
1082 if (cpu_can_run(cpu)) {
1083 r = kvm_cpu_exec(cpu);
1084 if (r == EXCP_DEBUG) {
1085 cpu_handle_guest_debug(cpu);
1088 qemu_kvm_wait_io_event(cpu);
1089 } while (!cpu->unplug || cpu_can_run(cpu));
1091 qemu_kvm_destroy_vcpu(cpu);
1092 cpu->created = false;
1093 qemu_cond_signal(&qemu_cpu_cond);
1094 qemu_mutex_unlock_iothread();
1095 return NULL;
1098 static void *qemu_dummy_cpu_thread_fn(void *arg)
1100 #ifdef _WIN32
1101 fprintf(stderr, "qtest is not supported under Windows\n");
1102 exit(1);
1103 #else
1104 CPUState *cpu = arg;
1105 sigset_t waitset;
1106 int r;
1108 rcu_register_thread();
1110 qemu_mutex_lock_iothread();
1111 qemu_thread_get_self(cpu->thread);
1112 cpu->thread_id = qemu_get_thread_id();
1113 cpu->can_do_io = 1;
1115 sigemptyset(&waitset);
1116 sigaddset(&waitset, SIG_IPI);
1118 /* signal CPU creation */
1119 cpu->created = true;
1120 qemu_cond_signal(&qemu_cpu_cond);
1122 current_cpu = cpu;
1123 while (1) {
1124 current_cpu = NULL;
1125 qemu_mutex_unlock_iothread();
1126 do {
1127 int sig;
1128 r = sigwait(&waitset, &sig);
1129 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1130 if (r == -1) {
1131 perror("sigwait");
1132 exit(1);
1134 qemu_mutex_lock_iothread();
1135 current_cpu = cpu;
1136 qemu_wait_io_event_common(cpu);
1139 return NULL;
1140 #endif
1143 static void tcg_exec_all(void);
1145 static void *qemu_tcg_cpu_thread_fn(void *arg)
1147 CPUState *cpu = arg;
1148 CPUState *remove_cpu = NULL;
1150 rcu_register_thread();
1152 qemu_mutex_lock_iothread();
1153 qemu_thread_get_self(cpu->thread);
1155 CPU_FOREACH(cpu) {
1156 cpu->thread_id = qemu_get_thread_id();
1157 cpu->created = true;
1158 cpu->can_do_io = 1;
1160 qemu_cond_signal(&qemu_cpu_cond);
1162 /* wait for initial kick-off after machine start */
1163 while (first_cpu->stopped) {
1164 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1166 /* process any pending work */
1167 CPU_FOREACH(cpu) {
1168 qemu_wait_io_event_common(cpu);
1172 /* process any pending work */
1173 atomic_mb_set(&exit_request, 1);
1175 while (1) {
1176 tcg_exec_all();
1178 if (use_icount) {
1179 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1181 if (deadline == 0) {
1182 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1185 qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
1186 CPU_FOREACH(cpu) {
1187 if (cpu->unplug && !cpu_can_run(cpu)) {
1188 remove_cpu = cpu;
1189 break;
1192 if (remove_cpu) {
1193 qemu_tcg_destroy_vcpu(remove_cpu);
1194 cpu->created = false;
1195 qemu_cond_signal(&qemu_cpu_cond);
1196 remove_cpu = NULL;
1200 return NULL;
1203 static void qemu_cpu_kick_thread(CPUState *cpu)
1205 #ifndef _WIN32
1206 int err;
1208 if (cpu->thread_kicked) {
1209 return;
1211 cpu->thread_kicked = true;
1212 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1213 if (err) {
1214 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1215 exit(1);
1217 #else /* _WIN32 */
1218 abort();
1219 #endif
1222 static void qemu_cpu_kick_no_halt(void)
1224 CPUState *cpu;
1225 /* Ensure whatever caused the exit has reached the CPU threads before
1226 * writing exit_request.
1228 atomic_mb_set(&exit_request, 1);
1229 cpu = atomic_mb_read(&tcg_current_cpu);
1230 if (cpu) {
1231 cpu_exit(cpu);
1235 void qemu_cpu_kick(CPUState *cpu)
1237 qemu_cond_broadcast(cpu->halt_cond);
1238 if (tcg_enabled()) {
1239 qemu_cpu_kick_no_halt();
1240 } else {
1241 qemu_cpu_kick_thread(cpu);
1245 void qemu_cpu_kick_self(void)
1247 assert(current_cpu);
1248 qemu_cpu_kick_thread(current_cpu);
1251 bool qemu_cpu_is_self(CPUState *cpu)
1253 return qemu_thread_is_self(cpu->thread);
1256 bool qemu_in_vcpu_thread(void)
1258 return current_cpu && qemu_cpu_is_self(current_cpu);
1261 static __thread bool iothread_locked = false;
1263 bool qemu_mutex_iothread_locked(void)
1265 return iothread_locked;
1268 void qemu_mutex_lock_iothread(void)
1270 atomic_inc(&iothread_requesting_mutex);
1271 /* In the simple case there is no need to bump the VCPU thread out of
1272 * TCG code execution.
1274 if (!tcg_enabled() || qemu_in_vcpu_thread() ||
1275 !first_cpu || !first_cpu->created) {
1276 qemu_mutex_lock(&qemu_global_mutex);
1277 atomic_dec(&iothread_requesting_mutex);
1278 } else {
1279 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1280 qemu_cpu_kick_no_halt();
1281 qemu_mutex_lock(&qemu_global_mutex);
1283 atomic_dec(&iothread_requesting_mutex);
1284 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1286 iothread_locked = true;
1289 void qemu_mutex_unlock_iothread(void)
1291 iothread_locked = false;
1292 qemu_mutex_unlock(&qemu_global_mutex);
1295 static int all_vcpus_paused(void)
1297 CPUState *cpu;
1299 CPU_FOREACH(cpu) {
1300 if (!cpu->stopped) {
1301 return 0;
1305 return 1;
1308 void pause_all_vcpus(void)
1310 CPUState *cpu;
1312 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1313 CPU_FOREACH(cpu) {
1314 cpu->stop = true;
1315 qemu_cpu_kick(cpu);
1318 if (qemu_in_vcpu_thread()) {
1319 cpu_stop_current();
1320 if (!kvm_enabled()) {
1321 CPU_FOREACH(cpu) {
1322 cpu->stop = false;
1323 cpu->stopped = true;
1325 return;
1329 while (!all_vcpus_paused()) {
1330 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1331 CPU_FOREACH(cpu) {
1332 qemu_cpu_kick(cpu);
1337 void cpu_resume(CPUState *cpu)
1339 cpu->stop = false;
1340 cpu->stopped = false;
1341 qemu_cpu_kick(cpu);
1344 void resume_all_vcpus(void)
1346 CPUState *cpu;
1348 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1349 CPU_FOREACH(cpu) {
1350 cpu_resume(cpu);
1354 void cpu_remove(CPUState *cpu)
1356 cpu->stop = true;
1357 cpu->unplug = true;
1358 qemu_cpu_kick(cpu);
1361 void cpu_remove_sync(CPUState *cpu)
1363 cpu_remove(cpu);
1364 while (cpu->created) {
1365 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1369 /* For temporary buffers for forming a name */
1370 #define VCPU_THREAD_NAME_SIZE 16
1372 static void qemu_tcg_init_vcpu(CPUState *cpu)
1374 char thread_name[VCPU_THREAD_NAME_SIZE];
1375 static QemuCond *tcg_halt_cond;
1376 static QemuThread *tcg_cpu_thread;
1378 /* share a single thread for all cpus with TCG */
1379 if (!tcg_cpu_thread) {
1380 cpu->thread = g_malloc0(sizeof(QemuThread));
1381 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1382 qemu_cond_init(cpu->halt_cond);
1383 tcg_halt_cond = cpu->halt_cond;
1384 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1385 cpu->cpu_index);
1386 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1387 cpu, QEMU_THREAD_JOINABLE);
1388 #ifdef _WIN32
1389 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1390 #endif
1391 while (!cpu->created) {
1392 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1394 tcg_cpu_thread = cpu->thread;
1395 } else {
1396 cpu->thread = tcg_cpu_thread;
1397 cpu->halt_cond = tcg_halt_cond;
1401 static void qemu_kvm_start_vcpu(CPUState *cpu)
1403 char thread_name[VCPU_THREAD_NAME_SIZE];
1405 cpu->thread = g_malloc0(sizeof(QemuThread));
1406 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1407 qemu_cond_init(cpu->halt_cond);
1408 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1409 cpu->cpu_index);
1410 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1411 cpu, QEMU_THREAD_JOINABLE);
1412 while (!cpu->created) {
1413 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1417 static void qemu_dummy_start_vcpu(CPUState *cpu)
1419 char thread_name[VCPU_THREAD_NAME_SIZE];
1421 cpu->thread = g_malloc0(sizeof(QemuThread));
1422 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1423 qemu_cond_init(cpu->halt_cond);
1424 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1425 cpu->cpu_index);
1426 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1427 QEMU_THREAD_JOINABLE);
1428 while (!cpu->created) {
1429 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1433 void qemu_init_vcpu(CPUState *cpu)
1435 cpu->nr_cores = smp_cores;
1436 cpu->nr_threads = smp_threads;
1437 cpu->stopped = true;
1439 if (!cpu->as) {
1440 /* If the target cpu hasn't set up any address spaces itself,
1441 * give it the default one.
1443 AddressSpace *as = address_space_init_shareable(cpu->memory,
1444 "cpu-memory");
1445 cpu->num_ases = 1;
1446 cpu_address_space_init(cpu, as, 0);
1449 if (kvm_enabled()) {
1450 qemu_kvm_start_vcpu(cpu);
1451 } else if (tcg_enabled()) {
1452 qemu_tcg_init_vcpu(cpu);
1453 } else {
1454 qemu_dummy_start_vcpu(cpu);
1458 void cpu_stop_current(void)
1460 if (current_cpu) {
1461 current_cpu->stop = false;
1462 current_cpu->stopped = true;
1463 cpu_exit(current_cpu);
1464 qemu_cond_broadcast(&qemu_pause_cond);
1468 int vm_stop(RunState state)
1470 if (qemu_in_vcpu_thread()) {
1471 qemu_system_vmstop_request_prepare();
1472 qemu_system_vmstop_request(state);
1474 * FIXME: should not return to device code in case
1475 * vm_stop() has been requested.
1477 cpu_stop_current();
1478 return 0;
1481 return do_vm_stop(state);
1484 /* does a state transition even if the VM is already stopped,
1485 current state is forgotten forever */
1486 int vm_stop_force_state(RunState state)
1488 if (runstate_is_running()) {
1489 return vm_stop(state);
1490 } else {
1491 runstate_set(state);
1493 bdrv_drain_all();
1494 /* Make sure to return an error if the flush in a previous vm_stop()
1495 * failed. */
1496 return blk_flush_all();
1500 static int64_t tcg_get_icount_limit(void)
1502 int64_t deadline;
1504 if (replay_mode != REPLAY_MODE_PLAY) {
1505 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1507 /* Maintain prior (possibly buggy) behaviour where if no deadline
1508 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1509 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1510 * nanoseconds.
1512 if ((deadline < 0) || (deadline > INT32_MAX)) {
1513 deadline = INT32_MAX;
1516 return qemu_icount_round(deadline);
1517 } else {
1518 return replay_get_instructions();
1522 static int tcg_cpu_exec(CPUState *cpu)
1524 int ret;
1525 #ifdef CONFIG_PROFILER
1526 int64_t ti;
1527 #endif
1529 #ifdef CONFIG_PROFILER
1530 ti = profile_getclock();
1531 #endif
1532 if (use_icount) {
1533 int64_t count;
1534 int decr;
1535 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1536 + cpu->icount_extra);
1537 cpu->icount_decr.u16.low = 0;
1538 cpu->icount_extra = 0;
1539 count = tcg_get_icount_limit();
1540 timers_state.qemu_icount += count;
1541 decr = (count > 0xffff) ? 0xffff : count;
1542 count -= decr;
1543 cpu->icount_decr.u16.low = decr;
1544 cpu->icount_extra = count;
1546 ret = cpu_exec(cpu);
1547 #ifdef CONFIG_PROFILER
1548 tcg_time += profile_getclock() - ti;
1549 #endif
1550 if (use_icount) {
1551 /* Fold pending instructions back into the
1552 instruction counter, and clear the interrupt flag. */
1553 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1554 + cpu->icount_extra);
1555 cpu->icount_decr.u32 = 0;
1556 cpu->icount_extra = 0;
1557 replay_account_executed_instructions();
1559 return ret;
1562 static void tcg_exec_all(void)
1564 int r;
1566 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1567 qemu_account_warp_timer();
1569 if (next_cpu == NULL) {
1570 next_cpu = first_cpu;
1572 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1573 CPUState *cpu = next_cpu;
1575 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1576 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1578 if (cpu_can_run(cpu)) {
1579 r = tcg_cpu_exec(cpu);
1580 if (r == EXCP_DEBUG) {
1581 cpu_handle_guest_debug(cpu);
1582 break;
1584 } else if (cpu->stop || cpu->stopped) {
1585 if (cpu->unplug) {
1586 next_cpu = CPU_NEXT(cpu);
1588 break;
1592 /* Pairs with smp_wmb in qemu_cpu_kick. */
1593 atomic_mb_set(&exit_request, 0);
1596 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1598 /* XXX: implement xxx_cpu_list for targets that still miss it */
1599 #if defined(cpu_list)
1600 cpu_list(f, cpu_fprintf);
1601 #endif
1604 CpuInfoList *qmp_query_cpus(Error **errp)
1606 CpuInfoList *head = NULL, *cur_item = NULL;
1607 CPUState *cpu;
1609 CPU_FOREACH(cpu) {
1610 CpuInfoList *info;
1611 #if defined(TARGET_I386)
1612 X86CPU *x86_cpu = X86_CPU(cpu);
1613 CPUX86State *env = &x86_cpu->env;
1614 #elif defined(TARGET_PPC)
1615 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1616 CPUPPCState *env = &ppc_cpu->env;
1617 #elif defined(TARGET_SPARC)
1618 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1619 CPUSPARCState *env = &sparc_cpu->env;
1620 #elif defined(TARGET_MIPS)
1621 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1622 CPUMIPSState *env = &mips_cpu->env;
1623 #elif defined(TARGET_TRICORE)
1624 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1625 CPUTriCoreState *env = &tricore_cpu->env;
1626 #endif
1628 cpu_synchronize_state(cpu);
1630 info = g_malloc0(sizeof(*info));
1631 info->value = g_malloc0(sizeof(*info->value));
1632 info->value->CPU = cpu->cpu_index;
1633 info->value->current = (cpu == first_cpu);
1634 info->value->halted = cpu->halted;
1635 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1636 info->value->thread_id = cpu->thread_id;
1637 #if defined(TARGET_I386)
1638 info->value->arch = CPU_INFO_ARCH_X86;
1639 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1640 #elif defined(TARGET_PPC)
1641 info->value->arch = CPU_INFO_ARCH_PPC;
1642 info->value->u.ppc.nip = env->nip;
1643 #elif defined(TARGET_SPARC)
1644 info->value->arch = CPU_INFO_ARCH_SPARC;
1645 info->value->u.q_sparc.pc = env->pc;
1646 info->value->u.q_sparc.npc = env->npc;
1647 #elif defined(TARGET_MIPS)
1648 info->value->arch = CPU_INFO_ARCH_MIPS;
1649 info->value->u.q_mips.PC = env->active_tc.PC;
1650 #elif defined(TARGET_TRICORE)
1651 info->value->arch = CPU_INFO_ARCH_TRICORE;
1652 info->value->u.tricore.PC = env->PC;
1653 #else
1654 info->value->arch = CPU_INFO_ARCH_OTHER;
1655 #endif
1657 /* XXX: waiting for the qapi to support GSList */
1658 if (!cur_item) {
1659 head = cur_item = info;
1660 } else {
1661 cur_item->next = info;
1662 cur_item = info;
1666 return head;
1669 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1670 bool has_cpu, int64_t cpu_index, Error **errp)
1672 FILE *f;
1673 uint32_t l;
1674 CPUState *cpu;
1675 uint8_t buf[1024];
1676 int64_t orig_addr = addr, orig_size = size;
1678 if (!has_cpu) {
1679 cpu_index = 0;
1682 cpu = qemu_get_cpu(cpu_index);
1683 if (cpu == NULL) {
1684 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1685 "a CPU number");
1686 return;
1689 f = fopen(filename, "wb");
1690 if (!f) {
1691 error_setg_file_open(errp, errno, filename);
1692 return;
1695 while (size != 0) {
1696 l = sizeof(buf);
1697 if (l > size)
1698 l = size;
1699 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1700 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1701 " specified", orig_addr, orig_size);
1702 goto exit;
1704 if (fwrite(buf, 1, l, f) != l) {
1705 error_setg(errp, QERR_IO_ERROR);
1706 goto exit;
1708 addr += l;
1709 size -= l;
1712 exit:
1713 fclose(f);
1716 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1717 Error **errp)
1719 FILE *f;
1720 uint32_t l;
1721 uint8_t buf[1024];
1723 f = fopen(filename, "wb");
1724 if (!f) {
1725 error_setg_file_open(errp, errno, filename);
1726 return;
1729 while (size != 0) {
1730 l = sizeof(buf);
1731 if (l > size)
1732 l = size;
1733 cpu_physical_memory_read(addr, buf, l);
1734 if (fwrite(buf, 1, l, f) != l) {
1735 error_setg(errp, QERR_IO_ERROR);
1736 goto exit;
1738 addr += l;
1739 size -= l;
1742 exit:
1743 fclose(f);
1746 void qmp_inject_nmi(Error **errp)
1748 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1751 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1753 if (!use_icount) {
1754 return;
1757 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1758 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1759 if (icount_align_option) {
1760 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1761 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1762 } else {
1763 cpu_fprintf(f, "Max guest delay NA\n");
1764 cpu_fprintf(f, "Max guest advance NA\n");